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Abstract: The review describes the development of batch solid phase extraction procedures based on
dispersive (micro)solid phase extraction with molecularly imprinted polymers (MIPs) and magnetic
MIPs (MMIPs). Advantages and disadvantages of the various MIPs for dispersive solid phase
extraction and dispersive (micro)solid phase extraction are discussed. In addition, an effort has also
been made to condense the information regarding MMIPs since there are a great variety of supports
(magnetite and magnetite composites with carbon nanotubes, graphene oxide, or organic metal
framework) and magnetite surface functionalization mechanisms for enhancing MIP synthesis, in-
cluding reversible addition-fragmentation chain-transfer (RAFT) polymerization. Finally, drawbacks
and future prospects for improving molecularly imprinted (micro)solid phase extraction (MIMSPE)
are also appraised.

Keywords: molecularly imprinted polymers; magnetic molecularly imprinted polymers; dispersive
(micro)solid phase extraction

1. Introduction

During the last two decades the large development of analytical instrumentation, mainly
the introduction of mass spectrometry (MS) and tandem mass spectrometry (MS/MS), has
facilitated the determination of analytes in biological, food, and environmental samples at
trace concentrations. However, although the high sensitivity provided by the instrumenta-
tion and the direct injection/analysis of crude samples/extracts are not always possible,
new sample preparation strategies are needed for potential interferences removal and
analyte pre-concentration, for increasing the robustness and repeatability of measurements,
for converting the analyte to a more suitable form for separation/detection, and also for
avoiding conventional multiple-step pre-treatment methods [1]. Several extraction/pre-
concentration techniques have been therefore developed and among those techniques,
solid phase extraction (SPE) and solid phase microextraction (SPME) are nowadays well
established and commercially available methodologies. However, the main drawback
associated with them is the moderate selectivity of sorbents, which can require further
extract clean-up stages [2].

Molecularly imprinted polymers (MIPs) are versatile materials that mimic natural
antigen–antibody mechanisms and allow molecules/analytes recognition [2,3]. These
materials are prepared by polymerizing monomers and cross-linkers around the template
molecules, leading to a highly cross-linked three-dimensional network polymer. After
polymerization, the template molecules are removed, and the shape and size of the binding
sites are established complementary to the target analyte. Synthesized MIPs are stable
and show resistance to wide range of pH values, temperatures, and solvents and inter-
act with target molecule in a selective way. Due to their practical features, MIPs have
been used as selective sorbents for (micro)solid extraction (µ-SPE) procedures leading to
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molecularly imprinted (micro)solid extraction (MIMSPE), which allows advanced minia-
turized sample pre-treatments for green procedures in Analytical Chemistry. This review
intends to provide a snapshot of current state-of-art use of MIMSPE in sample preparation,
describing several batch MIMSPE approaches such as membrane-protected molecularly
imprinted polymers and dispersive (micro)solid phase extraction with magnetic MIPs and
non-magnetic MIPs. In addition to several reviews regarding MIPs [2–4] and magnetic
MIPs [5] as selective adsorbents for SPE, some other published reviews have focused on the
applications of MIP-based adsorbents for drug analysis [6], for assessing pollutants, and
in food [7] and environmental samples [7,8]. Benefits of dispersive solid phase extraction
(dSPE) and dispersive microsolid phase extraction (D-µ-SPE) have led to several applica-
tions based on the use of quite different adsorbents for pre-concentration and/or clean-up
purposes, and some procedures have consisted of using MIPs as adsorbents [9–11]. This
review intends to provide a snapshot of current state-of-art use of MIPs (magnetic and
non-magnetic composites) for dSPE and D-µ-SPE. Information inherent to the preparation
of the MIP composites, mainly the magnetic core functionalization, is shown and new
trends for surface functionalization, such as the use of boronic acids, are highlighted.

2. Dispersive (Micro)Solid Phase Extraction with MIPs

As shown in Figure 1, dSPE and D-µ-SPE [9–12] procedures consist of dispersing
the adsorbent (a few milligrams or a very few milligrams) into the sample/extract by
shaking (oscillators and vortex) and by applying ultrasounds, and, for magnetic adsor-
bents, by magnetic stirring [4]. Dispersion enhances target adsorption on the adsorbent
(nano)microparticles, and the use of ultrasound and mechanical shaking (mainly vortex)
favors adsorbent dis-aggregation and maximizes the surface area of the adsorbent particles.
Vortex stirring is a soft and low-cost shaking technique and dispersion assistance is more re-
peatable when compared with ultrasounds because of the ultrasound fluency dependence
on the position inside the water-bath tank [11]. Vortex assistance also prevents analyte
degradation and adsorbent aggregation, although the technique offers lower extraction
kinetics when compared to ultrasounds dispersion [13–15] (in fact, some reports have
stated that ultrasounds change the absorption kinetics [16–18]).
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Figure 1. Schematic representation of dispersive solid phase extraction/dispersive (micro)solid phase dispersion 
(dSPE)/(D-µ-SPE) procedures with magnetic and non-magnetic molecularly imprinted polymer (MIPs). 

2.1. Dispersive (Micro)Solid Phase Extraction with Magnetic Molecularly Imprinted Polymers 
(MMIPs) 

MMIP beads were first introduced by Ansell and Mosbach in 1998 as a core–shell 
structure (magnetic iron oxide, magnetite, Fe3O4) for performing drug radioligand bind-
ing assays [19]. Then, MMIPs (magnetic nickel hexacyanoferrate, NiHCF, nanoparticles 
coated with a molecularly imprinted polymer for the herbicide chlorotoluron) were pro-
posed for preparing selective modified electrodes [20]. MMIPs as selective adsorbents for 
SPE procedures offer advantages such as avoidance of drawbacks associated with con-
ventional batch SPE/µ-SPE procedures, which need filtration/centrifugation steps for sep-
arating the adsorbent from the bulk sample after the loading stage and from the extract 
after analyte elution. In addition, losses of adsorbent particles are minimized since adsor-
bent separation is easily and quickly achieved by applying a magnet [21]. As previously 
mentioned, MMIP nanoparticles can be stirred (dispersed) in the sample/extract (loading 
step) and in the eluting solution (elution step), taking advantage of their magnetic prop-
erties, but stirring can be also performed by vortexing and by ultrasound dispersion. 

There are several strategies for preparing MMIPs, which lead to a great varietyof 
magnetic adsorbents. Moreover, despite free radical polymerization mechanism(s), which 
are mainly used to prepare MMIPs (and also MIPs), the heterogeneity caused by the fast 
chain propagation and irreversible termination reactions has led to the use of controlled 
radical polymerization strategies such as reversible addition fragmentation chain-transfer 

Figure 1. Cont.



Separations 2021, 8, 99 3 of 32

Separations 2021, 8, x FOR PEER REVIEW 3 of 36 
 

 
Separations 2021, 8, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/separations 

 
Figure 1. Schematic representation of dispersive solid phase extraction/dispersive (micro)solid phase dispersion 
(dSPE)/(D-µ-SPE) procedures with magnetic and non-magnetic molecularly imprinted polymer (MIPs). 

2.1. Dispersive (Micro)Solid Phase Extraction with Magnetic Molecularly Imprinted Polymers 
(MMIPs) 

MMIP beads were first introduced by Ansell and Mosbach in 1998 as a core–shell 
structure (magnetic iron oxide, magnetite, Fe3O4) for performing drug radioligand bind-
ing assays [19]. Then, MMIPs (magnetic nickel hexacyanoferrate, NiHCF, nanoparticles 
coated with a molecularly imprinted polymer for the herbicide chlorotoluron) were pro-
posed for preparing selective modified electrodes [20]. MMIPs as selective adsorbents for 
SPE procedures offer advantages such as avoidance of drawbacks associated with con-
ventional batch SPE/µ-SPE procedures, which need filtration/centrifugation steps for sep-
arating the adsorbent from the bulk sample after the loading stage and from the extract 
after analyte elution. In addition, losses of adsorbent particles are minimized since adsor-
bent separation is easily and quickly achieved by applying a magnet [21]. As previously 
mentioned, MMIP nanoparticles can be stirred (dispersed) in the sample/extract (loading 
step) and in the eluting solution (elution step), taking advantage of their magnetic prop-
erties, but stirring can be also performed by vortexing and by ultrasound dispersion. 

There are several strategies for preparing MMIPs, which lead to a great varietyof 
magnetic adsorbents. Moreover, despite free radical polymerization mechanism(s), which 
are mainly used to prepare MMIPs (and also MIPs), the heterogeneity caused by the fast 
chain propagation and irreversible termination reactions has led to the use of controlled 
radical polymerization strategies such as reversible addition fragmentation chain-transfer 

Figure 1. Schematic representation of dispersive solid phase extraction/dispersive (micro)solid phase dispersion (dSPE)/(D-µ-SPE)
procedures with magnetic and non-magnetic molecularly imprinted polymer (MIPs).

2.1. Dispersive (Micro)Solid Phase Extraction with Magnetic Molecularly Imprinted
Polymers (MMIPs)

MMIP beads were first introduced by Ansell and Mosbach in 1998 as a core–shell
structure (magnetic iron oxide, magnetite, Fe3O4) for performing drug radioligand binding
assays [19]. Then, MMIPs (magnetic nickel hexacyanoferrate, NiHCF, nanoparticles coated
with a molecularly imprinted polymer for the herbicide chlorotoluron) were proposed
for preparing selective modified electrodes [20]. MMIPs as selective adsorbents for SPE
procedures offer advantages such as avoidance of drawbacks associated with conventional
batch SPE/µ-SPE procedures, which need filtration/centrifugation steps for separating the
adsorbent from the bulk sample after the loading stage and from the extract after analyte
elution. In addition, losses of adsorbent particles are minimized since adsorbent separation
is easily and quickly achieved by applying a magnet [21]. As previously mentioned, MMIP
nanoparticles can be stirred (dispersed) in the sample/extract (loading step) and in the
eluting solution (elution step), taking advantage of their magnetic properties, but stirring
can be also performed by vortexing and by ultrasound dispersion.

There are several strategies for preparing MMIPs, which lead to a great varietyof
magnetic adsorbents. Moreover, despite free radical polymerization mechanism(s), which
are mainly used to prepare MMIPs (and also MIPs), the heterogeneity caused by the fast
chain propagation and irreversible termination reactions has led to the use of controlled
radical polymerization strategies such as reversible addition fragmentation chain-transfer
(RAFT) polymerization for preparing MIPs [22] and also MIP coatings over magnetic and
non-magnetic supports [23–26]. RAFT polymerization provides more accessible sites for
target adsorption and faster mass transfer because of the more homogenous polymeric
network [27].

2.1.1. Classification of MMIPs

Based on MMIP structure, four types of MMIPs can be established: core–shell MMIPs,
magnetic nanotube-supported MIPs, magnetic nanosheet-supported MIPs, and magnetic
hollow porous MIPs [28].

A core–shell structure is the most widely used, and it consists of a core magnetic phase
(typically magnetite) and a polymeric phase shell [29]. Magnetic nanoparticles (Fe3O4) in
the core–shell-based structures offer a high surface area for MIP anchorage, and the surface
can be also modified (activated/functionalized) with hydroxyl groups and a SiO2 layer to
protect the core from oxidation or dissolution [30].

Magnetic nanotube-supported MIPs imply the presence of carbon nanotubes (CNTs)
or multi-walled carbon nanotubes (MWCNTs) in the reaction medium during the co-
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precipitation and solvothermal synthesis of Fe3O4 to prepare magnetic carbon nanotubes
(MCNTs) in which the magnetic nanoparticles are linked onto the CNTs’ surface [31]. The
prepared MCNTs are then treated with a silica-based reagent to cover them with a SiO2
layer (MCNTs–SiO2) before MIP synthesis. Because of the large surface area of the CNTs,
the prepared MCNTs–SiO2 structures offer a higher specific surface area for MIP anchorage
than that found in core–shell MMIPs, leading to larger binding/recognition sites for the
target. On other occasions, MWCNTs, previously functionalized with carboxylic acid
groups (COOH), are mixed with Fe3O4 nanoparticles in the pre-polymerization solution
for direct MIP synthesis [32].

Similar to CNTs, the use of graphene oxide (GO) during the solvothermal synthe-
sis of Fe3O4 leads to a GO–Fe3O4 composite in which the magnetite nanoparticles are
linked to the GO nanosheet [33,34]. MIP synthesis can be then performed after grafting
the Fe3O4@GO surface with acrylic acid, and the resulting magnetic nanosheet-supported
MIP provides high specific surface area and high affinity for the target molecule, as well
as an extremely fast absorption rate [33]. On other occasions, the magnetic Fe3O4@GO
composite can be functionalized with silica and vinyled reagents before MIP synthesis [34].
Other approaches are based on activated CNTs (presence of carboxyl groups absorbed
onto the surface of GO through π–π attractions after acidic treatment) which, after hy-
drothermal treatment for synthesizing Fe3O4 nanoparticles, lead to 3D magnetic GO-CNT
composites [35].

Finally, well-designed magnetic hollow porous MIPs (magnetic HPMIPs) have been
introduced as a sacrificial support in the molecular imprinting process. As reported, MIP
synthesis is performed on the internal surface of mesoporous silica spheres (referred as
MCM-48) followed by silica and template removal (typically hydrofluoric acid/ethanol
mixtures) [36–39]. Previous to magnetite synthesis over the HPMIPs (co-precipitation
method), a treatment with diluted perchloric acid was required to obtain 1,2-diol groups
over the HPMIPs structures [37].

