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A B S T R A C T   

The speech of people with Down syndrome (DS) shows prosodic features which are distinct from those observed 
in the oral productions of typically developing (TD) speakers. Although a different prosodic realization does not 
necessarily imply wrong expression of prosodic functions, atypical expression may hinder communication skills. 
The focus of this work is to ascertain whether this can be the case in individuals with DS. To do so, we analyze the 
acoustic features that better characterize the utterances of speakers with DS when expressing prosodic functions 
related to emotion, turn-end and phrasal chunking, comparing them with those used by TD speakers. An oral 
corpus of speech utterances has been recorded using the PEPS-C prosodic competence evaluation tool. We use 
automatic classifiers to prove that the prosodic features that better predict prosodic functions in TD speakers are 
less informative in speakers with DS. Although atypical features are observed in speakers with DS when pro-
ducing prosodic functions, the intended prosodic function can be identified by listeners and, in most cases, the 
features correctly discriminate the function with analytical methods. However, a greater difference between the 
minimal pairs presented in the PEPS-C test is found for TD speakers in comparison with DS speakers. The pro-
posed methodological approach provides, on the one hand, an identification of the set of features that distinguish 
the prosodic productions of DS and TD speakers and, on the other, a set of target features for therapy with 
speakers with DS.   

1. Introduction 

Prosody is an important component of speech communication 
because it is responsible for fundamental functions such as parsing the 
speech chain, expressing sentence type (e.g., declarative, interrogative, 
exclamatory or imperative), emotions or focus marking [1,2]. A low 
control of prosody or its inappropriate or atypical production can limit 
the options of speakers to integrate in society [3]. Such could be the case 
of people with intellectual disabilities in general and speakers with 
Down syndrome (DS) in particular. Although heterogeneity has been 
reported, a large number of individuals with DS present severe speech 
and language disorders [4,5]. When analyzing the speech of children 
and adults with DS, reduced communication effectiveness is found, and 
this is not only accounted for by articulatory impairments, but also by 
prosodic deficits [5–7]. 

Prosodic difficulties, observed throughout the lifespan [8], have 

been attested through different methods. Auditory-perceptual ratings of 
speech have shown pitch, intonation and rhythm atypicalities in chil-
dren and adults with DS [6,9]. Stress and speech rate are also impaired 
in children and adolescents with the syndrome [9,7]. By adulthood, the 
prosody produced by individuals with DS contributes to their speech 
being perceived as atypical by typically developing (TD) listeners [10]. 
Acoustic analyses have also proved to be very informative, as they have 
shown how children with DS use a lower fundamental frequency when 
talking [8,11], while the opposite pattern is observed in adults 
[12,10,13]. Higher speech loudness and longer pauses have also been 
reported for adults with DS [10]. 

When speech prosody is assessed by considering communicative 
functions, difficulties have also been noted. During spontaneous 
communication, pre-school children show problems to express prosodic 
contours in interrogative sentences [11]. The “Profiling Elements of 
Prosody in Speech-Communication” (PEPS-C) test [14] has also been 
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used to evaluate prosody in DS. This battery is specifically designed to 
assess the use of prosodic functions through ecological tasks and in-
volves auditory-perceptual judgments. Through PEPS-C, it has been 
shown that children with DS score lower than TD peers of the same 
chronological age, both in perception and production prosody tasks, 
although performance on the former tasks is better than on the latter 
[15]. The same has been found for adolescents with the syndrome [16]. 

