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Resumo

Os procesos son omnipresentes. Toda organizacion —xa sexa unha organizacién sen dnimo
de lucro, un organismo gobernamental ou unha empresa— ten que xestionar procesos. Para
mellorar estes procesos aumentando a sua eficiencia e eficacia, a sda andlise e estudo do com-
portamento convertéronse nunha necesidade para calquera organizacién. Como resultado, a
cantidade de datos rexistrados relacionados coa execucion destes procesos viuse incremen-
tada enormemente durante os tltimos anos. Este aumento creou a necesidade de desenvolver

técnicas e métodos para automatizar e mellorar a andlise dos datos rexistrados.

Neste contexto, a Xestion de Procesos de Negocio (Business Process Management ou
BPM en inglés) aparece como unha disciplina que ofrece un conxunto de métodos, técnicas
e ferramentas para identificar, descubrir, analizar, redesefiar, executar e supervisar os proce-
sos para optimizar o seu rendemento. Coa fin de mellorar continuamente o proceso, a BPM
define un procedemento ciclico formado por un conxunto de etapas ou fases para guiar a
andlise do proceso, alimentando cada fase coa informacién obtida nas anteriores. O ciclo
de vida da BPM comeza coa identificacién do proceso, da sia arquitectura e das medidas
de rendemento (identificacion do proceso). A continuacion, documéntase o estado actual do
proceso (descubrimento do proceso), para analizalo na seguinte etapa e detectar os proble-
mas que afectan 6 rendemento do proceso (andlise do proceso). A seguinte fase consiste en
identificar os cambios para redesefiar o proceso e abordar os problemas detectados na etapa
anterior (redeseiio do proceso). Estes cambios aplicanse no proceso como parte da seguinte
fase (implementacion do proceso). Finalmente, unha vez aplicados os cambios, a dltima etapa
consiste en supervisar o rendemento do proceso (supervision do proceso) e volver iniciar o

ciclo para melloralo de forma continua.

Ata hai pouco, a maioria destas etapas tifian que facerse manualmente, o que requiria unha

gran cantidade de interaccién humana para desefiar o modelo que describe o comportamento
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do proceso, ou para detectar os problemas que hai que mellorar. A mineria de procesos (Pro-
cess Mining ou PM en inglés) xurdiu como unha disciplina de investigacion para reducir a
interaccién humana necesaria nestas etapas aumentando a sda automatizacién. A mineria de
procesos sitliase entre entre a aprendizaxe automdtica e a mineria de datos por unha banda,
e o modelado e andlise de procesos pola outra, ofrecendo técnicas para descubrir, supervisar
e mellorar os procesos empresariais extraendo cofiecementos dos rexistros de eventos facil-
mente dispoiiibles nos sistemas actuais. Desta forma, a mineria de procesos establece un
vinculo entre os datos rexistrados e os modelos de proceso que describen o comportamento

do proceso.

Para establecer este vinculo, as técnicas pertencentes 4 mineria de procesos additanse
clasificar en tres tipos principais. O primeiro tipo é o Descubrimento. As técnicas de des-
cubrimento toman como entrada un rexistro de eventos coa informacién rexistrada sobre o
proceso, e producen un modelo de proceso que describe —completa ou parcialmente— o
comportamento observado. Ainda que a maioria das técnicas de descubrimento non tefien
en conta ningunha informacién a priori, algunhas técnicas requiren este cofiecemento para
producir o modelo de proceso. O segundo tipo € a Andlise de Conformidade. As técnicas de
comprobacién da conformidade comparan un modelo de proceso existente —xa sexa descu-
berto ou desefiado manualmente— cun rexistro de eventos do mesmo proceso. Estas técnicas
utilizanse para detectar desviacions entre o comportamento (real) rexistrado no rexistro e o
comportamento soportado polo modelo. Estas desviacidons poden indicar tanto problemas no
modelo de proceso que deben ser corrixidos, como incidentes que xa ocorreron e que deben
ser evitados no futuro. Por exemplo, tomemos un proceso de fabricacién no que a calidade dun
produto debe comprobarse nun punto concreto. As técnicas de comprobacién da conformi-
dade ofrecen a posibilidade de comparar o rexistro de eventos cun modelo de proceso que
especifica este requisito, detectando os casos nos que o proceso de comprobacién executouse
nun punto incorrecto, ou mesmo casos nos que esta comprobacién non se executou. Asi, as
técnicas de comprobacién da conformidade poden utilizarse para detectar, localizar e explicar
as desviacions, e para medir a sta gravidade. O terceiro tipo é a Mellora. O obxectivo da
mellora é mellorar un modelo de proceso existente utilizando a informacién sobre o proceso
rexistrada no rexistro de eventos. Un tipo de mellora € a extension, que consiste en engadir
nova informacién a un modelo de proceso baseado nun rexistro de eventos do mesmo proceso.
Un exemplo de ampliacién pode ser a adiciéon de marcas de tempo ou datos de recursos ds ac-

tividades do modelo. Con esta informacion, pédense realizar outras andlises, como buscar
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pescozos de botella ou a predicién de tempo restante. Outro tipo de mellora é a reparacion,
na que o modelo se modifica para reflectir mellor realidade. Por exemplo, cambiar a estrutura
de duas actividades que foron modeladas como unha secuencia, pero que poden ser execu-
tadas en calquera orde. Mentres que a comprobacion da conformidade identifica e describe
as desviaciéns entre o modelo de proceso e o comportamento rexistrado, a mellora redesefia

e amplia o modelo para aumentar a sda utilidade.

Como se pode observar, existe un elemento comun entre todos os tipos nos que se clasi-
fican as técnicas de mineria de procesos, o rexistro de eventos. O rexistro de eventos alma-
cena os datos rexistrados sobre o proceso que posteriormente son utilizados polas técnicas de
mineria de procesos. Para isto, cada evento —execucion dunha actividade— rexistrado esta
relacionado con un caso —¢ dicir, a unha execucién do proceso— e almacena unha marca de
tempo que denota o0 momento no que se produciu o evento. Ademais, pédese almacenar outra
informacién relacionada co evento, como o recurso que que o realizou. Con esta informacion,
os eventos dun caso poden ser agrupados e ordenados pola de ocorrencia, formando unha se-
cuencia de eventos pertencentes a esa instancia do proceso. A secuencia de acontecementos
relacionados cun s6 caso tamén se denomina traza. Asi, un rexistro de eventos € un conxunto

de trazas que rexistra a execucion de cada instancia do proceso.

Para realizar unha andlise de mineria de procesos, o requisito minimo destes datos é que
os eventos especifiquen: i) a execucion do proceso 4 que pertencen ii) a actividade executada,
e iii) o instante en que tiveron lugar. Con esta informacion, os eventos poden ser agrupados
e ordenados para obter as trazas do proceso. Os eventos poden conter informacién adicional
que pode enriquecer a andlise do proceso. Por exemplo, os recursos implicados en cada
actividade executada, o prezo do produto pedido, se o cliente contratou algiin seguro, unha
marca de tempo correspondente 4 hora de inicio de cada evento, etc. Ter en conta toda esta
informacién ofrece a oportunidade de realizar andlise de mineria de procesos desde diferentes
perspectivas. Non obstante, nesta Tese Doutoral centrdmonos unicamente na perspectiva do

comportamento, que se basa na andlise das trazas coma secuencias de actividades.

Outro elemento comun a todos os tipos de mineria de procesos é o modelo de proceso.
Un modelo de proceso é unha representacién diagramética dun proceso baseada no compor-
tamento almacenado no rexistro de eventos. O modelo de proceso € o elemento chave no que
se centran os tres tipos de mineria de procesos. Ademais, desempefia un papel preponderante

na maioria das fases do ciclo de vida da BPM.

Normalmente, os modelos de procesos represéntanse utilizando formalismos como a No-
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tacion de Modelos de Procesos de Negocio (Business Process Model Notation ou BPMN en
inglés), redes de Petri, redes de fluxo de traballo, etc. Nesta tese, representaremos a maioria
dos modelos de procesos utilizando o formalismo de redes de Petri. Unha rede de Petri é
un grafo dirixido composto por dous tipos de nodos: lugares e transicions, e onde 0s arcos
conectan dous nodos de distinto tipo. Dise que unha transicion estd habilitada cando todos os
lugares das suas entradas —cun arco cara a ela— contefien, polo menos, un foken. A execu-
cién dunha transicion habilitada consome un token de cada lugar das sdas entradas e xera un

token en cada lugar das stas saidas —lugares cun arco desde a transicion cara a eles—.

Un modelo de proceso representa o comportamento que estd a ser, ou pode ser, execu-
tado no proceso. Pddese utilizar para inspeccionar o que estd a suceder no proceso, ou para
modelar o que pode suceder. A calidade dun modelo de proceso baséase en catro métricas: a
aptitude, que cuantifica a medida en que o modelo descuberto pode reproducir con exactitude
0s casos rexistrados no rexistro de eventos; a precision, que cuantifica a fraccién do compor-
tamento permitido polo modelo que non se observou no rexistro de eventos; a xeneralizacion,
que avalia ata que punto o modelo resultante podera reproducir futuros comportamentos non

observados do proceso; e a simplicidade, que representa a complexidade estrutural do modelo.

Como xa se dixo, un modelo de proceso de baixa calidade pode comprometer o resto das
andlises e reducir significativamente as melloras que se poden realizar no proceso. Debido
ao papel principal que desempefia 0 modelo de proceso nos ciclos de vida da BPM e PM, a
construcién dun modelo de proceso de alta calidade durante a fase de descubrimento € crucial

para a andlise xeral, co fin de mellorar o proceso na medida do posible.

Coa explosion de datos relacionados cos procesos que se rexistran hoxe en dia, o descubri-
mento de modelos de procesos complexos volveuse mdis comun. Polo xeral, estes modelos
de procesos complexos son descubertos a partir de procesos complexos nos que, para obter un
bo nivel de aptitude, sacrificanse a simplicidade e a precisiéon dos modelos de proceso. Nestes
casos, o resultado € un modelo de proceso con pouca precision e simplicidade, o que presenta
diferentes problemas para as andlises e melloras que se realizan nas outras etapas tanto de
BPM como de PM: i) en canto 4 simplicidade, descubrir un modelo de proceso complexo, é
dicir, dificilmente lexible de proceso, pode entorpecer totalmente a sda calidade dificultando a
andlise do proceso; ii) no caso da precisién, o modelo de proceso admite unha gran cantidade
de comportamento non rexistrado no rexistro de eventos, o que reduce a confianza do modelo

de proceso.

Con modelos de procesos complexos de baixa precision, a deteccién de desviacions du-
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rante a conformidade e a mellora posterior vense moi dificultadas. Ademais, a maioria das
etapas da BPM que dependen do modelo de proceso, como a andlise, o redesefio e a im-
plementacién, tamén se ven obstaculizadas. Para facer fronte a esta carencia e mellorar as
andlises futuras, nos ultimos anos desenvolvéronse moitas técnicas destinadas a obter mod-
elos de procesos mdis sinxelos e precisos. As estratexias seguidas por estas técnicas poden

resumirse en dous grupos.