In addition to mesoporous silica, mesoporous carbon has also been found to be an
excellent support for preparing hollow porous MIPs, with the advantage that carbon
support is not removed (sacrificed) to obtain the required porosity of the material. D-
glucose [40] and raw Pericarpium Granati (a medicinal plant) [41] have been used as
sources of carbon for the synthesis of the magnetic mesoporous carbon (MMC) particles by
hydrothermal methods (high temperatures as well as long synthesis times) in the presence
of ferric and ferrous ions. Benefits of the hollow composites are the presence of high dense
accessible recognition sites for molecular imprinting, and a high absorption capacity, which
leads to higher enrichment factors when compared with traditional MIPs.

Hollow porous MIPs have been also designed by Fe3O4 nanoparticle surface modifi-
cation by a sol–gel route with silica-based reagents such as tetraethyl orthosilicate (TEOS),
which promotes hydroxyl groups on the surface of the magnetic nanoparticles, followed
by MIP synthesis, and template and silica layer removal [42–44].

Other magnetic HPMIPs have been synthesized by using hollow Fe3O4 microspheres
instead of conventional magnetite [45] (hollow Fe3O4 microspheres are obtained by one-
pot hydrothermal methods [46]). In addition, other authors have prepared magnetic
nanorings with abundant epoxy groups on the surface for imprinting purposes involv-
ing ring-opening reactions. The prepared material, named core–shell nanoring amino-
functionalized magnetic molecularly imprinted polymer (CS-NR-Mag-MIP), was found to
offer high absorption capacities for bisphenol A [47] and sulfonamides [48].

2.1.2. Magnetite Surface Functionalization for Core–Shell MMIPs

There are some procedures for MMIP preparation in which Fe3O4 nanoparticles are
present in the polymerization mixture during MIP synthesis [49–51]. Although transmis-
sion electron microscopy (TEM) images show that the spherical Fe3O4 nanoparticles are
well enwrapped by the MIP shell [51], on other occasions the used of un-functionalized
Fe3O4 nanoparticles during MIP synthesis leads to uniform polymeric layer composites [50].



Separations 2021, 8, 99 5 of 32

Dispersed spherical (nano)particles are preferred as adsorbents in SPE, and the spherical
shape of a magnetite-based composite is guaranteed by performing MIP synthesis over
surface functionalized magnetite. In addition, once Fe3O4 nanoparticles are synthesized
(magnetite is also commercially available), functionalization of the nanoparticles’ surface
makes it favorable for MIP adhesion, and also promotes a high specific surface area and
improves polarity [52]. Although magnetite surface functionalization can be performed
after Fe3O4 synthesis or directly over commercial nanoparticles, one-step Fe3O4 synthesis
and surface functionalization procedures have been also described. After surface modi-
fication, polymerization can be performed by several polymerization methods using the
adequate template molecule, monomer, cross-linker, initiator, and porogen. The resulting
composite adsorbent will offer good selectivity/recognition for the target molecule as well
as good magnetic properties [52].

Magnetite surface functionalization can be performed mainly by using silica-based,
diol-based, and vinyled compounds (Table 1). However, there are other functionaliza-
tion mechanisms as well as several combinations of surface modifier reagents for Fe3O4
nanoparticle surface functionalization.

Table 1. Functionalization reagents for magnetite core–shell magnetic molecularly imprinted polymers (MMIPs).

Fe3O4@OH Functionalization

Diol-based reagents Ref.

Polyethylene glycol (PEG) [53–58]
Poly(vinyl alcohol) [59]

Acrylic acid [60]
Methacrylic acid (MAA) [61]

Boronic acids:
2,4-Difluoro-3-formyl-phenylboronic acid (DFFPBA) a,b [62,63]

4-Formylphenylboronic acid (FPBA) plus sodium cyanoborohydride (NaBH3CN) [64,65]
4-Vinylphenboronic acid (VPBA) c [66]

3-Aminophenylboronic acid (APBA) d [67]

Silica-based reagents
Tetraethyl orthosilicate (TEOS) [52,58,68–90]

Fe3O4@CH=C2H4 functionalization

Oleic acid (OA) [91–102]
Silica-based reagents:

3-(Trimethoxysilyl) propyl methacrylate (TMSMA) [103]
3-Methacryloxypropyltrimethoxysilane (MPS or KH-570) [27,71,72,75–77,80–84,90,104–114]

Vinyl trimethoxy silane (VTMOS) [72]
Vinyl triethoxy silane (VTEO or VTES) [115–118]

Fe3O4@NH2 functionalization

Silica-based reagents:
(3-Aminopropyl)triethoxysilane (APTES) [78,105,119–124]

Methacryloyl chloride [125]

Fe3O4@COOH functionalization

Silica-based reagents
Poly(ethylene glycol)bis(carboxymethyl) ether e [123]

Fe3O4@X, X= Cl or Br functionalization

Silica-based reagents
4-Chloromethyl phenyl trichlorosilane (4-CPS) f [74,77,126–131]

3-Bromopropyl trimethoxy silane (BPTS) [132]

(a) Fe3O4 functionalized with 1,6-hexanediamine to give Fe3O4@NH2; (b) Fe3O4 functionalized with TEOS and APTES to give Fe3O4@SiO2;
(c) Fe3O4@pTiO2 functionalized with γ-mercaptopropyltrimethoxysilane (γ-MPTS) to give Fe3O4@pTiO2@SH; (d) Fe3O4@MCM-48 (meso-
porous silica spheres) composite; (e) Fe3O4 functionalized with TEOS and APTES to give Fe3O4@NH2; (f) Fe3O4 functionalized with TEOS
to give Fe3O4@OH.
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Surface Functionalization with Hydroxyl (Diol) and Vinyl-Based Reagents

Diol-based reagents such as polyethylene glycol (PEG) [53–57] interact with the
nanoparticle surface through one of the hydroxyl groups, allowing the remaining hy-
droxyl groups to be available to react with the components of the pre-polymerization
mixture (Figure 2). A similar mechanism is obtained for oleic acid [91–102], which interacts
with the nanoparticle’s surface through the hydroxyl groups but promotes the presence of
vinyl groups in the modification layer. Similarly, poly (vinyl alcohol) [59] is also a source
of hydroxyl and vinyl groups for reacting with the pre-polymerization components. A
magnetic core surface rich in vinyl groups can be also obtained by treating the prepared
Fe3O4 nanoparticles with acrylic acid [60] or by one-step co-precipitation of Fe3O4 in the
presence of methacrylic acid [61].
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Figure 2. Schematic representation of binding mechanism between magnetite nanoparticles and polyethylene glycol (PEG)
(a) and MMIP preparation (b), Adapted with permission from Ref. [55]. Copyright 2016 Elsevier.

The main advantage of using these reagents for magnetite surface modification is the
simplicity of the procedure and the moderate operating conditions (room temperature or
ice-bath). In addition, surface functionalization with these reagents avoids the electrostatic
agglomeration of magnetite, which ensures the uniformity of magnetic nanoparticles in
the pre-polymerization solution and a further MIP homogeneous embedding. However,
drastic conditions, such as extreme pHs, when removing the template after MMIP synthesis
can damage the link between the nanoparticle and the functionalization layer, which leads
to a separation of the MIP layer (shell) from the magnetite nanoparticles (core).

Similarly, the presence of hydroxyl groups on the nanoparticle surface can also be
achieved by using boronic acids that bind cis-diol-containing compounds and result as ade-
quate for imprinting large biomolecules, such as proteins, and achieving oriented surface
imprinting, depending on the affinity between the template molecule and the boronate
residues [62–67] (Table 1). The boronic acid 2,4-difluoro-3-formyl-phenylboronic acid
(DFFPBA) has been proposed for preparing MMIPs, which requires amino-functionalized
magnetic nanoparticles before DFFPBA functionalization (easily achieved by Fe3O4 syn-
thesis in presence of 1,6-hexanediamine). Fe3O4@NH2 can be directly treated with DFF-
PBA (treatment at room temperature for 24 h) [62] or can be first silanized with TEOS
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and (3-Aminopropyl) triethoxysilane (APTES), leading to (Fe3O4@SiO2@DFFPB) [63]. In
addition to DFFPBA, other boronic acids such as 4-formylphenylboronic acid (FPBA)
in combination with sodium cyanoborohydride (NaBH3CN) have been found to be ef-
fective to prepare the surface of Fe3O4@NH2 [64] or Fe3O4 nanoparticles [65] for syn-
thesizing MIPs for protein recognition. A similar strategy has been proposed using
magnetite microspheres coated with porous TiO2 (flower-like structure Fe3O4@pTiO2
nanoparticles) prepared via a solvothermal method and further functionalized with γ-
mercaptopropyltrimethoxysilane (γ-MPTS) to promote the presence of –SH before anchor-
ing the boronic acid 4-vinylphenboronic acid (VPBA) [66]. More binding sites for templates
(horseradish peroxidase), and thus, higher adsorption capacity, were found when using
Fe3O4@pTiO2 as a supporting material than when using Fe3O4@SiO2 cores [65,66]. In addi-
tion, the strong electron-withdrawing effects of Ti(IV) endow the boronic acid with lowered
pKa value that makes the Fe3O4@pTiO2@MIPs capture glycoproteins under moderate
acidic conditions [66].

Finally, boronate-affinity magnetic hollow molecularly imprinted polymer sorbents
for sialic acid (a compound exhibiting a cis-diol structure) have been also prepared by
using mesoporous silica spheres (MCM-48) as a sacrificial support, glycidyl methacrylate
(GMA) as a co-monomer to chemisorb Fe3O4 nanoparticles, and 3-aminophenylboronic
acid (APBA) as boronic acid [67]. After MCM-48@APBA preparation, the template, the
cross-linker, and the initiator are added for performing MIP synthesis, followed by MCM-
48 dissolution in a hydrofluoric/ethanol mixture (B-hMIP composite). Fe3O4 nanoparticles
are then synthesized (co-precipitation) in the presence of the prepared composite (B-hMIPs),
leading to the magnetic hollow adsorbent [67].

Surface Functionalization with Silica-Based Reagents

Silica-based reagents (Table 1) are an alternative to vinyled and diol-based compounds
in magnetite surface functionalization procedures for overcoming problems derived from
core–shell breakdown as consequence of extreme pH and temperature operating conditions,
since the resulting composites exhibit great stability [52]. TEOS is a typical silica-based
compound used for Fe3O4 modification at moderate operating conditions, resulting in
Fe3O4@SiO2 composites. The TEOS layer over the magnetite nanoparticles is a source of
hydroxyl groups for further interactions with the pre-polymerization reagents [68–89]. A
typical diagram of a magnetic silica-based composite is illustrated in Figure 3.

An improved degree of functionalization can be achieved by using silica-based
reagents containing other functional groups such as vinyl, amino, and halide groups
(Table 1). This is the case of reagents such as 3-(trimethoxysilyl)propyl methacry-
late (TMSMA) [103], 3-methacryloxypropyltrimethoxysilane (MPS, also known as
KH-570) [71,72,75–77,80–82,84,104–114], vinyl trimethoxy silane (VTMOS) [72], and
vinyl triethoxy silane (VTEO or VTES) [115–118], which promote the presence of vinyl
groups on the Fe3O4 surface or on the Fe3O4@SiO2 surface when Fe3O4 nanoparticles
are previously functionalized with TEOS (extra functional groups on the Fe3O4@SiO2
surface allowing its interaction with vinyled silica reagents). Functionalization with
vinyl-based silica reagents can also be performed after a previous oleic acid functional-
ization (Fe3O4@oleic acid via a co-precipitation technique) followed by modifying the
surface of the nanoparticles with a silica layer (TEOS) and double bonds introduction
onto the Fe3O4@SiO2 with KH-570 [90].

The presence of amino (−NH2) groups is guaranteed by using APTES (Table 1),
and MIP synthesis can be performed directly by mixing the functionalized nanoparticles
with the polymerization reagents [78,119]. On other occasions, the monomer, such as
methacryloyl chloride, can be fixed to the functionalized silica layer after reaction with
the immobilized amino groups [125]. In addition, previously modified Fe3O4 with TEOS
(Fe3O4@SiO2) can be then covered with APTES for promoting the presence of −NH2
groups [105,120–123].
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Introduction of carboxyl groups onto the Fe3O4@SiO2 surface is performed by treat-
ing functionalized Fe3O4@-SiO2–NH2 nanoparticles (TEOS and APTES covering) with
poly(ethylene glycol)bis(carboxymethyl) ether before MIP synthesis [123]. Comparison be-
tween Fe3O4@SiO2–COOH@MIP and Fe3O4@-SiO2–NH2@MIP showed that the latter had
high specific surface area and fast mass transfer rate toward the target (aminopyralid) [123].

Similarly, KH-570 (presence of vinyl groups) and APTES (presence of amino groups)
have been also used for modifying Fe3O4@SiO2 surfaces for further MIP polymerization
by RAFT mechanisms [27,58,124] (Table 1). However, magnetite functionalization with
–Cl groups is commonly preferred for RAFT synthesis, and silica-based reagents such
as 4-chloromethyl phenyl trichlorosilane (4-CPS) have been widely used for reacting
with Fe3O4@SiO2 (magnetite functionalized with TEOS) and promoting –Cl before MIP
synthesis by RAFT polymerization [74,77,126–131]. Other reagents, such as 3-bromopropyl
trimethoxy silane (BPTS), have been also used when performing MIP synthesis by RAFT,
although they are used directly on Fe3O4 to promote –Br groups [132] (Table 1).

