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Abstract: There are many of pathogen parasite species with different susceptibility profile to antiparasitic 

drugs. Unfortunately, almost QSAR models predict the biological activity of drugs against only one parasite 

species. Consequently, predicting the probability with which a drug is active against different species with a 

single unify model is a goal of the major importance. In so doing, we use Markov Chains theory to calculate 

new multi-target spectral moments to fit a QSAR model that predict by the first time a mt-QSAR model for  

500 drugs tested in the literature against 16 parasite species and other 207 drugs no tested in the literature 

using spectral moments. The data was processed by Linear Discriminant Analysis (LDA) classifying drugs 

as active or non-active against the different tested parasite species. The model correctly classifies 311 out of 

358 active compounds (86.9%) and 2328 out of 2577 non-active compounds (90.3%) in training series. 

Overall training performance was 89.9%. Validation of the model was carried out by means of external 

predicting series. In these series the model classified correctly 157 out 190, 82.6% of antiparasitic 

compounds and 1151 out of 1277 non-active compounds (90.1%). Overall predictability performance was 

89.2%. In addition we developed four types of non Linear Artificial Neural Networks (ANN) and we 

compared with the mt-QSAR model. The improved ANN model had an overall training performance was 

87%. The present work report the first attempts to calculate within a unify framework probabilities of 

antiparasitic action of drugs against different parasite species based on spectral moment analysis.  
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1. Introduction 

     A parasite is an organism that lives on or inside another organism (the host) and causes harm to the host. 

Parasites that enter through the mouth are swallowed and can remain in the intestine or burrow through the 

intestinal wall and invade other organs. Parasites that enter through the skin bore directly through the skin 

or are introduced through the bites of infected insects (the vector) like Plasmodium falciparum that produce 

malaria infection
1
. In this sense, quantitative structure-activity relationships (QSAR) studies may play an 

important role; QSAR are used like predictive tools for the molecular development
2, 3

. 

     As a result, there is an increasing interest on the development of rational approaches for antiparasitic 

drugs discovery. In this sense, a very important role may be played by computer-aided drug design 

techniques based on multi-target Quantitative Structure-Activity Relationships (mt-QSAR) studies. It 

means that they are models connecting the structure of drugs with the biological activity against different 

targets (microbial species in the case of antimicrobial drugs) 
4, 5

. This kind of study may also help in a 

Multi Objective Optimization (MOOP) of desired properties or activity of drugs against different targets; 

see for instance the recent works carried out by Cruz-Monteagudo in the topic 
6, 7

. In principle, up to date 

there are over 1600 molecular descriptors that may be generalized and used to solve the former problem 
8, 9

. 

Many of these indices are known as Topological Indices (TIs) or simply invariants of a molecular graph, 

whose vertices are atoms weighed with physicochemical properties (mass, polarity, electro negativity, or 

charge) 
10

. Unfortunately, most of the QSAR studies reported up-to-date are based on molecular descriptors 
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and databases of structurally parent compounds applicable to only one single parasite species. Therefore, it 

is of major interest the development of one single unified equation explaining antiparasitic activity of 

structurally heterogeneous series of compounds against as many species as possible 
11

. In fact, other mt-

QSAR approaches, with demonstrated usefulness, have been introduced recently in medicinal chemistry 
12

. 

We introduced a Markov Model encoding molecular backbones information. The method was named the 

MARCH-INSIDE, MARkovian CHemicals IN SIlico Design 
13

. It allowed us introducing matrix invariants 

such as stochastic entropies, potentials, and spectral moments for the study of molecular properties 
14

. 

Specifically, the stochastic spectral moments introduced by our group have been largely used for small 

molecules mt-QSAR problems including the design of fluckicidal, anticancer and antihypertensive drugs 
15

. 

Applications to macromolecules have been restricted to the field of RNA without applications to proteins 
16-19

. In three recent reviews, we discussed the multiple applications of MARCH-INISDE to classic QSAR, 

macromolecular QSAR, and specially mt-QSAR 
20, 21

. However, we have never used before stochastic 

spectral moments to develop an mt-QSAR for antiparasitic drugs.  

     The main steps involved in developing an mt-QSAR model are (a) selection of the data set, (b) 

calculation of molecular descriptors, (c) fitting the statistical model, and (d) validation of the model. 

Numerous different molecular descriptors have been reported to encode chemical structure in QSAR 

studies. Furthermore, there are multiple chemo metric approaches that can in principle be selected for step. 