Por unha banda, a simplificacién do rexistro de eventos: Algunhas técnicas céntranse na
simplificacién do rexistro de eventos para descubrir posteriormente un modelo de proceso
mdis sinxelo e preciso. O obxectivo € reter, no rexistro de eventos simplificado, o comporta-
mento principal que soportard o novo modelo de proceso descuberto. Algunhas destas técnicas
eliminan as trazas infrecuentes ou atipicas. Como unha traza infrecuente pode conter un com-
portamento frecuente —por exemplo, unha traza que rexistre o camifio mdis frecuente, pero
coa execucion dunha actividade infrecuente no medio—, a eliminacion de trazas completas
pode eliminar tamén o comportamento frecuente. Para facer fronte a esta deficiencia, outras
técnicas eliminan sé os eventos que aparecen nun contexto infrecuente, ou todos os eventos

das actividades que aparecen en contextos infrecuentes.

Por outra banda, a simplificaciéon do modelo. Outras técnicas céntranse na simplificacién
directa do modelo de proceso. Para obter un modelo de proceso mdis sinxelo e con maior
precision, e mellorar as andlises futuras, estas técnicas aplican simplificacions estruturais ao
modelo de proceso. Algunhas delas basean as simplificaciéns no comportamento rexistrado
no rexistro, mentres outras realizan unha simplificacién estrutural do modelo de proceso sen
ningtn outro cofiecemento. Esta simplificacion estrutural do modelo de proceso adoita pro-
ducir modelos de proceso sen propiedades basicas de correccién, como a solidez (soundness

en inglés), o que tamén dificulta futuras andlises.

O obxectivo principal da simplificacién do modelo de procesos é reducir a complexidade
do modelo de proceso conservando a maior cantidade posible de comportamento. Asi, para
realizar unha boa simplificacién, é desexable detectar o comportamento frecuente —¢é dicir,
os subprocesos frecuentes— a reter. A maiorfa das técnicas comentadas non realizan unha
procura do comportamento frecuente a reter. No seu lugar, simplifican o modelo de procesos
eliminando o comportamento mdis infrecuente e conservando o resto. Ademais, os enfoques
seguidos para detectar o comportamento infrecuente céntranse sé na frecuencia de cada ac-
tividade individual, ou de cada par de actividades —por exemplo, A seguida de B—, en lugar

de detectar subprocesos. A simplificacidn realizada por estas técnicas poderia mellorarse de
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dias maneiras.

Por unha banda, para realizar unha mellor simplificacién, poderianse utilizar técnicas mdis
avanzadas de procura de comportamentos frecuentes ou infrecuentes. Como parte da minerfa
de procesos, desenvolvéronse moitas técnicas centradas na extraccién de informacién sobre
0 comportamento, como os subprocesos frecuentes. Debido 4 estrutura secuencial das trazas
no rexistro de eventos, as primeiras técnicas utilizadas para este propdsito foron as técnicas
de mineria de patréns secuenciais, recuperando secuencias de actividades que se observan
frecuentemente no rexistro. Con todo, un proceso —ou un subproceso— pode conter estru-
turas mdis complexas que as secuencias, como a concorrencia, as seleccions ou os bucles.
Por esta razén, propuxéronse outras técnicas que superan este inconveniente para descubrir

subprocesos frecuentes que soporten concorrencia, € mesmo seleccidns e bucles.

Doutra banda, a eliminacién do comportamento infrecuente que estd a obstaculizar a sim-
plicidade e a precisién do modelo de proceso pode alterar a estrutura dos subprocesos fre-
cuentes. Por exemplo, consideremos un subproceso frecuente que contén unha parte infre-
cuente con moitos camifios entre as actividades A e B, no medio da sda estrutura. Ao eliminar
esta parte infrecuente, a estrutura frecuente permanece, pero a informacién sobre o subpro-
ceso frecuente é inexacta, Xxa que o comportamento entre A e B non se representa. O modelo
de proceso simplificado representa o subproceso frecuente coma se non se executase nada
entre A e B. Isto pode levar a unha interpretacion errénea do proceso, facendo que o analista
pense que non estd a ocorrer nada entre ddas actividades, cando en realidade poderia haber
un comportamento infrecuente —e potencialmente perigoso. Para evitar este problema de
desinformacién e, ao mesmo tempo, reducir a complexidade do proceso, o comportamento
infrecuente poderia encapsularse en actividades artificiais. Deste xeito, o comportamento que
ofusca a visualizacion reducirfase a unha soa actividade —mellorando a simplicidade—, e

seguiriase conecendo a existencia e a localizacién exacta do comportamento infrecuente.

En resumo, nesta Tese Doutoral pretendemos facer fronte s carencias relacionadas cos
procesos complexos que impiden as andlises futuras. Neste sentido, podemos identificar dous
temas principais de interese. Por unha banda, interésanos a recuperacién de subprocesos fre-
cuentes e infrecuentes dos procesos complexos. Por outra banda, pretendemos utilizar esta
informacidn para simplificar o modelo de proceso descuberto mediante a abstraccién do com-
portamento infrecuente, coa fin de obter un modelo de proceso mais sinxelo e preciso. Polo
tanto, a motivacién deste doutoramento pode resumirse en "Simplificar modelos de proceso

complexos utilizando de comportamento frecuentes e infrecuentes".
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Coa fin de simplificar os modelos de proceso complexos mantendo a maior cantidade
de comportamento posible, un dos obxectivos principais desta tese é detectar os subproce-
sos que se estdn executando mdis frecuentemente. Estes subprocesos serdn o comportamento
que mantefiamos na simplificaciéon, maximizando desta forma a cantidade de comportamento
modelado polo modelo de proceso simplificado. No campo da mineria de procesos prop-
uxéronse algunhas técnicas para a deteccidn de estruturas frecuentes en procesos. Algunhas
delas estdn desefiadas para descubrir estruturas simples como secuencias de actividades. Out-
ras profundizan mdis na complexidade destas estruturas, pero utilizan métodos para medir a
sua frecuencia que poden levar a confusiéns nalgins contextos. Para evitar estes problemas,
e poder descubrir subprocesos con todo tipo de estruturas —secuencias, seleccions, concor-
rencia e bucles—, propofiemos un método de descubrimento de subprocesos frecuentes que
utiliza a informacién do modelo de proceso. Desta forma, a primeira hipétese desta Tese
Doutoral pode ser definida da seguinte forma: O uso da informacion do modelo de proceso
para descubrir subprocesos frecuentes reduce o espazo de procura e garante unha medicion
precisa da sia frecuencia. Asi, no Capitulo[2describese WoMine, un algoritmo para descubrir
subprocesos frecuentes dun modelo de proceso, medindo a sua frecuencia nas instancias do
rexistro de eventos. WoMine descobre subprocesos frecuentes con todo tipo de estruturas —
incluso ciclos de lonxitude n, estruturas moi comuns en procesos reais. O algoritmo realiza
unha procura a-priori construindo os subprocesos coas relaciéns no modelo de proceso, re-
ducindo asi o espazo de procura. Ademais, WoMine mide a frecuencia de cada subproceso
tendo en conta as relaciéns do modelo de proceso, asegurando unha medicién precisa e es-
trita da frecuencia. O algoritmo foi probado con 20 modelos de procesos sintéticos que van
de 20 a 30 actividades tnicas, e que contefien secuencias, concorrencia, seleccions e bucles.
Tamén se realizaron experimentos con 12 rexistros de eventos complexos reais publicados en

competicions de Intelixencia de Procesos de Negocio.

De cara a detectar o comportamento infrecuente para abstraer na simplificacion, é nece-
sario descubrir os subprocesos que estdn ocorrendo infrecuentemente. Non hai moita in-
vestigacion feita no eido do comportamento infrecuente. As técnicas propostas céntranse
maiormente na deteccion de trazas infrecuentes, ou de actividades que se executan moi pou-
cas veces. A problemdtica que xurde ao utilizar as trazas que se executan infrecuentemente
€ estas trazas poden conter comportamento frecuente 4 sia vez. Por exemplo, unha traza
na que se rexistra a execucién dunha actividade tnica en todo o rexistro de eventos vai ser

infrecuente, pero o resto da traza pode ser frecuente. Isto obriga a usar mais técnicas para dis-
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cernir do comportamento frecuente que almacena esa traza. Por este motivo, e co obxectivo
de detectar tinicamente os subprocesos infrecuentes, a segunda hipétese desta Tese Doutoral
definese como: O uso da informacion do modelo de proceso para descubrir subprocesos in-
frecuentes reduce o espazo de procura e garante unha medicion precisa da sia frecuencia.
Asi, o Capitulo [3] describe WoMine-i, un algoritmo para detectar subprocesos infrecuentes
dun modelo de proceso, medindo a sda frecuencia coas instancias do rexistro de eventos. A
principal novidade do noso enfoque é que pode detectar subprocesos infrecuentes con todo
tipo de estruturas —secuencias, seleccions, concorrencia e bucles. A capacidade de trabal-
lar con estas estruturas evita que WoMine-i interprete as trazas como secuencias de eventos.
Ademais, a informacién extraida permite centrarse en subprocesos pouco frecuentes, € non
analizar trazas completas pouco frecuentes. O algoritmo comparouse cualitativamente uti-
lizando varios modelos de procesos sintéticos con todas as técnicas relacionadas, mostrando
que o noso algoritmo atopa os patréns infrecuentes correctos e estima con precision a sta
frecuencia mentres que as técnicas relacionadas non o fan. Tamén se realizaron experimentos
con rexistros de eventos reais de dous competicions de Intelixencia de Procesos de Negocio,
BPIC 2012 e BPIC 2013.

Por ultimo, co comportamento frecuente e infrecuente identificados, proponse unha sim-
plificacion do modelo de proceso para reducir a complexidade do mesmo, 4 vez que se mellora
o equilibrio entre as medidas de aptitude e precision. Para isto, a terceira hipStese desta Tese
Doutoral definese coma: A simplificacion dos procesos complexos mediante a abstraccion
do comportamento infrecuente en actividades artificiais produce modelos de procesos mdis
sinxelos cun mellor equilibrio entre aptitude e precision. Asi, o Capitulo [] describe dous
algoritmos para a abstraccion do comportamento nos modelos de procesos: UBeA e IBeA.
UBeA ¢ un algoritmo para abstraer o comportamento dun proceso en actividades artificiais
utilizando as relaciéns entre as actividades, por tanto, tendo en conta estruturas como a con-
correncia, as seleccions ou os bucles. A principal novidade de UBeA € que xera unha versién
abstracta do proceso que describe o comportamento desexado, 4 vez que cofiece a existencia
e a localizacién exacta do comportamento abstraido. UBeA permite ao usuario especificar o
comportamento a manter, ¢ dicir, o comportamento desexado, o que o fai moi versatil. Por
outra banda, IBeA € unha implementacién especifica de UBeA para simplificar os modelos
de procesos mediante a abstracciéon do comportamento infrecuente, utilizando WoMine para
detectar o comportamento desexado —considerando o comportamento infrecuente como non

desexado— permitindo producir un modelo de proceso madis simple mentres se mantén un



XiX

compromiso entre aptitude e precisién. IBeA foi validado cun conxunto de 11 rexistros de
eventos complexos e reais, 10 deles do Business Process Intelligence Challenges (BPIC), e un
do dominio da satide. Os experimentos mostran que a simplificacién de IBeA xera mellores
modelos de procesos que outras técnicas de simplificacion.

Finalmente, a tese remata co Capitulo[5] onde se presentan as conclusions sobre o traballo

feito e se introducen posibles lifias de traballo futuro froito da investigacién realizada.
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CHAPTER 1

INTRODUCTION

“There are two kinds of people, those who do the work and
those who take the credit. Try to be in the first group, there is
less competition there."