These silanization procedures are time-consuming processes since they require a previ-
ous silanization stage (Fe3O4@SiO2) followed by a treatment for incorporating the desired
functional groups. In addition, the described procedures are reported to require reaction
temperatures achieved by refluxing systems. Therefore, there have been described several
one-step Fe3O4 synthesis (solvothermal method) and surface functionalization procedures
by incorporating into the reaction medium diol-based reagents such as PEG and ethylene
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glycol (EG) [133–140], and vinyled reagents (oleic acid [141] and hexanediamine [140]).
Since the solvothermal method is required for Fe3O4 nanoparticle synthesis, special lab-
oratory devices such as Teflon-lined stainless steel reactors are needed. In addition, the
synthesis/functionalization is performed at high temperature (200 ◦C) and for long times
(up to 24 h).

One-step procedures for Fe3O4 silanization (Fe3O4@SiO2) and modification with func-
tional groups such as −NH2 have been also described for speeding-up the functionalization
step. The use of APTES as a silica-based reagent (silanization) promotes the simultaneous
functionalization with amino functional groups. In addition, if the modification is per-
formed using APTES and mono acrylic acid at once, the resulting covering will also be rich
in vinyl groups [142]. On other occasions, after Fe3O4 functionalization with oleic acid, a
further reaction with KH-570 ensures stability (silica covering) and abundant vinyl groups
for further MIP synthesis [90].

2.1.3. Magnetite Surface Functionalization for Magnetic Nanotube-Supported and
Magnetic Nanosheet-Supported MIPs

As summarized in Table 2, surface functionalization of mixed magnetic compos-
ites involving the presence of CNTs [31] and MWCNTs [143–145] has been efficiently
achieved by using diol-based reagents such as EG and PEG [31,143,146,147], although
some authors have described the convenience of a previous MWCNT@Fe3O4 com-
posite oxidation [144], reduction [145], or carboxylation [32,148] stage before func-
tionalization/MIP synthesis. The activated surface of CNTs/MWCNTs improves the
nanoparticles dispersion and the interaction of monomers with the CNTs/MWCNTs.
However, some of these procedures require high temperatures and long times are also
needed to complete the reactions [31,32,143,148]. After MWCNT@Fe3O4 composite
synthesis, silanization procedures have also been reported by using KH-570 under
moderate reaction conditions (stirring/sonication, N2 atmosphere, 70 ◦C, 10 min),
which leads to a stable magnetic composite and also increases the reactive activity as a
consequence of the anchored vinyl groups [149]. Functionalization with KH-570 can
be also performed after a previous silanization of the prepared MCNTs with TEOS
(MCNTs@SiO2) [150]. Methacryloxypropyl trimethoxysilane (MAPTMS) has been also
proposed as a silanizing agent and as a vinyled monomer for further IIP synthesis
(Pb (II) ions as template and dithizone as a ligand) [148].

Regarding magnetic nanosheet-supported MIPs (Table 2), the GO@Fe3O4 surface is
usually functionalized by grafting with acrylic acid as shown in Figure 4 [33,151], which
ensure the presence of vinyl groups for further polymerization. Acrylic acid was also used
for surface modification of chitosan based GO@Fe3O4 composites [152]. Silanization with
TEOS to prepare MGO@mSiO2 (mesoporous silica) has been also reported for direct MIP
synthesis [153] and for a further functionalization with vinyltrimethoxysilane (VTTS) [34]
and APTES [154] in order to facilitate the subsequent polymerization via vinyl or amino
groups, respectively. However, prepared GO@Fe3O4 nanoparticles [155,156], as well as
3D magnetic GO-CNT composites [35], were also directly used for MIP synthesis without
functionalization.
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Table 2. Dispersive (micro)solid phase extraction with magnetic nanotube-supported and magnetic nanosheet-supported MIPs.

Sample Target Composite Functionalization
Reagent/Monomer

Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Fruits Pyrethroids Fe3O4-CNT TEOS and
KH570/MAA HPLC-UV

Sorbent: MMIP particles (10 mg)
Sample volume: 10 mL (3 mL ACN extract)
Rebinding media: Water/ACN
Extraction time: 15 min (mechanical shaking)
Desorption solvent: 97:3 ACN/acetic acid (2 × 1.0 mL),
30 s (ultrasound dispersion)

LOD:
0.0035–0.0072 mg kg−1

Recovery: 82.4–101.7%
[31]

Human urine and
plasma Sotalol Fe3O4-MWCNT –*/AM HPLC-UV

Sorbent: MMIP particles (15 mg)
Sample volume: 5.0 mL for plasma (30 mL after pH
adjustment at 7.0 with phosphate buffer solution)
Rebinding media: Water/Methanol
Extraction time: 15 min (mechanical shaking) plus 2.0
min (vortex shaking) plus 5 min (ultrasound
water-bath)
Desorption solvent: 90:10 methanol/acetic
acid (10 mL), 5 min (ultrasound water-bath)

LOD: 0.31µg L−1

Recovery: 94.6–102.5%
[32]

Heat processed
foods Acrylamide GO-Fe3O4 AA (grafting)/AA HPLC-UV

Sorbent: MMIPs particles (20 mg)
Sample volume: 10 mL water/methanol extract from
2.0 g of sample
Rebinding media: Water/Methanol
Extraction time: 60 min (mechanical shaking)
Desorption solvent: 9:1 methanol/acetic
acid (2.0 mL), 120 min (mechanical shaking)

LOD: 15µg kg−1

Recovery: 86.7–94.3%
[33]

Water BPA, 4-tert-OP,
4-NP GO-Fe3O4@mSiO2 CTAB, TEOS/VTTS HPLC-PDA

Sorbent: MMIPs particles (20 mg)
Sample volume: 50 mL (pH adjustment at 6.0)
Rebinding media: Water
Extraction time: 8.0 min (mechanical shaking)
Desorption solvent: acetone (1.0 mL), 5.0 min
(mechanical shaking)

LOD: 0.013, 0.010 and
0.010 µg L−1

Recovery: 81.5–104.1%
[34]

Milk powder Melamine GO-Fe3O4@mSiO2 CTAB, TEOS/VTTS UPLC-MS/MS

Sorbent: MMIPs particles (20 mg)
Sample volume: 50 mL (pH adjustment at 6.0)
Rebinding media: Water
Extraction time: 8.0 min (mechanical shaking)
Desorption solvent: acetone (1.0 mL), 5.0 min
(mechanical shaking)

LOD: 0.00045 mg kg−1

Recovery: 90.3–95.7%
[35]

Water 4-nonylphenol Fe3O4-MWCNT PEG/4-VP HPLC-UV

Sorbent: MMIPs particles (50 mg)
Sample volume: 20 mL
Rebinding media: Water
Extraction time: 20 min (mechanical shaking)
Desorption solvent: 90:10 methanol/acetic acid (2.0
mL), 40 min (mechanical shaking)

LOD: 0.15 µg L−1

Recovery: 88.6–98.1%
[143]
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Table 2. Cont.

Sample Target Composite Functionalization
Reagent/Monomer

Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Food / human
plasma Curcumin Fe3O4-MWCNT PEG/AM HPLC-UV

Sorbent: MMIPs particles (31 mg)
Rebinding media: Water
Extraction time: 20 min (ultrasound dispersion)
Desorption solvent: 4:1 methanol/DMSO (0.25 mL), 40
min (mechanical shaking)

LOD: 0.028 µg L−1

Recovery: >98%
[144]

Urine Morphine Fe3O4-MWCNT VTMOS/MAA UV-Visible
spectrophotometry

Sorbent: MMIPs particles (50 mg)
Sample volume: pH adjusted at 4.0
Rebinding media: Water
Extraction time: 20 min (ultrasound dispersion)
Desorption solvent: methanol (1.0 mL), 3.0 min
(mechanical shaking)

LOD: 0.18 mg L−1

Recovery: 96.4–105.6%
[145]

Urine Levofloxacin Fe3O4-CNT –/MAA HPLC-PDA

Sorbent: MMIPs particles (50 mg)
Sample volume: 2.5 mL
Rebinding media: Water
Extraction time: 60 min (incubation)
Desorption solvent: 6:4 methanol/acetic acid (5.0 mL)

LOD: 0.01 mg L−1

Recovery: 78.7–83.4%
[146]

Serum Gatifloxacin Fe3O4-CNT –*/MAA HPLC-PDA

Sorbent: MMIPs particles (50 mg)
Sample volume: 2.5 mL
Rebinding media: Water
Extraction time: 60 min (incubation)
Desorption solvent: 6:4 methanol/acetic acid (5.0 mL)

LOD: 6.0 µg L−1

Recovery: 79.1–85.3%
[147]

Water Pb(II) Fe3O4-MWCNT MAPTMS,
DTZ/AM FAAS

Sorbent: MMIPs particles (15 mg)
Sample volume: pH adjusted at 6.0
Rebinding media: Water
Extraction time: 5.0 min (mechanical shaking)
Desorption solvent: 0.5 M thiourea in 0.5 M HCl (5.0
mL), 15 min

LOD: 11 µg kg−1

Recovery: >98.4%
[148]

— Dibenzothiophene Fe3O4-MWCNT KH570/MAA UV-Visible
spectrophotometry

Sorbent: MMIPs particles (10 mg)
Rebinding media: Hexane
Extraction time: 120 min (mechanical shaking)
Desorption solvent: 9:1 methanol/acetic acid
(mechanical shaking)

LOD: –
Recovery: – [149]

Porcine serum Porcine serum
albumin Fe3O4-CNT TEOS, MPS/zinc

acrylate HPLC-UV

Sorbent: MMIPs particles (40 mg)
Sample volume: 4.0 mL (diluted in PBS, pH 7.0)
Rebinding media: Water
Desorption solvent: 10% (m/v) SDS and 10% (v/v)
acetic acid

LOD: –
Recovery: – [150]

Extracts from of
Evodiae fructus

Evodiamine and
rutaecarpine GO-Fe3O4 –*/MAA HPLC-UV

Sorbent: MMIPs particles (20 mg)
Sample volume: 20 mL (methanolic extract from 1.0 g
of sample)
Rebinding media: Methanol
Extraction time: mechanical shaking
Desorption solvent: 9:1 methanol/acetic acid

LOD: –
Recovery: – [151]
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Table 2. Cont.

Sample Target Composite Functionalization
Reagent/Monomer

Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Water, urine drug
capsules Fluoxetine GO-Fe3O4-Chm AA/MAA UV-Visible

spectrophotometry

Sorbent: MMIPs particles (20 mg)
Sample volume: pH adjusted at 4.5
Rebinding media: Water
Extraction time: 10 min (mechanical shaking)
Desorption solvent: 9:1 methanol/acetic acid (0.1 mL),
5.0 min (ultrasound dispersion)

LOD: 0.03 µg L−1

Recovery: 95.7–104.0%
[152]

Water PAEs GO-Fe3O4- mSiO2

CTAB,
TEOS/PTMOS,

APTES
GC-MS

Sorbent: MMIPs particles (20 mg)
Sample volume: 100 mL (pH adjusted at 7.0)
Rebinding media: Water
Extraction time: 30 min (mechanical shaking)
Desorption solvent: ethanol (3.0 mL), 5.0 min
(mechanical shaking)

LOD: 0.01–0.05 µg L−1

Recovery: >92.9%
[153]

Rhododendrons
species Flavonoids Fe3O4@SiO2-GO APTES,

THPMP/4-VP HPLC-MS

Sorbent: MMIPs particles (20 mg)
Rebinding media: ACN
Desorption solvent: 6:4 methanol/acetic acid, 11 min
(mechanical shaking)

LOD: 0.06–0.08 µg L−1

Recovery: >64.0%
[154]

Water 4-Nitrophenol GO-Fe3O4 –*/PTEOS, TMOS HPLC-UV

Sorbent: MMIPs particles (20 mg)
Sample volume: 100 mL
Rebinding media: Water
Extraction time: 5.0 min (incubation)
Desorption solvent: 4:1 methanol/acetic acid (5.0 mL)

LOD: —
Recovery: 94.7–101.2% [155]

Water Microcystin-LR GO-Fe3O4 –*/Dopamine HPLC-UV

Sorbent: MMIPs particles (10 mg)
Rebinding media: Water
Extraction time: 25 min (ultrasound dispersion)
Desorption solvent: 8:2 methanol/acetic acid (0.1 mL)

LOD: 0.08 µg L−1

Recovery: 86–113%
[156]

4-NP, 4-nonylphenol; 4-tert-OP, 4-tert-octylphenol; AA, acrylic acid; 4-VP, 4-vinylpyridine; ACN, acetonitrile; AM, acrylamide; APTES, (3-aminopropyl)triethoxysilane; BPA, bisphenol A; Chm, chitosan; CNTs,
carbon nanotubes; CTAB, cetyl trimethylammonium bromide; DTZ, dithizone; FAAS, flame atomic absorption spectrometry; GC, gas chromatography; GO, graphene oxide; HPLC. High performance liquid
chromatography; KH570, γ-methacryloxypropyltrimethoxysilane; LOD, limit of detection; MAA, methacrylic acid; MAPTMS, methacryloxypropyl trimethoxysilane; MMIPs, magnetic molecularly imprinted
polymer; MPS, 3-methacryloxypropyltrimethoxysilane; MS, mass spectrometry; MS/MS, tandem mass spectrometry; MWCNTs, multiwalled carbon nanotubes; PAEs, phthalates esters; PBS, phosphate buffered
saline; PDA, photodiode array detector; PEG, polyethyleneglycol; PTEOS, phenyltriethoxysilane; PTMOS, phenyl trimethoxysilane; SDS, sodium dodecyl sulfate; TEOS, tetraethyl orthosilicate; THPMP,
3-trihydroxymethylsilyl-propylmethylhosphate; TMOS, tetramethyl orthosilicate; UPLC, ultra performance liquid chromatography; UV, ultraviolet; VTMOS, vinyltrimethoxysilane; VTTS, vinyltrimethoxysilance.
(*) No functionalization reagent.
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duction) [40] and –NH2 [41] groups for subsequent MIP synthesis (Table 3). Similarly, si-
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Figure 4. Schematic representation for preparation of acrylamide-dummy-surface molecularly imprinted polymers-
graphene oxide-Fe3O4 (AM-DSMIPs-GO-Fe3O4), Adapted with permission from Ref. [33]. Copyright 2017 Elsevier.

