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1. Introduction

The Euclidean hull is defined to be the intersection of a code and its Euclidean dual. 
It was originally introduced in [1] to classify finite projective planes. Knowing the hull 
of a linear code is also a key point to determine the complexity of some algorithms for 
investigating permutations of two linear codes and computing the automorphism group 
of the code [11,15,16]. In general, those algorithms have been proved to be very effective if 
the size of the Euclidean hull is small. In the case of codes over finite fields, Sendrier [17]
established the number of linear codes of length n with a fix dimension Euclidean hull, 
also Skersys [19] discussed the average dimension of the Euclidean hull of cyclic codes. 
Later, Sangwisut et al. [18] determined the dimension of the Euclidean hull of cyclic and 
negacyclic codes of length n over a finite field. Furthermore, in [9] the authors gave the 
average Euclidean hull dimension of negacyclic codes over a finite field. Recently, the 
concept of the Euclidean hulls has been generalized to cyclic codes of odd length over Z4
in [10] where the authors provided an algorithm to determine the type of the Euclidean 
hull of cyclic codes over Z4.

An important class of linear codes over rings is the class of cyclic codes and they have 
been extensively studied, see for example [4,5,7,13,14]. In particular, Dinh and Permouth 
[4] gave the algebraic structure of simple root cyclic codes over finite chain rings R and 
in [13] this was generalized to multivariable cyclic codes. Free cyclic serial codes have 
been determined by using cyclotomic cosets and trace map over finite chain rings [5]. It 
is clear that the Euclidean hull of cyclic codes is also cyclic, two special families of cyclic 
codes are of great interest, namely linear complementary dual codes, which are codes 
whose Euclidean hull is trivial (see for example [3]) and self-orthogonal codes, which are 
linear codes whose Euclidean hulls are the whole code (see for example [20,2]). These 
works motivate us to study the hulls of cyclic codes over finite chain rings. In this paper, 
we focus on the study of the hulls of cyclic codes of length n over a finite chain ring R of 
parameters (p, r, a, e, r) such that n and p are coprime. This is the serial case stated in 
[13], i.e. the cyclic codes over R whose length n is coprime with p are serial modules over 
R. We will generalize the techniques used in [10] (for Z4) to obtain the parameters and 
the average pr-dimensions Euclidean hull of cyclic serial codes over finite chain rings.

The paper is organized as follows. In Section 2, some preliminary concepts and some 
basic results are recalled. In Section 3, we characterize Galois hulls of cyclic serial code 
over finite chain rings. Section 4 shows the parameters and the q-dimensions of the 
Euclidean hull of cyclic serial codes. Finally, the average dimension of the Euclidean hull 
of cyclic serial codes is computed in Section 5.

2. Preliminaries

2.1. Chain rings

For an account on the results on finite rings in this section check [12]. Throughout 
this paper, p is a prime number, a, e, r, s are positive integers and Zpa is the residue ring 
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of integers modulo pa. R will denote a finite commutative chain ring of characteristic 
pa, of nilpotency index s, and of residue field Fq (where q = pr). We will denote its 
maximal ideal by J(R) and R× will denote its multiplicative group. Note that since R
is a chain ring it is a principal ideal ring, thus we will denote by θ a generator of J(R), 
the ideals of R form a chain under inclusion {0} = J(R)s � J(R)s−1 � · · · � J(R) � R

and J(R) = θtR for 0 ≤ t < s.
The ring epimorphism π : R → R/J(R) � Fq naturally extends a ring epimorphism 

from R[X] to Fpr [X] and on the other hand it naturally induces an R-module epimor-
phism from Rn to (Fpr)n. As an abuse of notation we will denote both mappings by 
π.

A monic polynomial f is basic-irreducible over R if π(f) is irreducible over Fpr . We 
will denote by GR(pa, r) the Galois ring of characteristic pa and cardinality pra. It is 
well known that, for a given finite chain ring R there is a 5-tuple (p, a, r, e, s) of positive 
integers, the so-called parameters of R, such that R = GR(pa, r)[θ], and 〈θ〉 = J(R), θe ∈
p(Zpa [θ])× and θs−1 �= θs = 0R. From now on, we will denote as Sd the subring of R such 
that Sd := GR(pa, d)[θ] and d is a divisor of r. The Teichmüller set of R will be denoted 
as Γ(R) and it is defined as Γ(R) = {0} ∪ {a ∈ R : ap

r−2 �= ap
r−1 = 1}. It is the only 

cyclic subgroup of R× isomorphic to the multiplicative group of Fpr . For each element a
in R, there is a unique (a0, a1, · · · , as−1) in Γ(R)s such that a = a0+a1θ+· · ·+as−1θ

s−1.
Let R and S be two finite commutative chain rings, we say that we say that R is an 

extension of S and we denote it by S|R if S ⊂ R and 1R = 1S . We say that the extension 
is separable if J(S)R = J(R). The Galois group of the extension S|R, denoted AutS(R), 
is the group of all the automorphisms γ of R whose restriction γ|S of γ to S, is the identity 
map of R. A separable extension is called Galois if {r ∈ R : (∀γ ∈ AutS(R))(γ(r) =
r)} = S. This condition is equivalent to the condition R is ring-isomorphic to S[X]/〈f〉, 
where f is a monic basic irreducible polynomial in S[X], see [22, Section 4][12, Theorem 
XIV.8].

Let d be positive divisor of r, and let us consider S = Zpa [θ], R = GR(pa, r)[θ], 
Sd = GR(pa, d)[θ], and

GSub(S|R) := {Sd : d is a divisor of r and Zpa [θ] ⊆ Sd}.

It is well known that AutS(R) is a cyclic group generated by the Frobenius automorphism

σ : R → R given by: σ
(

s−1∑
t=0

atθ
t

)
=

s−1∑
t=0

apt θ
t, and therefore, the set Sub(AutS(R)) of 

subgroups of AutS(R) is given by

Sub(AutS(R)) = {〈σd〉 : d is a divisor of r}.

In [6], the authors established the Galois correspondence (Stab; Fix) between GSub(S|R)
and Sub(AutS(R)) as follows Stab : GSub(S|R) → Sub(AutS(R)) and Fix : Sub(AutS(R))
→ GSub(S|R) where Stab(Sd) = 〈σd〉 and Fix(〈σd〉) = Sd, where d is a divisor of r (recall 
that q = pr).
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Given a divisor d of r, from [12, Theorem XV.2], σd is the only automorphism in 
AutS(R) such that σd ◦ π = π ◦ σd, where σ is a generator of AutFp

(Fpr). The trace map 

Td : S → Sd of the ring extension R|Sd is defined by Td :=
r
d−1∑
i=0

σid, and the trace map 

Td : Fpr → Fpd of the field extension Fpr |Fpd is defined by Td :=
r
d−1∑
i=0

σid. It is well known 

that Td : R → Sq is an epimorphism of Sd-modules and Td : Fpd → Fpr is an epimorphism 
of vector spaces over Fpd . Hence, for any divisor d of r, the following diagram commutes.

R
σd

−→ R
Td−→ Sd

π ↓ π ↓ ↓ π

Fpr
σd

−→ Fpr
Td−→ Fpd

2.2. Codes over a chain ring

A linear code C of length n over a ring R, is a submodule of the R-module Rn. We 
will denote by {0}, the zero-submodule where 0 = (0, 0, . . . , 0) ∈ Rn. A linear code C
over R is free if, C ∼= Rk as R-modules for some positive integer k. The residue code of 
a linear code C over R is the linear code π(C) over Fq, where

π(C) = {(π(c0), π(c1), · · · , π(cn−1) : (c0, c1, · · · , cn−1) ∈ C} .

In [6], the authors introduced the Galois closure of a linear code C over R of length 
n as follows, Cld(C) = Ext(Td(C)), where Ext(Td(C)) is the linear code over R of all 
R-combinations of codewords in the linear code Td(C) over Sd. A linear code C over R
is 〈σd〉-invariant, if σd(C) = C, where d is a divisor of r. Recall that for any linear code 
C over R of length n, its subring subcode is given by Resd(C) = C ∩ (Sd)n. In [6], it is 
shown that any linear code C over R is 〈σd〉-invariant, if and only if, Td(C) = Resd(C)
if and only if, C = Ext(Resd(C)). For � ∈ {0, 1, . . . , r−1} we equip Rn with the �-Galois 
inner-product defined as follows:

〈 u, v〉� =
n−1∑
j=0

ujσ
�(vj), for all u, v ∈ Rn.

When � = 0 it is just the usual Euclidean inner-product and if r is even and r = 2� it is 
the Hermitian inner-product. The �-Galois dual of a linear code C over R of length n, 
denoted C⊥� , is defined to be the linear code

C⊥� = {u ∈ Rn : 〈 u, c〉� = 0R for all c ∈ C} .

If C ⊆ C⊥� , then C is �-Galois self-orthogonal. Moreover, C is �-Galois self-dual if, 
C = C⊥� . The two statements in Proposition 2 below follow immediately from the 
identity
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〈 u, v〉� = 〈 u, σh(v)〉�−h = σh
(
〈σ�−h(v), u〉r−h

)
, for all 0 ≤ h ≤ �,u, v ∈ Rn

where the action is taken componentwise σ�(v) = (σ�(v0), · · · , σ�(vn−1)). The following 
proposition is a generalized Delsarte’s Theorem.

