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Abstract The structure of exotic resonances that do not
trivially fit the usual quark model expectations has been
a matter of intense scientific debate during the last two
decades. A possible way of estimating the size of these states
is to study their behavior when immersed in QCD matter.
Recently, LHCb has measured the relative abundance of the
exotic X (3872) over the ordinary v (25). We use the comover
interaction model to study the yield of a compact X (3872).
To confirm the reliability of the model in high-multiplicity
pp collisions, we describe the suppression of excited over
ground Y states. With this at hand, we show that the size
of the compact X (3872) would be slightly larger than that
of the ¥ (25). If the X (3872) is instead assumed to be a
meson molecule of large size, we argue that its evolution in
QCD matter should be described via a coalescence model,
as suggested by data on deuteron production. We show that
the predictions of this model for the X (3872) are in contrast
with data.

The last two decades witnessed a remarkable progress in
heavy meson spectroscopy. Several new states, called XYZ,
have been observed in the quarkonium sector, close to open
flavor thresholds. Their properties are not well described
by the conventional quark model/NRQCD, whence they
are expected to have an exotic structure. In particular, the
X (3872), observed as an unexpected peak in the J /v 7T~
invariant mass, was the first of the series [1]. Its mass is
almost exactly at the D°D*" threshold, and is remarkably
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narrow [2—4].! The pion pair is dominated by the p meson,
thus showing sizable isospin violation, unexpected if the X
were an ordinary charmonium. Its structure has been subject
of an intense debate [5-8].

Since the simple cc description cannot account for the
observed features of X (3872), more valence quarks are
needed. They could be aggregated by color forces in a new
kind of hadron, a compact tetraquark of hadronic size ~ 1 fm
(see e.g. [5,9—12]). Alternatively, if the coupling to the clos-
est channel is dominant, nuclear forces could bind them in a
hadron molecule which, given the extremely small binding
energy would have a size of the order of 10 fm [6,13-16], or
more.

Recently, the LHCb collaboration has presented the pro-
duction rates of promptly produced X (3872) relative to
the ¥ (2S5), as a function of final state particle multiplic-
ity [17,18]. This ratio is found to decrease with increasing
multiplicity, an effect that has been known for decades to
affect the production of ordinary quarkonia in proton-nucleus
collisions. There is an ample consensus for this to be due to
final state breakup interactions of the quarkonia with comov-
ing particles [19,20].

Moreover, the ALICE collaboration has recently pub-
lished an analysis for deuteron production in proton—proton
collisions [21,22]. The number of deuterons produced
increases with multiplicity, hence showing a behavior that
is qualitatively different from that of the X (3872). The idea
that interactions with comovers could favor the coalescence
of a hadron molecule was originally proposed in [23-25]
for proton—proton, and in [26-29] for nucleus—nucleus col-
lisions.

! Charge conjugation is understood throughout the paper.
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In this work, we show how the combined study of the
LHCb and ALICE points to a compact structure for the
X (3872).

As a first step, we show that the comover model for
compact states [19,20,34-36] reproduces the bottomonium
yields observed in high-multiplicity pp collisions [37].With
this at hand, we apply the same method, which assumes negli-
gible recombination and a breakup cross section of the order
of the geometrical one, to a compact tetraquark X (3872).
The results are in agreement with the LHCb data. Pushing
further the use of this model, we observe that a state of much
larger size, would get a severe suppression.

However, the case of a loosely bound, large-size, hadronic
molecule is most likely described in a different way.
While recombination is known to be irrelevant for compact
states [38], data on deuteron production in high multiplic-
ity final states suggest the contrary. Therefore we extend the
comover model to (i) include the possible recombination of
the hadronic pairs, and (i7) implement the coalescence mech-
anism proposed in [23,24]. We find that, while this repro-
duces well the deuteron data, it fails with the X (3872). Our
results are therefore consistent with a compact tetraquark
interpretation, and a destruction cross section comparable to
that of other compact states.

