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A B S T R A C T   

This work focuses on the limit analysis or plastic calculation of slender beam planar frames using a direct method 
based on the Virtual Works Principle (VWP). The method consists in looking for the structure’s collapse 
mechanism from the equilibrium equations posed by means of virtual problems in displacements. This approach, 
in its classic formulation, is very unsystematic and requires a convenient choice of virtual problems. 

In this work, it has been possible to systematize the plastic calculation of the structure by applying the theory 
of mechanisms to obtain, fully automatically, the equilibrium equations necessary to completely solve the 
structure. Also, the compatibility equations necessary to know the accumulated rotations in the plastic hinges at 
the instant of collapse are presented. Finally, the search for the collapse mechanism is not carried out by trial and 
error, but is posed by optimization based on energy criteria.   

1. Introduction 

Steel frames show a high nonlinear behavior due to the plasticity of 
the material and the slenderness of members. How to approach the 
behavior of steel frames has been a large subject in the research field of 
constructional computation. In general, the plastic-hinge approach is 
adopted to capture the inelasticity of material of a framed structure. The 
plastic-hinge approach demands only one beam-column element per 
physical member to assess approximately the nonlinear properties of the 
structures; so the computation time is considerably reduced. Wherefore, 
the improvement in the accurateness of the plastic-hinge approach has 
been an attractive topic. 

In 1914 Kacinczy was the first to investigate the reserve of plastic 
resistance in a hyperstatic beam structure, introducing the concept of 
the plastic hinge and the collapse mechanism, independently Kist 
introduced same concepts in 1917. 

During the past 60 years, the theories of plasticity, stability and 
computing technology have recorded great achievements that consti
tutes the basis allowing scientists to develop successfully plastic 
methods for structures. The framed structures are often regarded as 
benchmark to build up computation methods for other kinds of 

structure. Up to now, plastic methods for framed structures can be 
classed into two groups: step-by-step method and direct methods. 

Step-by-step methods or elastic-plastic incremental methods are 
based on the standard methods of the elastic analysis. The loading 
process is divided into various steps. After reach loading step, the stiff
ness matrix is updated to take into account nonlinear effects. In com
parison with the elastic solution, only the physical matrix is varied to 
consider the plastic behavior. The step-by-step methods take advantage 
of large experiences of the linear elastic analysis by the finite element 
method. One may find many useful computational algorithms and 
techniques in many text books [1]. 

The Direct methods consists in the rigid-plastic methods that the load 
multiplier can be directly identified without any intermediate states of 
structures. The direct methods are based on the static and kinematic 
theorems-two fundamental theorems of the limit analysis, which lead to 
static approach and kinematic approach, respectively. 

The plastic behavior of structures in general and of framed structures 
in particular was well dealt with in many text books (e.g. Neal [2]). This 
work collects the basic theorems: static, kinematic and uniqueness; as 
well as the method for combining mechanisms. Such authors as M. 
Doblaré and L. Gracia [3]; H. R. Dalmau and J. Vilardell [4]; G. R. 
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Calborg [5] applied to the study of the plastic analysis by bending of 
structures, mainly beams and basic frames. 

The mechanism combination method is valid for solving very simple 
structures by hand. However, it has important drawbacks from the point 
of view of its practical application: first, it requires the appropriate 
virtual problems to be chosen for use both in displacement and in forces; 
and secondly, it requires possible collapse mechanisms to be tested, 
which even with few plastic hinges implies many possible collapse 
mechanisms that will have to be tested and verified. This makes the 
method very didactic and interesting from an academic point of view, 
but in practice hardly or not at all competitive with step by step calcu
lation methods based on the rigidity method. 

These drawbacks have been solved in this work by: one, the approach 
of the systematic equilibrium equations with the help of the Theory of 
Mechanisms; and two, the search for the structure’s collapse mechanism 
using nonlinear optimization techniques based on energy criteria, which 
seeks to maximize the total energy of the system while making the 
dissipated energy minimal. A set of cases has been solved, with both 
point loads and uniform distributed load, in low calculation times. 

This paper has been organized as follows: after this brief introduc
tion, the methodology is presented, which is then validated by solving a 
simple case of which the exact solution is known; then, more cases are 
solved to see the potential of the calculation method presented and it is 
applied to a practical example (a gabled frame with point loads and 
distributed load), and finally the main conclusions and contributions of 
the work are summarized. 