2.1.4. Magnetite Functionalization for Magnetic Porous MIPs

As previously commented, functionalization in HPMIPs based on mesoporous silica
(1,2-diol groups over the HPMIPs) can be achieved by treating the composite with diluted
perchloric acid (Figure 5) [37]. Silica-based reagents such as KH-570 [40] and APTES [41]
have been used for surface functionalization of MMC particles (vinyl −C=C− bridge
introduction) [40] and –NH2 [41] groups for subsequent MIP synthesis (Table 3). Simi-
larly, silanization with KH-570 (vinyl group functionalization) has also been proposed for
preparing MMIPs based on hollow magnetite [45].
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Table 3. Dispersive (micro)solid phase extraction with magnetic porous MIPs and other mixed composite MMIPs.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Spices Protocatechuic acid Fe3O4-HPMIP TEOS, CTAB/4-VP,
GMA HPLC-PDA

Sorbent: MHPMIP particles (10 mg)
Sample volume: 3.0 mL
Rebinding media: ACN
Extraction time: 25 min (mechanical shaking)
Desorption solvent: 9:1 methanol/acetic acid (0.8 mL)

LOD: 0.4 mg L−1

Recovery: 94.2–101.1%
[37]

Rat urines Aristolochic acid I
and II MMC@MIP APTES/MAA HPLC-UV

Sorbent: MMC@MIP particles (80 mg)
Sample volume: 3.0 mL
Rebinding media: Water
Extraction time: 30 min (mechanical shaking)
Desorption solvent: 3:1 methanol/DES-1 (3.0 mL)

LOD:
0.03 and 0.17 mg L−1

Recovery: 86.7–94.3%
[41]

Potato chips Acrylamide Fe3O4@ DMIP TEOS/APTMS HPLC-UV

Sorbent: Fe3O4@ DMIP particles (30 mg)
Sample volume: 10 mL (aqueous extract, pH 4.0, from
1.0 g of sample)
Rebinding media: Water
Extraction time: 35 min (ultrasound dispersion)
Desorption solvent: 45:45:10 ACN/methanol/acetic
acid (2.0 mL) (ultrasound dispersion)

LOD: 0.35 µg kg−1

Recovery: 94–98%
[42]

Urine Baclofen SMIBP TEOS, Chm/–* HPLC-UV

Sorbent: SMIBP particles (35 mg)
Sample volume: 10 mL (pH adjusted at 11)
Rebinding media: Water
Extraction time: 24 min (ultrasound dispersion)
Desorption solvent: 45:45:10 methanol/deionized
water/ammonium
hydroxide (2.0 mL) (ultrasound dispersion)

LOD: 0.26 µg L−1

Recovery: 94–98%
[43]

Water, fruit juices,
human serum Benzoic acids MMIR Melamine,

formaldehyde HPLC-UV

Sorbent: MMIR particles (20 mg)
Sample volume: 3.0 mL
Rebinding media: Water
Extraction time: mechanical shaking
Desorption solvent: 3:3:1 methanol-water-acetic acid
(3.0 mL)

LOD: 0.02–1.0 mg L−1

Recovery: 81.8–108.7%
[44]

Chicken meat Sulfonamides CS-NR-Mag-MIP TEPA/GMA HPLC-MS/MS

Sorbent: CS-NR-Mag-MIP particles (15 mg)
Sample volume: 3.0 mL (aqueous extract, pH adjusted
at 5.0 from 1.0 g of sample)
Rebinding media: Water
Extraction time: 10 min (mechanical shaking)
Desorption solvent: 2.0% ammonia solution in
methanol. (3 × 0.5 mL)

LOD: 0.013–0.099 µg kg−1

Recovery: 81.8–108.7%
[48]
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Table 3. Cont.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Water, urine,
plasma Gallic acid HKUST-1-MOF-

Fe3O4-MIP
HKUST-1 MOF,

VTMOS/–
UV-Visible

spectrophotometry

Sorbent: CS-NR-Mag-MIP particles (1.6 mg)
Sample volume: 10 mL (pH adjusted at 3.0)
Rebinding media: Water
Extraction time: 2.0 min (ultrasound dispersion)
Desorption solvent: ethanol (0.18 mL), 2.0 min
(ultrasound dispersion)

LOD: 1.377 µg L−1

Recovery: 92.3–100.6%
[157]

Pork meat, fish Estrogens Fe3O4@ZIF-8-MIP Fe3O4@ZIF-
8/APBA HPLC-PDA

Sorbent: coated-SPME fiber
Rebinding media: n-hexane
Desorption solvent: 99:1 methanol/acetic acid

LOD: 0.4–1.7 µg kg−1

Recovery: 92.3–100.6%
[158]

Corn Aflatoxins ZIF-L-based
Co-MNPC@MIP Co-MNPC/MAA HPLC-MS/MS

Sorbent: ZIF-L-based Co-MNPC@MIP particles (80 mg)
Sample: methanol/water extract
Rebinding media: Water
Extraction time: 10 min (mechanical shaking)
Desorption solvent: 6:4 ACN/water (1.2 mL), 5.0 min
(ultrasound dispersion)

LOD: 0.05–0.07 µg L−1

Recovery: 75.1–99.4%
[159]

Corn Hydroxychloroquine Ni@MIL-
100(Fe)@MIP

Ni@MIL-
100(Fe)/APTES HPLC-UV

Sorbent: Ni@MIL-100(Fe)@MIP particles (23 mg)
Sample volume: 10 mL (pH adjusted at 9.0)
Rebinding media: Water
Extraction time: 1.0 min (mechanical shaking)
Desorption solvent: methanol (50 µL), 3.0 min
(ultrasound dispersion)

LOD: 0.2 µg L−1

Recovery: 96–103%
[160]

Vegetables Carbendazim Fe3O4-β-CD@MIP β-CD, Au
NPs/MAA UHPLC-MS

Sorbent: Fe3O4-β-CD@MIP particles (packaged SPE
column)
Sample volume: (ACN extract from 25 g of sample),
flow rate 1.0 mL min−1

Rebinding media: ACN
Desorption solvent: methanol/acetic acid (flow rate 1.0
mL min−1)

LOD: 3.0 ng L−1

Recovery: 90.5–109%
[161]

Water PAEs MIP@mSiO2-β-
CD@Fe3O4

β-CD,
APTES/MAA GC-MS

Sorbent: MIP@mSiO2-β-CD@Fe3O4 particles (30 mg)
Rebinding media: Water
Extraction time: 10 min
Desorption solvent: 8:2 methanol/acetic acid (6.0 mL),
10 min

LOD: 1.0–5.0 µg L−1

Recovery: 80.2–103%
[162]

Urine, serum Carbamazepine Fe3O4@CS@MIP CS DCMA,
DCC/4-VP HPLC-DAD

Sorbent: Fe3O4@CS@MIP (4.0 mg)
Sample volume: 4.0 mL serum, 20 mL urine (pH
adjusted at 9.0)
Rebinding media: Water
Extraction time: 30 min (mechanical shaking)
Desorption solvent: 8:2 ethanol/acetic acid (3 × 4.3 mL
for serum; 2 × 4.6 mL for urine), 28.7 min (serum),
25.3 min (urine), mechanical shaking

LOD: 1.0 µg L−1 (urine),
9.6 µg L−1 (serum)
Recovery: 88.2–101.2%

[163]
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Table 3. Cont.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Water, rice,
vegetables As Fe3O4@OA-IIP 2-ABT/4-VP HG-AAS

Sorbent: Fe3O4@OA-IIP (88.18 mg)
Sample volume: 4.0 mL serum, 20 mL urine (water and
acid digests adjusted at pH 7.25)
Rebinding media: Water
Extraction time: 47.63 min, 30 ◦C (ultrasound
dispersion)
Desorption solvent: 0.75 M nitric acid (0.50 mL)

LOD: 0.003 µg L−1

Recovery: 88.2–101.2%
[164]

2-ABT, 2-acetyl benzofuran thiosemicarbazone; 4-VP, 4-vinylpyridine; ACN, acetonitrile; APBA, 3-amino phenylboronic acid; APTES, (3-aminopropyl)triethoxysilane; APTMS, 3-aminopropyltrimethoxysilane;
CD, cyclodextrin; Chm, chitosan; CTAB, cetyl trimethylammonium bromide; CS, magnetic chitosan; DAD, diode array detector; DCC, N, N-dicyclohexylcarbodiimide; DCMA, 2-(dodecylthiocarbonothioylthio)-
2-methylpropionic acid; DES-1, deep eutectic solvent 1; GC, gas chromatography; GMA, glycidilmethacrylate; HG-AAS, hydride generation—atomic absorption spectrometry; HPLC. High performance
liquid chromatography; LOD, limit of detection; MAA, methacrylic acid; MHPMIP, magnetic hollow porous molecularly imprinted polymer; MMC@MIP, magnetic mesoporous carbon-molecularly imprinted
polymer; MMIR, hydrophilic magnetic molecular imprinted resin; MNPC, magnetic nanoporous carbon; MOF, metal-organic framework; MPS, 3-methacryloxypropyltrimethoxysilane; MS, mass spectrometry;
MS/MS, tandem mass spectrometry; NPs, nanoparticles; OA, oleic acid; PAEs, phthalates esters; PDA, photodiode array detector; SMIBP, superparamagnetic molecularly imprinted biopolymer; SPE, solid
phase extraction; SPME, solid phase microextraction; TEOS, tetraethyl orthosilicate; TEPA, tetraethylenepentamine; UHPLC, ultra-high performance liquid chromatography; UV, ultraviolet; ZIF-8, zeolite
imidazolateframework-8 coated magnetic iron oxide. (*) monomer was not used.



Separations 2021, 8, 99 17 of 32

2.1.5. Other Mixed Composites for MMIPs

Various types of magnetic composites (Table 3) have been used as magnetic cores for
MMIPs such as metal-organic frameworks (MOFs) and zeolite imidazolate frameworks
(ZIFs). In some cases, the synthesis of Fe3O4 nanoparticles following the hydrothermal
process is performed in the presence of the framework (HKUST-1, a Cu-based porous MOF)
and EG (diol groups), which also act as capping agents for avoiding aggregation [157].
Surface functionalization is further performed with VTMOS [157]. The procedure is time-
consuming, and a Teflon-lined stainless steel autoclave (synthesis at 200 ◦C) is required.
On other occasions, the previously synthesized magnetite nanoparticles are allowed to
react with the framework at moderate temperatures and short times. This is the case of
Fe3O4@ZIF-8 composites, in which poly (styrenesulfonate sodium salt) is added to the
reaction medium to allow the ZIF-8 shell growth (with the presence of 2-methylimidazolate
as a precursor), and for which a further surface functionalization is not required [158].
Moreover, ZIF-L-based Co-based magnetic nanoporous carbon (Co-MNPC) is also directly
mixed in the polymerization medium for preparing a magnetic selective Co-MNPC@MIP
sorbent to aflatoxins [159].

Ni@MIL-100(Fe) MOF has also been used as a support for MIP synthesis [160]. In
this case the framework exhibits magnetic properties, and after mixing with the template
(hydroxychloroquine) and with the functional monomer (APTES) and the cross-linker
(TEOS), MIP synthesis can be directly carried out.

Fast procedures for synthesizing magnetic composites have been also described for
thiolated β-cyclodextrin assembled to gold nanoparticles (β-CD/Au), whose presence dur-
ing the Fe3O4 synthesis (co-precipitation method) leads to a β-CD/Au/Fe3O4 composite
functionalized for further MIP synthesis [161]. Other proposals suggested the previous syn-
thesis of Fe3O4@mSiO2 functionalized with APTES (presence of −NH2 groups) magnetic
core before surface grafting of β-CD and MIP synthesis (phthalic acid ester as a template)
for preparing magnetic plasticizer MIPs [162]. In addition to the high selectivity inherent
to the MIP layer, the prepared composite material was found to show large adsorption
capacity and fast kinetic equilibrium.

The aminopolysaccharide nature of the biopolymer chitosan (CS) has also taken ad-
vantage of modifying magnetite for achieving a surface rich in functional groups for further
polymerization. Preparation of Fe3O4@CS nanoparticles is easily performed following
the hydrothermal synthesis of Fe3O4 in the presence of CS [163]. Finally, one-step co-
precipitation under alkaline conditions (Fe3O4 synthesis) in the presence of the diazonium
salt BF4 (+N2–C6H4–CH2–DEDTC) also generates a magnetic core that offers adequate
functional groups for mixing with the pre-polymerization mixture and starting the MIP
synthesis [165]. On other occasions, surface-modified Fe3O4 with oleic acid was allowed
to polymerize with arsenic (III)- 2-acetyl benzofuran thiosemicarbazone complex as tem-
plate, and methacrylic acid as a monomer (ionic imprinted polymer for As(III)) before a
Pickering emulsion in the presence of nanoparticles of chitosan [164]. Extraction of As(III)
from acid digests from rice and vegetable was achieved after pH adjustment, assisting the
loading/elution process by ultrasounds [164].