1 The comover interaction model

To include final state interactions for compact states, we fol-
low the comover interaction model (CIM) [19,20,34-36].
Within this framework, quarkonia are broken by collisions
with comovers—i.e. final state particles with similar rapidi-
ties. The density of quarkonium pg, at a given transverse
position s and rapidity y, for a collision of impact parame-
ter b, evolves following

d
rif b.5.y) = — (v0) g pe(b,s.y) pob.s.y). (1)

where (vo) g is velocity times the cross section of quarko-
nium dissociation, averaged over the momentum distribu-
tions of the comoving particles, whose transverse density is
P at initial time 7;. The above equation neglects recombina-
tion effects which, for a compact object, are irrelevant due to
the paucity of heavy quarks produced in the pp environment
considered [35,38]. Integrating the equation above from t;
to 7, we get the quarkonium density for a given position and
impact parameter,

po o exp [— (v0) 0 pe(b. 5. y) In (%)] )

where the argument of the logarithm comes from 7 /7; con-
verted into ratio of densities, effectively playing the role of
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time. Indeed, the interaction stops at 7y, when the densities
have diluted down to p,,, the value of the minimum-bias pp
density at that energy and rapidity, as taken from [39].

The previous equation can already be used for an estimate
of the qualitative behavior of the yields as a function of mul-
tiplicity. This can be done by neglecting the dependence on
the variables and consider average values only. The comover
density would simply be related to the number of charged
particles by p.(b, s, y) =~ §Nch/cr. The factor 3/2 accounts
for the neutral comovers, while o is the inelastic pp cross
section.

The full spatial dependence can be described with an
eikonal-Glauber model, as it is standard in heavy ion phe-
nomenology [19,36,40,41]. The basic ingredient is the pro-
file function of the proton, taken as a Fermi function. The
comover density p.(b, s, y) is proportional to the number of
binary parton—parton collisions per unit of transverse area
ds and rapidity at a given impact parameter b, which in
turns is proportional to the overlap between the protons—
see, e.g., [41]. The normalization is fixed to reproduce the
minimum-bias pp multiplicity—i.e. the pp multiplicity aver-
aged over all impact parameters. Proceeding this way, the
quarkonium yields are obtained weighting Eq. (2) with the
pp overlap function.

As seen from Eq. (1), the quarkonium abundance is driven
by its interaction cross section with comovers (vo)g. In
nucleus—nucleus collisions at lower energies the latter has
been fitted from data (independently state by state). How-
ever, it has also been effectively related to the geometrical
cross section by [20]

n
oo = o5 [ dpe p? B8 P(Ec) 3)
CTe Jp U R -

Here aée 0 = 7”29’ with rg the quarkonium radius. More-
over, £ gr = Bg+m,, where Bg is the distance between the
quarkonium mass and the closest open flavor threshold (OZI-
favored), and E, = \/m2 + p? the energy of the comovers
in the quarkonium center-of-mass frame. For states close to
the threshold, the breakup cross section is essentially the
geometric one. The average is computed over an isotropic

Bose-Einstein distribution for the comover energy,

P(Ec) x “

Both n and Tt are phenomenological parameters. Attempts
to compute n using the multipole expansion in perturbative
QCD at leading order suggest n >~ 4 for pion comovers, mak-
ing the strong assumption that the scattering is initiated by
the gluons inside these pions [42—44]. More realistic hadronic
models suggest a smaller value [45,46]. The dependence on
the comover mass (gluons or pions) is not dramatic. In Table 1
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Table 1 Fixed values used in our parametrisation of the comover
cross sections and the corresponding results. The procedure to com-
pute (vo') o and its uncertainties are described in the text. The “binding
energy” is computed with respect to D°D%—D* D~ for the charmo-
nium, and with respect to DOD*0 [30] for a tetraquark X (3872) (the
OZI-favored mode A} A [31-33] being kinematically forbidden at

the typical comover’s energy). The average for this binding energy is
44 4+ 116 keV [2-4], and in our calculations, we use the 1o error. The
radius of the tetraquark is taken from [11,30]. The error on (vo)g
depends on the uncertainty of Tcfr, and on whether considering pionic
or gluonic comovers

Bo ro og' © (vo)o

v (2S) 50 MeV 0.45 fm 6.36 mb 4.89 + 0.76 mb
X (3872) tetraquark 116 keV 0.65 fm 13.3mb 11.55 £ 1.82mb

X (3872) molecule 116 keV 6.6 fm 1368 mb 1188 £ 187 mb
o.40f ' ' ' " In| < 2.4 [37]. In Fig. 1 we show the data together with
® 1(25)/T(1S) our results obtained using the breakup cross sections of [20],
050 ® T(35)/T(1S) confirming the validity of the model. The global normalisa-
& tion corresponds to the experimental value at Nop, = 15 +2,

0.10f 4

0.00E_, 1 1 1 -
10 20 30

Nch

Fig. 1 Relative yields of excited-to-ground state Y as a function of
multiplicity for pp collisions at 2.76 TeV in the central region, as mea-
sured by CMS [37]. The bands follow the uncertainties of the six
cross sections that contribute via the feed down, and the one of ..
Our results are normalised to the experimental values corresponding to
Nen=15+£2

we quote the average of these two possibilities. A fit on the
relative yields of excited-to-ground state Y data at LHC in
pPb collisions gave T = 250 &= 50 MeV and n = 1 [20].
We adopt the same values here.”