Proposition 1. ([6, Theorem 3.3]) Let C be a linear code over R of length n. Then for 
any � ∈ {0, 1, . . . , r − 1}, Td(C⊥�) = (Resd(C))⊥� .

Also [8, Proposition 2.2] has a natural generalization to finite chain rings.

Proposition 2. Let C be a linear code over R of length n. Then

1.
(
σh(C)

)⊥� = σh(C⊥�), and C⊥� = σh(C⊥�−h), for any 0 ≤ h ≤ �;
2. (C⊥�)⊥h = σ2r−�−h(C), for all 0 ≤ �, h ≤ r − 1.

From Proposition 2 and [7, Theorem 3.1], we obtain the following result.

Corollary 1. Let C and C ′ be linear codes over R of length n. Then

1. (C + C ′)⊥� = C⊥� ∩ C ′ ⊥� ;
2. (C ∩ C ′)⊥� = C⊥� + C ′ ⊥� .

Definition 1. Let C be a linear code over R. The �-Galois hull of C will be denoted as 
H�(C), is the intersection of C and its �-Galois dual, that is,

H�(C) = C ∩ C⊥� .

A linear code C over R is �-Galois Linear Complementary Dual (Shortly, Galois LCD) 
if H�(C) = {0}, and C is �-Galois self-orthogonal if H�(C) = C. If we denote that for 
all 0 ≤ �; h ≤ r − 1, we have σh(H�(C)) = H�(σh(C)), and H�(C) = Hr−�(C⊥�). 
From the generalized Delsarte’s Theorem in Proposition 1, it follows that Td(H�(C)) =
(Resd(Hr−�(C)))⊥� . Note that if C is 〈 σ� 〉-invariant, then H�(C) = H0(C).

From [14, Proposition 3.2 and Theorem 3.5], for any linear code C over R of length 
n, there is a unique s-tuple (k0, k1, · · · , ks−1) of positive integers, such that C has a 
generator matrix in standard form⎛⎜⎜⎜⎝

Ik0 G0,1 G0,2 · · · G0,s−2 G0,s−1 G0,s
O θIk1 θG1,2 · · · θG1,s−2 θG1,s−1 θG1,s
· · · · · · · · · · · · · · · · · · · · ·
O O O · · · O θs−1Iks−1 θs−1Gs−1,s

⎞⎟⎟⎟⎠U,

where U is a suitable permutation matrix and O the all zeros matrix of suitable size. 
The elements in the s-tuple (k0, k1, · · · , ks−1) are called parameters of C and the rank 
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of C is k0 + k1 + · · · + ks−1. From [14, Theorem 3.10], the parameters of C⊥� are (n −
k, ks−1, · · · , k2, k1), where k = rankR(C). Note that C is free if and only if rankR(C) =
k0 and k1 = · · · = ks−1 = 0. The q-dimension of a linear code C over R, denoted 
dimq(C), is defined to be logq(|C|). Thus the q-dimension of a linear code C over R of 

parameters (k0, k1, · · · , ks−1) is 
s−1∑
t=0

(s − t)kt. Since R is also a Frobenius ring, it follows 

that dimq(C) + dimq(C⊥�) = sn.

Proposition 3. Let C and C ′ be two codes over R of the same length. Then

dimq(C + C ′) = dimq(C) + dimq(C ′) − dimq(C ∩ C ′).

Moreover dimq(H�(C)) = dimq(Hr−�(C)).

Proof. The map η : C×C ′ → C+C ′ defined as follows: η(x; x′) = x +x′, is an R-module 
epimorphism. From the First Isomorphism Theorem, it follows that C × C ′/Ker(η) and 
C + C ′ are isomorphic as R-modules. Since Ker(η) = {(x; −x) : x ∈ C ∩ C ′}, it is easy 
to see that Ker(η) and C ∩C ′ are isomorphic R-modules. Thus |C +C ′| = |C|

|C∩C′| × |C ′|. 
Therefore logq(|C+C ′|) = logq(|C|) −logq(|C∩C ′|) +logq(|C ′|). From the definition of q-
dimension of a linear code we have that dimq(C+C ′) = dimq(C) +dimq(C ′) −dimq(C∩C ′). 
Moreover,

dimq(H�(C)) = dimq((C + C⊥r−�)⊥�), from Corollary 1 ;

= sn− dimq(C + C⊥r−�), since dimq(C + C⊥r−�)

+dimq((C + C⊥r−�)⊥�) = sn;

= sn−
(
dimq(C) + dimq(C⊥r−�) − dimq(Hr−�(C))

)
;

= dimq(Hr−�(C)), since dimq(C) + dimq(C⊥r−�) = sn. �
Proposition 4. Let C be a free code over R of length n and � be a positive integer. Then

1. dimq(σ�(C)) = s × rank(σ�(C)) = s × dimq(π(σ�(C)));
2. π(C)⊥� = π(C⊥�);
3. π(H�(C)) = H�(π(C)).

Proof. Since C is free, a generator matrix for σ�(C) is 
(

Ik σ�(A)
)

U, where A is a k×(n −

k)-matrix over R and U is a permutation matrix. Thus 
(

Ik π(σ�(A))
)

U is a generator 
matrix for π(C). It follows that |σ�(C)| = qsk and rank(σ�(C)) = dimq(π(σ�(C))) = k. 
This proves Item 1. Now to prove Item 2. The codes π(C)⊥� and π(C⊥�) have the 

same parity matrix, which is 
(

Ik π(σ�(A))
)

U. Hence π(C)⊥� = π(C⊥�). Item 3. is a 

consequence of the fact that the above diagram commutes, π(H�(C)) ⊆ H�(π(C)) and 
dimq(π(H�(C))) = dimq(H�(π(C))). �
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3. Galois hulls of cyclic serial codes

Let N be the set of nonnegative integers and n be a positive integer such that 
gcd(n, q) = 1. Set [|a; b|] = {a, a + 1, · · · , b} where (a, b) ∈ N2 such that a < b. Let 
A and B be two subsets in [|0; n − 1|], as usual, the opposite of A, denoted −A, is de-
fined as −A = {n − z : z ∈ A} and its complementary, denoted A, is defined as: 
A = {z ∈ [|0; n − 1|] : z /∈ A}. The set A is symmetric, if A = −A, and the pair {A, B}
is asymmetric, if B = −A. Recall that the pair is a set with two elements. If u ∈ N\{0}, 
then uA = {i ∈ [|0;n− 1|] : (∃z ∈ A)(uz ≡ i(modn)}. It defines the binary relation on 
[|0; n −1|] by x ∼q y if there is i in N such that y ≡ qix(modn). Obviously, the binary rela-
tion ∼q is an equivalence relation on [|0; n −1|]. The cosets of ∼q, are called q-cyclotomic 
cosets modulo n. Denote by [|0; n − 1|]q, a complete system of representatives of ∼q. A 
subset Z of [|0; n −1|] is a q-closed set modulo n, if Z = qZ. The smallest q-closed set mod-
ulo n, containing a subset Z of [|0; n − 1|] is 

⋃
i∈N qiZ and we will denote it by �q(Z). In 

particular, the set of q-cyclotomic cosets modulo n which is 
{
�q({z}) : z ∈ [|0;n− 1|]q

}
, 

forms a partition of [|0; n − 1|]. Since �q({z}) = {x ∈ [|0; n − 1|] : x ∼q z} for any z in 
[|0; n − 1|]. We will take �q(∅) = ∅ by convention. Let j be a divisor of n, we will use the 
following notation

• φ( . ) is the Euler totient function;
• ordj(q) the multiplicative order of q modulo j;
• ω(n; q) the number of q-cyclotomic cosets modulo n;
• Nq =

{
d ∈ N\{0} : (∃i ∈ N\{0})(d divides qi + 1)

}
;

• Λj the set of symmetric q-cyclotomic cosets modulo n of size ordj(q);
• γ(j; q) := |Λj |;
• Λj the set of asymmetric pairs of q-cyclotomic cosets modulo n of size ordj(q);
• β(j; q) := |Λj |.

Let δ be a generator of the cyclic multiplicative subgroup Γ(GR(pa, m))\{0} of 
(GR(pa, m))×, where m = ordn(q). The following result is straightforward from Hensel’s 
Lemma [12], which guarantees the uniqueness of this monic basic-irreducible factoriza-
tion of Xn − 1, and Xn − 1 =

∏
z∈[|0;n−1|]q

mz where mz :=
∏

a∈�q({z})
(X − δa). Obviously, 

for any z in [|0; n − 1|]q, the polynomial mz is monic basic-irreducible over R.