2. Methodology 

In this section, we explain the methodology developed to systematize 
the direct method of limit analysis for slender beam frames using the 
Virtual Works Principle (VWP). We first establish the basic hypotheses, 
the candidate sections for the plastic hinge, the degree of the structure’s 
hyperstaticity, the equilibrium equations (which are taken from the 
Virtual Displacement Principle (VDP)), and the structure’s compatibility 
equations (taken from the Virtual Forces Principle (VFP)). All of this is 
calculated systematically using the theory of mechanisms. 

2.1. Calculation hypothesis 

The basic hypotheses on which the limit analysis or plastic calcula
tion of this work is based are:  

• The beams of the structure are assumed to be straight, of uniform 
section and sufficiently slender.  

• The beams of the structure are free from residual or initial stresses.  
• Plastic collapse involves an indefinite growth of displacement under 

constant load, and the load that produces it is the plastic collapse 
load.  

• The section can only accumulate rotation when the bending moment 
reaches the value of the plastic moment, and this rotation can in
crease indefinitely.  

• The plastic moment depends on the material and the section, and its 
possible reduction is neglected due to the effect of the rest of the 
forces transmitted by the section, for example axial and shear forces.  

• The formation of the plastic hinge is supposed to take place suddenly 
and to be concentrated in the section that reaches the value of the 
plastic moment.  

• The hypothesis of small displacements and rotations of the sections 
of the structure at the moment of collapse is assumed, therefore, the 
accumulated rotation in the plastic hinges must also be small values. 

2.2. Candidate sections for the plastic hinge 

The sections of the structure that are candidates for the formation of 
a possible plastic hinge, in principle, are:  

• Knots of the structure, that is to say, zones of union of different 
beams, and beams with columns.  

• Fixed support  
• Sections of application of concentrated loads.  
• Intermediate sections of beams or columns with distributed load.  
• Zones with section change. 

The total number of Possible Plastic Hinges is called (nPPH). 

2.3. Balance and compatibility equations 

Most plastic problems are solved using only the equilibrium equa
tions with the Virtual Displacement Principle (VDP). This requires the 
number Static Structure (nSS) to be calculated, as it allows us to deter
mine the number of Equilibrium Equations (nEE) necessary to pose and 
solve our problem: nEE = nPPH − nSS. These equilibrium equations are 
obtained, as has already been said, by applying the Virtual Displace
ments Principle (VDP) that requires compatible virtual or auxiliary 
problems in displacements. 

The virtual problems that arise are possible mechanisms, that is, part 
or all of the structure experiences rigid solid movements that can be 
calculated systematically with the mechanisms theory. If we think of a 
fixed-ended frame with a panel mechanism, the final position of the 
mechanism clamp coincides with the fixed section on the right, its final 
position is known, and it is necessary to solve the inverse kinematic 
problem, that is, a value of small rotation for some of the torques based 
on the hypothesis of small displacements and rotations of the structure 
at the instant of plastic collapse. 

Finally, by means of the Virtual Forces Principle (VFP), which re
quires virtual or auxiliary problems in balance, nSS compatibility 
equations are obtained, which will allow us to calculate the accumulated 
turns in the plastic ball joints. 

2.4. Energy criteria 

In the classic approach to the plastic problem, through the direct 
method based on the application of the Virtual Works Principle (VWP), 
we proceed to test possible mechanisms in order to search for collapse 
mechanisms. This procedure can be successful if the structure’s collapse 
mechanism is tested at the beginning. However, in general, it is not 
known and the mechanisms that result from the combinations of the 
candidate sections of which the plastic hinges are formed have to be 
tested one by one, which can take a lot of calculations. 

However, in this work, the method uses energy criteria and optimi
zation techniques [8,9] so as to be able to avoid having to try possible 
mechanisms one by one. It is the constrained nonlinear optimization 
algorithm itself that, once well thought out, searches for the collapse 
mechanism corresponding to the structure with given loads and 
boundary conditions. 

The optimization problem that arises consists in maximizing the total 
energy of the structure and minimizing the dissipated energy, a problem 
subject to the equality restrictions given by the equilibrium equations 
(eq(λ,xi,Mi, θi) = 0) together with the compatibility equations (ce(λ,xi,

Mi,θi) = 0). In addition, there are, the restrictions of compatibility of the 
bending moments and accumulated rotations in the plastic hinges (see 
Fig. 1), which requires that they have the same sign: 

Mi⋅θi⩾0 (1) 

Mi bending moments in the sections of the structure and θi accu
mulated rotation in the plastic hinges. Regarding the signs of moments 
and rotations, are positive if they are counter-clockwise. 