We recall two features of the comover approach. First,
larger particles are more affected by dissociation, due to
larger interaction cross sections. As a consequence, excited
states are more suppressed than the ground states. Second,
the suppression increases with comover densities, which is
proportional to particle multiplicities: it increases with cen-
trality in nucleus-nucleus collisions, and it is stronger in the
nucleus direction for proton-nucleus collisions.

To confirm the applicability of the CIM also to compact
states in proton—proton collisions, we use it to describe the
yields of T mesons. These have been measured by CMS
at 2.76 TeV, as a function of the number of charged tracks
with pr > 400MeV, reconstructed in the tracker at and

2 The values of n and Ty are actually correlated [20]. A difference
choice for the former implies a different value of the latter, effectively
compensating for the change.

that we identify with the mean multiplicity.?

We extend our calculation to charmonia by applying
Eq. (3) for the cross sections, using the same T and n.
Although the non-perturbative value of n could in princi-
ple be different from the bottomonium one, we get cross
section values—5 mb for ¥ (25)—in the ballpark of those
obtained by directly fitting the charmonium data [40]—6 mb
for ¥ (25)—, confirming that a unified description is possi-
ble.

2 The X (3872) in the CIM model

The relative production rates of prompt X (3872) over ¢ (25)
have been measured by LHCb in pp collisions at 8 TeV, in the
forward pseudorapidity region,2 < n < 5[17,18], as a func-
tion of the number of charged particle tracks reconstructed
in the VELO detector. This ratio is found to decrease with
increasing multiplicity.

As mentioned above, the suppression of the state is driven
by its interaction cross section with the comovers, as reported
in Table 1. Following the model described in the previous
section, we compute the N(X (3872))/N(¢(2S)) ratio as
a function of N.,—see Fig. 2. For a compact tetraquark of
typical hadronic size, the same physics described for quarko-
nia must apply, with the breakup cross section being dic-
tated by the geometric one. Indeed, assuming a diameter of
1.3fm [11,30], the CIM gives results which describe well
the LHCb data. In particular, it predicts a 20% decrease in
the ratio when going from the first to the second multiplicity
bin, similar to the Y states (Fig. 1).

One could apply the same geometrical estimate for the
breakup of a molecular X (3872). Clearly, being the size
much larger, the corresponding suppression is way too strong

3 By fitting the overall normalization, we automatically account for the
pr cuts of the data, which should not affect the shape dramatically [47].

@ Springer
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Fig. 2 Relative yield of X (3872) vs ¥(2S) as a function of event mul-
tiplicity for pp collisions at 8 TeV and forward pseudorapidity, as mea-
sured by LHCb [17,18]. The assumption of a tetraquark of diameter
1.3 fm reproduces well the experimental data. The two error bands are
computed as in Fig. 1. Applying the geometrical picture to a molecular
state predicts a very sharp suppression. The coalescence picture also
predicts a behavior that is qualitatively different from data. See text for
the definition of error band in this case

to describe the data, as shown in Fig. 2. The steep drop of
this curve is a qualitative indication that the description of
the interaction of a molecule with comover particles must be
refined. We explain this in the next section.

3 Coalescence of hadron molecules

The implementation of comover interactions discussed above
disregards recombination. While negligible for compact
states in pp collisions [38], recombination is needed to
explain deuteron data, whose yield increases with increasing
multiplicity of the final state [21,22,48,49]. Were a molecu-
lar X (3872) to behave like that, it would be in striking con-
trast with the data in [17, 18]. Moreover, for a large compos-
ite object like a hadron molecule, one expects the interac-
tion with comovers to be dominated by the scattering off
the molecule constituents, an idea already put forth in a
number of papers [23,24,26-29]. A popular description of
the destruction and recombination of molecules is indeed in
terms of coalescence (see, e.g., [5S0-52]). In this picture the
constituents are bound/free depending on whether their rel-
ative momentum is smaller/larger than some A. In [23,24]
it has been proposed that the driving process is given by the
scattering mhh = mm, where hh are free constituents, m the
molecule itself and 7 the comover.