Lemma 1. The map

Ω :
{
�q(Z) : Z ⊆ [|0;n− 1|]q

}
→ {f ∈ GR(pa, r)[X] : f is monic and f |Xn − 1}

A �→
∏
a∈A

(X − δa) (1)

where Ω(∅) = 1, is bijective. Moreover, for any z ∈ [|0; n − 1|] and for all q-closure sets 
A and B modulo n, we have
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1. Ω 
(
�q({z})

)
is a monic basic-irreducible polynomial over GR(pa, r) of degree 

∣∣�q({z})∣∣;
2. lcm (Ω (A) ,Ω (B)) = Ω (A ∪ B) and gcd (Ω (A) ,Ω (B)) = Ω (A ∩ B);
3. if A ∩ B = ∅, then Ω (A ∪ B) = Ω (A) Ω (B).

Proof. Since δ ∈ Γ(GR(pa, m))\{0} ⊂ GR(pa, m) and GR(pa, m) is a Galois extension of 
GR(pa, r), it follows that for any q-cyclotomic cosets A modulo n, the monic polyno-
mial 

∏
a∈A

(X − δa) is basic-irreducible over GR(pa, r). Therefore, the correspondence Ω is 

well-defined, and by Hensel lemma, Xn − 1 admits a unique monic basic-irreducible fac-
torization in GR(pa, r)[X]. Thus the existence and the uniqueness of this basic-irreducible 
factorization over GR(pa, r), the map Ω is bijective. Items 2. and 3. are straightforward 
to prove. �
Proposition 5. [18, Subsection 2.2] Let j be a divisor of n. Then

γ(j; q) =
{

φ(j)
ordj(q) , if j ∈ Nq;
0, otherwise,

and β(j; q) =
{

φ(j)
2ordj(q) , if j /∈ Nq,
0, otherwise.

Moreover, ω(n; q) =
∑
i |n
i∈Nq

γ(i; q) + 2
∑
j |n
j /∈Nq

β(j; q).

We will introduce the following notation

En(q, s) = In(q, s) × (Jn(q, s))2 , (2)

where In(q, s) =
∏
i |n
i∈Nq

Eγ(i;q)
s and Jn(q, s) =

∏
j |n
j /∈Nq

Eβ(j;q)
s , with

Es =
{

(x(0), x(1), · · · , x(s−1)) ∈ {0; 1}s :
s−1∑
a=0

x(a) ∈ {0; 1}
}
. (3)

Note that Es = {(0, · · · , 0)} ∪

⎧⎨⎩
⎛⎝0, · · · , 0, 1︸︷︷︸

j-i th position

, 0, · · · , 0

⎞⎠ : j ∈ {1; · · · ; s}

⎫⎬⎭ ⊆

{0; 1}s and |Es| = s + 1.
The elements in In(q, s) are arrays of the form (((u(a)

il )0≤a<s)◦) where (u(a)
il )0≤a<s are 

in Es and the indices i and l satisfy i | n, i ∈ Nq and 1 ≤ l ≤ γ(i; q), i.e.,

(((u(a)
il )0≤a<s)◦) =

((
(u(a)

il )0≤a<s

)
1≤l≤γ(i;q)

)
∈ In(q, s).
i |n,i∈Nq
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Similarly, (((v(a)
jh )0≤a<s)•) =

((
(v(a)

jh )0≤a<s

)
1≤h≤β(j;q)

)
j |n,j /∈Nq

∈ Jn(q, s). Note that 

if s = 1, then E1 = {0; 1}, and in this case, we write ((uil)◦) = (((u(a)
il )0≤a<1)◦) and 

((vjh)•) = (((v(a)
jh )0≤a<1)•).

Let i and j be positive integers such that i | n, i ∈ Nq, and j | n, j /∈ Nq. From now on,

Λi = {Gil : 1 ≤ l ≤ γ(i; q)} and Λj = {{Fjh,−Fjh} : 1 ≤ h ≤ β(j; q)}.

Of course, all the polynomials in {Ω(Gil) : 1 ≤ l ≤ γ(i; q)} are basic-irreducible in R[X]
of degree ordi(q), and all the elements in {{Ω(Fjh), Ω(−Fjh)} : 1 ≤ h ≤ β(j; q)} are 
pairs of monic basic-irreducible reciprocal polynomials (up to a unit) in R[X] of the same 
degree ordj(q). The basic-irreducible factorization of Xn − 1 in R[X] is given as

Xn − 1 =
∏
i |n
i∈Nq

⎛⎝γ(i;q)∏
l=1

Ω (Gil)

⎞⎠ ∏
j |n
j /∈Nq

⎛⎝β(j;q)∏
h=1

Ω (Fjh) Ω (−Fjh)

⎞⎠ . (4)

Thus, for any monic factor of Xn − 1 ∈ R[X], there is a unique (((uil)◦), ((vjh)•), 
((wjh)•))) in En(q, 1) such that

f =
∏
i |n
i∈Nq

⎛⎝γ(i;q)∏
l=1

Ω (Gil)uil

⎞⎠ ∏
j |n
j /∈Nq

⎛⎝β(j;q)∏
h=1

Ω (Fjh)vjh Ω (−Fjh)wjh

⎞⎠ , (5)

and conversely. Denote the right-hand side of Equation (5) by ∂(((uil)◦), ((vjh)•), 
((wjh)•)). Note that ∂(((1)◦), ((1)•), ((1)•)) = Xn−1 and ∂(((0)◦), ((0)•), ((0)•)) = 1. If 
we are given f1 = ∂(((uil)◦), ((vjh)•), ((wjh)•)) and f2 = ∂(((u′

il)◦), ((v′jh)•), ((w′
jh)•)), 

we have that

lcm(f1; f2) = ∂(((max{uil, u
′
il})◦), ((max{vjh, v′jh})•), ((max{wjh, w

′
jh})•));

gcd(f1; f2) = ∂(((min{uil, u
′
il})◦), ((min{vjh, v′jh})•), ((min{wjh, w

′
jh})•)),

and if all (uil + u′
il, vjh + v′jh, wjh + w′

jh) are in {0; 1}3 then

f1f2 = ∂(((uil + u′
il)◦), ((vjh + v′jh)•), ((wjh + w′

jh)•)). (6)

A cyclic code C of length n over R is a linear code that is invariant under the trans-
formation τ((c0, c1, · · · , cn−1)) = (cn−1, c0, · · · , cn−2). If we denote by 〈Xn−1〉 the ideal 
of R[X] generated by Xn − 1, it is well-known that any cyclic code of length n over R
can be represented as an ideal of the quotient ring R[X]/〈Xn − 1〉 via the R-module 
isomorphism Ψ : Rn → R[X]/〈Xn − 1〉, where Ψ(c) = Ψ(c) + 〈Xn − 1〉 and
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Ψ : Rn → R[X]
u = (u0, u1, · · · , un−1) �→ u(X) = u0 + u1X + · · · + un−1X

n−1,
(7)

which is an R-module homomorphism. We will slightly abuse notation, identifying vectors 
in Rn as polynomials in R[X] of degree less than n, and vice versa when the context 
is clear. It is well-known that R[X]/〈Xn − 1〉 is a principal ideal ring and C is a cyclic 
code of length n over R if and only if Ψ(C) is an ideal of R[X]/〈Xn − 1〉, (see [4] and 
references therein). Thus, the generator polynomial of a cyclic code C of Rn, is the 
monic polynomial f in R[X] such that Ψ(C) = 〈 f(x) 〉, where 〈 f(x) 〉 is the ideal of 
R[X]/〈Xn − 1〉 generated by f .

A cyclic code over R of length n, is uniserial if its cyclic subcodes over R are totally 
ordered by inclusion (see the definition of serial modules in [21]). A cyclic code over R
of length n, is serial if it is a direct sum of uniserial cyclic codes over R of length n. 
Note that, over a finite chain ring R, any cyclic code of length n is serial, if and only if 
gcd(p, n) = 1.

For a polynomial f of degree k its reciprocal polynomial Xkf(X−1) will be denoted 
by f∗ and if f is a factor of Xn−1 we denote f̂ = Xn−1

f . A polynomial f is self-reciprocal
if f = f∗, otherwise f and f∗ are called a reciprocal polynomial pair.

For any union A of q-cyclotomic cosets modulo n, Ω(A)∗ = Ω(−A) and Ω̂(A) =
Ω(−A). The (s + 1)-tuple (A0, A1, · · · , As) is called to be an ordered (q, s)-partition 
cyclotomic modulo n, if A0, A1, · · · , As are unions of q-cyclotomic cosets modulo n whose 
{At : At �= ∅, for 0 ≤ t ≤ s} forms a partition of [|0; n − 1|]. Denote by �n(q, s) the set 
of ordered (q, s)-partition cyclotomic modulo n. Note that

�n(q, s) =
{(

�q(λ−1({0})), �q(λ−1({1})), . . . , �q(λ−1({s}))
)

: λ ∈ [|0; s|][|0;n−1|]q
}
.

It follows that |�n(q, s)| = (s + 1)ω(n;q). Let A = (A0, A1, · · · , As) be in �n(q, s). For a 
positive integer u we denote by uA = (uA0, uA1, · · · , uAs−1). Now, the A0, A1, · · · , As

are unions of q-cyclotomic cosets modulo n, therefore p�At is also another union of q-
cyclotomic cosets modulo n, for any t in {0; 1; · · · ; s −1} and for any � in {0; 1; · · · ; r−1}. 
Hence, p�A ∈ �n(q, s) for any 0 ≤ � < r. From [4, Theorems 3.4, 3.5 and 3.8], we have 
the following result.