The case of the uniform distributed load introduces additional un
knowns: the positions (xi) of the possible plastic hinges are unknown a 
priori, and therefore, the optimization algorithm must ensure that the 
collapse load caused by the final structure (collapse mechanism) must be 
a minimum load value. 
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The methodology has been tested with small structures, with few 
beams and/or columns that implies a low number of parameters, 
therefore Gradient Based techniques have been used. It is clear that, if 
the number of parameters is increased, it may be necessary to switch to 
Population Based techniques.. 

Fig. 1 includes a flow chart that summarizes the methodology fol
lowed in this work. 

3. Validation problem: fixed-fixed frame 

In this section, a first case is included as a validation problem, con
sisting of a basic frame fixed ended in the base of both columns (both 
columns of length L), beam length (2L) and whose loads are as indicated 
in Fig. 2, both of value P. All columns and beam have the same me
chanical and geometric properties, so the maximum moment for all the 
bars is the plastic moment, Mp. The numerical data of the problem are: 
L = 4m; P = 1000N; E = 2.1⋅1011 Pa; Iz = 8360.0⋅10− 8 m4; S =

Fig. 1. Methodology flow chart.  

Fig. 2. Fixed-fixed frame.  
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628.0⋅10− 6 m3; fy = 275.0⋅106 Pa; Mp = S⋅fy = 172700.0N⋅m, where L 
is the length of the columns and half of the beam, P is the concentrated 
loads, E is Young’s module, Iz the moment of inertia, S the section plastic 
module, fy the yield strength of the steel and MP the plastic moment. 

The methodology outlined in Section 2 is applied using a MATLAB 
script that systematically solves the plastic problem without user 
intervention [6,7]. To do so, it first calculates the equilibrium equations 
(nEE = 2) and the compatibility equations (nSS = 3) for this problem, 
which it then introduces as equality constraints in the optimization al
gorithm. It is the optimization algorithm that searches for the collapse 
mechanism, maximizing the total energy of the system; in this, case the 
collapse mechanism of the structure involves the formation of plastic 
hinges in sections a, c, d and e. 

The collapse load factor results in the value: λc = 129.5247; there
fore, the collapse load of the structure is Pc = λc⋅P, which corresponds to 
the exact theoretical value, 

Pc =
3Mp

L
(2)  

where Pc is the collapse load. 
To obtain the accumulated rotations in the plastic hinges at the 

instant of collapse, the condition that the dissipated energy is minimal is 
imposed, thus obtaining the following results: θa = 0.0 rad; θc =

0.0065 rad; θd = − 0.01312 rad; θe = 0.00656 rad; which again exactly 
matches the theoretical solution: 

θc =
Mp⋅L
6EIz

θd = −
Mp⋅L
3EIz

θe =
Mp⋅L
6EIz

(3) 

The bending moments in the sections where plastic ball joints are 
formed are: 

Ma = − Mp
Mc = +Mp
Md = − Mp
Me = +Mp

(4) 

Therefore, the solution obtained meets (1), is compatible and is the 
solution of the plastic calculation problem. 

4. Examples 

Then, in the following three sections, a series of cases is studied: in 
the first (Example 1), the support conditions of the frame are changed; in 
the second (Example 3), the values of the loads are changed; and in the 
third (Example 3), the type of loads, which are now uniformly distrib
uted, is changed. 

4.1. Example 1: fixed-pinned frame 

This first case study is very similar to the one seen in the previous 
section, in fact it only differs in that the support of the base of the 
righthand column has been changed from fixed to hinge support, see 
Fig. 3. 

The data in this example is again: L = 4m; P = 1000N; E = 2.1⋅ 
1011 Pa; Iz = 8360.0⋅10− 8 m4; S = 628.0⋅10− 6 m3; fy = 275.0⋅ 
106 Pa; Mp = S⋅fy = 172700.0N⋅m. 

For this methodology, the equilibrium equations (nEE = 2) are first 
applied, followed by the compatibility equations (nSS = 2). Now, in the 
section (e), where the hinge support is located, no plastic join can be 
formed. The optimization algorithm searches for the collapse mecha
nism, which in this case involves the formation of plastic hinges in 
sections b, c and d. A collapse mechanism is formed, which is termed 
complete because just nSS+1 plastic hinges are formed in the structure. 