In what follows we first present a derivation of the corre-
sponding evolution equation. We then obtain the creation and
destruction cross sections for the deuteron and the X (3872)
in the molecular regime. The effective coupling are extracted
from well known hadronic physics, and are compatible with
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several other results (see, e.g., [53,54]). The particle distri-
butions for the molecules, free constituents and comovers are
instead either taken from data, or from Monte Carlo simu-
lations, which have been tuned over the years to reproduce
hadronic results (see, e.g., [55]). As a check of the soundness
of our result, we note that the destruction cross section for the
X (3872) is perfectly compatible with what obtained in [28]
using different techniques and a different model. Finally,
we employ all this to compute the yields of deuteron and
X (3872) as a function of the event multiplicity, which we
compare with observations.

3.1 Boltzmann equation for hadronic molecules and
comovers

In this derivation, we follow [56]. We use the standard non-
covariant form of the Boltzmann equation, and the quantities
discussed below are defined in the lab frame.

Consider two hadrons, ‘1’ and ‘2’, with positions and
momenta (x;, ;). We adopt the coalescence picture, i.e. that
the two hadrons bind if their relative momentum is smaller
than some threshold, |g; —¢q,| < A [50-52]. In other words,
if the particles are close enough in phase space, their mutual
interaction will induce the formation of the molecule. The
phase-space density for these two hadrons, n12(x;, g;, 7), is
such that

dq1 dq
N (T) =/d3x1d3x2/RA (2:)3#'112(%,4,’,?),
g P
Nin(t) = /d3X1d3X2 /m 2 )3 2n)3 nia(xi, q;, 1),
g1 g

N2 =/d3x1d3x2 n2(xi, q;, ), ()

2m)3 2m)3

where R4 is the domain where |g; — g,] < A, and Ry
its complement. N,,, Np,;, and N1, are respectively the num-
ber of molecules, free pairs and total pairs. Clearly Njp =
Ny (t) + Npp (1), and it is assumed to be constant in time,
hence neglecting creation/annihilation of the constituents
themselves. In the lab frame, the variable T can be taken
simply as the time.

We assume that the spatial and momentum distributions
factorize as
niy ~ {pm(xi, T)fm(qiaf) 1f|¢11 _q2| <A (6)

Pri(Xi, T) frn(q;, T) if lgy —qal = A

where both f,, and f5; are normalized to unity when inte-
grated over their momentum domain. Indeed, in absence
of collisions, the particles travel freely, and the spatial and
momentum distribution are hence uncorrelated. Our assump-
tion is that, to first order in perturbation theory, this is pre-
served.



Eur. Phys. J. C (2021) 81:669

Page 50f 11 669

Collisions with comovers change the momenta of the con-
stituents, and consequently modify their distribution. Choos-
ing the z-axis to be in the beam direction, when the longitu-
dinal expansion is much faster than the transverse one, the
Boltzmann equation reduces to [56]:

qiz 0n12 oz 0ng2
- —— - —=—=—-L(xi,q;, 1)
ot T g1, T 3¢ @)

+G(xi5 qia T)a

where the loss and gain terms are, respectively

g3 dqy dq;

~ ] @n) @)} 2n)’
X n(X1,X2, 41,92, T) nc(xX2, 43, 7), (8a)
d3qy d’q} d’q]

~ ) @r) @n)? @n)’
X n12(X1,%2, 41, q5, T) ne(x2, 45, 7). (8b)

W(q2. 93 45, 45) 8p

G

W(q2. 93 45, 45) 8p

Here W is the nonrelativistic matrix element for the g +
g3 = g5 + g5 process, and §p = (271)48(4) (2 + g3 —
g5 — qg) enforces conservation of energy and momentum.
We assumed that the comovers interact with constituents ‘1’
and ‘2’ equally. Without loss of generality, we restrict the
interaction to the constituent 2°, so that the position of the
comover must be x;. The interaction with ‘1’ is taken into
account later, by a factor of 2 in the cross sections. Moreover,
n. is the phase-space distribution of comovers, which again
we factorize as n.(x, q, 7) =~ p.(x, 1) fe(q, 7).