2.2. Dispersive Solid Phase Extraction and Microsolid Phase Extraction with Non-Magnetic MIPs

As previous commented, dSPE/D-µ-SPE [9–11] can be performed by dispersing MMIP
nanoparticles, and also non-magnetic MIP beads, by vortex and ultrasound stirring [10].
Table 4 summarizes the main features regarding dSPE/D-µ-SPE with non-magnetic MIPs.
The adsorbents can be obtained by precipitation [166–174], and bulk [175–177] polymeriza-
tion has been used for dSPE/D-µ-SPE by shaking the sample/extract-MIP bead mixtures
for times varying from 5.0 min [166] to 3.0 h [169]. Absorption times can be reduced to
1 min when assisting the procedure by ultrasounds, enough time for isolating phenolic
compounds in aqueous samples using 10 mg of MIP [170]. However, sonication times
of 3.0 h have been proposed for fluoroquinolone pre-concentrations from waters using a
dual-template MIP (dt-MIP) for norfloxacin and enrofloxacin as templates [172]. Authors,
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however, did not report insights regarding low adsorption rate for reaching the equilibrium
between the targets and the dt-MIPs. The procedures were found to be effective and selec-
tive for isolating fungicides from cucumber [168], sulfonamides from milk [166], bioactive
compounds (polydatin) from rat’s plasma and urine [169], progesterone hormones from
plasma, urine and waters [175], and also for purifying extracts (pre-concentrating tar-
gets) such as polydatin from Chinese medical medicines [169], antibiotics from pork [167],
aflatoxins from cultured fish [171], pyraclostrobin from ginseng [174], folic acid from
foodstuff [176], and herbicides from shellfish [177].
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Table 4. Dispersive solid phase extraction and microsolid phase extraction with non-magnetic MIPs.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Urine Glibenclamide HPMIP TEOS, CTAB/MAA HPLC-UV

Sorbent: MHPMIP particles (30 mg)
Sample volume: 10 mL (pH adjusted at 4.0)
Rebinding media: Water
Extraction time: 15 min (ultrasound dispersion)
Desorption solvent: 5:5:1 DMSO/ethanol/acetic acid
(3.0 mL), resuspension

LOD: 3.5 µg L−1

Recovery: 87.7–104.3%
[38]

Water Bisphenol A HM-DMIP TEOS/ICPTES HPLC-UV

Sorbent: HM-DMIP particles (30 mg)
Sample volume: 10 mL
Rebinding media: Water
Extraction time: 30 min (static absorption conditions)
Desorption solvent: 90:10 methanol/acetic
acid (3.0 mL), static absorption conditions

LOQ: 0.2 mg L−1

Recovery: 98.7–101.7%
[39]

Milk Sulfamethazine MIP –*/MAA CE-UV

Sorbent: MIP particles (10 mg)
Sample volume: 10 mL (pH adjusted with 20 mM
phosphate buffer)
Rebinding media: Water
Extraction time: 5.0 min (mechanical shaking)
Desorption solvent: 9:1 methanol/acetic acid (0.30 mL),
10 min (mechanical shaking)

LOD: 1.1 µg L−1

Recovery: 89–110%
[166]

Pork meat MALs MIP –*/MAA HPLC-MS/MS

Sorbent: MIP particles (20 mg)
Sample volume: 5.0 mL (1% (v/v) acetic acid in ACN
extract from 1.0 g of sample)
Rebinding media: ACN
Extraction time: 30 min (mechanical shaking)
Desorption solvent: 10% (v/v) acetic acid in methanol
(5.0 mL), 10 min (ultrasound dispersion)

LOD: 0.2–0.5 µg kg−1

Recovery: 68.6–95.5%
[167]

Cucumber Azoxystrobin HMIM –*/HPMA HPLC-UV

Sorbent: HMIM particles (100 mg)
Sample volume: 5.0 mL (methanol extract from 25 g of
sample)
Rebinding media: Methanol
Extraction time: 30 min (water-bath oscillation plus 30
min without oscillation)
Desorption solvent: 9:1 methanol/acetic acid (8.0 mL),
water-bath oscillation

LOD: 0.324 µg kg−1

Recovery: 85.9–88.9%
[168]
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Table 4. Cont.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

PCRR, and plasma
and urine from rat Polydatin MIP –*/4-VP HPLC-UV

Sorbent: MIP particles (10 mg for PCRR, 5.0 mg for
plasma and urine)
Sample volume: 1.5 mL (extracts from PCRR), 0.20 mL
(plasma), 0.050 mL (urine)
Rebinding media: 8:2 water/methanol (extracts from
PCRR), water (plasma and urine)
Extraction time: 3.0 h, mechanical shaking
Desorption solvent: 1.5 mL of 8:2 water/methanol and
3.0 h (mechanical shaking)

LOD: 0.125 mg L−1

Recovery: 89.2–91.6%
[169]

Water Phenolic
compounds MIP –*/MAA CE-DAD

Sorbent: MIP particles (10 mg)
Sample volume: 10 mL
Rebinding media: Water
Extraction time: 1.0 min (ultrasound dispersion)
Desorption solvent: 9:1 ACN/acetic acid (30 µL), 4.0
min (ultrasound dispersion)

LOD: 0.18–0.44 µg L−1

Recovery: 70.7–106.7%
[170]

Fish Aflatoxins MIP –*/MAA HPLC-MS/MS

Sorbent: MIP particles (40 mg)
Sample volume: 1.5 mL (60:40 ACN/phosphate buffer
extract from 1.g of sample)
Rebinding media: 60:40 ACN/phosphate buffer, pH 6.0
Extraction time: 3.0 min (mechanical shaking)
Desorption solvent: 97.5:2.5 ACN/formic acid (0.50
mL), 4.0 min (mechanical shaking)

LOD: 0.29–0.61 µg kg−1

Recovery: 83–98%
[171]

Water FQs dt-MIP –*/MAA HPLC-DAD

Sorbent: dt-MIP particles (10 mg)
Sample volume: 10 mL
Rebinding media: Water
Extraction time: 3.0 h (mechanical shaking)
Desorption solvent: 90:10 methanol/acetic acid (0.15
mL), 5.0 min (ultrasound dispersion)

LOD: 0.2 (NOR) and 0.67
(ENR) µg L−1

Recovery: 80.9–101.0%
[172]

Rice Inorganic As IIP 1-vinylimidazole-
/MAA HPLC-ICP-MS

Sorbent: IIP particles (50 mg)
Sample volume: 1.5 mL (1:1 methanol/water extract
from 1.g of sample)
Rebinding media: 1:1 methanol/water (pH 8.0)
Extraction time: 1.0 min (mechanical shaking)
Desorption solvent: water (0.15 mL), 1.0 min
(mechanical shaking)

LOD: 0.20 (As(III)) and
0.41 (As(V)) µg kg−1

Recovery: 95–103%
[173]

Ginseng Pyraclostrobin MIP –*/MAA HPLC-UV

Sorbent: MIP particles (100 mg)
Sample volume: 2.0 mL (ACN extract from 25 g of
sample)
Rebinding media: ACN
Extraction time: 50 min (mechanical shaking)
Desorption solvent: 9:1 methanol/acetic acid (8.0 mL),
50 min (mechanical shaking)

LOD: 0.01 mg kg−1

Recovery: 95–103%
[174]
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Table 4. Cont.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Water, urine, serum Progesterone MIP –*/pyrrole GC-FID

Sorbent: MIP particles (100 mg)
Sample volume: 20 mL (pH adjusted at 6.5)
Rebinding media: Water
Extraction time: 35 min (ultrasound dispersion)
Desorption solvent: methanol (0.5 mL), 40 min
(ultrasound dispersion)

LOD: 0.625 µg L−1

Recovery: 88–101%
[175]

Food Folic acid MIP –*/VBTMAC HPLC-MS

Sorbent: MIP particles (50 mg)
Sample volume: 10 mL (aqueous extract)
Rebinding media: Water
Extraction time: 20 min (mechanical shaking)
Desorption solvent: 1:1 methanol/hydrochloric acid
(10 mL), 30 min (mechanical shaking)

LOD: 0.003 mg L−1

Recovery: 79–83%
[176]

Seafood Herbicides MIP –*/MAA GC-MS/MS

Sorbent: MIP particles (50 mg)
Sample volume: 10 mL (ACN/acetic acid aqueous
extract from 2.0g of sample)
Rebinding media: ACN/water
Extraction time: 15 min (mechanical shaking)
DSPE for clean-up

LOQ: 0.03–8.88 µg kg−1

Recovery: 81–109%
[177]

Chicken meat TCs MIP-MOF UiO-66 MOF/MAA HPLC-UV

Sorbent: MIP-MOF particles (5 mg)
Sample volume: 10 mL (aqueous extract, pH adjusted
at 4.0, from 1.0 g of sample)
Rebinding media: Water
Extraction time: 15 min (mechanical shaking)
Desorption solvent: methanol (1.0 mL), 5.0 min
(mechanical shaking)

LOD: 0.2–5.0 µg L−1

Recovery: 69.6–94.7%
[178]

Urine, milk Nicotinamide MIP-MOF HKUST-1
MOF/MAA

UV-Vis
spectrophotometry

Sorbent: MIP-MOF particles (2 mg)
Sample volume: 10 mL (pH adjusted at 5.0)
Rebinding media: Water
Extraction time: 5.0 min (ultrasound dispersion)
Desorption solvent: ACN (0.20 mL)

LOD: 1.96 µg L−1

Recovery: 95.8–101.3%
[179]

Water Estrogens MIHS Colloidal silica,
KH570/MAA HPLC-UV

Sorbent: MIHS particles (10 mg)
Sample volume: 1.0 mL
Rebinding media: Water
Extraction time: 15 min (dispersion)
Desorption solvent: 8:2 methanol/acetic acid (1.0 mL)

LOD: 0.1–0.26 µM L−1

Recovery: 69.6–94.7%
[180]

Urine Valsartan and
losartan HP-MIN CNPs/TEOS HPLC-UV

Sorbent: HP-MIN particles (40 mg)
Sample volume: 15 mL (pH adjusted at 6.0)
Rebinding media: Water
Extraction time: 27 min (ultrasound dispersion)
Desorption solvent: 90:10 methanol/acetic acid
(2.0 mL), ultrasound dispersion

LOD: 1.5 (VAL) and 1.4
(LOS) µg L−1

Recovery: 93–99%
[181]
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Table 4. Cont.

Sample Target Composite Reagents/Monomer Detection
Technique Sample Pre-Treatment: Performance: LOD and

Analytical Recovery Ref.

Beverages DOP MWCNT-MIP MWCNTs/MAA GC-MS

Sorbent: MWCNT-MIP particles (60 mg)
Sample volume: 20 mL (ACN extract)
Rebinding media: ACN
Extraction time: 30 min (oscillation)
Desorption solvent: 9:1 methanol/acetic acid

LOD: 2.3 ng L−1

Recovery: 88.6–93.0%
[182]

Water DEHP GO-MIP GO/MAA HPLC-UV

Sorbent: GO-MIP particles (20 mg)
Sample volume: 600 mL
Rebinding media: Water
Extraction time: 30 min (mechanical shaking)
Desorption solvent: acetone (6.0 mL), 5.0 min
(ultrasound dispersion)

LOD: 0.92 µg L−1

Recovery: 82–92%
[183]

AAm, acrylamide; 4-VP, 4-vinylpyridine; ACN, acetonitrile; CE, capillary electrophoresis; CNPs, carbon nanoparticles; CTAB, cetyl trimethylammonium bromide; DAD, diode array detector; DEHP,
bis(2-ethylhexyl) phthalate; DOP, dioctyl phthalate; DSPE, dispersive solid phase extraction; dt-MIP, dual-template molecularly imprinted polymer; ENR, enrofloxacin; FID, flame ionization detector; FQs,
fluoroquinolones; GO, graphene oxide; HM-DMIP, hollow mesoporous silica surface dummy molecularly imprinted polymer; HMIM, hydrophilic molecularly imprinted microsphere; HPLC, high performance
liquid chromatography; HPMA, hydroxypropyl methacrylate; HPMIP, hollow porous molecularly imprinted polymer; HP-MIN, hollow porous molecularly imprinted nanosphere; ICP, inductively coupled
plasma; ICPTES, (3-isocyanatopropyl)triethoxysilane; IIP, ionic imprinted polymer; KH570, γ-methacryloxypropyltrimethoxysilane; LOD, limit of detection; LOQ, limit of quantification; LOS, losartan; MAA,
methacrylic acid; MALs, macrolide antibiotics; MIH, molecularly imprinted hollow sphere; MIP, molecularly imprinted polymer; MOF, metal-organic frameworks; MS, mass spectrometry; MS/MS, tandem mass
spectrometry; MWCNTs, multiwalled carbon nanotubes; NOR, norfloxacin; PCRR, Polygoni Cuspidati Rhizoma et Radix; SiO2@MPS, methacryloxypropyl modified silica nanoparticle; TCs, tetracyclines; TEOS,
tetraethyl orthosilicate; UHPLC, ultra-high performance liquid chromatography; UV, ultraviolet; VAL, valsartan; VBTMAC, vinylbenzyl trimethylammonium chloride; VTTS, vinyltrimethoxysilance. (*) no
reagent was used.
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Ionic molecularly imprinted polymers (IIPs) have also been proposed for dSPE [173].
The bifunctional monomer 1-vinylimidazole was used for reacting with the template
((meta)arsenite, As(III)) and providing vinyl groups for polymerization [173]. The dSPE
implied portions of 50 mg of IIP and vortexing at 1000 rpm for 1 min allowed the selective
pre-concentration of inorganic arsenic species (As (III) plus As(V)) from rice extracts [173].