Multiple linear regression (MLR), linear discriminant analysis (LDA), partial least squares (PLS), and 

different kinds of artificial neural networks (ANN) can be used to relate molecular structure (represented 

by molecular descriptors) with biological properties. The ANNs are particularly useful in QSAR studies in 

which the linear models fit poorly due to high data complexity
22, 23

. 

     There are different kinds of ANNs, and these include multilayer perceptron (MLP), radial basis 

functions (RBF), and PNNs this ANN is a variant of RBF systems. In particular, PNN is a type of neural 

network that uses a kernel-based approximation to form an estimate of the probability density functions of 

classes in a classification problem
24

. In this work, we develop, for the first time, a single linear equation 

based on these previous ideas to predict the antiparasite activity of drugs against different species and 

compare a model developed by LDA analysis with several different models developed by ANN, looking 

for a better model. 

 

2. Methods 

2.1. Markov Thermodynamics for drug-target step-by-step interaction 
Let us consider a hypothetical situation in which a drug molecule is free in the space at an arbitrary initial 

time (t0). It is then interesting to develop a simple stochastic model for a step-by-step interaction between 

the atoms of a drug molecule and a molecular receptor at the time of triggering the pharmacological effect. 

For the sake of simplicity, from now on, we are going to consider a general structure-less molecular 

receptor or drug-target, understanding by structure-less receptor a receptor whose chemical structure is not 

taken into consideration. In our model, we approach this problem considering the free energy 
k
gij(s) of 

interaction between an atom in the drug and the drug receptor after k-steps or previous interactions. We 

state that 
k
gij(s) is also a state function and the symbol g points precisely to Gibbs energy.  S indicates that 

this energy depends on the specific drug target in different microbial species. Afterwards, the interaction 

has to define the free energy of interaction 
k
gij(s) between the j-th atom and the receptor for a specific 

microbial species (s) given that i-th atom has been interacted at a previous time tk. So, one can suppose 

that, atoms begin binding to this receptor in discrete intervals of time tk. However, there are several 

alternative ways in which such step-by-step binding process may occur. In this picture, the free energy 
1
gij(s) can be defined by analogy as dependent on a constant for the atom-target interaction Γij(s) 

15, 25
:  

     1log11 sTRsg ijij 
 

The present approach to antimicrobial-receptor interaction has two main drawbacks. The first is the 

difficulty of defining the constants. In this work, we solve the first question by estimating the use of the 

ratio of occurrence nj(s) of the j-th atom on active molecules against a given species (frequency of effective 
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interactions) with respect to the number of atoms of the j-th class in the molecules tested against the same 

species nT(s). Consequently, one of the most important steps is the change on the value of the atomic 

weights used 
k
gij(s) for different pathogen species. Regarding 

1
Γij(s), we must take into account that once 

the j-th atoms have interacted, the preferred candidates for the next interaction are those i-th atoms bound 

to j by a chemical bond 
15

: 
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Where, αij are the elements of the atom adjacency matrix, nj(s), nT(s), and 

1
gij(s) have been defined in the 

paragraph above, R is the universal gases constant, and T the absolute temperature. The number 1 is added 

to avoid forbidden negative values as inputs for the logarithmic function. The second problem relates to the 

description of the interaction process at higher times tk > t1. Therefore, Markov Chain theory enables a 

simple calculation of the probabilities with which the drug-receptor interaction takes place in the time until 

the antimicrobial effect is achieved. As depicted in Figure 1, this model deals with the calculation of the 

probabilities (
k
pij) with which any arbitrary molecular atom j-th binds to the structure-less molecular 

receptor given that other atom i-th has been bound before; along discrete time periods tk (k = 1, 2, 3, …); (k 

= 1 in grey), (k = 2 in blue) and (k = 3 in red) throughout the chemical bonding system. The procedure 

described here considers the atoms of the molecule as states of the Markov Chain. The method arranges all 

the 
1
gij(s) free energies of interaction as a squared table of n x n dimension. After normalization of the 

matrix we can built up the corresponding stochastic matrix 
1
(s), which has the elements 

1
πij(s) 

respectively. The matrix is called the 1-step drug-target interaction stochastic matrix. 
1
(s) is built too as a 

squared table of order n, where n represents the number of atoms in the molecule. The elements 
1
πij(s) of 

the 1-step drug-target interaction stochastic matrix are the binding probabilities with which a j-th atom 

binds to a structure-less molecular receptor given that other i-th atoms have been interacted before at a time 

t1 = 1
15

:
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Such a model is stochastic per se (probabilistic step-by-step atom-receptor interaction in time) but also 

considers molecular connectivity (the step-by-step atom union in space throughout the chemical bonding 

system). One can calculate the atomic spectral moments 
k
µs(j) = 

k
πjj(s),  values on the main diagonal (i = j) 

of the matrix,
 
in order to numerically characterize the propensity with which a specific atom interacts 

several times with a drug receptor. In addition, the 
k
µs(j) can be summed for specific atom sets (AS) to 

create local molecular descriptors 
k
µs(AS) for the drug-target interaction. Herein the AS used were as 

follows: halogens (X), unsaturated carbons (Cunst), saturated carbons (Csat), heteroatom (Het), and hydrogen 

bound to heteroatom (H-Het). The corresponding symbols of the local spectral moments for these AS are: 