To study the evolution of the density of molecules, we now
integrate Eq. (7) over ¢ and g, in R, in order to isolate the
molecular contribution. We also assume that the momentum
distribution of the molecule follows the free-stream (colli-
sionless) distribution [57-59]. After that, the left hand side of
Eq. (7) simply returns 9, (x;, t)/97. The loss term instead
gives

Pq gy
/RA @) Gryi b = Pnxi Dpex2, Dwodw, - O)

where the average cross section for the destruction of a
molecule is defined as

(vo) :/ d*q dPqy [ dqz gy dg;
"= R, @3 @r)? ) @)} @n)d @n)

x W(q2.93: 95, 95) 8P fm(q1,q2.7) fe(q3. 7).
(10)

The gain term instead requires a bit more care. Imposing
momentum conservation, its integral over R o gives

/ dq &g
Ry Q)3 (27)3

/ dq &g
Ry Q1) (27)3
W (q2. 431 45. q5) 8p
X n12(X1, X2, 41,42 + 43 — 45, T ne(x2, 45, 7).

d3qs d*q5 d’q
(27)3 (27)3 2n)3

Y

The relative momentum appearing in the distribution is then
(91 —4>) + (45 —q3). Now, by construction |g| —g,| < A,
while the comovers distribution in the lab frame is dominated
by momenta |g4| > A. This means that, barring small inte-
gration regions, for most configurations |(g; — ¢5) + (¢} —
q3)| 2 A, and we can use Eq. (6) and write

g P,
/RA 2m)3 2m)3 G = ppn(xi, T)pe(X2, T) (V0 ) (12)

with average cross section for the creation of a molecule
given by

(o) 2/ Bq Pqp [ dPqz dPqh dq]
" gy @3 2n)3 ) 2n)3 2n)? (27)3

x W(q2, 9395, 9%) 8P frn(q1. 45, T) fe(q5, T) .
(13)

Equations (10) and (13) are simply the cross sections for the
processes of interest (destruction or creation) summed over
all possible final states and averaged over the initial ones,
with suitable distributions of the momenta. The Boltzmann
equation now reads

dom(Xi, T) _
3—1' ~ pnn(Xi, T)Pe (X2, T)(VO ) (14)

— Pm(xi, T)pc (X2, T)(VO ) pp -

Finally, if the density of comovers is roughly homoge-
neous, we can integrate over x| and x, as well. The final
evolution equation then reads

INm (1)
o = P Wi (D) (o) = N (1) (v ) hn)

= pc(T)N12{(vo)m (15)

— e (@Nn (@) (00D + (00 )i )
In the last line we used the fact that N1» = N, (1) + Npp(7),
in order to take advantage of the fact that N> = constant.

In the free-stream approximation, the spatial density of
comovers evolves with time as p.(t) = p./t, with p. the

@ Springer
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transverse density at formation time 7;. With this approxi-
mation, the solution to Eq. (15) for the number of molecules
as a function of multiplicity, N, is:

& i (Vo )m (N_,% _ (Vo )m )
Niz  (volpn + (vo)m  \Niz  (v0)hh + (vO)m
x exp [—((vo)un + (vo)m) pc Inoe/pE)] . (16)

were N is the number of molecules generated by hadroniza-
tion, before any interaction with comovers. The dependence
on multiplicity comes from the comovers spatial density. For
(vo), = 0 the result above reduces to Eq. (2), upon volume
integration.

3.2 Effective couplings for comover-constituent interaction

To describe the creation/annihilation of the deuteron and the
molecular X (3872) by the interaction with comovers we need
to determine their effective couplings. To simplify the com-
putation we describe the comover-constituent scattering with
a constant relativistic matrix element, My, 5, = g°. As
our notation suggests, we assume that the comovers are all
pions, which are indeed the dominant fraction.

For the case of the deuteron, the effective coupling is
obtained by matching the total elastic pion—nucleon cross
section from PDG [4], averaged in the [0, 300 MeV] kinetic
energy range for the comover (therefore reaching the peak
of the intermediate A resonance). One gets g2/(4mw) ~
10, which is not far from the threshold value g2/(47w) ~
13.5 [54].

For the X (3872) no data are available for the 7 D™ —
7 D™ scattering. To obtain the coupling we then consider
the following Lagrangian for the interaction between pions
and heavy mesons

y -

Ling = —=tr (HyHpyuys) 0" Mpa

NE:
A a7

+ mtr (HaHa) MapMpg -
Here a, b are isospin indices, the traces are taken over Dirac
matrices and M is the mass of the heavy mesons. Moreover,
H, is the HQET heavy meson multiplet and M, is the pion
matrix. The trilinear coupling is given by y ~ 0.8 [60]. We

take the propagator of the D* to be

—i p'p’
2 2 . <g/»”) - 2 ) ’ (18)
p-—mp +implp« 4

the real part of the pole being at the mass of the D to avoid
collinear divergences in the u#-channel (note that the D and
D* are indeed degenerate at leading order in HQET). More-
over, we choose the projector to be exactly transverse (rather