MIP synthesis around non-magnetic nanoparticles, such as silica nanoparticles, has
been also performed to obtain stable adsorbents. Therefore, silica nanoparticles functional-
ized with KH-570 (SiO2@KH-570) by a base-catalyzed reaction of TEOS and KH-570 have
been used as a core for preparing a selective MIP composite for the enantioseparation
of racemic tryptophan (L-tryptophan recognition) in aqueous solutions [184]. Experi-
ments were performed by oscillating the MIP-aqueous sample mixtures for 32 h at room
temperature and using only 2 mg of adsorbent [184].

In addition, the excellent properties of MOFs have led to preparation of MOF-MIP com-
posites based on UiO-66 MOF [178] and HKUST-1 MOF [180] by direct MIP polymerization
on the MOF’s surface. The dSPE was performed with 5 mg of UiO-66-MIP and shaking for
15 min to recover tetracyclines from chicken extracts [178]; whereas 2 mg of HKUST-1-MIP
(vortexing for 2 min) proved adequate for nicotinamide pre-concentration [179].

Hollow non-magnetic composites based on silica [180] and carbon [181] have been
also prepared for dSPE/D-µ-SPE. In both cases, after MIP synthesis over the nanopar-
ticle, the supporting material was removed (hydrofluoric acid for silica [180], and calci-
nation at 500 ◦C for carbon [181]) leading to a porous material with high surface area.
Synthesis of hollow silica-based MIP composites required functionalization with KH-
570 (source of vinyl groups) for an effective MIP synthesis and anchorage (estrogen
recognition/pre-concentration from water [180]). However, TEOS and aluminum chloride
were used for MIP synthesis (valsartan as a template) when preparing the hollow carbon-
based aluminum-doped silica composite, promoting hydrolysis to generate silanol groups
(Si−OH) followed by condensation of the silanols to obtain a polysiloxane (O−Si−O) [181].
Estrogen pre-concentration was designed by using 10 mg of the composite and shaking
for 1.0 h [180]; whereas, valsartan and losartan isolation required 40 mg of adsorbent and
sonication for 27 min [181].

Other composites such as MWCNT-MIPs have also been demonstrated to be effective
adsorbents for dSPE of dioctyl phthalate in beverage samples [182]. Vinyl groups were
incorporated on MWCNTs by reaction with sodium ethoxylate before MWCNT oxidation
(presence of carboxyl groups), and MIP (dioctyl phthalate as a template) was further
synthesized. The dSPE procedure was performed by mixing 60 mg of MWCNTs-MIPs
with treated beverage samples (juice, dairy drinks, and carbonated drinks) and incubating
at room temperature for 30 min on an oscillator [182]. Finally, graphene oxide-based
MIPs (GO-MIPs) have also been used for dSPE when pre-concentrating bis(2-ethylhexyl)
phthalate from waters by shaking 20 mg of adsorbent with the sample (water) at 600 rpm
for 30 min [183].

3. Drawbacks and Future Prospects

MIMSPE procedures have been revealed as excellent approaches for miniaturiza-
tion of SPE-based techniques in analytical chemistry, offering selective extraction/pre-
concentration when analyzing complex samples. Dispersive SPE/µ-SPE procedures based
on MIPs (mainly MMIPs) have shown high potential of miniaturization, which implies the
use of low amounts of adsorbents as well as low volumes of organic solvents for performing
the elution stage.

However, MIPs and MMIPs face a number of challenges during the preparation
(synthesis) stage and also during the application. MMIPs are synthesized in nonpolar
solvents to avoid the disruption of the hydrogen bonding between monomer and templates.
The generated hydrophobic surfaces lead to adsorption of interferences such as proteins.
RAFT polymerization is a good alternative to overcome this problem since it allows the
preparation of highly hydrophilic MIPs (or MIP external layers over nanoparticles), which
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can lead to efficient adsorbents for samples of a wide polarity range. Improvements have
also been addressed to automate the techniques (similar to on-column/cartridges SPE)
since batch MIMSPE procedures require several steps (conditioning, loading, washing,
elution) and the procedures are not appealing processes when coping with hundreds of
samples. In addition, the coupling (and also automation) of the MIMSPE devices directly
with analytical instruments has not been explored yet.

In any case, MIMSPE procedures open a fascinating window to analyzing compounds
from complex matrices, and continuous efforts in this research area should open more and
more novel applications.

Author Contributions: G.D.T.M.J.: Formal analysis, Investigation, Validation, Visualization, Writing—
Original draft preparation; A.M.-P.: Resources, Project administration, Funding acquisition, Supervi-
sion, Data curation, Software, Validation, Writing—Reviewing and Editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by SecretaríaXeral de Investigación e Desenvolvemento—Xunta
de Galicia Grupos de Referencia Competitiva (project number ED431C2018/19), and Development
of a Strategic Grouping in Materials—AEMAT (grant ED431E2018/08).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pawliszyn, J. New directions in sample preparation for analysis of organic compounds. Trends Anal. Chem. 1995, 14, 113–122.

[CrossRef]
2. Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. Trends Anal. Chem. 2019, 118,

574–586. [CrossRef]
3. Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present

and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [CrossRef] [PubMed]
4. Pichon, V.; Delaunay, N.; Combès, A. Sample Preparation Using Molecularly Imprinted Polymers. Anal. Chem. 2019, 92, 16–33.

[CrossRef]
5. Capriotti, A.L.; Cavaliere, C.; LA Barbera, G.; Montone, C.M.; Piovesana, S.; Laganà, A. Recent Applications of Magnetic

Solid-phase Extraction for Sample Preparation. Chromatographia 2019, 82, 1251–1274. [CrossRef]
6. Ansari, S.; Karimi, M. Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis.

Talanta 2017, 167, 470–485. [CrossRef]
7. Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly imprinted polymers for

extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [CrossRef]
8. Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental

water samples. J. Chromatogr. A 2020, 1614, 460603. [CrossRef]
9. Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid phase microextraction.

Trends Anal. Chem. 2019, 118, 793–809. [CrossRef]
10. Ghorbani, M.; Aghamohammadhassan, M.; Ghorbani, H.; Zabihi, A. Trends in sorbent development for dispersive micro-solid

phase extraction. Microchem. J. 2020, 158, 105250. [CrossRef]
11. Ojeda, C.B.; Rojas, F.S. Vortex-Assisted Liquid–Liquid Microextraction (VALLME): The Latest Applications. Chromatographia 2017,

81, 89–103. [CrossRef]
12. Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Combined assisted extraction techniques as green sample pre-treatments in food analysis.

Trends Anal. Chem. 2019, 118, 1–18. [CrossRef]
13. Adewuyi, Y.G. Sonochemistry: Environmental Science and Engineering Applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715.

[CrossRef]
14. Galán-Cano, F.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Dispersive micro-solid phase extraction with ionic liquid-modified silica

for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchem. J. 2013,
106, 311–317. [CrossRef]

15. Cai, Q.; Zhang, L.; Zhao, P.; Lun, X.; Li, W.; Guo, Y.; Hou, X. A joint experimental-computational investigation: Metal organic
framework as a vortex assisted dispersive micro-solid-phase extraction sorbent coupled with UPLC-MS/MS for the simultaneous
determination of amphenicols and their metabolite in aquaculture water. Microchem. J. 2017, 130, 263–270. [CrossRef]

16. Aghaie, A.B.; Hadjmohammadi, M.R. Fe3O4@p-Naphtholbenzein as a novel nano-sorbent for highly effective removal and
recovery of Berberine: Response surface methodology for optimization of ultrasound assisted dispersive magnetic solid phase
extraction. Talanta 2016, 156, 18–28. [CrossRef] [PubMed]

http://doi.org/10.1016/0165-9936(95)94044-F
http://doi.org/10.1016/j.trac.2019.06.016
http://doi.org/10.3390/ijms12095908
http://www.ncbi.nlm.nih.gov/pubmed/22016636
http://doi.org/10.1021/acs.analchem.9b04816
http://doi.org/10.1007/s10337-019-03721-0
http://doi.org/10.1016/j.talanta.2017.02.049
http://doi.org/10.1016/j.aca.2017.04.042
http://doi.org/10.1016/j.chroma.2019.460603
http://doi.org/10.1016/j.trac.2019.07.012
http://doi.org/10.1016/j.microc.2020.105250
http://doi.org/10.1007/s10337-017-3403-2
http://doi.org/10.1016/j.trac.2019.05.026
http://doi.org/10.1021/ie010096l
http://doi.org/10.1016/j.microc.2012.08.016
http://doi.org/10.1016/j.microc.2016.09.014
http://doi.org/10.1016/j.talanta.2016.04.034
http://www.ncbi.nlm.nih.gov/pubmed/27260430


Separations 2021, 8, 99 25 of 32

17. Dil, E.A.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Bazrafshan, A.A.; Ghaedi, A.M. Trace determination of safranin O dye using
ultrasound assisted dispersive solid-phase micro extraction: Artificial neural network-genetic algorithm and response surface
methodology. Ultrason. Sonochem. 2016, 33, 129–140. [CrossRef] [PubMed]

18. Krawczyk, M.; Stanisz, E. Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the
determination of mercury species. Talanta 2016, 161, 384–391. [CrossRef] [PubMed]

19. Ansell, R.J.; Mosbach, K. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay. Analyst 1998, 123,
1611–1616. [CrossRef] [PubMed]

20. Zhang, L.; Li, J.; Zeng, Y. Molecularly imprinted magnetic nanoparticles for determination of the herbicide chlorotoluron by
gate-controlled electro-catalytic oxidation of hydrazine. Microchim. Acta 2015, 182, 249–255. [CrossRef]

21. Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trends Anal. Chem.
2013, 45, 169–181. [CrossRef]

22. Yang, M.; Zhang, Y.; Lin, S.; Yang, X.; Fan, Z.; Yang, L.; Dong, X. Preparation of a bifunctional pyrazosulfuron-ethyl imprinted
polymer with hydrophilic external layers by reversible addition–fragmentation chain transfer polymerization and its application
in the sulfonylurea residue analysis. Talanta 2013, 114, 143–151. [CrossRef] [PubMed]

23. Lu, C.-H.; Zhou, W.-H.; Han, B.; Yang, H.-H.; Chen, X.; Wang, X.-R. Surface-Imprinted Core−Shell Nanoparticles for Sorbent
Assays. Anal. Chem. 2007, 79, 5457–5461. [CrossRef]

24. Chang, L.; Li, Y.; Chu, J.; Qi, J.; Li, X. Preparation of core-shell molecularly imprinted polymer via the combination of reversible
addition-fragmentation chain transfer polymerization and click reaction. Anal. Chim. Acta 2010, 680, 65–71. [CrossRef]

25. Zhang, H. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional
polymers. Eur. Polym. J. 2013, 49, 579–600. [CrossRef]

26. Abdollahi, E.; Abdouss, M.; Salami-Kalajahi, M.; Mohammadi, A. Molecular Recognition Ability of Molecularly Imprinted
Polymer Nano- and Micro-Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization. Polym. Rev. 2016, 56,
557–583. [CrossRef]

27. Azizi, A.; Shahhoseini, F.; Bottaro, C.S. Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation
chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. J. Chromatogr. A
2020, 1610, 460534. [CrossRef]

28. Huang, S.; Xu, J.; Zheng, J.; Zhu, F.; Xie, L.; Ouyang, G. Synthesis and application of magnetic molecularly imprinted polymers in
sample preparation. Anal. Bioanal. Chem. 2018, 410, 3991–4014. [CrossRef] [PubMed]

29. Aguilar-Arteaga, K.; Rodriguez, J.; Barrado, E. Magnetic solids in analytical chemistry: A review. Anal. Chim. Acta 2010, 674,
157–165. [CrossRef]

30. Xie, L.; Jiang, R.; Zhu, F.; Liu, H.; Ouyang, G. Application of functionalized magnetic nanoparticles in sample preparation. Anal.
Bioanal. Chem. 2014, 406, 377–399. [CrossRef]

31. Ma, G.; Chen, L. Development of magnetic molecularly imprinted polymers based on carbon nanotubes—Application for trace
analysis of pyrethroids in fruit matrices. J. Chromatogr. A 2014, 1329, 1–9. [CrossRef]

32. Ansari, S.; Masoum, S. A multi-walled carbon nanotube-based magnetic molecularly imprinted polymer as a highly selective
sorbent for ultrasonic-assisted dispersive solid-phase microextraction of sotalol in biological fluids. Analyst 2018, 143, 2862–2875.
[CrossRef]

33. Ning, F.; Qiu, T.; Wang, Q.; Peng, H.; Li, Y.; Wu, X.; Zhang, Z.; Chen, L.; Xiong, H. Dummy-surface molecularly imprinted
polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried)
foods. Food Chem. 2017, 221, 1797–1804. [CrossRef]

34. Xie, X.; Ma, X.; Guo, L.; Fan, Y.; Zeng, G.; Zhang, M.; Li, J. Novel magnetic multi-templates molecularly imprinted polymer for
selective and rapid removal and detection of alkylphenols in water. Chem. Eng. J. 2019, 357, 56–65. [CrossRef]