Lemma 2. For any cyclic serial code C over R of length n, there is a unique (s +1)-tuple 
(A0, A1, · · · , As) in �n(q, s) such that

Ψ(C) =
s−1⊕
t=0

θt
〈
Ω(At)

〉
=
〈{

θt
s∏

a=t+1
Ω(Aa) : 0 ≤ t ≤ s− 1

}〉
. (8)

Moreover, Ψ(C⊥0) =
s−1⊕

θt
〈
Ω(−As−t)

〉
.

t=0
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Let A be a union of q-cyclotomic cosets modulo n. From now on, we will consider the 
code

C (A) =
{
c ∈ Rn : Ω(A) divides Ψ(c)

}
, (9)

thus it is clear that Ψ(C (A)) =
〈
Ω(A)

〉
.

Remark 1. Free cyclic serial codes over a finite chain ring have been studied in [5] using 
the cyclotomic cosets and the trace map. Note that C ([|0;n− 1|]) = {0} and C (∅) = Rn. 
From Lemma 2, for any free cyclic serial code C of length n over R there exists a unique 
set A which is a union of q-cyclotomic cosets modulo n such that C = C (A). Moreover, 
C (A)⊥0 = C 

(
−A
)
, the generator polynomial of C (A) is Ω(A), and rankR(C (A)) = |A|.

Proposition 6. If A and B are unions of q-cyclotomic cosets modulo n, then

1. A ⊆ B if and only if C(A) ⊆ C(B);
2. C(A ∩ B) = C(A) ∩ C(B), and C(A ∪ B) = C(A) + C(B);
3. σ� (C (A)) = C 

(
p�A
)

and C (A)⊥� = C 
(
−p�A

)
, for all 0 ≤ � ≤ r − 1.

Proof. Item (1) follows from the definition of C(A) and C(B) and the fact that A ⊆
B if and only if Ω(B) divides Ω(A). To prove (2), we note that since A ∩ B ⊆ A ⊆
A ∪ B, and A ∩ B ⊆ B ⊆ A ∪ B, from item (1), we have C(A ∩ B) ⊆ C(A) ∩ C(B)
and C(A) + C(B) ⊆ C(A ∪ B). Conversely, if c ∈ C(A) ∩ C(B) then Ω(A) and Ω(B)
divide Ψ(c). Thus lcm(Ω(A) , Ω(B)) divides Ψ(c). Now, lcm(Ω(A) , Ω(B)) = Ω(A∪B) =
Ω(A ∩ B), so we have C(A) ∩ C(B) ⊆ C(A ∩ B). Since gcd(Ω(A) , Ω(B)) = Ω(A ∩ B) =
Ω(A ∪ B), hence C(A) + C(B) ⊇ C(A ∪ B). To finish with the proof of the item (3), we 
have σ� (C (A)) =

{
c ∈ Rn : σ�

(
Ω(A)

)
divides Ψ(c)

}
, thus σ� (C (A)) = C 

(
p�A
)
, since 

σ�
(
Ω(A)

)
= Ω(p�A). Finally, for any 0 ≤ � ≤ r − 1 we have

C (A)⊥� =
(
σ� (C (A))

)⊥0
, from Proposition 2;

=
(
C
(
p�A
))⊥0 ;

= C
(
−p�A

)
, from Remark 1. �

Let A = (A0, A1, . . . , As) and B = (B0, B1, . . . , Bs) be elements in �n(q, s). We will 
define the following set in Rn

C(A) =
s−1⊕
t=0

θtC(At).

Taking into account the map Ψ in Equation (7) and from [4, Theorem 3.4], it follows 
that C(A) is a direct sum of cyclic serial codes of length n over R. Therefore, C(A) is a 
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cyclic serial code of length n over R. The parameters of C(A) are given by the entries in 
(|A0|, |A1|, · · · , |As|) and from Lemma 2 it follows that for any cyclic serial code C over 
R of length n, there is a unique A in �n(q, s) such that C = C(A). Thus A is called the 
defining multiset of C(A).

Let us denote by

A	 = (As,As−1, . . . ,A0), A � B = (E0,E1, . . . ,Es)

where E0 = A0 ∪ B0, and Et = (At ∪ Bt)\ 
(

t−1⋃
i=0

(Ai ∪ Bi)
)

for all 0 < t ≤ s. It is easy 

to see that A	 and A � B are in �n(q, s). Moreover, C⊥� = C(−p�A	), and dimq(C) =
s−1∑
t=0

(s − t)|At|. Note that if A � B = (A	 � B	)	 = (E0, E1, · · · , Es), then Es = As ∪ Bs

and Es−t = (As−t ∪ Bs−t) \ 
(

t−1⋃
i=0

(As−i ∪ Bs−i)
)

, for all 0 < t ≤ s.

Proposition 7. [5, Theorem 6] Let A = (A0, A1, . . . , As) and B = (B0, B1, . . . , Bs) in 
�n(q, s). Then C(A) + C(B) = C(A � B) and C(A) ∩C(B) = C(A � B).

Corollary 2. Let A = (A0, A1, . . . , As) and B = (B0, B1, . . . , Bs) in �n(q, s), and define 

gt =
s∏

a=t+1
Ω(Aa) and ht =

s∏
a=t+1

Ω(Ba), for all 0 ≤ t < s. Then

1. Ψ (C(A)) = 〈{θtgt(x) : 0 ≤ t < s}〉, and Ψ(C(B)) = 〈{θtht(x) : 0 ≤ t < s}〉;
2. Ψ (C(A � B)) = 〈{θtlcm(gt, ht) : 0 ≤ t < s}〉.

Proof. We have A � B = (E0, E1, . . . , Es), where Es = As ∪ Bs and Es−t =

(As−t ∪ Bs−t) \ 
(

t−1⋃
i=0

(As−i ∪ Bs−i)
)

, for all 0 < t ≤ s. From Lemma 2 it follows that 

Ψ(C(A)) = 〈{θtgt(x) : 0 ≤ t < s}〉, and Ψ(C(B)) = 〈{θtht(x) : 0 ≤ t < s}〉. Since 
Ψ(C(A � B)) = Ψ (C(A))∩Ψ(C(B)), using again Lemma 2 and Proposition 7 it follows 
that

Ψ (C(A � B)) =
〈
f0(x), θf1(x), . . . , θs−1fs−1(x)

〉
,

where ft =
s∏

a=t+1
Ω(Ea). Thus for all 0 ≤ t < s, ft = Ω 

(
s⋃

a=t+1
Ea

)
and 

s⋃
a=t+1

Ea =
s⋃

a=t+1
(As−t−1 ∪ Bs−t−1). Then ft = Ω 

(
s⋃

a=t+1
(As−t−1 ∪ Bs−t−1)

)
= lcm(gt, ht). �

Theorem 1. Let A in �n(q, s). Then

H�(C(A)) = C
(
A � −p�A	) . (10)
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Proof. Let A in �n(q, s) and 0 ≤ � < r. We have

H�(C(A)) = C(A) ∩C(A)⊥� , from Definition 1 ;

= C(A) ∩C(−p�A	), since C(A)⊥� = C(−p�A	);

= C
(
A � −p�A	) , from Proposition 7. �

Example 3.1. Let R = Z2a [θ] with 1 ≤ a ≤ 2 be the finite chain ring of param-
eters (2, a, 1, e, 2). Consider the 2-cyclotomic cosets modulo 7 given by �2({0}) =
{0}, �2({1}) = {1; 2; 4}, and �2({3}) = {3; 5; 6}. Note that 

{
�2({1}), �2({3})

}
is an 

asymmetric set, and �2({0}) is a symmetric set. Consider the cyclic serial code over R
of length 7 with defining multiset A =

(
�2({0}), �2({3}), �2({1})

)
.

Then −A	 =
(
�2({3}), �2({1}), �2({0})

)
, and C (A) = C 

(
�2({0})

)
⊕θC 

(
�2({3})

)
. Thus 

C (A)⊥0 = C (−A	) = C 
(
�2({3})

)
⊕θC 

(
�2({1})

)
. Finally, A� −A	 = (F0,F1,F2) where 

F0 = ∅, F1 = �2({3}), and F2 = �2({0; 1}). Therefore H0(C (A)) = C (A � −A	) =
C(∅, �2({3}), �2({0; 1})) = θC 

(
�2({3})

)
.

3.1. Euclidean hulls

From now on, � = 0. The following result provides us a way of checking whether 
a given cyclic serial code D is the Euclidean hull of a cyclic code C or not. Of 
course, if H0(C) = D, then D is a serial cyclic code if, and only if C is also a 
serial code. In the sequel, for each X = (X0, X1, · · · , Xs) ∈ �n(q, s), we will de-
note Ω(Xa) = ∂

(
((x(a)

il )◦), ((y(a)
jh )•), ((z(a)

jh )•)
)
, for a in {0; 1; · · · ; s}. Thus Ω(−Xa) =

∂
(
((x(a)

il )◦), ((z(a)
jh )•), ((y(a)

jh )•)
)
, and from Equation (6), we have for 0 ≤ t ≤ s − 1,

s∏
a=t+1

Ω(Xa) = ∂

(((
s∑

a=t+1
x

(a)
il

)◦)
,

((
s∑

a=t+1
y
(a)
jh

)•)
,

((
s∑

a=t+1
z
(a)
jh

)•))
.