µk(X,s), µk(Cunst,s), µk(Csat,s), µk(Het,s), µk(H-Het,s). Finally, the sum of all atoms (it means that AS = 

Total contains all atoms) is useful as a total molecular descriptor. 
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Figure 1. Molecular fragments 

 

2.2. Statistical analysis 

As a continuation of the previous sections, we can attempt to develop a simple linear QSAR with the 

general formula: 

           5..... 0

3

3
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1

1

0
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k

ksssss    

Here, 
k
µs(AS) are the spectral moments described above that act as molecule-target interaction descriptors 

specific for each drug-microbial specie pair. We selected Linear Discriminant Analysis (LDA)
 
to fit the 

classification functions. The model deals with the classification of a set of compounds as active or not-

active against different microbial species 
26

. A dummy variable (Actv) was used to codify the antimicrobial 

activity. This variable indicates either the presence (Actv = 1) or absence (Actv = –1) of antimicrobial 

activity of the drug against specific species. In equation (5), ak represents the coefficients of the 

classification function, determined by the least square method as implemented in the LDA module of the 

STATISTICA 6.0 software package 
27

.
 
Forward stepwise strategy was set as the one used for variable 

selection
26

. The quality of LDA models was determined by examining Wilk’s U statistic, Fisher ratio (F), 
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and the p-level (p). We also inspected the Accuracy, Sensitivity, and Specificity of the method. The 

Validation of the model was corroborated by external validation series 
26

. 

2.3. Data set  

The data set was formed by a set of marketed and/or very recently reported antiparasitic drugs which low 

reported low MIC50 < 10 μM against different parasite species. The data set was conformed to more than 

500 drugs experimentally tested against some species of a list of 16 and other 207 drugs no tested in the 

literature. Not all drugs were tested in the literature against all listed species so we were able to collect 

4403 cases (drug/species pairs) instead of 707 x 16 cases.
 

3. Results and discussion 

One of the main advantages of the present stochastic approach is the possibility of deriving average 

thermodynamic parameters depending on the probability of the states of the MM. The generalized 

parameters fit on a more clearly physicochemical sense with respect to our previous ones 
14, 28, 29

. More 

specifically, this work introduces for the first time a single linear QSAR equation model to predict the 

antiparasitic activity of drugs against different parasite species. The best model found was: 

             

001.06.190452.0

621.597.071.153.092.112.149.1

2

214351





p

HetHHetHXCCCactv ssssatsunstsunsts





 

In the model, the coefficient λ is the Wilk’s statistic; statistic for the overall discrimination, χ
2 

is the Chi-

square, and p the error level. In this equation, 
k
µs were calculated for the total (T) of atoms in the molecule 

or for specific collections of atoms. These collections are atoms with a common characteristic for instance: 

heteroatom (Het) and hydrogen bound to heteroatom (H-Het) and saturated Carbon atoms (Csat) and 

Halogen atoms (X). The model correctly classifies 311 out of 358 active compounds (86.9%) and 2328 out 

of 2577 non-active compounds (90.3%) in training series. Overall training performance was 89.9%. 

Validation of the model was carried out by means of external predicting series. In these series the model 

classified correctly 157 out 190, 82.6% of antiparasitic compounds and 1151 out of 1277 non-active 

compounds (90.1%). Overall predictability performance was 89.2%, see Table 1. These results were 

received very fine by the authors that developed LDA and also non-linear QSAR classification models 
30-46

. 

 

Parameter % Classes Non-

active Antiparasitic 

Analysis 

Sensitivity 90.3 Non-active 2328 249 

Specificity 86.9 Antiparasitic 47 311 

Accuracy 89.9    

Validation 

Sensitivity 90.13 Non-active 1151 126 

Specificty 82.63 Antiparasitic 33 157 

Accuracy 89.16    
The positive cases are in black 

Table 1. Results of the model. analysis. validation. 