— Indira Priyadarshini Gandhi

1.1 Motivation

Processes are everywhere. Every organization —either a non-profit organization, a govern-
mental agency, or an enterprise— has to manage processes [[15]. In order to improve these
processes by increasing their performance, their behavioral analysis and study have become a
must for every organization. As a result, the amount of recorded data related to the execution
of these processes has been greatly increased during past years. This increase has created a
need to develop techniques and methods in order to automate and improve the analysis of the
recorded data.

In this context, Business Process Management (BPM) appears as a discipline offering a
set of methods, techniques, and tools to identify, discover, analyze, redesign, execute, and
monitor processes to optimize their performance [[15]. In order to continuously improve the
process, BPM defines a cyclic procedure formed by a set of stages to guide the analysis of
the process by renourishing each stage with the information obtained in the previous ones.
Figure[I.T]depicts this cyclic structure. The BPM lifecycle starts with the identification of the
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Figure 1.1: BPM lifecycle (adapted from (19)).

process, its architecture, and performance measures (process identification). Then, the current
state of the process is documented (process discovery) to analyze it in the following stage in
order to detect issues that are affecting the process performance (process analysis). The next
stage consists of identifying changes to redesign the process and tackle the issues found in the
previous stage (process redesign). These changes are implemented in the process as part of
the next stage (process implementation). Finally, once the changes have been implemented,
the last stage is to monitor the performance of the process (process monitoring) and start again
the cycle to improve it in a continuous way.

Until recently, most of these stages had to be done manually, requiring a great amount of
human interaction to design the model describing the behavior of the process, or to detect the
issues to be improved. Process Mining (PM) has emerged as a research discipline to reduce
the human interaction needed in these stages by increasing their automation. PM sits between
machine learning and data mining on the one hand, and process modeling and analysis on
the other hand, offering techniques to discover, monitor, and enhance business processes by
extracting knowledge from event logs readily available in today’s systems [45]]. Figure [I.2]
depicts how PM interacts with the real world and the elements of a process management
system. As can be seen, process mining establishes a link between the recorded data and the
process models describing the behavior of the process.

To establish this link, the techniques belonging to process mining are typically categorized

into three main types (Figure[T.3):

e The first type is Discovery (Figure[I.3(a)). Discovery techniques take as input an event

log with the recorded information about the process, and produce a process model de-
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Figure 1.2: Process Mining framework (adapted from (45)).

scribing —fully or partially— the observed behavior. Although most of the discovery
techniques do not take into account any a-priori information [3} 23| |49]], some tech-

niques require this knowledge to produce the process model [[14} |19} 41]].

e The second type is Conformance (Figure [[.3(b)). Conformance checking techniques
compare an existing process model —either discovered or manually designed— with an
event log of the same process [7, 121} [31]. These techniques are used to detect deviations
between the (real) behavior recorded in the log and the behavior supported by the model.
These deviations may hint at both issues in the process model that should be corrected,
as well as incidents that have already occurred and must be avoided in the future. For
example, take a manufacturing process where the quality of a product has to be checked
at a specific point. Conformance checking techniques offer the possibility to compare
the event log against a process model specifying this requirement, detecting the cases
where the checking process has been executed at a wrong point, or even the cases where
it has not been executed. Thus, conformance checking techniques may be used to detect,

locate, and explain deviations, and to measure their severity [45].

e The third type is Enhancement (Figure [I.3(c)). The aim of enhancement is to improve
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Figure 1.3: Process Mining types (adapted from (48)).

an existing process model using the information about the process recorded in the event
log. One type of enhancement is extension, consisting of adding new information to a
process model based on an event log of the same process. An example of extension can
be the addition of timestamps or resource data to the activities of the model. With this
information, further analyses like bottlenecks or time prediction can be performed [46].
Another type of enhancement is repair, where the model is modified to better reflect
reality [2l]. For example, changing the structure of two activities that were modeled as a
sequence, but can be executed in any order. Whereas conformance checking identifies
and describes the deviations between the process model and the recorded behavior,
enhancement redesigns and extends the model to increase its utility.

Event log

There is a common element between all the types in which process mining techniques are
classified: the event log. The event log stores the data recorded about the process which is
later used by the process mining techniques. Table[I.T|shows a sample of an event log of a de-
livery company process where each row represents an event, i.e., the execution of an activity.
As can be seen in this example, each event refers to a case, i.e., a process instance, and stores
a timestamp denoting the instant at which the event took place. Furthermore, other informa-
tion related to the event can be stored, such as the resource which performed it. With this
information, the events of a case can be grouped and ordered by the timestamp of occurrence,
forming a sequence of events belonging to that process instance. For example, considering
case 512, first Fry registered the order, then he checked the stock to see if the product was
available. Later, Bender prepared and packed the order. Finally, Leela delivered the order

ending the process by confirming the delivery. The sequence of events related to a single case
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is also referred to as a trace. Thus, an event log is a set of traces recording the execution of

each process instance.

Although the event log can be directly obtained in this example, it is common that the
data stored in today’s systems do not comply with the exact format shown in Table Nev-
ertheless, in most cases, this information can be easily extracted by applying preprocessing
techniques to the raw data. In order to perform a process mining analysis, the minimum re-
quirement for this data is that the events specify: i) the case instance to which they belong,
ii) the executed activity, and iii) the instant in which they took place. With this information,
the events can be grouped and ordered to obtain the traces of the process. As shown in the
example, there may be additional information that can enrich the analysis of the process. For
instance, the resources involved in each executed activity, the price of the ordered product,
whether the customer took out any insurance, a timestamp corresponding to the start time of
each event, etc. Taking into account all this information brings the opportunity to perform
process mining analyses from different perspectives [27, 38) 45]. For example, four of the

most common perspectives are:

Table 1.1: Sample of an event log of a fictional delivery company process, where each row
corresponds to the execution of an activity, i.e., an event.

Case Activity Timestamp Resource
512 Register order 2020-03-15T09:10:01 Fry
512 Check stock 2020-03-15T09:15:51 Fry
515 Register order 2020-03-15T09:15:58 Zoidberg
515 Check stock 2020-03-15T09:20:25 Zoidberg
515 Purchase from supplier 2020-03-15T09:25:53 Zoidberg
511 Prepare and pack order 2020-03-15T11:32:36 Bender
513 Prepare and pack order 2020-03-15T11:40:34 Bender
516 Prepare and pack order 2020-03-15T11:50:48 Bender
512 Prepare and pack order 2020-03-15T11:56:27 Bender
511 Deliver order 2020-03-15T16:24:24 Amy
513 Deliver order 2020-03-15T16:24:24 Amy
516 Deliver order 2020-03-15T16:24:24 Leela
512 Deliver order 2020-03-15T16:24:24 Leela
512 2020-03-15T19:31:22 Leela

Confirm delivery




Chapter 1. Introduction

e Control-flow perspective. This perspective, sometimes referred to as behavioral per-
spective, focuses on the order in which the activities have been, or should be, executed.
The objective of the control-flow perspective is to represent the relations between the
activities and the different paths of the process. As an example, “The first activity must
always be to register the order”, or “A purchase from the supplier must always be pre-
ceded by a stock checking”. This perspective constitutes the foundation of a process

model and is, usually, the starting point for a process mining analysis [27]].

e Resource perspective. This perspective, sometimes referred to as organizational per-
spective, focuses on the information about the resources that execute each activity, and
how they interact with each other. The resources of a process can be human or non-
human —e.g., a machine required to execute an activity. The objectives of the resource
perspective are, among others, to analyze the structure of the organization by construct-
ing social network graphs, and to detect or establish resource constraints of the process.
As an example, “The person who performs the purchase from the supplier must be
the same as the person who checked the stock”, or “The delivery of the order must be

performed by a courier”.

e Time perspective. This perspective focuses on the time-related aspects of the process.
In addition to the time measures followed to order the events of a trace, the execution of
the activities of a process takes time, and there is usually time between the execution of
an activity and the execution of the next one. The objective of the time perspective is to
analyze these aspects to discover bottlenecks, to predict the remaining time of running
activities or cases, to detect blank time intervals between activities, etc. As an example,
“The preparing and packing of an order must not take more than 20 minutes”, or “On
average, the orders of May have been processed and prepared in 7 hours and shipped

in 5 hours”.

e Data perspective. This perspective, sometimes referred to as informational perspective,
focuses on the transmission of data between the activities of the process. The objective
of the data perspective is to detect or establish restrictions and control-flow decisions
w.r.t. the information related to the activities of the process. As an example, “If there
are no units of the ordered product in stock, purchase it from supplier”, or “If the order

is insured, perform the delivery in person”.
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Although all perspectives provide useful information to the analysis, the control-flow per-
spective is the most widely adopted. From the control-flow point of view, a trace is just a
sequence of activities ordered by the timestamp of their execution. For example, trace 512
can be written as ( Register order, Check stock, Prepare and pack order, Deliver order, Con-
Sfirm delivery ).

It must be noted that these perspectives are not exclusive. It is common to combine them
in order to enrich the information and to obtain more useful insights about the process. For
example, the prediction of the next activity to be executed can be performed based on the
control-flow information, but also taking into account the resource and time information of
each event [8, [17]].

Process model

Another common element in all PM types is the process model. A process model is a dia-
grammatic representation of a process based on the behavior recorded in the event log. The
process model is the key element in which the three types of PM are centered (c.f. Figure[I.3).
Furthermore, it plays a dominant role in most of the BPM lifecycle stages [45]], as can be seen
in Figure 1]

Typically, process models are represented using formalisms such as the Business Process
Model Notation (BPMN), Petri nets, Workflow nets, etc. In this thesis, we will depict most
of the process models using the Petri net formalism. A Petri net [13}[34] is a directed graph
composed of two types of nodes: places and transitions —circles and boxes, respectively—,
and where the arcs connect two nodes of different types. A transition is said to be enabled
when all the places of its inputs —with an arc to it— contain, at least, a token —represented
by a dot. The execution of an enabled transition consumes a token from each place of its inputs
and generates a token in each place of its outputs —places with an arc from the transition to
them.

Figure|l.4]shows an example of a process model (Petri net) corresponding to the behavior
recorded in the event log of Table[T.I] As can be seen, a process model depicts the behavior
that is being, or can be, executed in the process. It can be used to inspect what is happening in
the process, or to model what can happen. In this simple example, the trace 512 is supported
through the execution of the Register order, which enables Check Stock; this one enables
both Purchase from supplier and Prepare and pack order, being the latter the executed one,

followed by Delivery order and Confirm delivery.
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Purchase from

Unavailable

supplier
@ Register Check Prepare and Delivery Confirm @
order stock pack order order delivery

Figure 1.4: Example of a process model (using the Petri net formalism) corresponding to the
event log in[T.]

The quality of a process model is based on four metrics: fitness replay, which quantifies
the extent to which the discovered model can accurately reproduce the cases recorded in the
log; precision, which quantifies the fraction of the behavior allowed by the model which is not
seen in the event log; generalization, which assesses the extent to which the resulting model
will be able to reproduce future unobserved behavior of the process; and simplicity, which
represents the structural complexity of the model [6]].

As said before, a low-quality process model can compromise the rest of the analyses
and reduce significantly the improvements that can be done to the process. Due to the main
role that the process model plays in both the BPM and PM lifecycles, building a high-quality
process model during the discovery phase is crucial to the overall analysis, in order to improve

the process as much as possible.