Speech has shown to be useful as a biomedical signal related to 
different syndromes and diseases such as Parkinson’s [17–19], autism 
spectrum disorder [20], depression [21], Alzheimer’s [22], ataxia [23], 
aphasia [24], dysarthria [25–27] or bipolar disorder [28], among 
others. This is also the case of DS [29,30,13,31]. Most of these works use 
prosodic characteristics of speech and provide information about speech 
rate, pausing, intonation and general communication skills of people 
that are generally affected by the disorder, as previously mentioned. 
Two types of works can be distinguished here: those aimed at assessing 
speech and detecting pathologies on the one hand, and those aimed at 
characterizing atypical speech on the other. When the goal of the 
investigation is the identification of atypical speech, different prosodic 
features related with pitch, energy and duration are added to the input 
of an automatic classifier that is trained with typical and pathological 
speech. Different types of classifiers have been used for this purpose: the 
support vector machine (SVM) [10,18,22,23,20], support vector 
regression (SVG) [21], neural networks (NN) [10,27,20] and decision 
trees [24,31]. In spite of the high classification rates that can be attained 
with these procedures, very little information about the relative 
importance of the different prosodic characteristics is obtained. In this 
paper, we use a gradient boosting tree (GBT) classifier focused on the 
classification of prosodic function instead of atypical speech identifica-
tion. In doing so, we obtain information about the prosodic character-
istics that are the most relevant for speakers with DS to accurately 
produce different prosodic functions. 

Works on the characterization of atypical speech contrast with those 
of identification of anomalous speech in that the goal now is to better 
understand the impact of the disorder on speech [31,29,30,26,28]. 
These works are complex because acoustic features are difficult to be 
retrieved from pathological speech [25] and because prosody largely 
varies depending on the linguistic (the literal content of the message) 
and paralinguistic context (emotion, attitude…). The general method-
ological approach is to analyze differences on the use of prosodic 
characteristics among TD speakers and the population that is under 
study by controlling the type of message to be uttered by the informants: 
short pre-established sentences in [10,26,28], words in [32,33], groups 
of vocal-consonant-vocal productions in [29,30]; studies using sponta-
neous speech are the exceptions [13,11]. The PEPS-C test lies in between 
the two possibilities, representing a means to record oral utterances 
under controlled realistic conditions. In this work we use this test to 

analyze the production of the specific prosodic functions of affect, turn- 
taking and chunking. Additionally, we do not limit our study to provide 
a set of statistics with typical values of the different groups, but we use 
tools to visualize differences between the prosodic patterns that illus-
trate the problems of producing the prosodic functions under analysis. 

Our goal in this work is threefold. First, we aim to ascertain whether, 
when successfully expressing a set of basic prosodic functions, prosodic 
features are produced in a different way by speakers with DS, in com-
parison to TD speakers. Second, we seek to investigate whether the 
eventual differences may cause problems for the automatic separation of 
the minimal categories of each prosodic function. Finally, we devise a 
visualization of prosodic patterns that reinforces the importance of data 
presentation techniques that allow separate comparisons of different 
prosodic functions, in order to obtain solid conclusions. To our knowl-
edge, no prior study has tackled these aims. 

To achieve the aims of the study we follow the methodology 
described in Fig. 1. The speech recordings obtained during the admin-
istration of the PEPS-C test to speakers with DS are compared with re-
cordings obtained when TD speakers perform the same test (Section 2.1 
presents a description of the corpus). Before recordings are parameter-
ized by computing a set of prosodic features, a pre-processing task se-
lects the appropriate audios for the study and they are segmented into 
phonemes (described in Section 2.2). Then, the prosodic function in-
formation is analyzed together with the acoustic information to obtain 
the most relevant prosodic features per function and per type of speaker 
(as detailed in subSection 2.3). A set of reports are obtained, including 
the output of a task of smoothing the F0 and intensity contours (as 
detailed in Section 2.4) and an automatic classification of the prosodic 
profiles. Section 3 examines the results and compares the informative 
power of the prosodic features with the evidence obtained when 
sequential feature selection is applied. Finally, we discuss the differences 
between the oral production of prosodic functions of TD speakers and 
speakers with DS, and how these differences can affect the appropriate 
discrimination of the minimal categories of a given prosodic function. 
We end the paper by suggesting how these observations can pave the 
way for future training activities. 