@ Springer
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Fig. 3 Feynman diagrams for the 7 D® — 7 D™ elastic scatterings
considered to extract the effective coupling g

-]
0.50
t between constitutents

040f._. ===== between comov. and tot. momentum

----- - between comov. and rel. momentum

dN/dcosf

000 ST ot—————e oo
~1.0 —0.5 0.0 0.5

cos )

Fig. 4 Distributions obtained from Pythia8 for the relative polar
angle between the deuteron constituents (blue, solid), the comovers and
the total momentum of the molecule (red, dashed) and the comovers and
relative momentum of the constituents (green, dot-dashed). Everything
is computed in the lab frame. Results are equivalent for the X (3872)

than only on-shell) to make sure that the contribution from
the off-shell D* propagation vanishes at threshold. This way,
the only contribution to the scattering length is given by the
quartic coupling, which is found to be A >~ 25, by matching
with lattice calculation of the 7w D scattering length [61].

Given the above vertices, the effective coupling g is again
obtained matching the total elastic 7t D cross section averaged
over the kinetic energy of the comover in the [0, 300] MeV
range. The processes we considered are reported in Fig. 3.
The result is g2 /(4m) ~ 5.07.

3.3 Creation and destruction average cross sections

The last step we need to perform to implement the evolution
equation (16) is to average the cross sections over the par-
ticle distributions—see Eqs. (10) and (13). The calculation
is conceptually straightforward but rather tedious. We will
spare most of it to the reader, and only highlight the main
points.

We always work in the approximation of roughly massless
comovers, m, =~ 0, and of loosely bound molecule, A <
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|g;|. In particular, the latter implies that the momenta of the
constituents are approximately equal to each other and to half
the momentum of the molecule itself.

To study the momentum distributions we employ
Pythia8, and generate 750k pp events at /s = 7 TeV for
deuteron, and 2.5G pp events at 8 TeV for the X (3872), with
full-QCD 2 — 2 matrix elements and a cut on the partonic
transverse momentum, p; > 2 GeV. Long-lived particles
are prevented from decaying. We select all the events that
have at least one constituent pair in the final state and, when
more than one pair per event is available, all the combinations
are considered. By comovers, we mean all those particles
whose momentum liesinacone AR = /A¢? + An? < 0.4
from one of the constituents (the other constituent is clearly
excluded). We checked that varying this cut within the range
AR = 0.3 —0.5 affects the final results by no more than 3%.

In the lab frame, most particles have large momentum
component along the beam axis. The polar angles between
the constituent momenta, between the comovers and the
molecule momentum, and between the comovers and the
constituents relative momentum can thus be approximated
by cos& >~ +1 (see Fig. 4). This amounts to replacing the
f-dependence of the corresponding distributions with a sum
of §-functions with support on cos 6 = =£1.

After this, the two integrals can be reduced to

A3 4
3847

k% P2 fun (P, k)

(vo),, ~

P2 f,,(P)

(vo),, ~ — /dP
hh 327.[ /M2 P2 P/2

k+ AE\ |k+ AE
/dek o 0 E:fL,( 5 >‘k¢AE
+ —
\/M2+T\/M2+T> +

/ .
dq3 5
M2+q/2 pin (3

They are well described by the following functional forms:

eTNDB 4 e ¥

fe(q3) o 5 : (21a)
43
B Y
Fun(PoR) o In(1 + B2 P)P' In(1 + y2k)" ’ 21b)

P31+ B P)P I3 (1 + y2k)7?

with best fit values given in Table 2. The overall constant if
fixed by normalization, as described below Eq. (6). The dis-
tribution of the total momentum of the molecule can instead
be obtained from the experimental distributions in transverse
momentum and rapidity. In particular

P2 f(P) = / dPidy Fpn(PyL,y)$8

x (P - \/Pj + (4M? + P?)sinh? y)

/P J 2PFy (PL,y(P1))
= PJ_
0 VaM? + P2 /P2 — P?

OGP =Y),

(22)

(19a)

(19b)

P2
a31e@) o 2y P2y S ggp
+43) 4

Where both the sum in the first equation and the Heaviside
function in the second arise from requiring for the §-functions
for conservation of energy to have support on the integration
region. Here g is the comover-constituent coupling defined
in Sect. 3.2, P and k the total and relative momenta of the
hadron pair and M the mass of the constituents, which we
take to be approximately equal. The momentum distributions
have been integrated over all variables except those explicitly

2 2
written. Moreover, AE = \/Mz + %—\/Mz + %,
while the minimum value of the momentum g3 is

VAM? + P2 /M? + ¢} —2M? — ¢, P
2q) + NAMZ + P2 — P — 2, /M2 + ¢}

min

q3 =

(20)

The distributions extracted from Pythia8 are reported
in Fig. 5 for both the proton-neutron and the D°D*" pairs.

with Fy,, (P, y) the experimental distribution, assumed
even under y — —y, Y the experimental cut in rapidity, and
sinh § = \/(PZ — P})/(4M? + P?).