The need of process model simplification

With the explosion of process-related data being recorded nowadays, the discovery of com-
plex process models has become more common. Usually, these complex process models are
discovered from complex processes where, in order to obtain a good level of fitness replay,
the simplicity and precision of the process models are sacrificed. In these cases, the result
is a process model with low precision and simplicity, presenting different problems for the
analyses and improvements performed in the other stages of both BPM and PM:

e Regarding simplicity, discovering a complex process model, i.e., a hardly readable pro-
cess model, can totally hinder its quality [[7] making difficult the analysis of the process.

e In the case of precision, the process model supports a great amount of behavior not

recorded in the event log, which reduces the confidence of the process model.

As an example, Figure[I.5]depicts the process model of the trajectories of patients treated

for aortic stenosis in a Spanish hospital. As can be seen, little information about the process
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Figure 1.5: Complex process model (spaghetti model) of an aortic stenosis process in a Spanish
hospital.

can be extracted from such a complex structure. Furthermore, the low precision value in
this process model makes it difficult to know which supported behavior is happening in the
process, and which is not.

With complex process models of low precision, the detection of deviations during confor-
mance, and the posterior enhancement are greatly hindered. Furthermore, most stages of BPM
depending on the process model, such as the analysis, redesign, and implementation, are also
hindered. To cope with this shortcoming and improve future analyses, many techniques have
been developed in the past years aiming to obtain simpler and more precise process models.
Nevertheless, most of the existent proposals for process model simplification rely on simple
statistics such as the individual frequency of each activity, or the individual frequency of each
directly-follows relation —i.e. the frequency of apparition of activity B following activity A.
Furthermore, these methods propose to remove the detected infrequent behavior, either full

traces, single events or activities, which may be harmful to further analyses in some contexts.

1.2 Hypothesis

We are interested in the simplification of complex process models maintaining support for
as much behavior of the process as possible, while increasing the precision of the process

model. In order to retain as much behavior as possible, we propose to detect the subprocesses
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that are being executed more frequently. On the other hand, to increase the precision, we
propose to avoid the support of the process model for the subprocesses that are observed
fewer times. The support for these infrequent subprocesses often increases the amount of
unobserved behavior modeled by the process model, decreasing the precision. In this way,
the simplification reduces the behavior that is harming the most to the precision of the process
model.

Hence, the hypothesis this Ph.D. Thesis addresses is:

The simplification of complex process models through the detection of fre-
quent and infrequent subprocesses generates simpler process models with a

good trade-off between fitness and precision.

1.3 Objectives

The main objective of this Ph.D. Thesis is to simplify process models by avoiding the removal
of behavior, in order to maintain the integrity of the information the process model provides,
while producing a simpler process model with a good trade-off between fitness and precision.

To achieve this, three specific objectives have been pursued:

O1. The extraction of frequent subprocesses.

The first objective of this Ph.D. Thesis is to discover subprocesses from a given process
model, which are executed frequently in the event log. The discovered subprocesses
must be supported by the process model —i.e. the subprocess must be a subgraph of
the process model— and their frequency must be precisely measured. This objective

has been achieved in the following publication:

D. Chapela-Campa, M. Mucientes, and M. Lama. Mining frequent patterns
in process models. Information Sciences, 472:235-257, 2019.
(DOI/10.1016/}.ins.2018.09.011)

02. The extraction of infrequent subprocesses.

The second objective of this Ph.D. Thesis is to discover subprocesses from a given
process model, which are executed infrequently in the event log. The discovered sub-
processes must be supported by the process model and their frequency must be precisely

measured. This objective has been achieved in the following publication:


https://doi.org/10.1016/j.ins.2018.09.011
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D. Chapela-Campa, M. Mucientes, and M. Lama. Discovering Infrequent
Behavioral Patterns in Process Models. In 15th International Conference on
Business Process Management (BPM 2017), volume 10445 of Lecture Notes
in Computer Science, pages 324-340, Springer, 2017.
(DOI10.1007/978-3-319-65000-5_19).

03. The simplification of process models by abstracting the infrequent behavior.

The third objective of this Ph.D. Thesis is to simplify a process model by abstracting the
infrequent behavior, while retaining the frequent one. For this, the use of the frequent
and infrequent subprocesses from objectives O1 and O2 should be considered, in order
to abstract into artificial activities the infrequent behavior of the process. This objective
has been achieved in the following publication:

D. Chapela-Campa, M. Mucientes, and M. Lama. Understanding complex
process models by abstracting infrequent behavior. Future Generation Com-
puter Systems, 113:428-440, 2020.

(DOI10.1016/j.future.2020.07.030)

1.4 Methodology

This Ph.D. Thesis follows the scientific method, an iterative process composed of a first phase
to specify the objectives to pursue, followed by a study of the state of the art techniques, an
information and data search, the development of the solution, and its validation. This method
is followed in the process to achieve each of the objectives of this dissertation. It must be
noted that the schedule of the different phases is considered flexible, as one phase can start
before the previous one finishes —e.g. start to develop a solution before the data gathering
ends. Furthermore, the result of one of the phases can cause a restart of the iterative process
to perform adjustments —e.g. modifications in the solution due to poor performance in the
validation results. Each of the different phases of this method is applied in this dissertation as
follows:

e Objective specification. This phase consists of the description and specification of the

objectives designed to validate the hypothesis under consideration.


https://doi.org/10.1007/978-3-319-65000-5_19
https://doi.org/10.1016/j.future.2020.07.030
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o State of the art. Analyze the strengths and weaknesses of the existent approaches that
address the proposed objectives. Study and evaluate other presented approaches that
may be useful to solve the pursued objectives. Some methodological tools used in this
phase are the analysis of case studies that address some of the proposed objectives, and

publications describing techniques with the same purpose.

o Information and data gathering. Search for data in order to test the proposed solution
while it is being developed, and to perform the final validation. The main tool to obtain
this information is to perform a search for process event logs in public repositories and
process mining publications. Nevertheless, other methodological tools such as obtain-
ing the data from observational databases of associate companies can be considered.

e Development of a solution. Design and implement an algorithm (or algorithms) to
solve the problems defined in the objectives. The development of the algorithms is
performed by following the implementation and test methodology, consisting of imple-
menting modularly the different features of the algorithm and testing them individually

before validating the complete approach.

e Validation. This phase consists of the validation of the complete proposed solution.
This empirical evaluation is performed by using the data gathered in previous phases,
and analyzing the obtained results. In case that the quality of the results is not adequate,
the process returns to previous phases to perform the modifications needed until those

results are satisfactory.

1.5 Discussion

The analysis of processes, either by Business Process Management (BPM) or Process Mining
(PM) techniques, has become a must for every organization in order to improve their perfor-
mance. As we have already discussed in Sect. the role of the process model is crucial
in most of the BPM and PM phases. During past years, the amount of process-related data
that has been gathered by information systems has greatly increased. With more information
and behavior related to the processes being recorded, the apparition of complex processes and
complex process models —with hundreds of edges and activities— has become more com-
mon. Figure [I.6] depicts two examples of complex process models of an e-learning process
from a Spanish university (Figure and a travel permit process in a Dutch university
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(a) Spaghetti process model of an event log record-
ing the interaction of students from a Spanish uni-
versity with a media visualization tool [37].

13

(b) Sample of a spaghetti process model of an event
log recording the travel permit process in a univer-
sity [47].

Figure 1.6: Two examples of spaghetti process models corresponding o real processes.

(Figure [T.6(b)). The complexity of these discovered process models —characterized by low

simplicity and precision— hinder the detection of deviations during conformance, and the

posterior enhancement. Furthermore, most stages of BPM depending on the process model,

such as the analysis, redesign, and implementation, are also hindered. For this reason, the sim-

plification of complex process models is a promising research field that can help the analysis

of complex processes.

In order to cope with the shortcomings related to complex process models, and improve

future analyses, many techniques have been developed in the past years aiming to obtain

simpler and more precise process models. The strategies followed by these techniques can be

summarized in two groups:

o Model simplification. Some techniques focus on the direct simplification of the discov-

ered process model. In order to obtain a simpler process model with higher precision,

and improve future analyses, these techniques apply structural simplifications to the

process model. Some of them base the simplifications on the behavior recorded in the

event log [12]], and others perform a structural simplification of the process model with-

out any further knowledge [16]. In [16], an approach to simplify discovered process

models while controlling the precision and generalization is presented. The process

model, expressed in terms of a Petri net, is unfolded into a branching process using the

event log, then filtered retaining the frequent parts, and finally folded again into a sim-

pler process model capturing the desired behavior. Other approaches focusing on fitness
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and precision are, for instance, the collection of event log-based techniques presented
in [12]. They first rank the importance of the model places and arcs using the event
log, and then simplify with different alternatives maintaining the more important arcs
and places. Nevertheless, these techniques often sacrifice some correctness properties
of the process model such as soundness, which also hinders future analyses, in order to

maintain a good trade-off between fitness and precision.

o Event log simplification. Other techniques focus on simplifying the event log in order to
later discover a simpler and more precise process model by using a discovery algorithm.
The objective is to retain, in the simplified event log, the main behavior that the simpler
discovered process model will support. Some of these techniques focus on the removal
of infrequent or outlier traces [9, 11} 26,|39]]. For example, in [39], authors identify and
remove outlier traces using the probability of occurrence of each event conditioned by
both its k predecessors and its k successors. This allows to identify the events with a
low probability of occurrence, based on its surrounding behavior —i.e. how probable is

that an activity follows, or is followed by, a sequence of activities.

Instead of removing full traces, the removal of the events which appear in an infrequent
context is also proposed in [39]. Following this idea, in [44]], a set of techniques that
remove all the events of the activities with high entropy are presented. These techniques
assign an entropy to each activity depending on their distribution of occurrence in the
event log —i.e., based on the directly-precedes and directly-follows relations among
the activities—, and remove the most chaotic activities from the event log in order to

simplify it.

Another alternative, instead of removing behavior, is to abstract subprocesses in the
event log by replacing the execution of multiple activities with one [28| [29]. The key
point of these techniques is to choose which subprocesses to abstract in order not to

lose too much behavior w.r.t. the original process.

Many of the existent proposals for process model simplification rely on simple statis-
tics such as the individual frequency of each activity, or the individual frequency of each
directly-follows relation —i.e. the frequency of apparition of activity B following activity A.
Furthermore, these methods propose to remove the detected infrequent behavior, either full
traces, single events, or activities. Nevertheless, as it has been said, the removal of behavior

from the process model can lead to misconclusions in some contexts. For example, consider
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(e) Event log simplified by abstracting the infrequent behavior.

Figure 1.7: Motivational example to show the interest of behavior abstraction.

the subprocess depicted in Figure [I.7] This figure depicts a sample of a log concerning 3
activities occurring in many orders in Figure with its corresponding process model in
Figure [[.7(b)} In this type of scenario, where all the activities occur in almost any order, it
is usual to obtain a flower-like structure such as the one depicted in Figure But, in
some cases, there is a latent structure hindered by the infrequent behavior. As can be seen,
the common behavior is to first assign a doctor, and then perform a blood test either before
or after going to the consulting room. This behavior cannot be observed due to the atypical
cases hindering the visualization.