The collapse load factor has the value: λc = 172.7; therefore, the 
collapse load of the structure is Pc = λc⋅P, which corresponds to the 
exact theoretical value, 

Pc =
4Mp

L
(5)  

where Pc is the collapse load. 
As in the first case, to obtain the accumulated rotations in the plastic 

hinges at the instant of collapse, the condition that the dissipated energy 
is minimal is imposed, thus obtaining the following results: θb =

0.0 rad; θc = 0.06558 rad; θd = − 0.03498 rad; which again exactly 
match the theoretical solution: 

b

a

L

e

dc

L

L

6
P

P

PM

PM

PM

Fig. 3. Fixed-hinge frame.  
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θc =
5Mp⋅L
3EIz

θd = −
8Mp⋅L
9EIz

(6) 

The bending moments in the sections where plastic hinges are 
formed are: 

Ma = − 0.667⋅Mp
Mb = − Mp
Mc = +Mp
Md = − Mp

(7) 

Therefore, the solution obtained meets (1), is compatible and it is the 
solution of the plastic calculation case raised. 

4.2. Example 2: frame with point loads 

This second example is in every way similar to the structure of the 
validation problem except that the concentrated loads have different 
values, see Fig. 4. 

The equilibrium equations (nEE = 2) and the compatibility equa
tions are posed (nSS = 3), looking for the collapse mechanism: sections 
b, c and d. The collapse mechanism formed is an incomplete mechanism 
because less than nSS+1 plastic hinges are formed in the structure. 

The collapse load factor is: λc = 172.7; therefore, the collapse load of 
the structure is Pc = λc⋅P, which corresponds to the exact value, 

Pc =
4Mp

L
(8)  

where Pc is collapse load. 
The rotations accumulated in the plastic hinges at the instant of 

collapse are: θb = 0.0 rad; θc = 0.03279 rad; θd = − 0.01312 rad; which 
again exactly match the theoretical solution: 

θc =
5Mp⋅L
6EIz

θd = −
Mp⋅L
3EIz

(9) 

The bending moments in the sections where plastic hinges are 
formed are: 

Ma = 0.167⋅Mp
Mb = − Mp
Mc = +Mp
Md = − Mp
Me = 0.833⋅Mp

(10) 

The solution obtained is the plastic problem solution because it 
meets (1), and is, therefore, compatible. 

4.3. Example 3: frame with uniform distributed load 

This case is even more interesting because the load type is changed 
and includes a uniform distributed load along the total length of the 
lefthand column, which can, for example, simulate the action of the 
wind, see Fig. 5. The data in this case are: L = 1m; q = 1000N/m; E =

2.1⋅1011 Pa; Iz = 8360.0⋅10− 8 m4; S = 628.0⋅10− 6 m3; fy = 275.0⋅ 
106 Pa; Mp = S⋅fy = 172700.0N⋅m, where q is the intensity of the 
distributed load. 

As pointed out above, this example is very interesting because, when 
introducing a distributed type load, an intermediate plastic hinge may 
originate in the column, which does not a priori know where it is going 
to occur, in section (b) for example. One more unknown (x, position of 
the plastic hinge) appears for each additional distributed load. To solve 
the plastic analysis in such a case, it is necessary for the solution to 
ensure that the collapse load that originates the final situation of the 
structure, the plastic collapse load, is a minimum value, which requires 
another optimization loop. 

Once the problem is well posed in a script of the Matlab program, the 
optimization algorithm itself is in charge of looking for the minimum 
collapse load that causes the plastic collapse of the structure of interest; 
in this case, the mechanism that involves plastic hinges in the following 
sections: a, b, d and e, again the final mechanism formed is a complete 
mechanism. The collapse load factor is: λc = 143.228; therefore, the 
collapse load of the structure is qc = λc⋅q, which corresponds to the exact 
theoretical value, 

qc =
2(2 +

̅̅̅
3

√
)Mp

9L2 (11)  

where qc is the collapse load. 
The rotations accumulated in the plastic ball joints at the instant of 

Fig. 4. Frame with point loads.  
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collapse are: θa = − 0.0182716 rad; θb = 0.0000646283 rad; θd =

0.0 rad; θe = 0.0103941 rad; which again exactly match the theoretical 
solution: 