With all this at hand, we now compute the average cross
sections in Eq. (19). To test the validity of our idea, we
first consider the case of the deuteron. In particular, we
take M = 938 MeV and a coalescence momentum in the
range A = 50-250MeV [62-64]. The effective coupling
g is discussed in Sect. 3.2. The distribution in rapidity is
approximately uniform, while the one in transverse momen-
tum is well fitted by a Lévy—Tsallis function [21]. We obtain
(vo)m =~ (A/lSOMeV)3 x 0.51 mb and (vo )y, =~ 4.34 mb.

The suppression of the creation cross section compared to
the destruction one is understood as follows. In a hadronic
collision, the vast majority of constituents are produced free,
with relative momentum much larger than A (Fig. 5). Afteran
interaction with a comover of momentum of order ~ GeV,
it is unlikely for the pair to fall within the small region of
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Fig. 5 Distributions obtained from Pythia8 for the momentum of
the comovers (left), the relative momentum of the hadron pair (center)
and the total momentum of the pair (right) together with the best fit

k (GeV)

P (GeV)

curves (dashed lines). Again, everything is computed in the lab frame,
at /s = 7 TeV for the pn pairs and /s = 8 TeV for the D°D*? ones

Table 2 Best fit parameters for the distribution in Eq. (21) as obtained from Pythia8

o a2 (GeV)™! a3 (GeV)™! Bi B2 (GeV)™! Bs Vi y2 (GeV)™! v3
pn pairs 3.49 0.17 0.97 4.12 343 1 3.99 2.90 1
DD pairs 4.04 0.20 1.03 7.85 2.09 2.46 7.33 1.67 2.84
00030 ' ' ' ' ' In Fig. 6 we compare our results to the ALICE data. For
0.0025F T [ simplicity, we just consider the yield as in Eq. (2), computed
on the average comover density, p.(b, s, y) =~ % ch/o. The
= 0.0020 good match with experiment confirms the validity of the coa-
000 lescence approach, and of the idea proposed in [23,24], espe-
5] - or 7 . . . .
= cially the relevance of the comover-constituent interaction to
~
= 0.0010F E the enhancement of the production of hadron molecules.
S ® 7TV
0.0005F m 13TV ]
0-0000, - - - - - 4 The X (3872) in the coalescence model
0 5 10 15 20 25
Nen

Fig. 6 Number of deuterons over number of protons at 7 and 13 TeV of
center-of-mass energy as a function of multiplicity, as reported in [21,
22]. The solid line is our result (16), the uncertainty being determined by
varying the coalescence momentum A between 50 and 250 MeV [62—
64]

phase space with k < A. Technically, this is due to the expo-
nential suppression of the comover distribution at momenta
of the order of the free pair ones. Similarly, if a pair is ini-
tially bound, it is much more likely for a comover to increase
their relative momentum to a value larger than A, rather than
viceversa.

We estimate the number of initial deuterons with
Pythia8, by counting the proton—neutron pairs with rel-
ative momentum initially below A. We find N,% /N2 =
0(10_4), which can be neglected. Hence, the dependence
of the number of deuterons on multiplicity is fixed up to an
overall factor, which we fit to data. We also set pp, so that
the curve starts at Nop, = 1, as in data.