The removal of behavior, either full traces, activities, or events may be a solution, but it

presents some drawbacks:

e Removal of full traces. The complete removal of traces also removes the frequent be-
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havior they may contain, which might be important for the analysis of the process. For
example, the traces containing the infrequent behavior in Figure might contain
frequent subprocesses in previous or future parts of the trace. Furthermore, there are
complex processes with high variability in the event log where each trace follows a
different activity sequence and, hence, all traces has an infrequent part —either a sin-
gle event or an infrequent subprocess. Although these traces might contain frequent

subprocesses, all of them would be removed due to their infrequent parts.

Removal of activities. To avoid this loss of frequent behavior, an alternative to the
removal of the complete infrequent traces is to detect the activities corresponding to
the infrequent behavior and remove all the events related to them. Nevertheless, this
can cause the removal of events in both infrequent and frequent contexts. For example,
as can be seen in Figure[I.7(a)} the infrequent behavior —i.e. the highlighted events—
that is obfuscating the visualization of the frequent subprocess is composed of the same
activities and, hence, the removal of all the events corresponding to those activities will

remove also the frequent subprocess.

Removal of events. In order to maintain the frequent subprocess and the frequent be-
havior in the infrequent traces, some techniques remove only the events corresponding
to the infrequent behavior —not all the events of an activity, but only the infrequent
ones. However, a drawback of this removal is that it generates inexistent paths in the
process —each removal creates an immediate path from the previous events to the suc-
ceeding ones. For example, consider a frequent subprocess containing an infrequent
part with many paths between activities A and B, in the middle of its structure. By
removing this infrequent part the frequent structure remains, but the information about
the frequent subprocess is inaccurate, as the behavior between A and B is not depicted.
The simplified process model depicts the frequent subprocess as if nothing were exe-
cuted between A and B. This can lead to a misinterpretation of the process, making
the analyst think that nothing is happening between two activities, when actually there
might be infrequent —and potentially harmful— behavior occurring. In the example
in Figure and Figure the removal of the infrequent behavior produces an
artificial path allowing to skip the execution of the depicted activities. This result may
be sufficient if the analyst is aware of this, but it can lead to a misinterpretation of the

process. Furthermore, the analyst cannot further be sure if any connection between
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two activities is trustworthy, or if the connection is replacing any removed infrequent

behavior.

To cope with these shortcomings and maintain the integrity of the relations depicted by
the process model, the alternative we propose in this Ph.D. Thesis is to perform a simpli-
fication by abstracting the infrequent behavior. Figure shows an example of this ab-
straction, where the infrequent behavior is encapsulated into artificial activities —e.g. activity
INFREQUENT—, obtaining the structure shown in Figure[I.7(f)} This abstraction reduces the
complexity of the process model on the one hand, while does not entirely remove the infre-
quent behavior from it on the other hand. The frequent subprocesses can be easily identified,
and the artificial activities abstracting the infrequent behavior can even store the abstracted
subtraces to show, if the analyst requests it, the encapsulated behavior.

The main objective of process model simplification is to reduce the complexity of the
process model retaining as much behavior as possible. Thus, in order to perform a good
simplification by abstracting the infrequent behavior, it is desirable to detect the frequent
behavior —i.e. the frequent subprocesses— to retain. Most of the commented techniques do
not perform a search for the frequent behavior to retain. Instead, they simplify the process
model by identifying the most infrequent behavior, and removing the traces or events related
to it. Furthermore, the approaches followed to detect the infrequent behavior often focus only
on the frequency of single activities, or pairs of activities —e.g. A followed by B, instead of
detecting subprocesses—, and do not take into account relations such as concurrency. With
the abstraction of the infrequent behavior, we aim to improve the simplification performed by

these techniques in two ways:

e In order to perform a better simplification, more advanced techniques to search for
frequent or infrequent behavior could be used. As part of process mining, many tech-
niques have been developed focusing on the extraction of behavioral information such
as frequent subprocesses. Due to the sequential structure of the traces in the event
log, the first techniques used for this purpose were sequential pattern mining tech-
niques [} 33}, retrieving sequences of activities that are frequently observed in the log.
Nevertheless, a process —or a subprocess— can contain more complex structures than
sequences, like concurrency, choices, or loops. For this reason, other techniques over-
coming this drawback were proposed for discovering frequent subprocesses supporting

concurrency [22},130], and even choices and loops [42].
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e The removal of the infrequent behavior from the process model may not be desirable,
as it has been stated. To avoid related misinformation problems, and to reduce the
complexity of the process at the same time, the infrequent behavior can be encapsulated
into artificial activities. In this way, the behavior obfuscating the visualization would be
reduced to a single activity —improving the simplicity—, and its existence and exact

location would still be known.

To perform this abstraction, the frequent behavior to maintain and the infrequent behavior
to abstract must be identified. We want this behavior to be composed of subprocesses, and not
by single relations or activities, in order to increase the quality of the retained behavior. For
this reason, we first propose two algorithms to discover frequent and infrequent subprocesses.
Then, once the behavior to abstract is known, we propose a technique to perform the abstrac-
tion of the infrequent behavior by replacing it with artificial activities. The following sections

discuss in more detail each one of the proposed algorithms and their contributions.

Frequent behavior extraction

As it has been stated, the extraction of frequent behavior can be crucial in complex processes
where the discovered process model presents low simplicity and precision values. In this
context, the frequency of a subprocess can be measured in two ways: i) the absolute number
of executions [22}42], e.g. a structure executed 10,000 times in the event log; or ii) the relative
number of executions w.r.t. the traces in the event log [5, 20], e.g. a subprocess observed
the 80% of the times the process is executed. In any case, the quality of the simplification
depends highly on the identification of the frequent subprocesses to maintain, and retaining
the more frequent subprocesses during the simplification is useful for future analyses. For
example, focusing an improvement on a frequent subprocess will likely return more benefits,
as this improved part of the process is being executed many times. Furthermore, a simplified
process model maintaining the frequent subprocesses describes better what is happening in
the process, as it supports more behavior.

Many techniques have been developed focusing on the extraction of frequent behavior:

e Sequential pattern mining (SPM) algorithms were the first techniques used for frequent
behavior extraction [1, 133]. SPM techniques retrieve sequences of elements that ap-

pear frequently in a given set of sequences. Thus, by applying these techniques to the
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sequences of activities that form the event log —from a control-flow perspective—, fre-
quent sequential subprocesses can be extracted. One of the main drawbacks of using
sequential pattern mining for this purpose is that it cannot detect concurrency. A sub-
process can be formed by two activities (e.g. A and B) that can be executed concurrently
and, thus, appear interleaved in the event log (A, B and B,A). SPM techniques consider

each order as a different sequence, and thus, divide the real frequency of the subprocess.

e To cope with this shortcoming, episode mining techniques perform a similar search
supporting concurrency [22} [30]. An episode is a collection of activities occurring
close to each other —within a predefined window size. In this way, episode mining
algorithms retrieve sets of activities that are frequently executed together without the
restriction of having always the same order and, hence, supporting interleaving. One
of the drawbacks of episode mining techniques is that they do not support loops nor

choices —i.e. a split in the process where only one branch can be executed.

e Another technique to search for frequent subprocesses supporting concurrency is w-
find [20]. This approach uses the process model to build the subprocesses, reducing the
search space. w-find performs an a-priori search expanding the frequent subprocesses
through the connections depicted in the process model. Nevertheless, similar to episode

mining techniques, the frequent subprocesses cannot contain selections nor loops.

e Finally, the discovery of local process models [42] adds support for choices and loops
by discovering small process models representing subparts of the traces, instead of
a complex process model representing the behavior of full traces. The evaluation of
the frequency is done with an alignment-based method which, starting with an initial
marking, considers that the model is executed when the final marking is reached. A
drawback of this technique is the high runtime due to the large search space. To build
the local process models, this technique combines all the activities of the process among
them, and expands them until the local process model becomes infrequent —an a-priori
search. To cope with this, other improvements reducing the search space have also been
published [10} 43].

Previous techniques evaluate the frequency of the subprocesses by checking their exe-
cution in the traces of the event log. They follow different strategies for that checking, but

a common characteristic is present in all of them: they discard the execution of activities
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Revision
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a loan documentation confidence Loan
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(a) Example of a simple process.

Present O Check
documentation confidence C I C Loan

canceled

(b) Example of a sequential subprocess.

Figure 1.8: Process example to show the problems related with the frequency checking of a
subprocess.

not present in the subprocess. From the control-flow point of view, this might cause a false
positive in the execution of the subprocess in some cases. For example, consider the simple
process depicted in Figure and the following trace (trace 1): { Apply for a loan, Present
documentation, Check confidence, Revision needed, Loan canceled ). In this case, a client ap-
plies for a loan and presents the documentation, the company checks the confidence of the
application to make a decision, a revision of the case is needed, the revision is not performed
in a fixed number of days and, thus, the loan is automatically canceled. Now consider the
following trace (trace 2): { Apply for a loan, Present documentation, Check confidence, Loan
canceled ). In trace 2 the same procedure is followed, but there is no need for a revision and
the loan is canceled as a result of the checking process (e.g. a negative result). By checking
the frequency of a subprocess based only on its activities —as commented techniques do—,
the sequential subprocess depicted in Figure [I.8(b)] would be detected as executed in both
traces. This could lead the analyst to make a wrong conclusion, as there is a subset of the
traces where activity Revision needed is being executed before the cancellation of the loan,
but it is not being detected.

Regardless of this, the execution of a subprocess must not be discarded due to the execu-
tion, in the middle, of external activities —the external activity might belong to a concurrent
branch unrelated to the subprocess. Concurrency is a common structure in processes, but, as
explained before, external activities might be truly disrupting the execution of the subprocess

in some cases. To cope with this problem, previous techniques could be adapted to support
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explicit restrictions, and let the analyst declare that if a determined activity is executed in the
middle of a subprocess, the subprocess is not strictly being executed. Nevertheless, this would
require the interaction and supervision of human resources. Another option is to use the in-
formation automatically extracted by discovery algorithms. A discovery algorithm detects the
relations between the activities of the process. These relations can be used in the subprocess
discovery to ensure that a given subprocess is being executed without any disruption. For
this reason, we propose to use the relations in the process model in the search for frequent

subprocesses.

The first contribution of this Ph.D. Thesis is WoMine, an algorithm to discover the fre-
quent maximal subprocesses of a process model, supporting all types of structures —even
n-length cycles—, and ensuring their frequency w.r.t. the traces of the event log. WoMine
performs an a-priori search in the process model for the subprocesses —i.e. substructures of
the process model— that are observed in a percentage of traces in the event log considered
frequent. To check if a subprocess has been executed in a trace, WoMine performs a replay of
the trace in the process model taking into account all the activities of the process, and ensuring
that the subprocess is correctly executed.

The main contributions of this proposal are as follows:

e The proposed a-priori search allows to discover subprocesses with all types of structures
and reduces the search space in two ways. First, by using the relations depicted in
the process model, the search space is reduced to the subprocesses supported by the
process model —i.e. all substructures of the process model. For example, if the process
model does not depict a relation between two activities —e.g. activity A is sometimes
followed by activity B—, this relation will not be part of any subprocess in the search
space. And second, as any a-priori search, it takes advantage of the monotonic property
of the frequency of a subprocess. The search starts with the smaller subprocesses of
the process model, and increases their size by adding activities and relations from the
process model, until the subprocess becomes infrequent. In this way, the search space is
pruned when a subprocess is detected as infrequent, as all the subprocesses containing

it will be infrequent too.

e To ensure a strict measurement of the subprocesses frequency, we propose to perform

a replay of the trace in the process model taking into account all the activities, and
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analyzing if the subprocess is being correctly executed or not. In this way, we ensure a

strict and precise measurement of the frequency of the subprocesses.

e The a-priori search retains all the frequent subprocesses found through the expansion
process. For this reason, the result is a set with subprocesses modeling behavior already
modeled by other subprocesses. To reduce the redundancy in the results, we propose a
postprocessing stage to retain only the maximal frequent subprocesses. A subprocess
in a collection is considered maximal when the behavior it models is not contained
in any other subprocess of the collection. Hence, the postprocessing stage compares
the obtained frequent subprocesses, and retains only those subprocesses that model

behavior that is not contained into others.