Since ∂(((1)◦), ((1)•), ((1))•) = Xn−1 = g0 ·∂(((x(0)
il )◦), ((y(0)

jh )•), ((z(0)
jh )•)), it follows 

that

s∑
a=0

x
(a)
il =

s∑
a=0

y
(a)
jh =

s∑
a=0

z
(a)
jh = 1.

From Eqs. (5) and (8), there exists a unique

(
(((x(a)

il )0≤a<s)◦), (((y(a)
jh )0≤a<s)•), (((z(a)

jh )0≤a<s)•)
)

in En(q, s) such that
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Ψ(C(X)) =
〈{

θt · ∂
(((

s∑
a=t+1

x
(a)
il

)◦)
,

((
s∑

a=t+1
y
(a)
jh

)•)
,

((
s∑

a=t+1
z
(a)
jh

)•))
:

0 ≤ t ≤ s− 1
}〉

.

From Eqs. (4), (5), and (8), the following lemma follows.

Lemma 3. There is a bijection between the set C(n; R) of cyclic serial codes of length n
over R and the set En(q, s).

When � = 0, and with the triple-sequence of a cyclic serial code, by comparing the 
two sides of Equation(10) in Theorem 1, the following result is obtained.

Corollary 3. Let(
(((x(a)

il )0≤a<2)◦), (((y(a)
jh )0≤a<2)•), (((z(a)

jh )0≤a<2)•)
)

and(
(((u(a)

il )0≤a<2)◦), (((v(a)
jh )0≤a<2)•), (((w(a)

jh )0≤a<2)•)
)

in En(q, s) such that

Ψ(C) =
〈{

θt · ∂
(((

s∑
a=t+1

x
(a)
il

)◦)
,

((
s∑

a=t+1
y
(a)
jh

)•)
,

((
s∑

a=t+1
z
(a)
jh

)•))
:

0 ≤ t ≤ s− 1
}〉

,

and

Ψ(D) =
〈{

θt · ∂
(((

s∑
a=t+1

u
(a)
il

)◦)
,

((
s∑

a=t+1
v
(a)
jh

)◦)
,

((
s∑

a=t+1
w

(a)
jh

)◦))
:

0 ≤ t ≤ s− 1
}〉

.

Then H0(C) = D if, and only if for all 0 ≤ t ≤ s − 1,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s∑
a=t+1

u
(a)
il = max

{
s∑

a=t+1
x

(a)
il ;

s∑
a=t+1

x
(s−a)
il

}
;

s∑
a=t+1

v
(a)
jh = max

{
s∑

a=t+1
y
(a)
jh ;

s∑
a=t+1

z
(s−a)
jh

}
;

s∑
a=t+1

w
(a)
jh = max

{
s∑

a=t+1
z
(a)
jh ;

s∑
a=t+1

y
(s−a)
jh

}
.

(11)
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In such a case, for all 0 ≤ t ≤ s − 1, if 2t ≤ s − 1, then 
s∑

a=t+1
u

(a)
il =

max
{

s∑
a=t+1

x
(a)
il ;

s∑
a=t+1

x
(s−a)
il

}
= 1, and 

(
s∑

a=t+1
v
(a)
jh ;

s∑
a=t+1

w
(a)
jh

)
∈ {(1; 0), (0; 1), (1; 1)}, 

since 
s∑

a=0
x

(a)
il = 1.

From Corollary 3, we recover the characterization of LCD cyclic codes and of self-
orthogonal cyclic codes in [10, Theorem 3.4, and Corollaries 3.5 and 3.6] and we naturally 
extend it to finite chain rings of nilpotency index 2. The following remark provides this 
generalization.

Remark 2. Let(
(((x(a)

il )0≤a<2)◦), (((y(a)
jh )0≤a<2)•), (((z(a)

jh )0≤a<2)•)
)

and(
(((u(a)

il )0≤a<2)◦), (((v(a)
jh )0≤a<2)•), (((w(a)

jh )0≤a<2)•)
)

in En(q, 2) such that

Ψ(C) =
〈{

∂
(
((x(1)

il + x
(2)
il )◦), ((y(1)

jh + y
(2)
jh )•), ((z(1)

jh + z
(2)
jh )•)

)
,

θ · ∂
(
((x(2)

il )◦), ((y(2)
jh )•), ((z(2)

jh )•)
)}〉

,

and

Ψ(D) =
〈{

∂
(
((u(1)

il + u
(2)
il )◦), ((v(1)

jh + v
(2)
jh )•), ((w(1)

jh )• + w
(2)
jh )•)

)
,

θ · ∂
(
((u(2)

il )◦), ((v(2)
jh )•), ((w(2)

jh )•)
)}〉

.

Then H0(C) = D if, and only if (x(1)
il ; x(2)

il ) ∈
{

{(0; 1)}, if u(2)
il = 0;

{(0; 0), (1; 0)}, if u(2)
il = 1,

and

(y(1)
jh ; y(2)

jh ; z(1)
jh ; z(2)

jh ) ∈⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0; 0; 0; 0), (1; 0; 1; 0)}, if (u(1)
il +u

(2)
il ; v(1)

jh +v
(2)
jh ;w(1)

jh +w
(2)
jh ; v(2)

jh ;w(2)
jh )=(1; 1; 1; 1; 1);

{(0; 1; 1; 0), (1; 0; 1; 1)}, if (u(1)
il +u

(2)
il ; v(1)

jh +v
(2)
jh ;w(1)

jh +w
(2)
jh ; v(2)

jh ;w(2)
jh )=(1; 1; 1; 0; 1);

{(0; 1; 0; 0), (1; 0; 0; 1)}, if (u(1)
il +u

(2)
il ; v(1)

jh +v
(2)
jh ;w(1)

jh +w
(2)
jh ; v(2)

jh ;w(2)
jh )=(1; 1; 1; 1; 0);

{(1; 0; 0; 0)}, if (u(1)
il +u

(2)
il ; v(1)

jh +v
(2)
jh ;w(1)

jh +w
(2)
jh ; v(2)

jh ;w(2)
jh )=(1; 1; 0; 1; 0);

{(0; 0; 1; 0)}, if (u(1)
il +u

(2)
il ; v(1)

jh +v
(2)
jh ;w(1)

jh +w
(2)
jh ; v(2)

jh ;w(2)
jh )=(1; 0; 1; 0; 1);

{(0; 1; 0; 1)}, if (u(1)
il +u

(2)
il ; v(1)

jh +v
(2)
jh ;w(1)

jh +w
(2)
jh ; v(2)

jh ;w(2)
jh )=(1; 1; 1; 0; 0),

for all i, l, j, h. Moreover,
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1. C is LCD if, and only if x(2)
il = x

(1)
il , y(2)

jh = y
(1)
jh , z(2)

jh = z
(1)
jh and (x(2)

il ; y(2)
jh ; z(2)

jh ) ∈
{(0; 0; 0), (0; 1; 1), (1; 0; 0), (1; 1; 1)}, for all i, l, j, h.

2. C is self-orthogonal if, and only if (x(2)
il ; x(1)

il ) ∈ {(0; 1), (1; 0)} and

(y(2)
jh ; y(1)

jh ; z(2)
jh ; z(1)

jh ) ∈{(1; 0; 1; 0), (0; 1; 1; 0), (1; 0; 0; 1), (1; 0; 0; 0), (0; 0; 1; 0),

(0; 1; 0; 1)},

for all i, l, j, h.

Note that Corollary 3 is insufficient to characterize the nontrivial self-dual cyclic codes 
over R when s is even (see [4, Theorem 4.4]).

4. The q-dimensions of Euclidean hulls of cyclic serial codes

In this section, C is a cyclic serial code of length n over R with triple-sequence(
(((x(a)

il )0≤a<s)◦), (((y(a)
jh )0≤a<s)•), (((z(a)

jh )0≤a<s)•)
)

in En(q, s). Then

Ψ(C) =
〈{

θt · ∂
(((

s∑
a=t+1

x
(a)
il

)◦)
,

((
s∑

a=t+1
y
(a)
jh

)•)
,

((
s∑

a=t+1
z
(a)
jh

)•))
:

0 ≤ t ≤ s− 1
}〉

.