2. Materials and methods 

2.1. Corpus collection 

The PEPS-C test, originally developed in English, has been designed 
to assess prosodic skills in individuals with speech and language disor-
ders; as such, it has been used in prior studies with individuals with DS, 
as previously mentioned [34,16,35]. The test includes different prosodic 
function tasks, both in perception and production, to assess the functions 
of affect, turn-end, chunking and focus. For this study, we have used the 
Spanish version of the test [36], which is adapted from the English one 
[14]. In general, both the prosodic functions and forms used in the En-
glish and Spanish versions of PEPS-C are parallel [36], although some 
cross-linguistic differences have been reported. In [37], a study of the 
most representative features of the affect task of the PEPS-C test in the 
Spanish language is presented. The F0 contour was identified as the most 
representative feature to differentiate between liking and disliking and 
the pattern for the expression of disliking was shown to be different from 
that employed in English. The Spanish version of PEPS-C has proven to 
be a sound tool for the assessment of prosodic skills in Spanish-speaking 
individuals [38] and has been successfully used in individuals with in-
tellectual and developmental disabilities [39]. 

As already pointed out, we have selected only the recordings of the 
affect, turn-end and chunking tasks for the PEPS-C test. Focus has not 
been included since, although it evaluates a well-attested function in 
Spanish (i.e., prefinal contrastive accent), there is a high variability in 
the way this function is addressed by prosodic means in Spanish- 
speaking individuals [36]. In the affect task, users look at a picture of 
a food item on the screen and have to produce the name of the food by 

Fig. 1. Schematic flow diagram of the processes carried out in this work.  
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expressing with their voice (i.e., by prosodic means) whether they like it 
or not. Then users have to confirm their opinion by choosing a corre-
sponding picture of an emotional facial expression. In the turn-end task, 
users look at a picture of a boy on the screen, who is naming or offering a 
particular food. Then users have to produce the words as shown in the 
pictures: offering the food item to someone (question) or stating what is 
shown in a book being read (statement). In the chunking task, users look 
at some pictures on the screen and have to say what they are looking at 
in order of appearance. The key to this task is that users have to use 
prosody to distinguish segmental information by expressing a boundary 
after the first or the second lexical item, depending on what they are 
looking at on the screen, thus distinguishing between minimal pairs (e. 
g., “barcopirata y agua” vs. “barco, pirata, y agua” [“pirate-ship and 
water” vs. “pirate, ship, and water”]). A more detailed description of the 
PEPS-C test and the three tasks can be found in [36]. 

The recording process was carried out at different locations. The TD 
speakers corpus was recorded in a quiet room at each participant’s 
house, and 41 users participated in this campaign (aged 18 to 51 years, 
mean 27). The DS corpus was recorded at a special education school of 
the Madrid DS Foundation and at two schools of special education 
located in Valladolid (33 participants aged 13 to 42 years, mean 22; and 
verbal mental age from 3.58 to 9.33 years, mean 6.45, assessed with the 
Peabody Picture Vocabulary Scale-III [40]). Both cities belong to the 
same linguistic region of Castilian Spanish. Audios were recorded at 
22050 Hz using the built-in audio card of the computer where the 
software was installed. We used a Logitech PC Headset 960 USB in 
Valladolid, the laptop built-in micro for speakers with DS in Madrid and 
a Sony Lapel microphone for TD users. Although the audios were 
recorded in schools, background noise was controlled resulting in 53.6 
dB (TD) and 42.3 dB (DS) signal-to-noise ratio (SNR). Differences in SNR 
between recordings at the two schools were below 6% on average, with 
41.0 dB (Valladolid) vs. 43.6 dB (Madrid) SNR mean values. All SNR 
have been computed from the stats function results of the Sound eX-
change (SoX) tool.1 