35. Zhao, X.; Chen, L.; Li, B. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube
hybrid composites for analysis of melamine in milk powder. Food Chem. 2018, 255, 226–234. [CrossRef] [PubMed]

36. Zhang, X.-B.; Li, J.; You, B.; Yong, G.-P.; Tong, H.-W.; Liu, S.-M. Hollow porous molecularly imprinted polymer nanosphere for
fast and efficient recognition of bisphenol A. RSC Adv. 2012, 2, 9778–9780. [CrossRef]

37. Li, H.; Hu, X.; Zhang, Y.; Shi, S.; Jiang, X.; Chen, X. High-capacity magnetic hollow porous molecularly imprinted polymers for
specific extraction of protocatechuic acid. J. Chromatogr. A 2015, 1404, 21–27. [CrossRef] [PubMed]

38. Ostovan, A.; Ghaedi, M.; Arabi, M.; Asfaram, A. Hollow porous molecularly imprinted polymer for highly selective clean-up
followed by influential pre-concentration of ultra-trace glibenclamide from bio-fluid. J. Chromatogr. A 2017, 1520, 65–74. [CrossRef]

39. Li, L.; Yu, K.; Tian, M.; Wang, Y.; Zhang, Z.; Jiang, G.; Li, L. Rapid extraction of trace bisphenol A in real water samples using
hollow mesoporous silica surface dummy molecularly imprinted polymers. Anal. Methods 2018, 10, 3926–3932. [CrossRef]

40. Hua, S.; Zhao, L.; Cao, L.; Wang, X.; Gao, J.; Xu, C. Fabrication and evaluation of hollow surface molecularly imprinted polymer
for rapid and selective adsorption of dibenzothiophene. Chem. Eng. J. 2018, 345, 414–424. [CrossRef]

41. Ge, Y.-H.; Shu, H.; Xu, X.-Y.; Guo, P.-Q.; Liu, R.-L.; Luo, Z.-M.; Chang, C.; Fu, Q. Combined magnetic porous molecularly
imprinted polymers and deep eutectic solvents for efficient and selective extraction of aristolochic acid I and II from rat urine.
Mater. Sci. Eng. C 2019, 97, 650–657. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ultsonch.2016.04.031
http://www.ncbi.nlm.nih.gov/pubmed/27245964
http://doi.org/10.1016/j.talanta.2016.08.071
http://www.ncbi.nlm.nih.gov/pubmed/27769421
http://doi.org/10.1039/a801903g
http://www.ncbi.nlm.nih.gov/pubmed/9830174
http://doi.org/10.1007/s00604-014-1326-2
http://doi.org/10.1016/j.trac.2012.09.023
http://doi.org/10.1016/j.talanta.2013.03.078
http://www.ncbi.nlm.nih.gov/pubmed/23953454
http://doi.org/10.1021/ac070282m
http://doi.org/10.1016/j.aca.2010.09.017
http://doi.org/10.1016/j.eurpolymj.2012.12.016
http://doi.org/10.1080/15583724.2015.1119162
http://doi.org/10.1016/j.chroma.2019.460534
http://doi.org/10.1007/s00216-018-1013-y
http://www.ncbi.nlm.nih.gov/pubmed/29651522
http://doi.org/10.1016/j.aca.2010.06.043
http://doi.org/10.1007/s00216-013-7302-6
http://doi.org/10.1016/j.chroma.2013.12.079
http://doi.org/10.1039/C7AN02077E
http://doi.org/10.1016/j.foodchem.2016.10.101
http://doi.org/10.1016/j.cej.2018.09.080
http://doi.org/10.1016/j.foodchem.2018.02.078
http://www.ncbi.nlm.nih.gov/pubmed/29571470
http://doi.org/10.1039/c2ra21166a
http://doi.org/10.1016/j.chroma.2015.05.038
http://www.ncbi.nlm.nih.gov/pubmed/26044378
http://doi.org/10.1016/j.chroma.2017.09.026
http://doi.org/10.1039/C8AY01530A
http://doi.org/10.1016/j.cej.2018.03.128
http://doi.org/10.1016/j.msec.2018.12.057
http://www.ncbi.nlm.nih.gov/pubmed/30678952


Separations 2021, 8, 99 26 of 32

42. Arabi, M.; Ostovan, A.; Ghaedi, M.; Purkait, M.K. Novel strategy for synthesis of magnetic dummy molecularly imprinted
nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: Optimiza-
tion by experimental design methodology. Talanta 2016, 154, 526–532. [CrossRef] [PubMed]

43. Ostovan, A.; Ghaedi, M.; Arabi, M. Fabrication of water-compatible superparamagnetic molecularly imprinted biopolymer for
clean separation of baclofen from bio-fluid samples: A mild and green approach. Talanta 2018, 179, 760–768. [CrossRef]

44. Li, H.; Long, R.; Tong, C.; Li, T.; Liu, Y.; Shi, S. Shell thickness controlled hydrophilic magnetic molecularly imprinted resins for
high-efficient extraction of benzoic acids in aqueous samples. Talanta 2019, 194, 969–976. [CrossRef]

45. Zhou, J.; Wang, Y.; Ma, Y.; Zhang, B.; Zhang, Q. Surface molecularly imprinted thermo-sensitive polymers based on light-weight
hollow magnetic microspheres for specific recognition of BSA. Appl. Surf. Sci. 2019, 486, 265–273. [CrossRef]

46. Liu, Y.; Li, C.; Zhang, H.; Fan, X.; Liu, Y.; Zhang, Q. One-pot hydrothermal synthesis of highly monodisperse water-dispersible
hollow magnetic microspheres and construction of photonic crystals. Chem. Eng. J. 2015, 259, 779–786. [CrossRef]

47. Zhao, Y.-G.; Chen, X.-H.; Pan, S.-D.; Zhu, H.; Shen, H.-Y.; Jin, M.-C. Self-assembly of a surface bisphenol A-imprinted core–shell
nanoring amino-functionalized superparamagnetic polymer. J. Mater. Chem. A 2013, 1, 11648–11658. [CrossRef]

48. Zhao, Y.-G.; Zhou, L.-X.; Pan, S.-D.; Zhan, P.-P.; Chen, X.-H.; Jin, M.-C. Fast determination of 22 sulfonamides from chicken breast
muscle using core–shell nanoring amino-functionalized superparamagnetic molecularly imprinted polymer followed by liquid
chromatography-tandem mass spectrometry. J. Chromatogr. A 2014, 1345, 17–28. [CrossRef]

49. Hu, L.; Zhou, T.; Luo, D.; Feng, J.; Tao, Y.; Zhou, Y.; Mei, S. Bioaccumulation of tetrabromobisphenol A in a laboratory-based
fish–water system based on selective magnetic molecularly imprinted solid-phase extraction. Sci. Total Environ. 2019, 650,
1356–1362. [CrossRef] [PubMed]

50. Arabzadeh, N.; Akbarzadeh, R.; Mohammadi, A.; Darwish, M. Green synthesis and application of nanomagnetic molecularly
imprinted polymer for fast solid-phase extraction of brilliant blue FCF from real samples. J. Polym. Res. 2019, 26, 8. [CrossRef]

51. Habibi, B.; Rostamkhani, S.; Hamidi, M. Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase
extraction and determination of buprenorphine in human urine samples by HPLC-FL. J. Iran. Chem. Soc. 2018, 15, 1569–1580.
[CrossRef]

52. Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta
2016, 183, 2677–2695. [CrossRef]

53. Hu, Y.; Li, Y.; Liu, R.; Tan, W.; Li, G. Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective
enrichment of β-agonists in pork and pig liver samples. Talanta 2011, 84, 462–470. [CrossRef] [PubMed]

54. Wang, X.; Mao, H.; Huang, W.; Guan, W.; Zou, X.; Pan, J.; Yan, Y. Preparation of magnetic imprinted polymer particles via
microwave heating initiated polymerization for selective enrichment of 2-amino-4-nitrophenol from aqueous solution. Chem. Eng.
J. 2011, 178, 85–92. [CrossRef]

55. Sánchez-González, J.; Tabernero, M.J.; Bermejo, A.M.; Bermejo–Barrera, P.; Moreda–Piñeiro, A. Development of magnetic
molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid
chromatography—Tandem mass spectrometry. Talanta 2016, 147, 641–649. [CrossRef] [PubMed]

56. Sánchez-González, J.; Barreiro-Grille, T.; Cabarcos, P.; Tabernero-Duque, M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Magnetic
molecularly imprinted polymer based—Micro-solid phase extraction of cocaine and metabolites in plasma followed by high
performance liquid chromatography—Tandem mass spectrometry. Microchem. J. 2016, 127, 206–212. [CrossRef]

57. Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy molecularly imprinted polymers based on a
green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 2019, 195, 390–400. [CrossRef]

58. Wu, X.; Wang, X.; Lu, W.; Wang, X.; Li, J.; You, H.; Xiong, H.; Chen, L. Water-compatible temperature and magnetic dual-
responsive molecularly imprinted polymers for recognition and extraction of bisphenol A. J. Chromatogr. A 2016, 1435, 30–38.
[CrossRef]

59. Zhang, Y.; Liu, R.; Hu, Y.; Li, G. Microwave Heating in Preparation of Magnetic Molecularly Imprinted Polymer Beads for Trace
Triazines Analysis in Complicated Samples. Anal. Chem. 2009, 81, 967–976. [CrossRef]

60. Zhang, Y.; Cao, H.; Huang, Q.; Liu, X.; Zhang, H. Isolation of transferrin by imprinted nanoparticles with magnetic deep eutectic
solvents as monomer. Anal. Bioanal. Chem. 2018, 410, 6237–6245. [CrossRef]

61. Safdarian, M.; Ramezani, Z. Rapid microwave-assisted distillation–precipitation polymerization for the synthesis of magnetic
molecular imprinted polymers coupled to HPTLC determination of perphenazine in human urine. New J. Chem. 2018, 43, 48–57.
[CrossRef]

62. Li, D.; Yuan, Q.; Yang, W.; Yang, M.; Li, S.; Tu, T. Efficient vitamin B12-imprinted boronate affinity magnetic nanoparticles for the
specific capture of vitamin B12. Anal. Biochem. 2018, 561, 18–26. [CrossRef] [PubMed]

63. Bie, Z.; Xing, R.; He, X.; Ma, Y.; Chen, Y.; Liu, Z. Precision Imprinting of Glycopeptides for Facile Preparation of Glycan-Specific
Artificial Antibodies. Anal. Chem. 2018, 90, 9845–9852. [CrossRef] [PubMed]

64. Hu, J.; Zhu, S.; Chen, S.-E.; Liu, R.; Sun, J.; Zhao, X.-E.; Liu, H. Multiplexed derivatization strategy-based dummy molecularly
imprinted polymers as sorbents for magnetic dispersive solid phase extraction of globotriaosylsphingosine prior to UHPLC-
MS/MS quantitation. Microchim. Acta 2020, 187, 373. [CrossRef] [PubMed]

65. Sun, X.-Y.; Ma, R.-T.; Chen, J.; Shi, Y.-P. Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient
extraction of the model glycoprotein horseradish peroxidase. Microchim. Acta 2017, 184, 3729–3737. [CrossRef]

http://doi.org/10.1016/j.talanta.2016.04.010
http://www.ncbi.nlm.nih.gov/pubmed/27154710
http://doi.org/10.1016/j.talanta.2017.12.017
http://doi.org/10.1016/j.talanta.2018.10.099
http://doi.org/10.1016/j.apsusc.2019.04.159
http://doi.org/10.1016/j.cej.2014.08.051
http://doi.org/10.1039/c3ta12488f
http://doi.org/10.1016/j.chroma.2014.04.028
http://doi.org/10.1016/j.scitotenv.2018.09.002
http://www.ncbi.nlm.nih.gov/pubmed/30308822
http://doi.org/10.1007/s10965-018-1665-5
http://doi.org/10.1007/s13738-018-1355-6
http://doi.org/10.1007/s00604-016-1930-4
http://doi.org/10.1016/j.talanta.2011.01.045
http://www.ncbi.nlm.nih.gov/pubmed/21376974
http://doi.org/10.1016/j.cej.2011.10.015
http://doi.org/10.1016/j.talanta.2015.10.034
http://www.ncbi.nlm.nih.gov/pubmed/26592657
http://doi.org/10.1016/j.microc.2016.03.014
http://doi.org/10.1016/j.talanta.2018.11.065
http://doi.org/10.1016/j.chroma.2016.01.040
http://doi.org/10.1021/ac8018262
http://doi.org/10.1007/s00216-018-1232-2
http://doi.org/10.1039/C8NJ05062G
http://doi.org/10.1016/j.ab.2018.09.009
http://www.ncbi.nlm.nih.gov/pubmed/30232033
http://doi.org/10.1021/acs.analchem.8b01903
http://www.ncbi.nlm.nih.gov/pubmed/30036038
http://doi.org/10.1007/s00604-020-04341-4
http://www.ncbi.nlm.nih.gov/pubmed/32504133
http://doi.org/10.1007/s00604-017-2373-2


Separations 2021, 8, 99 27 of 32

66. Sun, X.-Y.; Ma, R.-T.; Chen, J.; Shi, Y.-P. Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres
modified with porous TiO2 (Fe3O4@pTiO2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational
pH range. Microchim. Acta 2018, 185, 565. [CrossRef]

67. Huang, W.; Hou, X.; Tong, Y.; Tian, M. Determination of sialic acid in serum samples by dispersive solid-phase extraction based
on boronate-affinity magnetic hollow molecularly imprinted polymer sorbent. RSC Adv. 2019, 9, 5394–5401. [CrossRef]