@ Springer

We now apply the same procedure to the X (3872). The
momentum distributions for the comovers and the free
D®D*0 pairs are again given in Eq. (21) and Table 2, while
those for the X (3872) are obtained from a NRQCD calcu-
lation [65], which reproduces well the prompt production
data at high p,; [66]. The coalescence momentum for the
X (3872) is unknown, and we take it in the range A = 30—
360 MeV, as proposed in the literature [23,24,55,65,67,68].
This contributes minimally to the error band in Fig. 2. With
the effective coupling found in Sect. 3.2, and taking M =~
(mp +mp+)/2 = 1936 MeV, the creation and annihilation
cross section are be (vo),, >~ (A /30 MeV)3 x7.1x10~°mb
and (vo)p, >~ 0.50 mb. The creation cross section is much
smaller than the deuteron one since the constituents of the
X (3872) are produced with harder momenta (Fig. 5), and
hence the creation process suffers from a stronger suppres-
sion from the exponential comover distribution: it is even
more unlikely to reduce the relative momentum to a value
smaller than A. The destruction cross section is in good
agreement with what obtained in [28] with different methods
and for different processes.
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As for the initial number of X (3872) produced by
hadronization alone, N,,01, there is still no consensus. On the
one hand, a purely molecular interpretation requires for this
number to be very small because of the difficulty in pro-
ducing the constituents with such a small relative momen-
tum [55,67,68], as for the deuteron, albeit some controver-
sies on final state interactions [65,69]. On the other hand, it
has been suggested that the production of the X (3872) could
be dominated by short distance physics, likely associated
to a charmonium component of its wave function [70-73].
Were this to be true, the prompt production cross section
could be significantly enhanced. Here we adopt an agnos-
tic viewpoint and let the initial number of molecules vary
from N,(,), /N12 = 0 (the estimate with Pythia8 being 10_6)
to N,(,)l /N12 = 1. We consider this to be the main source
of uncertainty in our calculation. Either way, the molecular
nature of the X (3872) must be manifest when propagating
throughout the comovers for distances of O (1 fm).

Our results are reported in Fig. 2, and are qualitatively
at odds with data, regardless on whether the molecular X
is copiously produced by hadronization or not. The number
of X (3872) normalized to ¥ (2S) always grows, similarly
to the deuteron. Indeed, the typical cross sections obtained
for the X (3872) are much smaller than the one for ¥ (25)
shown in Table 1. Thus the increasing behavior of the ratio is
dominated by the decreasing v (2S5) yield, regardless of the
details of N0 /Nj,.

5 Conclusions

The production of X (3872) at high transverse momenta in
low multiplicity pp collisions challenges the molecular inter-
pretation [29,55,67,68], to the extent that it is necessary
to assume its hadronization proceeds through a compact cc
core. In [23,24] it was shown that not even the interaction
with comoving particles was able to account for the large
number of X (3872), if this compact component is not con-
sidered. However, the recent high-multiplicity data from the
LHCb and ALICE collaborations [17,18,21,22], encourages
to reconsider the role of comovers.

In this paper we redesigned the molecule-comover inter-
action model, treating multiple scattering with kinetic theory.
This works remarkably well at explaining the deuteron pro-
duction reported by ALICE [21,22]. Were a sizeable molec-
ular component to appear in the X (3872) wave function, the
same approach should describe its relative yield with respect
to ¥ (2S) [17,18]. However, the predicted yield always grows
and cannot match the decreasing slope observed by LHCb.
The only way to reconcile the results from the coalescence
model with experiment is to make the averaged X (3872)
molecular destruction cross section, (vo )y, about twenty
times larger (effectively that of a compact state), in sharp con-

tradiction with several agreeing determinations of the interac-
tion couplings of pion comovers with D, D* mesons and with
the findings in [28], for example. Our analysis concludes that,
despite the closeness to the D D*? threshold that motivated
several studies (see, e.g., [6,13—16]), a molecular component
cannot dominate the wave function of the X (3872).

The LHCD results are analyzed also with the Comover
Interaction Model (CIM) for compact states [19,20,34-36],
which is well known to describe the quarkonia yields in high
multiplicity final states. The yields are determined assuming
as effective cross section the geometrical one, i.e. the size
of the states. For the first time, we apply the CIM to pp
collisions, and match the relative yields of T mesons with
the ones reported by CMS [37]. These yields decrease with
multiplicity, contradicting the statement that such a behavior
requires a molecular interpretation, as suggested initially for
the X (3872). Conversely, it is perfectly compatible with a
compact tetraquark of typical hadronic size, as we showed
here.

After the appearing of this work, a modification of the
CIM has been effective in reconciling the diffusion of a
molecule with the LHCb data [74]. However, we note that
such description considers no recombination, which makes
it hard to achieve a common understanding of the X (3872)
and deuteron data.

We look with interest also to PbPb data [75], which seem
to present novelties with respect to pp. It would be useful to
have them binned in centrality, to allow a comparison with
the deuteron data presented by ALICE [76,77]. Discussions
on tetraquarks and molecules in PbPb collisions can be found
in [78,79].

In conclusion, as soon as the loosely-bound molecule
description is made concrete, its expected behavior appears
different from what observed experimentally. To fill the dis-
crepancy we should tune the interaction cross sections well
beyond the range we estimate. In our view, the LHCb data on
the X (3872) display the same features characterizing com-
pact states like the Y mesons.
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