All the recordings were evaluated by the therapist who led the test. 
Each of the PEPS-C tasks includes a minimal pair within a prosodic 
function. In the affect task, the minimal pair refers to the expression of 
liking and disliking; in the turn-end task it refers to statements versus 
questions; in the chunking task, the minimal pair refers to identifying 
either two or three semantic items with the same segmental information. 
To evaluate the correctness of the prosodic utterances produced by 
participants, the therapist judges which of the two communicative cat-
egories (i.e., minimal pair) is being expressed by the speaker. The 
therapist’s judgments are then compared to the speaker’s communica-
tive intention (as requested by the pictures presented in the test) and this 
results into correct and wrong recordings: when the therapist judgment 

is the same as the communicative intention of the speaker, the recording 
is considered as correct; the opposite holds for the wrong recordings. In 
this work, the recordings evaluated as correct were the focus of analysis. 
In addition, all audio recordings were processed with the aim of 
removing the defective ones (errors in wording, corrupted recording or 
noise disturbance). For the chunking task, half the recordings were 
selected. Specifically, only the compound-noun items were analyzed, as 
they are easier to process automatically. One of the therapists re- 
evaluated a subset of 20% of the previously evaluated samples, both 
by her and by the other therapist. Thus, an inter- and intra-reliability 
tests were performed to assess the degree of consistency between the 
evaluations, resulting in a Kappa index of 0.790 for intra-annotator 
evaluations and 0.784 for inter-annotator evaluations. 

Table 1 shows the contents of the resulting corpus after the filtering 
process had been applied. Note that the number of recordings reflects 
the utterances perceived as correct by the therapist (after the removal of 
the defective ones). As expected from the literature [34], the number of 
correct utterances is lower in the group with DS compared to the TD 
group. It should also be noted that four participants with DS are missing 
in the chunking task. The production of this function is more demanding 
and is thus acquired later than affect and turn-end in typical develop-
ment [36]. This explains why the task can be more difficult for some 
individuals with DS. The same has been reported in prior work with 
English-speaking individuals with the syndrome [15]. 

2.2. Prosodic features extraction 

The steps described in this section were applied to each audio 
recording of the speech corpus in order to extract a set of prosodic 
features. Firstly, the WebMaus web service [41] was employed to 
automatically generate the segmentation of each audio file. To do this, 
the .wav file and the phonetic transcription in BPF format [42] were 
provided to the web service. Secondly, a PitchTier and an IntensityTier 
were generated for each recording using the Praat software [43]. The 
algorithm used to extract the pitch estimations was based on an acoustic 
periodicity detection on the basis of an accurate autocorrelation method 
proposed in [44]. To ensure the quality of the fundamental frequency 
(F0) contours, pitch outliers and jumps were reduced using the pro-
cedure proposed in [45]. Thirdly, as in [46], we removed the speaker 
dependence on F0 contours and used a perceptual scale by transforming 
the F0 values to semitones with respect to the mean F0 of the speaker, 
using the formula: 

F0′

= 12 ∗ log2

(
F0

〈F0〉Speaker

)

(1)  

where 〈F0〉Speaker is the average of the F0 across all recordings of each 
speaker. Then, the IntensityTier values were normalized per user by 
subtracting the intensity mean from each value and dividing the result 
by the standard deviation. The initial and final silence intervals were 
excluded from this parameterization procedure. The silence and 
sounding intervals were calculated using the default values of Praat. 

In previous works [10,46], we used openSmile [47] to compute an 
extensive set of prosodic features. Given the simpler nature of the tasks 
in the PEPS-C test (isolated words in the affect and turn-end tasks and 
short utterances of three to four words in the chunking task), we selected 
a reduced set of features which we had successfully used in previous 
works for similar experiences [48,37]. For F0 and energy contours, we 
use features that reflect the temporal evolution or the shape of the 
prosodic pattern, measuring mean values, ranges, slopes and declina-
tions. For duration, we put the focus on the impact of the inner pause in 
the chunking task and add features that reflect abnormal changes in 
rhythm [49]. 