θa =
11(2

̅̅̅
3

√
− 9)Mp⋅L

12(1 +
̅̅̅
3

√
)EIz

θb =
(7 − 4

̅̅̅
3

√
)Mp⋅L

4(1 +
̅̅̅
3

√
)EIz

θd = 0

θe =
5(3 −

̅̅̅
3

√
)Mp⋅L

6EIz

(12) 

The bending moments are: 

Ma = − Mp
Mb = +Mp
Mc = 0.732⋅Mp
Md = − Mp
Me = +Mp

(13) 

And the intermediate section in the sector requested by the distrib
uted load (section b) is: 

x = 2.1941 m (14) 

It is important to highlight that a methodology based on energy 
criteria allows problems to be solved both with loads concentrated in 
certain sections and with uniform distributed load on some beams and/ 

or columns. 

5. Problem application: gable frame 

The resolution of the practical problem of a gable type frame with 
distributed loads and point loads is considered in this section, see Fig. 6. 
The data of the problem are: Lp = 4m; Ld = 6m; β = 10 ◦; q =

1000N/m; P = 1000N; E = 2.1⋅1011 Pa; Iz = 8360.0⋅10− 8 m4; S =

628.0⋅10− 6 m3; fy = 275.0⋅106 Pa; Mp = S⋅fy = 172700.0N⋅m, where 
Lp is the height of the columns, Ld is half the width of the frame and β is 
the angle of inclination of the beam. 

After applying the same methodology as in the examples in the 
previous section, a collapse load factor of value λc = 26.65 is obtained. A 
complete plastic collapse mechanism is formed that involves the for
mation of hinges in sections a, d, f and g. The values of the accumulated 
rotation in the plastic hinges at the instant of collapse are: θa =

− 0.00615 rad; θd = 0.0 rad; θf = − 0.0231 rad; θg = 0.0200 rad. 
The values of the bending moments of the frame in the candidate 

sections are: 

Ma = − Mp
Mb = − 0.4393⋅Mp;

(
xb = 2.0m

)

Mc = − 0.4956⋅Mp
Md = +Mp;

(
xd = 4.2978m

)

Me = 0.7811⋅Mp
Mf = − Mp
Mg = +Mp

(15) 

Fig. 5. Frame with uniform distributed load.  

Fig. 6. Gable frame.  
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It is necessary to clarify that this case of geometry, loads and supports 
does not originate a plastic hinge in section b, although does in section 
d requested by distributed load. 

6. Conclusions 

The plastic methods for planar beam frames have been investigated 
for decades by numerous researchers. There are two analysis methods: 
“Direct methods” or “Step-by-step methods”. Direct methods in their 
classic formulation are very unsystematic. They are based on the Virtual 
Works Principle (VWP) and use equilibrium equations to find the 
structure’s collapse mechanism using virtual problems in displacements 
(virtual mechanisms). 

This work uses a Direct method, but the solution is not presented in a 
traditional way, combining mechanisms and testing until the collapse 
mechanism is found. 

However, in this work it has been possible to systematize the equa
tions by applying the Theory of Mechanisms. Likewise, the compatibility 
equations necessary to know the accumulated rotations in the plastic 
hinges at the moment of collapse are presented. 

One of the contributions of this work is that optimization techniques 

are used to look for the last state of the structure, the collapse mecha
nism and the associated load factor. 

This work is a very useful two-dimensional method for the analysis of 
real industrial buildings, since they are large structures with a contin
uous section that can be studied using flat frames. The methodology of 
this work is useful to analyze the structure regardless of the type of 
loads: concentrated loads or distributed load. 
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Appendix A. Virtual Works Principle (VWP) 

The methodology of this work is based on the Virtual Works Principle (VWP), which consists of an energy balance: the work carried out by external 
loads is equal to the deformation energy of the structure plus the energy dissipated in the plastic hinges, which is formulated as: 

∑nP

j=1
Pjvj(θi)+

∑nq

l=1

∫ Ll

0
ql(x)vl(θi)dx =

∑nb

k=1

∫ Lk

0
M(x)

m(x)
EIz

dx+
∑nPPH

i=1
Miθi (16)  

where nP is the number of sections with point loads, Pj is the point load, vj(θi) is the transverse displacement that depends on the accumulated rotations 
in the plastic hinges, nq is the number of beams and/or columns with uniform distributed load, ql is the value of the distributed load, nb is the number 
of beams and columns in the structure, M(x) is the bending moment in the beams and columns of the structure, m(x) is the bending moment of the 
auxiliary or virtual problem, and θi is the accumulated rotation in the plastic hinges. 