From Corollary 3,

Ψ (H0(C)) =
〈{

θt · ∂
(((

s∑
a=t+1

u
(a)
il

)◦)
,

((
s∑

a=t+1
v
(a)
jh

)◦)
,

((
s∑

a=t+1
w

(a)
jh

)◦))
:

0 ≤ t ≤ s− 1
}〉

,

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s∑
a=t+1

u
(a)
il = 1 − min

{
t∑

a=0
x

(a)
il ; 1 −

s−t−1∑
a=0

x
(a)
il

}
;

s∑
a=t+1

v
(a)
jh = 1 − min

{
t∑

a=0
y
(a)
jh ; 1 −

s−t−1∑
a=0

z
(a)
jh

}
;

s∑
a=t+1

w
(a)
jh = 1 − min

{
t∑

a=0
z
(a)
jh ; 1 −

s−t−1∑
a=0

y
(a)
jh

}
,
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for all 0 ≤ t ≤ s − 1. The following notations are important for the sequel of this paper. 
For all 0 ≤ t ≤ s − 1, 1 ≤ l ≤ γ(i; q) and 1 ≤ h ≤ β(j; q), denote by:

ε
(t)
jh =

s∑
a=t+1

(v(a)
jh + w

(a)
jh ). (12)

Note that ε(−1)
jh = 2. Let us consider now

�il=
s−1∑
t=0

(s− t)u(t)
il , and �jh =

s−1∑
t=0

(s− t)(ε(t−1)
il − ε

(t)
il ). (13)

Obviously, �il=
s−1∑
t=0

�(t)
il , where �(t)

il = min
{

t∑
a=0

x
(a)
il ; 1 −

s−t−1∑
a=0

x
(a)
il

}
, and �jh =

s−1∑
t=0

�(t)
jh , where

�(t)
jh = min

{
t∑

a=0
y
(a)
jh ; 1 −

s−t−1∑
a=0

z
(a)
jh

}
+ min

{
t∑

a=0
z
(a)
jh ; 1 −

s−t−1∑
a=0

y
(a)
jh

}
.

Thus, we set �i:=
γ(i;q)∑
l=1

�il, ε(t)
j :=

β(j;q)∑
h=1

ε
(t)
jh and �j :=

β(j;q)∑
h=1

�jh.

Remark 3. Let 0 ≤ t ≤ s − 1.

1. �(t)
il ∈ {0; 1} and �(t)

jh ∈ {0; 1; 2}.
2. If 0 < t < s, then �(t−1)

il ≤�(t)
il and �(t−1)

jh ≤ �(t)
jh .

3. If 2t < s, then �(t)
il = 0 and �(t)

jh ≤ 1.

Lemma 4. Let j be a divisor of n such that j /∈ Nq. Then

{
0 ≤ ε

(t−1)
j − ε

(t)
j ≤ β(j; q) − (ε(t−2)

j − ε
(t−1)
j ), if t <

⌈
s
2
⌉
;

0 ≤ ε
(t−1)
j − ε

(t)
j ≤ 2

(
β(j; q) − (ε(t−2)

j − ε
(t−1)
j )

)
, if t ≥

⌈
s
2
⌉
.

Proof. Let 0 ≤ t ≤ s − 1 and �(t)
j =

β(j;q)∑
h=1

�(t)
jh . We have ε(t)

jh = 2 −�(t)
jh . From Remark 3, 

two cases are considered. Let �(t−1)
j := |{h ∈ N : 1 ≤ h ≤ β(j; q) and ε

(t−1)
jh =

ε
(t)
jh = 1}|. Then there is a permutation τ in Sβ(j;q) such that ε(t−1)

jh = ε
(t)
jh = 1, for all 

h ∈ {τ(1), · · · , τ(�(t−1)
j )}. Obviously, ε(t−2)

j ≤ 2β(j; q). For that ε(t−2)
j −ε

(t−1)
j ≤ �

(t−1)
j .
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Case 1: t <
⌈
s
2
⌉
. We have ε(t)

jh ∈ {1; 2}, and 

{
ε
(t−1)
jh − ε

(t)
jh ∈ {0; 1}, if ε(t−1)

jh = 2;
ε
(t)
jh = ε(t−1), if ε(t−1)

jh = 1.
Thus

ε
(t−1)
j − ε

(t)
j =

⎛⎜⎝ ∑
h∈{τ(1),··· ,τ(	(t−1)

j )}

(ε(t−1)
jh − ε

(t)
jh )

⎞⎟⎠

+

⎛⎜⎝ ∑
h∈{τ(	(t−1)

j +1),··· ,τ(β(j;q))}

(ε(t−1)
jh − ε

(t)
jh )

⎞⎟⎠ ;

= 0 +

⎛⎜⎝ ∑
h∈{τ(	(t−1)

j +1),··· ,τ(β(j;q))}

(ε(t−1)
jh − ε

(t)
jh )

⎞⎟⎠ ,

since 0 ≤ ε
(t−1)
jh − ε

(t)
jh ≤ 1.

Hence 0 ≤ ε
(t−1)
j − ε

(t)
j ≤ β(j; q) −�

(t−1)
j ≤ β(j; q) − (ε(t−2)

j − ε
(t−1)
j ).

Case 2: t ≥
⌈
s
2
⌉
. We have 

{
ε
(t−1)
jh − ε

(t)
jh ∈ {0; 1; 2}, if ε(t−1)

jh ∈ {1; 2};
ε
(t)
jh = ε

(t−1)
jh , if ε(t−1)

jh = 0.
Thus

ε
(t−1)
j − ε

(t)
j =

⎛⎜⎝ ∑
h∈{τ(1),··· ,τ(	(t−1)

j )}

(ε(t−1)
jh − ε

(t)
jh )

⎞⎟⎠

+

⎛⎜⎝ ∑
h∈{τ(	(t−1)

j +1),··· ,τ(β(j;q))}

(ε(t−1)
jh − ε

(t)
jh )

⎞⎟⎠ ;

= 0 +

⎛⎜⎝ ∑
h∈{τ(	(t−1)

j +1),··· ,τ(β(j;q))}

(ε(t−1)
jh − ε

(t)
jh )

⎞⎟⎠ ,

since 0 ≤ ε
(t−1)
jh − ε

(t)
jh ≤ 2.

Therefore 0 ≤ ε
(t−1)
j −ε

(t)
j ≤ 2(β(j; q) −�

(t−1)
j ) ≤ 2 

(
β(j; q) − (ε(t−2)

j − ε
(t−1)
j )

)
. �

Theorem 2. The parameters of the Euclidean hull of a cyclic serial code over R of length 
n are given by (k0, k1, · · · , ks−1) where 2k0 + k1 + · · · + ks−1 ≤ n,

kt =
∑
i |n
i∈N

ordi(q) · u(t)
i +

∑
j |n
i/∈N

ordj(q) · ν(t)
j ,
q q
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with {
u

(t)
i = 0, if t <

⌈
s
2
⌉
;

0 ≤ u
(t)
i ≤ γ(i; q), if t ≥

⌈
s
2
⌉ , and

⎧⎪⎨⎪⎩
ε
(t)
j = 0, if n ∈ Nq;

0 ≤ ν
(t)
j ≤ β(j; q) − ν

(t−1)
j , if n /∈ Nq, and t <

⌈
s
2
⌉
;

0 ≤ ν
(t)
j ≤ 2(β(j; q) − ν

(t−1)
j ), if n /∈ Nq, and t ≥

⌈
s
2
⌉
.

Moreover ν(−1)
j = 0.

Proof. Let (k0, k1, · · · , ks−1) be the parameters of H0(C). When H0(C) = C, we have 
2k0 + k1 + · · · + ks−1 ≤ n. Then for all 0 ≤ t ≤ s − 1,

kt = deg

(
∂

(((
s∑

a=t

u
(a)
il

)◦)
,

((
s∑

a=t

v
(a)
ij

)◦)
,

((
s∑

a=t

w
(a)
jh

)◦)))

−deg
(
∂

(((
s∑

a=t+1
u

(a)
il

)◦)
,

((
s∑

a=t+1
v
(a)
jh

)◦)
,

((
s∑

a=t+1
w

(a)
jh

)◦)))
;

=
∑
i |n
i∈Nq

ordi(q) · u(t)
i +

∑
j |n
i/∈Nq

ordj(q) · (ε(t−1)
j − ε

(t)
j ), where u

(t)
i =

γ(i;q)∑
l=1

u
(t)
il .

Since 

{
u

(t)
i = 0, if t <

⌈
s
2
⌉
;

0 ≤ u
(t)
i ≤ γ(i; q), if t ≥

⌈
s
2
⌉ , it follows that 

{
u

(t)
i = 0, if 2t < s;

0 ≤ u
(t)
i ≤ γ(i; q), if s ≤ 2t.

On the other hand, one notes that if n ∈ Nq, then any positive divisor of n is in then 
Nq. By Lemma 4, we obtain⎧⎪⎨⎪⎩

ε
(t)
j = 0, if n ∈ Nq;

0 ≤ ν
(t)
j ≤ β(j; q) − ν

(t−1)
j , if n /∈ Nq, and t <

⌈
s
2
⌉
;

0 ≤ ν
(t)
j ≤ 2(β(j; q) − ν

(t−1)
j ), if n /∈ Nq, and t ≥

⌈
s
2
⌉
,

where ν(t)
j = ε

(t−1)
j − ε

(t)
j . Obviously ν(−1)

j = ε
(−2)
j − ε

(−1)
j = 0. �

The previous discussion leads to the Algorithm 1 and justifies its correctness. Exam-
ples 4.1, 4.2, 4.3 show different outputs of the algorithm.