The average (xMean), standard deviation (xSd), range (xRange), 
difference between maximum and average (xMaxavg), difference be-
tween average and minimum (xMinavg), average of the rising 

Table 1 
Basic corpus statistics for the affect, turn-end and chunking tasks (BF means 
boundary in the first lexical item, BS means boundary in the second lexical item).  

AFFECT #Speakers #Like #Dislike Total 

TD speakers 41 449 188 637 
DS speakers 33 272 102 374 
Total 74 721 290 1011 

TURN-END #Speakers #Question #Affirmative Total 

TD speakers 41 328 318 646 
DS speakers 33 135 212 347 
Total 74 463 530 993 

CHUNKING #Speakers #BF #BS Total 

TD speakers 41 162 160 322 
DS speakers 29 35 63 98 
Total 70 197 223 420  

1 http://sox.sourceforge.net/ 
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(xRisingMean) and of the falling (xFallingMean) slopes, were applied to 
pitch and intensity files (x must be replaced by f0 or i when referring to 
F0 or intensity, respectively). To calculate the rising and falling means 
for F0 and intensity, each F0 or intensity value across the signal was 
compared to the next one and the difference was added to the set of 
rising (difference above 0) or falling (difference equal to or below 0) 
slopes, which were then averaged, respectively. Two additional features 
have been included to represent the temporal evolution of the F0 con-
tours, corresponding to declination and excursion, as defined in [37]: 
f0Declination is computed as the difference between the last value and 
the maximum value divided by the time interval between these values, 
and f0ConEx is computed as the difference between the first value and 
the maximum value plus the range. 

Related to the duration of the segments, the following features were 
extracted: the rate of speech (ROS) as the number of phones per second, 
the vocalic intervals ratio (VIR) as the sum of the lengths of vocalic in-
tervals divided by the total duration of the sentence (excluding pauses), 
the standard deviation of the duration of vocalic intervals (dV) and of 
consonant intervals (dC), the standard deviation of vocalic (varV) and 
consonant (varC) interval duration divided by the mean vocalic or 
consonant duration within the utterance. In addition, two forms of the 
pairwise variability index (PVI) [50] were computed (raw PVI and 
normalized PVI), with variants for vocalic and consonant segments: 

rPVI = 100 ×

∑N− 1
i=1 |di − di+1|

N − 1
(2)  

nPVI = 100 ×
1

N − 1
∑N− 1

i=1

|di − di+1|

(di + di+1)/2
(3)  

where N is the number of segments and di the duration of segment i. 
With these, four utterance-level features are extracted: rPVI.V, nPVI.V, 
rPVI.C, nPVI.C, where V and C refer to vocalic and consonantal pho-
nemes respectively, and the prefixes r and n mean raw and normalized. 

Additionally, three duration features were extracted in the chunking 
task recordings: ROSvariation, computed as the ratio between the ROS of 
the first word in the sentence divided by the ROS of the other words in 
the same sentence; the length of the pause that follows the first word of 
the sentence (pauseLength), the maximum duration of the vocalic phones 
in the sentence z-normalized across the speaker group (maxVocalLength). 
These features are inspired in the works on chunking analysis presented 
in [51]. 

2.3. Feature selection and classification 

The 29 prosodic features described in the previous section have been 
analyzed to remove the most closely correlated ones (Pearson correla-
tion > 0.9). With the remaining set of features, a ranking is built by 
taking into account the informative value of each feature, computed 
with the information gain (IG) as [52]: 

IG(F,PF) = H(F) − H(F|PF) (4)  

H(F) being the entropy of the prosodic function F in the corpora and H(F|
PF) the conditional entropy of the function F, taking into account the 
discretized values of each prosodic feature PF. 

H(F) = −
∑n

i=1
p(fi)logp(fi) (5)  

H(F|PF) = −
∑n

i=1

∑m

j=1
p(fi, pf j)log

p(fi, pf j)

p(pf j)
(6)  

where n = 2, as the prosodic function F can only take two possible 
values. As the prosodic feature PF is a continuous variable, a dis-
cretization process is applied [53] and m is the resulting number of 
different values. The obtained rankings are then analyzed to compare 

the DS and TD data sets in terms of each studied prosodic function (see 
Section 3). 