The characteristic most interesting of the present model is that the 
k
µs used as molecular descriptors 

depend both on the molecular structure of the drug and the parasite species against which the drug must 

act. The codification of the molecular structure is basically due to the use of the adjacent factor αij to 

encode atom-atom bonding, molecular connectivity. The other aspect that allows encoding molecular 

structural changes is that the spectral moment 
k
µs are atom-class specific. This property is related to the 

definition of the 
k
µs. The values of these species, specific atomic standard free energies reported herein for 

the first time, are given in Table 2 for some atoms and more than 16 species. For example, one change in 

the molecular structure of, e.g. F by O, necessarily implies a change in the moments of interaction.  

Moreover, the most interesting fact is that 
k
µs are the molecular descriptors reported for antimicrobial mt-

QSAR studies able to distinguish among a large number of parasites species.  
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PARASITE SPECIES C H N O S Cl Br I F P 

Cryptosporidium parvum 0.2 0.2 0.19 0.18 0.09 0.25 0.06 0 0.27 0 

Entamoeba histolytica 0.15 0.15 0.13 0.14 0 0.15 0.3 0.3 0 0.14 

leishmania amazonesis 0.18 0.18 0.18 0.18 0 0.18 0 0 0 0 

Leishmania donovani 0.2 0.19 0.19 0.18 0.14 0.3 0 0 0.21 0 

Leishmania infantum 0.19 0.2 0.18 0.19 0.15 0.16 0.26 0 0.18 0 

Leishmania major 0.16 0.17 0.2 0.13 0 0.3 0 0 0 0 

Leishmania mexicana 0.19 0.19 0.18 0.2 0 0 0 0 0 0 

Leishmania species 0.19 0.18 0.18 0 0 0.24 0 0 0 0 

Plasmodium falciparum 0.21 0.21 0.22 0.17 0.16 0.26 0.28 0.21 0.22 0.04 

Pneumocystis carinii 0.29 0.28 0.29 0.27 0 0 0 0 0 0 

Toxoplasma gondii 0.22 0.22 0.24 0.22 0.16 0.19 0 0 0.29 0 

Trichomonas vaginalis 0.15 0.15 0.12 0.19 0.13 0.22 0 0 0 0 

Trypanosoma brucei 0.16 0.18 0.15 0.27 0.3 0.16 0.18 0.3 0 0 

Trypanosoma brucei brucei 0.17 0.17 0.16 0.19 0.21 0.22 0 0 0 0 

Trypanosoma brucei 

rhodesiense 0.22 0.21 0.2 0.22 0.18 0 0 0 0 0.3 

Trypanosoma cruzi 0.19 0.19 0.21 0.18 0.19 0.24 0.12 0.3 0.12 0 

Table 2. Standard atomic free energy values for atom-receptor interactions. 

 

One application of QSAR is the calculation of the contribution of different molecular fragments to the 

desired activity. Unfortunately, classic QSAR models may be used only to calculate unspecific fragment 

contributions or contributions for only one-specie or drug target 
47, 48

. In this sense, one important 

application of mt-QSAR is the calculation of molecular fragments contribution to activities or action 

against different drug targets 
4
. In this work we calculated contributions of different molecular fragments 

for activity against different parasitic species (drug targets). As a sort of example, we selected 30 

molecular fragments against 4 species (Leishmania spp., Entamoeba hystolitica, Plasmodium falciparum 

and Trypanosoma spp.); see Figure 1. First, we calculated the specie-dependent atomic descriptors 

included in the QSAR equation for selected molecular fragments using the MARCH-INSIDE software. We 

calculated the scores of contributions of each fragment against the 4 parasite species studied by substiting 

the atomic descriptors into the QSAR equation using the Microsoft Excell application. Second, the 

contributions of each molecular fragment were standardized using the score of contribution less total 

average and divided by the standard deviation. These molecular fragment contributions can indicate the 

potential relation between molecular fragments with the activity against different parasitic species. For 

example, in Table 3 we observed a positive contribution of aniline fragment F9 anti-parasite activity 

against both Leishmania spp. and Plasmodium falciparum. This result coincides with experimental 

outcomes presented by Patil et al.
49

  confirming the dual anti-parasite activity of  

aryltriazolylhydroxamates (containing F9) against both group of parasites. 
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Molecular 

Fragment 

Leishmania 

spp. 

Plasmodium 

falciparum 

Entamoeba 

histolytica 

Trypanosoma 

spp. 