Example 4.1. All possible parameters of Euclidean hulls of cyclic codes of length 11 over 
Z27 are determined as follows.

1. The divisors of 11 are 1 and 11.
a) We have 1 ∈ N3, so ord1(3) = 1 and γ(1; 3) = 1.



20 S. Talbi et al. / Finite Fields and Their Applications 77 (2022) 101950
Algorithm 1: Parameters of the Euclidean hull of a cyclic serial code over R.
Input: Length n, and a finite chain ring R of parameters (p, a, r, e, s) such that gcd(p, n) = 1.
Output: All possible s-tuples (k0, k1, · · · , ks−1) describing the parameters of the Euclidean hull of a 

cyclic serial code
1 . if n ∈ Nq then
2 for 0 ≤ t < s do
3 if t <

⌈
s
2
⌉

then
4 kt = 0.
5 else
6 For each i | n, compute ordi(q), and γ(i; q),
7 therefore all the possible values of kt, such that

kt =
∑
i |n
i∈Nq

ordi(q) · u(t)
i ,

with 0 ≤ u
(t)
i ≤ γ(i; q).

8 return The possible parameters (0, · · · , 0, k⌈ s

2

⌉, · · · , ks−1) such that k⌈ s

2

⌉ + · · · + ks−1 ≤ n.

9 else
10 For each i | n, if i ∈ Nq, then compute ordi(q), and γ(i; q).
11 For each j | n, if j /∈ Nq, then compute ordj(q), and β(j; q).
12 for 0 ≤ t < s, do
13 if t = 0 then
14 compute k0 =

∑
j |n
i/∈Nq

ordj(q) · ν(0)
j , where 0 ≤ ν

(0)
j ≤ β(j; q)

15 else
16 while 0 < t <

⌈
s
2
⌉

do
17 For a fixed ν(t−1)

j in kt−1, compute kt =
∑
j |n
i/∈Nq

ordj(q) · ν(t)
j , where 

0 ≤ ν
(t)
j ≤ β(j; q) − ν

(t−1)
j ,

18 if 2k0 + k1 + · · · + kt ≤ n then
19 consider kt,
20 else
21 reject kt

22 while t ≥
⌈
s
2
⌉

do
23 For a fixed ν(t−1)

j in kt−1, compute kt =
∑
i |n
i∈Nq

ordi(q) · u(t)
i +

∑
j |n
i/∈Nq

ordj(q) · ν(t)
j , 

where 0 ≤ u
(t)
i ≤ γ(i; q) and 0 ≤ ν

(t)
j ≤ 2 · (β(j; q) − ν

(t−1)
j ).

24 if 2k0 + k1 + · · · + kt ≤ n then
25 consider kt,
26 else
27 reject kt

28 return The possible parameters (k0, k1, · · · , ks−1) describing the Euclidean hull of a cyclic 
serial code.

b) We have 11 /∈ N3, so ord11(3) = 5 and β(11; 3) = 1.
2. It follows that

k0 = 5ν(0)
11 , where 0 ≤ ν

(0)
11 ≤ 1

k1 = 5ν(1)
11 , where 0 ≤ ν

(1)
11 ≤ 1 − ν

(0)
11

k2 = u
(2)
1 + 5ν(2)

11 where 0 ≤ u
(2)
1 ≤ 1 and 0 ≤ ν

(2)
11 ≤ 2(1 − ν

(1)
11 ).
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Hence, the all possible parameters (k0, k1, k2) of the Euclidean hulls of cyclic codes 
of length 7 over Z8 are given in the following table

k0 k1 k2

0 0 0, 1, 5, 6, 10, 11
5 0, 1

5 0 0, 1

Example 4.2. All the possible parameters (k0, k1, k2) of the Euclidean hull of a cyclic 
code of length 7 over Z8 are determined as follows.

1. The divisors of 7 are 1 and 7.
a) We have 1 ∈ N2, so ord1(2) = 1 and γ(1; 2) = 1.
b) We have 7 /∈ N2, so ord7(2) = 3 and β(7; 2) = 1.

2. It follows that

k0 = 3ν(0)
7 , where 0 ≤ ν

(0)
7 ≤ 1

k1 = 3ν(1)
7 , where 0 ≤ ν

(1)
7 ≤ 1 − ν

(0)
7

k2 = u
(2)
1 + 3ν(2)

7 where 0 ≤ u
(2)
1 ≤ 1 and 0 ≤ ν

(2)
7 ≤ 2(1 − ν

(1)
7 ).

Hence, the all possible parameters (k0, k1, k2) of the Euclidean hulls of cyclic codes 
of length 7 over Z8 are given in the following table

k0 k1 k2

0 0 0, 1, 3, 4, 6, 7
3 0, 1

3 0 0, 1

Example 4.3. The parameters of the Euclidean hulls of cyclic codes of length 21 over Z8
are given by

1. The divisors of 21 are {1, 3, 7, 21}.
(a) 1; 3 ∈ N2, we have ord1(2) = 1, ord3(2) = 2 and γ(1; 2) = γ(3; 2) = 1.
(b) 7; 21 /∈ N2, we have ord7(2) = 3, ord21(2) = 6 and β(7; 2) = β(21; 2) = 1.

2. It follows that

k0 = 3ν(0)
7 + 6ν(0)

21 , with 0 ≤ ν
(0)
j ≤ 1, where j ∈ {7; 21}.

k1 = 3ν(1)
7 + 6ν(1)

21 , with 0 ≤ ν
(1)
j ≤ 1 − ν

(0)
j , where j ∈ {7; 21}.

k2 = u
(2)
1 + 2u(2)

3 + 3ν(2)
7 + 6ν(2)

21 , with 0 ≤ u
(2)
i ≤ 1 and 0 ≤ ν

(2)
j ≤ 2(1 − ν

(1)
j ),

where i ∈ {1; 3}, and j ∈ {7; 21}.

Hence, the all possible parameters (k0, k1, k2) of the Euclidean hulls of cyclic codes 
of length 21 over Z8 are given in the following table
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k0 k1 k2

0 0 0, 1, 2, 3, · · · , 21
3 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15
6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
9 0, 1, 2, 3

3 0 0, 1, 3, · · · , 15
6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

6 0 0, 1, 3, · · · , 9
3 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15

9 0 0, 1, 2, 3

Corollary 4. The set ℵ(n, s, q) of q-dimensions of the Euclidean hull of a cyclic serial 
code of length n over R, is given by

ℵ(n, s, q) =

⎧⎪⎪⎨⎪⎪⎩
∑
i |n
i∈Nq

ordi(q)

⎛⎝γ(i;q)∑
l=1

�il

⎞⎠+
∑
j |n
i/∈Nq

ordj(q)

⎛⎝β(j;q)∑
h=1

�jh

⎞⎠ | 0 ≤�il≤ s−
⌈
s
2
⌉

0 ≤ �jh ≤ s

⎫⎪⎪⎬⎪⎪⎭ .

Proof. Let C be a cyclic serial code of length n over R with triple-sequence(
(((x(a)

il )0≤a<s)◦), (((y(a)
jh )0≤a<s)•), (((z(a)

jh )0≤a<s)•)
)

in En(q, s). From Theorem 2, the parameters (k0, k1, · · · , ks−1) of H0(C) where for all 
0 ≤ t ≤ s − 1,

kt =
∑
i |n
i∈Nq

ordi(q) ·

⎛⎝γ(i;q)∑
i=1

u
(t)
il

⎞⎠+
∑
j |n
i/∈Nq

ordj(q) ·

⎛⎝β(j;q)∑
h=1

(ε(t−1)
jh − ε

(t)
jh )

⎞⎠ .

Thus the q-dimension of H0(C) is 
s−1∑
t=0

(s − t)kt. It follows that

dimq(C) =
∑
i |n
i∈Nq

ordi(q) ·

⎛⎝γ(i;q)∑
i=1

�il

⎞⎠+
∑
j |n
i/∈Nq

ordj(q) ·

⎛⎝β(j;q)∑
h=1

�jh

⎞⎠ .

From Remark 3,

�il=
s−1∑
t=0

�(t)
il =

s−1∑
t=
⌈
s
2
⌉ �(t)

il ≤ s−
⌈s
2

⌉
,

and if j ∈ Nq then �j = 0. Otherwise,

�jh =
s−1∑
t=0

�(t)
jh =

⌈
s
2
⌉
−1∑

t=0
�(t)

jh +
s−1∑
⌈
s
⌉�(t)

jh
t= 2
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≤ max
0≤b≤s−

⌈
s
2
⌉
{(⌈s

2

⌉
+ b
)

+ 2
(
s−
⌈s
2

⌉
− b
)}

= s. �

5. The average q-dimension

We will denote by C(n; R) the set of all cyclic serial codes over length n over R. The 
average q-dimension of the Euclidean hull of cyclic of length n over R is

ER(n) =
∑

C∈C(n;R)

dimq(H0(C))
|C(n;R)| .