In parallel, we apply sequential forward feature selection (SFS) to 
select the most relevant features. The selection algorithm uses the ac-
curacy of a GBT classifier as the evaluation measure. The order of fea-
tures selected provides a second ranking that is expected to be consistent 
with the one obtained from the information gain analysis; however, in 
this case, once a feature has been selected, others highly correlated with 
the ones already selected lose importance. 

The selection procedure is used for each task in three different sce-
narios: 1) using the recordings of TD speakers in cross validation 
(referred to as TD-TD); 2) using the recordings of speakers with DS in 
cross validation (DS-DS); 3) using the recordings of TD speakers as 
training data and the recordings of speakers with DS as testing data (TD- 
DS). The goal of obtaining relevant features in these three scenarios is to 
find differences that could have to do with both the conventional way to 
produce the prosodic functions (scenario 1) and the particular way to do 
so by speakers with DS (scenario 2), as well as the problems that could be 
found when the conventional classification procedure (scenario 3) is 
applied. We have used gradient boosting trees classifiers for each of the 
three tasks. The aim of these classifiers is to automatically identify the 
prosodic function of the recordings in the affect task (like vs dislike), 
turn-end task (question vs affirmative) and chunking task (boundary in 
the first lexical item vs boundary in the second lexical item). Scenarios 1 
and 2 used ten fold cross validation in each group of speakers (TD or DS). 

Table 2 
Ranking of features for the three tasks and two groups of speakers, derived from 
the information gain metric. Only features with non-zero gain are shown.  

TD speakers DS speakers 

Feature InfoGain Feature InfoGain 

AFFECT    
f0Mean 0.3738 iMean 0.2469 
f0Minavg 0.2442 f0Mean 0.2394 
f0Range 0.2262 f0Declination 0.1309 
f0Declination 0.2097 f0Minavg 0.1025 
iMean 0.0988 f0RisingMean 0.0941 
f0RisingMean 0.0599 f0Range 0.0878 
f0FallingMean 0.0596 f0FallingMean 0.0741 
iRange 0.0476   
iMinavg 0.0446   
rPVI.V 0.0235   

TURN-END    
f0Range 0.5988 f0Declination 0.1317 
f0Mean 0.4687 f0Range 0.104 
f0Minavg 0.3128 f0Mean 0.0709 
f0Declination 0.1999 f0RisingMean 0.0652 
f0RisingMean 0.1663 ROS 0.0593 
iMean 0.0757 rPVI.V 0.0479 
iMinavg 0.0549 VIR 0.0408 
f0ConEx 0.0541 f0Minavg 0.036 
f0FallingMean 0.0377   
rPVI.V 0.0232   
iMaxavg 0.0226   

CHUNKING    
pauseLength 0.6044 ROSvariation 0.252 
maxVocalLength 0.5012 maxVocalLength 0.175 
ROSvariation 0.3379 pauseLength 0.128 
ROS 0.2605 iSd 0.103 
f0Declination 0.107   
iMean 0.0958   
iMaxavg 0.0956   
f0Mean 0.0708   
rPVI.V 0.07   
rPVI.C 0.0652   
dC 0.0575   
iSd 0.0531   
iRange 0.0473   
f0FallingMean 0.0437   
varC 0.0415   
f0Minavg 0.0409    
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R tools [54] were used to detect correlated features. Weka tools [55] 
were used to compute the information gain and build the prosodic 
feature rankings. The software libraries scikit-learn [56] and mlxtend 
[57] were used to train and test the classifiers. 