F1 1.33 0.88 -0.87 0.51 

F2 1.16 1.36 -1.61 0.42 

F3 1.54 -0.14 -1.74 0.45 

F4 1.26 -0.23 -1.37 -0.85 

F5 -0.58 0.52 -1.01 -0.84 

F6 -0.43 -0.13 -1.05 0.51 

F7 -0.29 0.03 -1.02 -1.35 

F8 -0.31 0.61 -1.02 0.42 

F9 0.81 0.88 -0.66 0.46 

F10 0.96 -0.73 -1.01 -0.28 

F11 0.02 1.80 -1.01 -0.90 

F12 1.70 -1.42 -1.49 0.31 

F13 -0.73 -2.33 -1.49 -0.91 

F14 -0.57 0.74 -1.49 -0.84 

F15 -0.57 2.59 -0.76 -0.29 

F16 -0.13 -0.57 -0.61 -0.28 

F17 0.17 0.57 -0.90 -0.28 

F18 1.01 1.14 -0.94 -0.27 

F19 1.06 1.83 -0.35 0.26 

F20 0.31 1.33 -0.63 0.18 

F21 1.22 1.15 -0.48 0.68 

F22 -0.59 0.65 -0.39 0.62 

F23 -0.43 -0.78 -0.33 1.92 

F24 1.20 2.58 0.25 0.51 

F25 1.06 1.22 -1.14 0.62 

F26 1.20 -0.62 -1.14 -0.03 

F27 -1.22 0.67 -1.15 0.58 

F28 1.22 0.55 0.84 -0.19 

F29 -0.29 1.64 -1.73 0.77 

F30 -0.14 -0.85 -1.66 0.18 

max 1.70 2.59 0.84 1.92 

min -1.22 -2.33 -1.74 -1.35 

 

Table 3. Molecular fragments contributions for activity. 

  3.1. Comparison of Linear (LDA) versus Nonlinear (ANN) Classifiers. 
     We processed our data with different Artificial Neural Networks (ANNs) looking for a better model. 

Four types of  ANNs were used, namely, Probabilistic Neural Network (PNN), Radial Basic Function 

(RBF), Three Layers Perceptron (MLP-3), and Four Layer Perceptron (MLP-4). Figure 2 depicts the 

networks maps for some of the ANN models tested. In general, at least one ANN of every type tested was 

statically significant. However, one must note that the profiles of each network indicate that these are 
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highly nonlinear and complicated models. For instance, PNN 6:6-2935-2-2:1 is an ANN with six inputs, six 

neurons in the first layer, 2 935 neurons in the second layer, two sets of cases (Training and Validation). 

 
Figure 2. Representation of ANN´s models tested. 

    In Figure 3, we depict the ROC-curves for different ANNs tested. Notably, almost models presented and 

are under curve higher than 0.5. The all MLP models presented an area greater than 0.93 except 1. The 

vitality of this type of procedures developing ANN-QSAR models has been demonstrated before; see, for 

instance, the work of Fernandez and Caballero
50

.  The same is true about the other kinds of ANNs tested.  

 
Figure 3. ROC curve of different ANN´s models tested. 

    

 

     The best network found was PNN and it showed training performance higher than 87%. The summary 

of results is depicted in Table 4. The other networks were MLP 6:6-10-6-1:1, RBF 5:5-1-1:1 and Linear 
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6:6-1:1. After direct inspection of the results reported in table 3 for ANN methods, we can conclude that 

there is no necessity to use a complex ANN method to obtain a better classification model in comparison 

with LDA method. 

 

 

 
Profile PNN 6:6-2935-2-

2:1 

MLP 6:6-10-6-1:1 RBF 5:5-1-1:1 Linear 6:6-1:1 

 

1 0 1 0 1 0 1 0 

Training    

 

    

n 358 2577 358 2577 358 2577 358 2577 

Correct(%) 0 100 99 67 99 66 99 63 

Total(%) 87.8 

 

70.8 

 

70.1 

 

67.6 

 

Validation         

n 190 1277 190 1277 190 1277 190 1277 

Correct(%) 0 100 98 63 98 65 98 70 

Total(%) 87.0 

 

67.6 

 

68.9 

 

74.0 

 

Table 4. Train and Validation Accuracy Results for ANN model. 

Conclusion. 

     Using the MARCH-INSIDE approach is possible to seek a useful QSAR classifier for active/non-active 

drugs, which scores multi-species antiparasitic activity of chemicals. As a conclusion, and concerning the 

future research outlook, one can note that the present mt-QSAR methodology with a large data set improves 

the results significantly and allows us to obtain more realistic and correctly results. The mt-QSAR 

methodology may be able to predict the biological activity of drugs in more general situations than the 

traditional QSAR models which the most limitation is predict the biological activity of drugs against only 

one parasites species.  We conclude that using ANN models do not improve the performance of the model 

using LDA analysis, actually only one network PNN achieves good performance, so the use of ANN is not 

essential to an improve mt-QSAR model.  
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