In this section, an explicit formula for ER(n) and bounds are given in terms of Bn,q where

Bn,q = deg
∏
i |n
i∈Nq

⎛⎝γ(i;q)∏
l=1

Ω(Gil)

⎞⎠ =
∑
i |n
i∈Nq

φ(i),

where Gil are symmetric q-cyclotomic cosets modulo n of size ordj(q), as defined in (4).
Consider the maps

�: Es → N

(x(0), · · · , x(s−1)) �→
s−1∑
t=0

min
{

t∑
a=0

x(a); 1 −
s−t−1∑
a=0

x(a)
}
,

(14)

and � : Es × Es → N defined as

�(y, z) =
s−1∑
t=0

(
min

{
t∑

a=0
y(a); 1 −

s−t−1∑
a=0

z(a)

}
+ min

{
t∑

a=0
z(a); 1 −

s−t−1∑
a=0

y(a)

})
,

(15)

where (y, z) = ((y(0), · · · , y(s−1)), (z(0), · · · , z(s−1))).
Let τ ∈ ℵ(n, s, q) be an element in the set defined in Corollary 4. Then τ is the q-

dimension of the Euclidean hull of a cyclic serial code of length n over R. The following 
result gives the number of cyclic serial codes of length n over R whose Euclidean hulls 
have q-dimension τ .

Proposition 8. Let n be a positive integer such that gcd(n, p) = 1 and τ ∈ ℵ(n, s, q)
where ℵ(n, s, q) is described in Corollary 4. The number ℘(n, τ ; R) of cyclic serial codes 
of length n over R whose Euclidean hulls have q-dimension τ is given by:

℘(n, τ ;R) =
∑

(((�il)◦),((�jh)•))∈Υ(τ)

⎛⎜⎜⎝∏
i |n
i∈N

γ(i;q)∏
l=1

ψs(�il)

⎞⎟⎟⎠
⎛⎜⎜⎝∏

j |n
j /∈N

β(j;q)∏
h=1

ρs(�jh)

⎞⎟⎟⎠ ,
q q
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where

ψs(�il) = |{x ∈ Es : � (x) =�il}|, ρs(�jh) = |{(y, z) ∈ Es × Es : �(y, z) = �jh}|,

and

Υ(τ)=

⎧⎪⎪⎨⎪⎪⎩(((�il)◦), ((�jh)•)) :
∑
i |n
i∈Nq

ordi(q)

⎛⎝γ(i;q)∑
l=1

�il

⎞⎠+
∑
j |n
i/∈Nq

ordj(q)

⎛⎝β(j;q)∑
h=1

�jh

⎞⎠=τ

⎫⎪⎪⎬⎪⎪⎭ .

The above expression of ER(n) =
∑

τ∈ℵ(n,s,q)

τ ·℘(n,τ ;R)
|C∈C(n;R)| , might lead to a tedious and 

lengthy computation. The remainder of the section will show an alternative simpler 
expression for the expected value.

Lemma 5. Consider the random variable � defined in (14) with uniform probability. The 
expected value E(�) is given by:

E(�) =
⌈
s
2
⌉ (

s−
⌈
s
2
⌉)

s + 1 =
{

s2

4(s+1) , if s even;
s−1
4 , if s odd.

Proof. Let t ∈ {0; 1; · · · ; s − 1} and x = (x(0), · · · , x(s−1)) ∈ Es. Set

�(t)
(x)= min

{
t∑

a=0
x(a); 1 −

s−t−1∑
a=0

x(a)

}
∈ {0; 1}.

Then �(t)
(x)= 1 if and only if 2t ≥ s and , 

t∑
a=s−t

x
(a)
il = 1. Thus for all η ∈ N, we have 

|{x ∈ Es : �(t)
(x)= η}| =

{
2t− s + 1, if t ≥

⌈
s
2
⌉

and η = 1;
0, otherwise.

Therefore,

|{x ∈ Es : � (x) = η}| =

⎧⎪⎨⎪⎩
s−1∑

t=
⌈
s
2
⌉(2t− s + 1), if η = s−

⌈
s
2
⌉
;

0, otherwise.

=
{ ⌈

s
2
⌉ (

s−
⌈
s
2
⌉)

, if η = s−
⌈
s
2
⌉
;

0, otherwise.

Since |Es| = s + 1 and P({x ∈ Es : � (x) = η}) = |{�(x)=η}|
|Es| , it follows that,

E(�) =
∑

ηP({x ∈ Es : � (x) = η}) =
⌈
s
2
⌉ (

s−
⌈
s
2
⌉)

s + 1 . �

η∈N
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Lemma 6. Consider the random variable � : Es × Es → N defined in (15) with uniform 
distribution. The expected value E(�) is given by

E(�) = s(2s + 1)
3(s + 1) .

Proof. From Corollary 4, for any (y, z) ∈ Es × Es, 0 ≤ �(y, z) ≤ s. Let

Es(η) = {(y, z) ∈ Es × Es : �(y, z) = η},

for 0 ≤ η ≤ s. Now,

|Es(η)| =
{

2(η + 1), if 0 ≤ η ≤ s− 1;
s + 1, if η = s.

Thus

E(�) = 1
(s + 1)2

s∑
η=0

η|Es(η)|;

= 1
(s + 1)2

(
s−1∑
η=1

2η(η + 1) + s(s + 1)
)

;

= s(2s2 + 3s + 1)
3(s + 1)2 . �

Theorem 3. The average q-dimension of the Euclidean hull of cyclic serial codes from 
C(n; R) is

ER(n) =

⎧⎨⎩
(

(2s+1)s
6(s+1)

)
n−

(
(s+2)s
12(s+1)

)
Bn,q, if s even;(

(2s+1)s
6(s+1)

)
n−

(
s2+2s+3
12(s+1)

)
Bn,q, if s odd,

where Bn,q =
∑
i |n
i∈Nq

φ(i).

Proof. Let Y be the random variable that takes as value dimq(H0(C)) when we choose at 
random a cyclic serial code from C(n; R) with uniform probability. Then E(Y ) = ER(n). 
By Lemma 3, there exists an one-to-one correspondence between C(n; R), and En(q, s). 
Therefore, choosing a cyclic serial code C from C(n, R) their probabilities are identical. 
By Corollary 4, we obtain

Y =
∑
i |n
i∈N

ordi(q)

⎛⎝γ(i;q)∑
l=1

�il

⎞⎠+
∑
j |n
i/∈N

ordj(q)

⎛⎝β(j;q)∑
h=1

�jh

⎞⎠ .
q q
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For all i and j dividing n such that i ∈ Nq and j /∈ Nq, from Lemmas 5 and 6, we note 
that E(�il) = E(�) and E(�jh) = E(�). So, we get

E(Y ) =
∑
i |n
i∈Nq

ordi(q)

⎛⎝γ(i;q)∑
l=1

E(�)

⎞⎠+
∑
j |n
i/∈Nq

ordj(q)

⎛⎝β(j;q)∑
h=1

E(�)

⎞⎠ ;

=
∑
i |n
i∈Nq

φ(i)E(�il) +
∑
j |n
i/∈Nq

φ(j)
2 E(�jh);

= Bn,qE(�) +
(
n− Bn,q

2

)
E(�);

= n

2 E(�) − Bn,q ·
(

1
2E(�) − E(�)

)
.

From Lemmas 5 and 6, we have

ER(n) =

⎧⎨⎩
(

(2s+1)s
6(s+1)

)
n−

(
(s+2)s
12(s+1)

)
Bn,q, if s even;(

(2s+1)s
6(s+1)

)
n−

(
s2+2s+3
12(s+1)

)
Bn,q, if s odd.

�

From [19], we have Bn,q = n if n ∈ Nq and 1 ≤ Bn,q ≤ 2n
3 if n /∈ Nq. Thus

• If n ∈ Nq, then

ER(n) =
{

s2n
4(s+1) , if s even;
n(s−1)

4 , if s odd.

• If n /∈ Nq, then{ (5s+1)sn
18(s+1) ≤ ER(n) ≤ 2n(2s+1)s−(s+2)s

12(s+1) , if s even;
(5s2+s−3)n

18(s+1) ≤ ER(n) ≤ 2ns(2s+1)−(s2+2s+3)
12(s+1) , if s odd.

Remark 4. ER(n) grows at the same rate with ns as s and n is coprime with p and tend 

to infinity. Thus, the upper limit of the sequence 
(
ER(n)
sn

)
(s,n)∈(N\{0})2

gcd(p,n)=1

is at most 1
3 and 

its lower limit is at least 5
18 .

6. Conclusion

The hulls of cyclic serial codes over an arbitrary finite chain ring have been investi-
gated. Especially, the parameters and the average of the q-dimension of the Euclidean 
hull of cyclic codes are studied in terms of triple-sequences. The parameters and the 
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average pr-dimensions of the Euclidean hulls of cyclic serial codes of arbitrary length 
have been determined as well. Asymptotically, it has been shown that the average of 
pr-dimension of the Euclidean hull of cyclic serial codes of length over R grows the same 
rate as the length of the codes. An extension of this paper to the case of the hulls of 
cyclic or constacyclic codes over finite chain rings is an interesting research problem as 
well. It would be interesting to study the properties of Euclidean hulls of negacyclic serial 
codes.
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