2.4. Smoothing Spline ANOVA for F0 and intensity contour 

A smoothing spline ANOVA was conducted on the F0 and Intensity 
data to generate the smoothing spline fit for the three tasks and the two 
groups of speakers. This technique has been used successfully in other 
works to compare the F0 and Intensity contours [58,59]. The R package 
gss [60] was used to calculate the smoothing spline with 95% confidence 
intervals and the R ggplot2 package [61] was used to plot the splines. 
Due to the different time intervals of the F0 and intensity files, a min-
–max scaling was applied to each file with the aim of obtaining all values 
in the interval [0,1]. Time values (x) were scaled to normalized x′ ∈ [0,
1]: 

x′ =
x − min(x)

max(x) − min(x)
(7)  

3. Results 

Table 2 shows the ranking of features in terms of their informative 
power to classify affect, turn-end and chunking, respectively. For the 
affect task, F0 related features stand out with respect to intensity and 
duration for TD speakers; intensity seems to play a more important role 
for speakers with DS, while duration features disappear from the 
ranking. As for the turn-end task, features belonging to the three do-
mains (F0, intensity and duration) appear in both rankings, with higher 
relevance for the features of the F0 domain. Concerning the chunking 
task, the three most relevant features are the same for both groups of 
speakers; other features seem to be relevant in the TD case, but they 
disappear from the ranking in the DS case. 

Information gain values are higher for TD speakers in the three tasks. 
Compared with the values for the DS group, the most relevant feature is 
0.13 points higher in the affect task, 0.46 points higher in the turn-end 
task and 0.35 points higher in the chunking task. Also, there are more 
features with InfoGain > 0 for TD speakers than for speakers with DS, in 
all tasks. 

Table 3 shows the five selected features obtained using SFS. High 
classification rates (over 90% accuracy) are obtained for TD speakers 
using just a few features, for the three prosodic functions. Poorer results 
are obtained for speakers with DS, showing a better performance for the 
affect function. Results for the turn-end function and for chunking are 

below 79% accuracy. 
The order of the selected features reported in Table 3 differs from the 

rankings presented in Table 2 because, once a feature has been selected 
by the classification algorithm, other features correlated with the one 
selected can lose importance. 

Table 4 shows the 95% confidence intervals of the most informative 
features in the classification results for each task and speaker group 
(Table 3). In addition, the Mann–Whitney U test was used to check if 
there were statistically significant differences between the minimal pairs 
in each task and between groups of speakers. The results of the Man-
n–Whitney test can be seen in Table 5. Regarding the affect task, there 
are statistically significant differences (p − value < 0.05) in all cases 
except in TD-L vs. DS-L (f0Mean), in TD-D vs. DS-D (f0Mean) and in TD- 
D vs. DS-D (f0Range). In the turn-end task, there are statistically sig-
nificant differences in all cases except for TD-AF vs. DS-AF (f0Range) 
and TD-AF vs. DS-AF (f0Declination). Finally, in the chunking task, there 
are statistically significant differences in all cases except for TD-BF vs. 
DS-BF (pauseLength and ROSvariation) and TD-BS vs. DS-BS 

Table 3 
Ranking of features using sequential forward feature selection for different tasks and different train-test datasets. For each task and datasets, accuracy values represent 
the classification results obtained when the feature in the corresponding row is added to the features of previous rows.   

TD-TD DS-DS TD-DS  

Feature Accuracy Feature Accuracy Feature Accuracy 

AFFECT f0Mean 80.06 iMean 78.07 f0Mean 78.88  
f0Range 88.54 f0Mean 84.48 f0Range 85.83  
f0ConEx 91.04 f0Range 87.16 f0ConEx 87.43  
f0Declination 92.30 iFallingMean 88.50 iRisingMean 88.24  
iMaxavg 92.78 f0RisingMean 88.77 f0Minavg 87.97 

TURN-END f0Range 87.14 f0Declination 62.60 f0Range 68.88  
f0Mean 91.77 f0Range 73.89 f0ConEx 72.05  
iMaxavg 92.39 f0Mean 75.33 f0RisingMean 74.64  
f0ConEx 93.17 iMean 77.61 rPVI.C 74.64  
iRisingMean 93.63 varC 76.46 f0Declination 75.79 