Infrequent behavior extraction

As commented in previous sections, the search for frequent behavior plays a crucial role in the
analysis of complex processes. Nevertheless, the discovery of infrequent subprocesses can be
also interesting in order to simplify a complex process model. To obtain a simple and precise
process model, but supporting as much behavior from the event log as possible, it is desirable
to maintain the frequent behavior and, thus, abstract the infrequent one. The detection of
infrequent subprocesses can be combined with the detection of frequent subprocesses in order
to optimize the simplification.

Furthermore, the analysis of infrequent behavior can be useful on its own. There are
scenarios where an infrequent subprocess can hint at erroneous behavior which must be ex-
amined. For instance, in insurance companies, infrequent behavior can be used to recognize
fraudulent claims [S0]]. It can be also useful to detect intrusions in networks [32], or failures
in software behavior [25]. Additionally, in well-structured processes, the behavior supported
by a model is designed and expected to be executed. A substructure of the model with a
low frequency of execution can hint at a path in the process that must be reinforced in or-
der to increase its frequency or, conversely, where the underused assigned resources could be
restructured to optimize the process.

Few techniques have been developed focusing on infrequent behavior. In [9], a state
automaton with each state representing an activity of the log is built. A valuated arc between
two states is added when one of them is followed by the other one in the log. Its value

increases as this relation appears in the log. Afterward, the infrequent arcs are used to filter
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infrequent traces. The technique used by Lu et al. in [26] also filters full traces using the
infrequent parts of a process model. In this case, models are built by merging the behavior
in a subset of traces. Bezerra et al. [11] search for infrequent or anomalous traces in the log
analyzing the whole trace. They present three approaches to filter infrequent traces depending
on their frequency and conformance.

A drawback of most of these techniques is that they identify the infrequent behavior based
on the absolute (individual) frequency of each relation. An infrequent subprocess can contain
relations that, as part of other subprocesses, are executed frequently. Furthermore, all these
techniques focus on the detection of infrequent traces, instead of infrequent subprocesses.
Their result is a set of “outlier” or infrequent traces. Usually, a trace is infrequent because a
part of it —i.e. a subtrace— is infrequent, but most of the behavior it records is part of frequent
subprocesses. For instance, consider again trace 1: ( Apply for a loan, Present documenta-
tion, Check confidence, Revision needed, Loan canceled ) of the process in Figure The
subprocess consisting of checking the confidence, needing a revision, and canceling the loan
might be infrequent —it may only appear in a small percentage of the event log traces. Never-
theless, the start of the trace ({ Apply for a loan, Present documentation, Check confidence ))
is a frequent subprocess being executed in all traces. Detecting trace 1 as infrequent or outlier
may be correct, but without further analyses, it is impossible to know which parts of the traces
are infrequent, and which are not.

The second contribution of this Ph.D. Thesis is WoMine-i, an algorithm to discover the
infrequent subprocesses of a process model, supporting all types of structures —even n-length
cycles—, and ensuring their frequency w.r.t. the traces of the event log. WoMine-i adapts
the pruning strategy followed by the a-priori search performed by WoMine, as well as the
postprocessing stage in order to search for the infrequent subprocesses, instead of the frequent
ones. This algorithm takes advantage of the frequency measurement method of WoMine to
ensure in the same way that the frequency of the subprocesses is strictly measured. Finally,
due to the monotonic nature of the frequency of a subprocess explained in the previous section,
WoMine-i retrieves the minimal infrequent subprocesses.

The main contributions of this proposal are as follows:

e In the same way as WoMine, one of the contributions of this algorithm relies on the
search space pruning, which is performed in two ways. First, the relations depicted in
the process model are used to build the subprocesses. This reduces the search space to

the subprocesses supported by the process model —i.e. all substructures of the process
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model. And second, the search starts with the smaller subprocesses of the process
model, and expands them by adding activities and relations from the process model

until the subprocesses are no longer promising.

e We propose to take advantage of the method to measure the frequency of a subprocess
presented in WoMine. In this way, to analyze if the subprocess is being correctly exe-
cuted or not, a replay of each trace in the process model is performed. In addition, we
propose a modification to establish the frequency of a subprocess. Due to the support
for selections in the subprocesses, a subprocess can model more than one path. To en-
sure that an infrequent subprocess only models infrequent behavior, all its paths must
be infrequent. For this reason, the frequency of a subprocess must be the highest of its
path’s frequencies.

e As with the a-priori search of WoMine, WoMine-i retains all the infrequent subpro-
cesses found through the expansion process. For this reason, the result of the main
search contains subprocesses that model behavior already modeled by other subpro-
cesses. To reduce the redundancy in the results, we propose a postprocessing stage to
retain only the subprocesses which behavior is not supported by another subprocess. In
this case, the subprocesses to retain are the minimal ones —to express with the smaller
structure the more amount of behavior as possible. When the behavior of a subprocess
is contained into another subprocess, a decision must be made to retain the smaller sub-
process —if it supports all the paths modeled by the other subprocess— or the larger
subprocess —if it models a path not supported by the smaller one.

Process model simplification

As we have already commented, many techniques have been proposed to simplify complex
process models by removing the infrequent behavior. Nevertheless, this information can be
useful in future phases of the analysis. The event abstraction [4} 28, [35]] appears as a way to
maintain in the model the presence of the abstracted behavior, while highlighting the visual-
ization of the rest. In order to obtain an overall view of the process depicting the frequent
behavior, while being aware of the existence and exact location of the infrequent behavior, we
propose to perform an abstraction of the infrequent subprocesses by encapsulating them into
artificial activities. We propose two alternatives to perform this abstraction: i) to identify the

frequent subprocesses to retain, and abstract the remaining behavior, and i) to identify the
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infrequent behavior to abstract, retaining the remaining behavior. As we will show through-
out this dissertation, the discovery of infrequent subprocesses has a higher computational cost
than the discovery of frequent subprocesses. This characteristic has a low impact in normal
processes, where both alternatives could coexist. Nevertheless, it presents some disadvantages
in complex processes, where this difference becomes more notorious. As our objective is to
simplify complex process models, we have discarded the second alternative. Thus, our pro-
posal consists of i) a search for the frequent subprocesses to retain, ii) an identification of the
events related to these subprocesses, and iii) an abstraction of the remaining —infrequent—
behavior.

Few techniques had been published using event abstraction in order to simplify complex
process models, and none of them propose the abstraction of the infrequent behavior that is
obfuscating the simplicity and precision of the process model. The third contribution of this
Ph.D. Thesis is IBeA, an algorithm to simplify complex process models by abstracting the
infrequent behavior. To perform this abstraction, we propose to first obtain the frequent sub-
processes to retain by using WoMine. Then, we propose to identify the traces in which these
subprocesses are executed, and to mark the events corresponding to their execution as the
behavior to retain. Finally, we propose to encapsulate the unmarked events —i.e. those not
corresponding to the frequent subprocesses— into artificial activities based on the relations
present in the model. In this abstraction, the events corresponding to activities connected
between them in the process model are abstracted together into one artificial activity. This ab-
straction gives the possibility to obtain, on the one hand, the simplified process model and, on
the other hand, the corresponding simplified event log to discover a simplified process model.

Besides, with the simplified event log, further process mining analyses can be performed.

One of the main contributions of IBeA is related to its proposal to abstract the infrequent
behavior. IBeA takes advantage of the relations of the process model to connect the events be-
tween them. For example, consider the part of a process depicted in Figure[T.9] where the ex-
ecution of the activities Product unavailable and Offer alternative are considered infrequent.
After the execution of Manage order, a concurrent structure appears where Prepare billing
can be registered interleaving with the other activities, as shown in Figure [T.9(b)] Product
unavailable and Offer alternative may not be adjacent —as shown in the second trace of the
example— but, thanks to the relation in the process model (Figure [[.9(a)), we know that the
events recording the execution of Offer alternative and Product unavailable are connected.

IBeA exploits this information to perform an abstraction taking into account the structures
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(a) Part of a process model.
Trace

Manage order - Product unavailable - Offer alternative - Prepare billing ...
Manage order - Product unavailable - Prepare billing - Offer alternative
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(b) Part of 3 traces corresponding the process model in Fi gure@]

Figure 1.9: Partial example of a process model and an event log to show the advantage of
using the process model relations to perform the abstraction.

of the model. Thus, the events of an infrequent path in the model —that can be registered
interleaved with other events from a frequent subprocess— are abstracted together into one
artificial activity. This characteristic ensures that the abstraction of an infrequent subprocess
is performed by replacing all its events with one single artificial activity, even if these events

are interleaved with events of a frequent subprocess.

We propose IBeA as a two-part algorithm. In the first stage, WoMine is used to extract
the frequent subprocesses to retain, and identifies as core behavior the events corresponding
to the execution of those subprocesses. In the second stage, an abstraction process is launched
in which the non-core behavior is abstracted into artificial activities. We propose this second
stage as an independent algorithm, called UBeA, being the fourth contribution of this Ph.D.
Thesis. UBeA receives a process model, an event log, and the events corresponding to the core
behavior, and abstracts the non-core behavior by replacing it with artificial activities taking

into account its relations in the process model.

The potential of UBeA resides in its ability to abstract any behavior taking into account the
relations of the process model. This gives the opportunity to perform the abstraction in order
to hide the unimportant behavior, and observe the interaction between any set of subprocesses

—identifying them as the core behavior. For example, consider a delivery company organized
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in different departments. The full process model might depict all the activities of the process,
independently of which department is executing them. To observe the different departments,
UBeA could be used by marking as core behavior the subprocesses related to some depart-
ments. In this way, the activities related to other departments would be abstracted, and the
subprocesses of the desired departments would remain, along with their relations. In the same
way, other analyses regarding the interaction between resources (organizational perspective)
could be performed.

The potential of this abstraction is not only present in the organizational perspective. An
abstraction of subprocesses could be also performed from the data perspective. For example,
in order to analyze the less expensive parts of the process model, the events with cost values —
or related to subprocesses with a cost value— under a predefined amount could be abstracted.
In this way, the result of UBeA would be the process model depicting the subprocesses with
a high cost, and how those subprocesses interact among them. The advantage is that the non-
core behavior is not being removed, but abstracted into artificial activities. Thus, the process
model depicts a general view of the important subprocesses —those with a high cost in this
case—, but it also shows where the other subprocesses are being executed, encapsulated into
artificial activities.

In summary, this Ph.D. Thesis proposes four algorithms: i) WoMine, an algorithm to
discover the frequent subprocesses of a process model; ii) WoMine-i, an algorithm to discover
the infrequent subprocesses of a process model; iii) IBeA, an algorithm to simplify process
models by abstracting the infrequent behavior into artificial activities and; iv) UBeA, a generic
algorithm to abstract non-core behavior in order to ease the analysis of the core behavior.