The previous expression allows us to calculate: the total energy, the energy of bending deformation and the dissipated energy of the structure of 
interest. 

If the integral expression makes use of a virtual or auxiliary problem in displacements (see Annex 2), it is called the Virtual Displacements Principle 
(VDP) and provides equilibrium equations for the analyzed structure. 

On the contrary, if the VWP is posed using a virtual or auxiliary problem in equilibrium (see Annex 3), it is called the Virtual Forces Principle (VFP) 
and provides compatibility equations for the analyzed structure. 

Appendix B. Virtual Mechanism 

Applying the Virtual Displacements Principle (VPD) requires posing auxiliary problems in compatible displacements that can be mechanisms, 
which involve null deformations and stresses. For this, the inverse kinematic problem of the theory of mechanisms is used. 

To better illustrate the technique, it is applied to the problem in the Fig. 2. First, the coordinate transformation matrix of each beam element is 
formulated: 

T1
0 =

⎛

⎜
⎜
⎜
⎝

cos(θa) − sin(θa) 0 0
sin(θa) cos(θa) 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

≃

⎛

⎜
⎜
⎜
⎝

1 − θa 0 0
θa 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

(17)  

T2
1 =

⎛

⎜
⎜
⎜
⎝

cos(θb) − sin(θb) 0 0
sin(θb) cos(θb) 0 L
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

≃

⎛

⎜
⎜
⎜
⎝

1 − θb 0 0
θb 1 0 L
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

(18)  

T3
2 =

⎛

⎜
⎜
⎜
⎝

cos(θc) − sin(θc) 0 L
sin(θc) cos(θc) 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

≃

⎛

⎜
⎜
⎜
⎝

1 − θc 0 L
θc 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

(19)  
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T4
3 =

⎛

⎜
⎜
⎜
⎝

cos(θd) − sin(θd) 0 L
sin(θd) cos(θd) 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

≃

⎛

⎜
⎜
⎜
⎝

1 − θd 0 L
θd 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

(20)  

T5
4 =

⎛

⎜
⎜
⎜
⎝

cos(θe) − sin(θe) 0 0
sin(θe) cos(θe) 0 − L
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

≃

⎛

⎜
⎜
⎜
⎝

1 − θe 0 0
θe 1 0 − L
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

(21) 

Therefore, the system coordinate transformation matrix results: 

T5
0 = T1

0⋅T2
1⋅T3

2⋅T4
3⋅T5

4 =

⎛

⎜
⎜
⎜
⎝

1 0 0 2⋅L
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎠

(22)  

where, in the transformation matrices of each beam of the system, the hypothesis of small displacements and rotations has been assumed. The origin of 
the coordinate system has been located in section a, the x axis oriented from section a to section e, with the y axis being vertical. 

The final position and orientation vector is known and corresponds to section e: 

P =

⎛

⎝
2⋅L
0
0

⎞

⎠ (23) 

Giving initial values to the turns of the pairs, for example, the values θa = − 0.0001 rad; θc = 0.0 rad, and solving the inverse kinematic problem; 
the following torque values are obtained: 

θb = 0.0001 rad
θd = − 0.0001 rad
θe = 0.0001 rad

(24)  

which corresponds to the mechanism known as mechanism board. 

Appendix C. Virtual structure 

Applying the Virtual Forces Principle (VFP) requires posing auxiliary problems in balance. This then is simple, at least in principle, as it only 
includes concentrated forces and/or moments. 

By posing virtual problems with loads and/or specific moments, the calculation of the work of the external loads is simple and the calculation of the 
deformation energy can be systematized. 

If the structure of the problem of interest only has concentrated loads, the following expression results for each beam: 
∫ L

0
M(x)

m(x)
EIz

dx =
L

6EIz
(ma(2Ma +Mb)+mb(Ma + 2Mb)) (25)  

where M(x) are the moments of the problem of interest and m(x) are the moments of the virtual problem. 
If the structure beam is requested by uniform distributed load, the following expression is as follows: 

∫ L

0
M(x)

m(x)
EIz

dx =
L

6EIz
(ma(2Ma +Mb)+mb(Ma + 2Mb)+

qL2

4
(ma +mb)) (26)  

where q is the value of the uniform distributed load requested at the beam. 
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