68. Jing, T.; Du, H.; Dai, Q.; Xia, H.; Niu, J.; Hao, Q.; Mei, S.; Zhou, Y. Magnetic molecularly imprinted nanoparticles for recognition
of lysozyme. Biosens. Bioelectron. 2010, 26, 301–306. [CrossRef] [PubMed]

69. Zhang, Z.; Luo, L.; Cai, R.; Chen, H. A sensitive and selective molecularly imprinted sensor combined with magnetic molecularly
imprinted solid phase extraction for determination of dibutyl phthalate. Biosens. Bioelectron. 2013, 49, 367–373. [CrossRef]

70. Li, Y.; Dong, C.; Chu, J.; Qi, J.; Li, X. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible
addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine
disrupting chemicals. Nanoscale 2011, 3, 280–287. [CrossRef]

71. Azodi-Deilami, S.; Abdouss, M.; Asadi, E.; Najafabadi, A.H.; Sadeghi, S.; Farzaneh, S.; Asadi, S. Magnetic molecularly imprinted
polymer nanoparticles coupled with high performance liquid chromatography for solid-phase extraction of carvedilol in serum
samples. J. Appl. Polym. Sci. 2014, 131. [CrossRef]

72. Azodi-Deilami, S.; Najafabadi, A.H.; Asadi, E.; Abdouss, M.; Kordestani, D. Magnetic molecularly imprinted polymer nanoparti-
cles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchim. Acta
2014, 181, 1823–1832. [CrossRef]

73. Fan, J.-P.; Xu, X.-K.; Xu, R.; Zhang, X.-H.; Zhu, J.-H. Preparation and characterization of molecular imprinted polymer functional-
ized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in
Taxus × media. Chem. Eng. J. 2015, 279, 567–577. [CrossRef]

74. Xie, X.; Chen, L.; Pan, X.; Wang, S. Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation
chain transfer strategy and its application in the Sudan dyes residue analysis. J. Chromatogr. A 2015, 1405, 32–39. [CrossRef]
[PubMed]

75. Miao, S.S.; Wu, M.S.; Zuo, H.G.; Jiang, C.; Jin, S.F.; Lu, Y.C.; Yang, H. Core–Shell Magnetic Molecularly Imprinted Polymers as
Sorbent for Sulfonylurea Herbicide Residues. J. Agric. Food Chem. 2015, 63, 3634–3645. [CrossRef]

76. Uzuriaga-Sánchez, R.J.; Khan, S.; Wong, A.; Picasso, G.; Pividori, M.I.; Sotomayor, M.D.P.T. Magnetically separable polymer
(Mag-MIP) for selective analysis of biotin in food samples. Food Chem. 2016, 190, 460–467. [CrossRef]

77. Yuan, Y.; Liu, Y.; Teng, W.; Tan, J.; Liang, Y.; Tang, Y. Preparation of core-shell magnetic molecular imprinted polymer with binary
monomer for the fast and selective extraction of bisphenol A from milk. J. Chromatogr. A 2016, 1462, 2–7. [CrossRef]

78. Alcudia-León, M.D.C.; Lucena, R.; Cárdenas, S.; Valcárcel, M.; Aranzana, M.S.C. Selective extraction of Bactrocera oleae sexual
pheromone from olive oil by dispersive magnetic microsolid phase extraction using a molecularly imprinted nanocomposite. J.
Chromatogr. A 2016, 1455, 57–64. [CrossRef]

79. Karimi, M.A.; Ranjbar, M.; Akbarpoor, M. Preparation of Magnetic Molecularly Imprinted Polymer Nanoparticles for Selective
Adsorption and Separation of β-Estradiol. J. Clust. Sci. 2016, 27, 1067–1080. [CrossRef]

80. Haeri, S.A.; Abbasi, S. Biocoacervation extraction combined with dispersive solid phase extraction using a reversed-phase
core-shell magnetic molecularly imprinted sorbent for 2,4-dichlorophenoxyacetic acid prior to its determination by HPLC. J. Iran.
Chem. Soc. 2016, 13, 1993–1999. [CrossRef]

81. Tan, L.; He, R.; Chen, K.; Peng, R.; Huang, C.; Yang, R.; Tang, Y. Ultra-high performance liquid chromatography combined with
mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated
magnetic nanoparticles. Microchim. Acta 2016, 183, 1469–1477. [CrossRef]

82. Bazmandegan-Shamili, A.; Dadfarnia, S.; Shabani, A.M.H.; Saeidi, M.; Moghadam, M.R. High-Performance Liquid Chromato-
graphic Determination of Diazinon after Its Magnetic Dispersive Solid-Phase Microextraction Using Magnetic Molecularly
Imprinted Polymer. Food Anal. Methods 2016, 9, 2621–2630. [CrossRef]

83. Ben Aissa, A.; Herrera-Chacon, A.; Pupin, R.; Sotomayor, M.; Pividori, M. Magnetic molecularly imprinted polymer for the
isolation and detection of biotin and biotinylated biomolecules. Biosens. Bioelectron. 2017, 88, 101–108. [CrossRef]

84. Wu, X.; Li, Y.; Zhu, X.; He, C.; Wang, Q.; Liu, S. Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase
extraction and determination of bisphenol A in water samples and orange juice. Talanta 2017, 162, 57–64. [CrossRef]

85. Men, H.-F.; Liu, H.-Q.; Zhang, Z.-L.; Huang, J.; Zhang, J.; Zhai, Y.-Y.; Li, L. Synthesis, properties and application research of
atrazine Fe3O4@SiO2 magnetic molecularly imprinted polymer. Environ. Sci. Pollut. Res. 2012, 19, 2271–2280. [CrossRef]

86. Lu, C.; Tang, Z.; Gao, X.; Ma, X.; Liu, C. Computer-aided design of magnetic dummy molecularly imprinted polymers for
solid-phase extraction of ten phthalates from food prior to their determination by GC-MS/MS. Microchim. Acta 2018, 185, 373.
[CrossRef]

87. Luo, X.; Huang, Y.; Deng, F.; Luo, S.; Zhan, Y.; Shu, H.; Tu, X. A magnetic copper(II)-imprinted polymer for the selective
enrichment of trace copper(II) ions in environmental water. Microchim. Acta 2012, 179, 283–289. [CrossRef]

88. Zhang, Y.-Z.; Zhang, J.; Tan, L.; Xia, Z.; Wang, C.-Z.; Zhou, L.-D.; Zhang, Q.; Yuan, C.-S. Preparation and evaluation of temperature
and magnetic dual-responsive molecularly imprinted polymers for the specific enrichment of formononetin. J. Sep. Sci. 2018, 41,
3060–3068. [CrossRef]

http://doi.org/10.1007/s00604-018-3092-z
http://doi.org/10.1039/C9RA00511K
http://doi.org/10.1016/j.bios.2010.08.044
http://www.ncbi.nlm.nih.gov/pubmed/20829022
http://doi.org/10.1016/j.bios.2013.05.054
http://doi.org/10.1039/C0NR00614A
http://doi.org/10.1002/app.41209
http://doi.org/10.1007/s00604-014-1230-9
http://doi.org/10.1016/j.cej.2015.05.045
http://doi.org/10.1016/j.chroma.2015.05.068
http://www.ncbi.nlm.nih.gov/pubmed/26077971
http://doi.org/10.1021/jf506239b
http://doi.org/10.1016/j.foodchem.2015.05.129
http://doi.org/10.1016/j.chroma.2016.06.045
http://doi.org/10.1016/j.chroma.2016.05.088
http://doi.org/10.1007/s10876-016-0988-9
http://doi.org/10.1007/s13738-016-0916-9
http://doi.org/10.1007/s00604-016-1790-y
http://doi.org/10.1007/s12161-016-0456-z
http://doi.org/10.1016/j.bios.2016.07.096
http://doi.org/10.1016/j.talanta.2016.10.007
http://doi.org/10.1007/s11356-011-0732-9
http://doi.org/10.1007/s00604-018-2892-5
http://doi.org/10.1007/s00604-012-0890-6
http://doi.org/10.1002/jssc.201800275


Separations 2021, 8, 99 28 of 32

89. Dil, E.A.; Doustimotlagh, A.H.; Javadian, H.; Asfaram, A.; Ghaedi, M. Nano-sized Fe3O4@SiO2-molecular imprinted polymer as
a sorbent for dispersive solid-phase microextraction of melatonin in the methanolic extract of Portulaca oleracea, biological, and
water samples. Talanta 2021, 221, 121620. [CrossRef]

90. Attallah, O.A.; Al-Ghobashy, M.A.; Ayoub, A.T.; Nebsen, M. Magnetic molecularly imprinted polymer nanoparticles for
simultaneous extraction and determination of 6-mercaptopurine and its active metabolite thioguanine in human plasma. J.
Chromatogr. A 2018, 1561, 28–38. [CrossRef]

91. Medina-Castillo, A.L.; Mistlberger, G.; Fernandez-Sanchez, J.F.; Carretero, A.S.; Klimant, I.; Gutierrez, A.F. Novel Strategy
To Design Magnetic, Molecular Imprinted Polymers with Well-Controlled Structure for the Application in Optical Sensors.
Macromolecules 2010, 43, 55–61. [CrossRef]

92. Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; et al. Determination of fluoroquinolone
antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid
chromatography–tandem mass spectrometry. Anal. Chim. Acta 2010, 662, 31–38. [CrossRef] [PubMed]

93. Zhang, X.; Chen, L.; Xu, Y.; Wang, H.; Zeng, Q.; Zhao, Q.; Ren, N.; Ding, L. Determination of β-lactam antibiotics in milk based
on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography—Tandem mass spectrometry. J.
Chromatogr. B 2010, 878, 3421–3426. [CrossRef] [PubMed]

94. Gu, X.-H.; Xu, R.; Yuan, G.-L.; Lu, H.; Gu, B.-R.; Xie, H.-P. Preparation of chlorogenic acid surface-imprinted magnetic nanoparti-
cles and their usage in separation of Traditional Chinese Medicine. Anal. Chim. Acta 2010, 675, 64–70. [CrossRef]

95. Pan, J.; Xu, L.; Dai, J.; Li, X.; Hang, H.; Huo, P.; Li, C.; Yan, Y. Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4
particles for the selective recognition of 2,4-dichlorophenol. Chem. Eng. J. 2011, 174, 68–75. [CrossRef]

96. Liu, J.; Wang, W.; Xie, Y.; Huang, Y.; Liu, Y.; Liu, X.; Zhao, R.; Liu, G.; Chen, Y. A novel polychloromethylstyrene coated
superparamagnetic surface molecularly imprinted core–shell nanoparticle for bisphenol A. J. Mater. Chem. 2011, 21, 9232–9238.
[CrossRef]

97. Cheng, X.; Yan, H.; Wang, X.; Sun, N.; Qiao, X. Vortex-assisted magnetic dispersive solid-phase microextraction for rapid screening
and recognition of dicofol residues in tea products. Food Chem. 2014, 162, 104–109. [CrossRef]

98. Lahcen, A.A.; Baleg, A.A.; Baker, P.; Iwuoha, E.; Amine, A. Synthesis and electrochemical characterization of nanostructured
magnetic molecularly imprinted polymers for 17-β-Estradiol determination. Sens. Actuators B Chem. 2017, 241, 698–705.
[CrossRef]

99. Lee, M.-H.; Thomas, J.L.; Ho, M.-H.; Yuan, C.; Lin, H.-Y. Synthesis of Magnetic Molecularly Imprinted Poly(ethylene-co-vinyl
alcohol) Nanoparticles and Their Uses in the Extraction and Sensing of Target Molecules in Urine. ACS Appl. Mater. Interfaces
2010, 2, 1729–1736. [CrossRef] [PubMed]

100. Uzuriaga-Sánchez, R.J.; Wong, A.; Khan, S.; Pividori, M.I.; Picasso, G.; Sotomayor, M.D. Synthesis of a new magnetic-MIP for the
selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound. Mater. Sci. Eng. C 2017, 74, 365–373. [CrossRef]

101. Peyrovi, M.; Hadjmohammadi, M.; Saeidi, I. Synthesis of magnetic nanoparticle-based molecularly imprinted polymer as a
selective sorbent for efficient extraction of ezetimibe from biological samples. Biomed. Chromatogr. 2019, 33, e4404. [CrossRef]
[PubMed]

102. Ilktaç, R.; Gumus, Z.P.; Aksuner, N.; Coskunol, H. Highly sensitive and selective method for the rapid determination and
preconcentration of haloperidol by using a magnetite-molecularly imprinted polymer. J. Sep. Sci. 2019, 42, 2115–2122. [CrossRef]

103. Luo, X.; Deng, F.; Luo, S.; Tu, X.; Yang, L. Grafting of molecularly imprinted polymers from the surface of Fe3O4 nanoparticles
containing double bond via suspension polymerization in aqueous environment: A selective sorbent for theophylline. J. Appl.
Polym. Sci. 2011, 121, 1930–1937. [CrossRef]

104. Zhang, R.; Zhang, T.; Lv, Y.; Qin, P.; Li, H.; Li, J.-P.; Tan, T. Selective binding of heparin oligosaccharides in a magnetic
thermoresponsive molecularly imprinted polymer. Talanta 2019, 201, 441–449. [CrossRef]

105. He, Y.; Zhao, F.; Zhang, C.; Abd EI-Aty, A.M.; Baranenko, D.A.; Hacimüftüoğlu, A.; She, Y. Assessment of magnetic core-shell
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