1.6 Research Contributions

The main contributions of this Ph.D. Thesis are as follows:

C1. WoMine - An algorithm for the extraction of frequent subprocesses.

We have developed an algorithm (WoMine) for the extraction of frequent subprocesses
from a process model, measuring their frequency in the traces of the event log. WoMine
is able to discover the frequent maximal subprocesses of a process model, supporting
all types of structures —even n-length cycles—, and ensuring their frequency w.r.t. the

traces of the event log. The contributions of WoMine are as follows:
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C2.

C3.

C4.
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Discover frequent subprocesses contained in the process model with all types of

structures (sequences, concurrency, choices, and loops).

e An a-priori search reducing drastically the search space.

A novel way to measure the frequency of the subprocesses, ensuring that their

execution is not disrupted by the execution of other activities.

A post-processing step to retrieve only the maximal subprocesses, avoiding re-
dundancy.

WoMine-i - An algorithm for the extraction of infrequent subprocesses.

We have developed an algorithm (WoMine-i) for the extraction of infrequent subpro-
cesses from a process model, measuring their frequency in the traces of the event log.
WoMine-i is able to discover the infrequent minimal subprocesses of a process model,
supporting all types of structures —even n-length cycles—, and ensuring their fre-

quency w.r.t. the traces of the event log. The contributions of WoMine-i are as follows:

e Discover infrequent subprocesses contained in the process model with all types of

structures (sequences, concurrency, choices, and loops).

e A novel way to measure the frequency of the subprocesses, ensuring that their

execution is not disrupted by the execution of other activities.

e A post-processing step to retrieve only the minimal subprocesses, avoiding redun-
dancy.

UBeA - A generic algorithm for the abstraction of non-core behavior in process
models.

We have developed an algorithm (UBeA) that, given i) an event log, ii) a process model,
and ii) a set of events of the non-core behavior, abstracts in both the event log and the
process model the non-core behavior by replacing it with artificial activities. UBeA
presents a novel way of abstraction that encapsulates the non-core behavior into artifi-
cial activities maintaining its relations, providing a simplified view of the core behavior,

but also depicting the non-core behavior.

IBeA - An algorithm for the simplification of process models by abstracting the
infrequent behavior.
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We have developed an algorithm (IBeA) to simplify process models by abstracting the

infrequent behavior which is harming the precision and simplicity of the process model.

IBeA uses WoMine to extract the frequent subprocesses to maintain in the abstraction.

Then, it identifies the events which do not correspond to the frequent subprocesses.

Finally, by using UBeA, the infrequent behavior is abstracted into artificial activities,

C5. Software tools.

WoMine & WoMine-i Application.

A web platform to discover and visualize the frequent and infrequent subprocesses
discovered by WoMine and WoMine-i algorithms, respectively. This web applica-
tion allows users to upload a process model, an event log, and to define a frequency
threshold in order to discover either the frequent or infrequent subprocesses w.r.t.
that threshold. The visualization of the subprocesses can be done by highlighting
them in the full process model, or depicting only the subprocess. Furthermore, for

an easy use, the application allows the user to filter the resulting subprocesses by

InVerbis Analytics is a start-up that originated at CiTIUS, Universidade de Santi-
ago de Compostela, offering tools to analyze business processes by using process
mining and business process management techniques. Many of the algorithms
and code produced during this Ph.D. Thesis have been integrated into the InVer-

KTPM - A Library for Process Mining in Kotlin.

During the last years of this Ph.D. Thesis, as a collaboration with Victor Gallego-
Fontenla, the implementation of the developed algorithms has been designed as
part of a framework for process mining in Kotlin. We have implemented function-
alities to read/write event logs and process models, discovery algorithms, confor-
mance checking techniques, concept drift algorithms, and other utilities to trans-

form event logs and extract different statistics from them. The framework is still

Tool -
the activities they contain.
Tool - InVerbis Analytics.
bis application.
Tool -
under development.
https://tec.citius.usc.es/graphmining/

2https:

//web.inverbisanalytics.com/


https://tec.citius.usc.es/graphmining/
https://web.inverbisanalytics.com/
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1.7 Publications

The contributions of this Ph.D. Thesis are included in the following publications:

Journal Papers

Inf. Sci.

Future
Gener.
Comput.
Syst.

D. Chapela-Campa, M. Mucientes, and M. Lama. Mining frequent patterns in
process models. Information Sciences, 472:235-257, 2019.
(DOI10.1016/j.1in5.2018.09.011).

e Impact Factor (JCR 2019): 5.910. Category: COMPUTER SCIENCE, INFORMATION SYS-
TEMS. Rank: 9/156 (Q1).

D. Chapela-Campa, M. Mucientes, and M. Lama. Understanding complex pro-
cess models by abstracting infrequent behavior. Future Generation Computer
Systems, 113:428-440, 2020.

(DOI1/10.1016/j.future.2020.07.030).

e Impact Factor (JCR 2020): 7.187. Category: COMPUTER SCIENCE, THEORY & METH-
ODS. Rank: 7/110 (Q1).

International Conferences

BPM

ICSOC

D. Chapela-Campa, M. Mucientes, and M. Lama. Discovering Infrequent Behav-
ioral Patterns in Process Models. In 15th International Conference on Business
Process Management (BPM 2017), volume 10445 of Lecture Notes in Computer
Science, pages 324-340, Springer, 2017.
(DOI10.1007/978-3-319-65000-5_19).

e Conference Ranking: GGS Class 2 (GGS Class 2018), GGS Rating A (GGS Rating 2018), CORE
A (CORE 2017).

D. Chapela-Campa, M. Mucientes, and M. Lama. Simplification of Complex Pro-
cess Models by Abstracting Infrequent Behaviour. In /7th International Conference
on Service-Oriented Computing (ICSOC 2019), volume 11895 of Lecture Notes in
Computer Science, pages 415—430, Springer, 2019.
(DOI10.1007/978-3-030-33702-5_32).

e Conference Ranking: GGS Class 2 (GGS Class 2018), GGS Rating A- (GGS Rating 2018),
CORE A (CORE 2020).


https://doi.org/10.1016/j.ins.2018.09.011
https://doi.org/10.1016/j.future.2020.07.030
https://doi.org/10.1007/978-3-319-65000-5_19
https://doi.org/10.1007/978-3-030-33702-5_32
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ATAED B. Vazquez-Barreiros, D. Chapela, M. Mucientes, and M. Lama. Process Mining
in IT Service Management: A Case Study. In 2016 International Workshop on
Algorithms & Theories for the Analysis of Event Data, (ATAED 2016), volume
1592 of CEUR Workshop Proceedings, pages 16-30, 2016.

National Conferences

JCIS D. Chapela-Campa, M. Mucientes, and M. Lama. Towards the Extraction of Fre-
quent Patterns in Complex Process Models. Jornadas de Ciencia e Ingenieria de
Servicios, JCIS, 2017.

(HANDLE 11705/JCIS/2017/006).

JCIS D. Chapela-Campa, M. Mucientes, and M. Lama. Discovering Infrequent Behav-
ioral Patterns in Process Models (Summary). Jornadas de Ciencia e Ingenieria de
Servicios, JCIS, 2018.

(HANDLE 11705/JCIS/2018/006).

JCIS D. Chapela-Campa, M. Mucientes, and M. Lama. Pattern-based Simplification of
Process Models. Jornadas de Ciencia e Ingenieria de Servicios, JCIS, 2019.

(HANDLE 11705/JCIS/2019/019).

1.8 Thesis Outline

This Ph.D. Thesis is structured into five chapters. Chapters[2] [3] and ] detail each of the pro-
posed techniques and their experimentation results. Finally, Chapter [5]draws the conclusions

and future work of this research. More specifically, the dissertation structure is as follows:

e Chapter [2]introduces the topic of frequent behavior extraction and the contributions of
this Ph.D. Thesis to this field. This chapter describes WoMine, an algorithm to discover
maximal frequent subprocesses from a process model, measuring their frequency in the

instances of the event log.

e Chapter [3] presents the contributions to the search for infrequent behavior from pro-
cesses. This chapter describes WoMine-i, an algorithm to detect minimal infrequent
subprocesses from a process model, measuring their frequency with the instances of

the event log.


http://hdl.handle.net/11705/JCIS/2017/006
http://hdl.handle.net/11705/JCIS/2018/006
http://hdl.handle.net/11705/JCIS/2019/019
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e Chapter[d|addresses the task of complex process model simplification. This chapter de-
scribes two algorithms for behavioral abstraction in process models: UBeA and IBeA.
UBeA is an algorithm to abstract the non-core behavior —specified by the user— of
a process model into artificial activities using the relations among the activities. On
the other hand, IBeA is a specific implementation of UBeA to simplify process mod-
els by abstracting infrequent behavior, using WoMine to detect the core behavior —
considering the infrequent behavior as non-core—, allowing to produce a simpler pro-

cess model while maintaining a good trade-off between fitness and precision.

e Chapter 5| outlines the conclusions of this Ph.D. Thesis and sketches future work direc-

tions.



CHAPTER 2

MINING FREQUENT PATTERNS IN PROCESS
MODELS

“Essentially, all models are wrong, but some are useful."

— George E. P. Box

As we have already discussed in Chapter [I} the extraction of frequent behavior is cru-
cial in order to analyze and simplify complex processes where the discovered process model
presents low simplicity and precision values. Many techniques have been developed focusing
on the discovery of frequent subprocesses —or frequent patterns. Only a few of these tech-
niques support structures like concurrency and loops. Nevertheless, all of them measure the
frequency of the subprocesses by taking into account only the activities forming them. As
we have shown, this characteristic may lead to misconclusions and misinterpretations in some
cases.

To cope with these shortcomings, in this chapter we introduce WoMine, an algorithm to
discover maximal frequent subprocesses from a process model, measuring their frequency
in the instances of the event log. WoMine discovers frequent subprocesses with all type of
structures —even n-length cycles, very common structures in real processes. The algorithm
performs an a-priori search building the subprocesses with the relations in the process model,
reducing in this way the search space. Furthermore, WoMine measures the frequency of
each subprocess by taking into account the relations of the process model, ensuring a precise

frequency measurement. The algorithm has been tested with 20 synthetic process models
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ranging from 20 to 30 unique activities, and containing sequences, concurrency, selections,
and loops. Experiments have been also run with 12 real complex event logs of the Business
Process Intelligence Challenges.

This chapter includes a full copy of the following journal paper that describes in detail the

proposed approach:

D. Chapela-Campeﬂ M. Mucientes’, and M. Lama'. Mining frequent patterns in process
models. Information Sciences, 472:235-257, 2019.
(DOI'10.1016/j.in5.2018.09.011)

Publishing rights

According to Elsevier [copyright terms, the authors have the right to include the accepted
version of Elsevier-copyrighted articles on their thesis or dissertation (provided this is not

published commercially).

fCentro Singular de Investigacién en Tecnoloxias Intelixentes (CiTIUS), Universidade de Santiago de Com-
postela. Santiago de Compostela, Spain.


https://doi.org/10.1016/j.ins.2018.09.011
https://www.elsevier.com/about/policies/copyright#Author-rights

CHAPTER 3

DISCOVERING INFREQUENT BEHAVIORAL
PATTERNS IN PROCESS MODELS

“The invisible and the non-existent look
very much alike."
— Delos Banning McKown

In Chapter 2] we presented an algorithm for the discovery of frequent subprocesses from
process models. As we have stated in Chapter [T} the detection of infrequent subprocesses
can be combined with the detection of frequent subprocesses in order to optimize the simpli-
fication. Furthermore, the analysis of infrequent behavior can be useful on its own. There
are scenarios where an infrequent subprocess can hint at erroneous behavior which must be
examined. Many techniques have been developed focusing in the detection of infrequent (or
outlier) traces and events, but none of them search for infrequent subprocesses.

In order to discover the infrequent subprocesses of a process, in this chapter we in-
troduce WoMine-i, an algorithm to detect minimal infrequent subprocesses from a process
model, measuring their frequency with the instances of the event log. The main novelty
of our approach is that it can detect infrequent subprocesses with all types of structures
—sequences, selections, concurrency, and loops. The ability to work with these structures
prevents WoMine-i from interpreting the traces as sequences of events. Furthermore, the ex-
tracted information allows to focus on infrequent subprocesses, and not to analyze infrequent

full traces. The algorithm has been qualitatively compared using various synthetic process
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models with all related techniques. Experiments have also been conducted with real event
logs of two Business Process Intelligence Challenges, BPIC 2012 and BPIC 2013.
This chapter includes a full copy of the following conference paper that describes in detail

the proposed approach:

D. Chapela—Campeﬂ M. Mucientes’, and M. Lama®. Discovering Infrequent Behav-
ioral Patterns in Process Models. In /5th International Conference on Business Process
Management (BPM 2017), volume 10445 of Lecture Notes in Computer Science, pages
324-340, Springer, 2017.

(DOI1/10.1007/978-3-319-65000-5_19).

Publishing rights

According to Springer |copyright terms, the authors have the right to include the accepted ver-
sion of their Springer-copyrighted article’s Version of Record, in whole or in part, in their own
thesis. Additionally, they may reproduce and make available their thesis, including Springer

Nature content, as required by their awarding academic institution.

fCentro Singular de Investigacién en Tecnoloxias Intelixentes (CiTIUS), Universidade de Santiago de Com-
postela. Santiago de Compostela, Spain.


https://doi.org/10.1007/978-3-319-65000-5_19
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882

CHAPTER 4

UNDERSTANDING COMPLEX PROCESS
MODELS BY ABSTRACTING INFREQUENT
BEHAVIOR

“The height of sophistication is simplicity."

— Clare Boothe Luce

The main objective of this Ph.D. Thesis is the simplification of complex process mod-
els. As we have introduced in Chapter [I] with more information and behavior related to the
processes being recorded, the apparition of complex processes and complex process models
—with hundreds of edges and activities— has become more common. The complexity of
these discovered process models —characterized by low simplicity and precision— hinder
the detection of deviations during conformance, and the posterior enhancement. Furthermore,
most stages of BPM depending on the process model, such as the analysis, redesign, and im-
plementation, are also hindered. Many techniques have been developed in order to simplify
complex processes during past years. Nevertheless, most of them focus on the removal of the
infrequent behavior, either full traces, single events, or activities. As it has been discussed,
the removal of behavior from the process model can lead to misconclusions in some contexts.

To cope with these shortcomings, in this chapter we present two algorithms for behavioral
abstraction in process models: UBeA and IBeA. UBeA is an algorithm to abstract the non-

core behavior of a process into artificial activities using the relations between the activities,
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hence, taking into account structures such as concurrency, selections, or loops. The main
novelty of UBeA is that it generates an abstracted version of the process describing the core
behavior while being aware of the existence and exact location of the non-core behavior.
Furthermore, UBeA allows the user to specify the behavior to maintain, i.e., the core behavior,
making it very versatile. On the other hand, IBeA is a specific implementation of UBeA to
simplify process models by abstracting infrequent behavior, using WoMine to detect the core
behavior —considering the infrequent behavior as non-core— allowing to produce a simpler
process model while maintaining a trade-off between fitness and precision. IBeA has been
validated with a set of 11 complex and real event logs, 10 of them from the Business Process
Intelligence Challenges (BPIC), and one from the health domain.

This chapter includes a full copy of the following journal paper that describes in detail the

proposed approach:

D. Chapela-Campeﬂ M. Mucientes’, and M. Lamaf. Understanding complex pro-
cess models by abstracting infrequent behavior. Future Generation Computer Systems,
113:428-440, 2020.

(DOI1/10.1016/j.future.2020.07.030)

Publishing rights

According to Elsevier copyright terms, the authors have the right to include the accepted
version of Elsevier-copyrighted articles on their thesis or dissertation (provided this is not

published commercially).

fCentro Singular de Investigacién en Tecnoloxias Intelixentes (CiTIUS), Universidade de Santiago de Com-
postela. Santiago de Compostela, Spain.
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CHAPTER 5

CONCLUSIONS

“There is no real ending. It’s just the place

where you stop the story."
— Frank Herbert

In this Ph.D. Thesis, we have addressed the problem of complex process model simplifi-
cation through the use of frequent and infrequent behavior-based algorithms. In past years,
with the explosion of process-related data gathering, the apparition of complex processes and
complex process models —with hundreds of edges and activities— has become more com-
mon. We have introduced the problems these types of process models can cause to the anal-
yses performed in most of the stages of Business Process Management and Process Mining.
Therefore, in past years there has been increasing interest in the simplification of complex
process models.

We have focused on the simplification of complex process models by abstracting the infre-
quent behavior. For this purpose, we first developed WoMine, an algorithm for the discovery
of maximal frequent subprocesses from a process model. We have designed an a-priori search
—similar to w-find [20]— to take advantage of the relations between the activities in the pro-
cess model and reduce the search space. We have proved qualitatively that, in some contexts,
existent techniques fail in the measurement of a subprocess’ frequency due to only consider-
ing its activities to check if the subprocess is executed. As it has been shown, this might be
harmful in some cases by leading to wrong conclusions and misinterpretations. To cope with

this shortcoming, we have proposed a method to measure the frequency of a subprocess by
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taking into account all the activities of the process, and the relations among them supported
by the process model. Finally, we have also proposed a procedure to remove the redundancy
in the discovered frequent subprocesses by retaining the maximal ones. We have performed
an experimentation to qualitatively prove the superiority of WoMine over the state of the art
techniques, to show the ability of WoMine to extract subprocesses with all types of struc-
tures —even n-length cycles— in both synthetic and real process models, and to analyze its

potential by depicting some of the obtained results.

In addition, we have also developed WoMine-i, an algorithm for the discovery of infre-
quent subprocesses from a process model. WoMine-i takes advantage of the a-priori search
of WoMine, and adapts it by changing the pruning strategy in order to find infrequent sub-
processes. To ensure a strict measurement of the subprocesses’ frequency, we have used the
method proposed in WoMine. We have also developed a new method to reduce the redundancy
in the set of infrequent subprocesses. There is no previous work regarding the discovery of in-
frequent subprocesses. For this reason, we have compared WoMine-i with techniques focused
on the detection of infrequent behavior —in the form of complete traces or activities—, and
with frequent subprocess discovery algorithms —modified to search for infrequent subpro-
cesses. Furthermore, we have shown the ability of WoMine-i to discover subprocesses with
all types of structures —even n-length cycles— with a set of real process models, and we have

analyzed its potential by depicting some of the obtained results.

Finally, to tackle the problem of complex process model simplification, we have developed
IBeA. IBeA is an algorithm to simplify complex process models by abstracting the infrequent
behavior into artificial activities. In this way, IBeA maintains the frequent subprocesses in the
process model while abstracting the infrequent behavior that is obfuscating the visualization
of the process model. For this, the events corresponding to the execution of frequent sub-
processes are identified with the use of WoMine. Then, the other events are abstracted by
encapsulating them into artificial activities based on the relations present in the model —the
events of an infrequent subprocess connected between them are replaced together by one sin-
gle artificial activity. IBeA produces a simplified event log and a simplified process model,
both with the infrequent behavior abstracted into artificial activities. The simplified event
log gives the opportunity to perform different process mining analyses, and to rediscover the
simplified process model with a discovery algorithm. We have used 11 real-life event logs
to compare the simplification performance of IBeA —both by obtaining the simplified pro-

cess model and by discovering a process model from the simplified event log— with the state
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of the art techniques. Results prove that, in complex event logs with high variability in the
recorded behavior, the simplification of IBeA obtains a simpler process model with a better
trade-off between fitness and precision. Furthermore, we have shown the potential of IBeA
simplification by analyzing some of the simplified process models.

In addition, we have designed IBeA as a two-part algorithm: i) the search for the frequent
subprocesses and the identification of its events; and ii) the abstraction of the unidentified
behavior. We have developed this second stage as a generic algorithm to abstract non-core
behavior, called UBeA. UBeA receives the event log, the process model, and the events cor-
responding to the behavior to retain —i.e. the core behavior—, and abstracts the rest by en-
capsulating it into artificial activities based on their relations in the process model. UBeA
is useful to analyze the process retaining any type of subprocesses —frequent subprocesses,
subprocesses related to a single department, subprocesses with a high cost, etc.— by reducing
the other behavior into artificial activities. In this way, the analysis can focus on the desired
subprocesses, while being aware of the relations between them and the existence and exact
location of the other behavior, which is abstracted into artificial activities.

Future work

The research accomplished in this Ph.D. Thesis has opened some directions that might be

interesting to explore in the future:

e FExplore the scalability of infrequent behavior search. As it has been shown, the search
space in the infrequent subprocess search grows too fast to be scalable in complex pro-
cesses. More work could be done regarding the pruning strategy of WoMine-i in order
to refine it and improve the scalability of the technique. One of these improvements
could be to design the search without the support for selections, avoiding the possibility
of having more than one path in a subprocess. In this way, the pruning strategy could
consist only of pruning a subprocess at the moment it becomes infrequent —as there is
no need to continue expanding it in order to model other paths. Nevertheless, to reduce
the redundancy in the resultant subprocesses, a postprocessing phase to merge those

subprocesses with common parts would be necessary.

o [mprove the naming of the abstracted activities. Currently, IBeA names the artificial ac-
tivities with a label to identify that they are artificial activities encapsulating infrequent

behavior. Techniques to produce a name based on the encapsulated behavior could be
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proposed, for example with the use of semantic annotation techniques [36]. In this way,
a more descriptive name could be automatically assigned to the abstractions, helping

further analyses.

Increase the information of the abstracted activities. IBeA abstracts the infrequent be-
havior into artificial activities. The result is a process model and an event log with these
artificial activities encapsulating the abstracted behavior —i.e. the replaced events. No
information regarding the abstracted behavior is given by the algorithm. Neverthe-
less, the direct inspection of the abstracted subtraces —i.e. the events that have been
replaced— could be easily performed. Furthermore, more refined analyses could be
proposed by applying discovery techniques to this infrequent behavior. For example, a
search for frequent subprocesses inside the infrequent behavior, the discovery of declar-
ative rules that define the characteristics of this abstracted behavior [18| 24! 40]], etc.

o Exploit the potential of UBeA. As it has been shown, the abstraction of behavior itself

has been designed as an independent algorithm, called UBeA. UBeA receives the event
log, the process model, and the set of events to retain —i.e. the frequent behavior in
the case of IBeA—, and abstracts the remaining behavior into artificial activities by
taking into account the relations present in the process model. This abstraction can
be used for many purposes. For example, to focus the analysis on a specific type of
subprocesses —e.g. the subprocesses associated to a high cost— and abstract from the
other behavior. It is interesting to explore different applications of UBeA’s abstraction

to exploit its potential.
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