CHUNKING pauseLength 89.41 pauseLength 68.56 maxVocalLength 71.43  
maxVocalLength 92.53 ROSvariation 69.56 nPVI.C 73.47  
f0Declination 94.72 iSd 77.78 nPVI.V 73.47  
dC 95.34 f0RisingMean 78.78 rPVI.C 74.49  
varV 95.03 rPVI.C 76.67 rPVI.V 74.49  

Table 4 
Confidence intervals (95%) of different features for different tasks. L means like, 
D means dislike, Q means question, AF means affirmative, BF means boundary in 
the first lexical item and BS means boundary in the second lexical item. The 
intervals were computed using scipy library [62].   

TD DS 

AFFECT L D L D 

f0Mean (0.34, 0.75) (− 3.94, 
− 3.19) 

(0.01, 0.57) (− 3.55, 
− 2.64) 

f0Range (12.02, 
12.75) 

(7.53, 8.89) (10.06, 
11.11) 

(6.86, 8.8) 

iMean (0.83, 0.88) (0.59, 0.67) (0.57, 0.65) (0.11, 0.24) 

TURN-END Q AF Q AF 

f0RisingMean (0.84, 0.94) (0.67, 0.86) (0.42, 0.51) (0.43, 0.73) 
f0Range (12.99, 

13.81) 
(6.09, 7.04) (8.38, 9.8) (5.93, 7.11) 

f0Mean (0.91, 1.47) (− 2.66, 
− 2.02) 

(− 0.48, 
0.28) 

(− 1.74, 
− 1.08) 

f0Declination (− 76.34, 
− 52.0) 

(− 26.66, 
− 18.14) 

(− 42.91, 
− 23.88) 

(− 23.58, 
− 18.49) 

CHUNKING BF BS BF BS 

pauseLength (0.23, 0.32) (− 0.0003, 
0.0009) 

(0.21, 0.44) (0.04, 0.16) 

maxVocalLength (1.22, 1.66) (− 0.66, 
− 0.43) 

(0.32, 0.92) (− 0.42, 
0.06) 

ROSvariation (0.85, 0.92) (1.31, 1.42) (0.75, 0.98) (1.25, 1.58)  

M. Corrales-Astorgano et al.                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 69 (2021) 102913

6

(ROSvariation). 
In the following subsections we analyze the results obtained per type 

of prosodic function. 

3.1. Affect task 

In the affect task, the classifier trained and tested with samples of TD 
speakers obtains a rate of 91.04% using only three features of the F0 
domain (Table 3). In the case of the samples of DS speakers, the features 
of F0 also have an important role, but the introduction of a feature 
related to intensity average is indicative that the intensity replaces or 
complements F0. When the samples of DS speakers are tested with the 
classifier trained with samples of TD speakers, the classifier obtains 
classification rates similar to the previous case, but in this case, the 
features of F0 are again the most relevant for the classification. 

The results of Table 4 show that the mean values of the fundamental 
frequency in the expression of the feeling of liking are higher than the 
mean of each user and close to 0; while, in the expression of the feeling 
of disliking, the values are less than the average of each user and are far 
from 0. This happens for both groups of speakers. The higher mean 
values of the f0Range in the fundamental frequency for the case of 
liking, compared to the case of disliking, indicate that there is a greater 
variation of the F0 values in the case of liking for both groups of 
speakers. 

The results of the statistical tests carried out for these features 
(Table 5) show that there are no significant differences between groups 
in the samples of liking (f0Mean) and those of disliking (f0Mean and 
f0Range), while they do exist when the samples of liking and disliking 
are compared within each group. In the case of disliking, there are sta-
tistical and significant differences in all cases except in TD-D vs. DS-D 
(f0Mean and f0Range). However, the p-value is 0.06 for f0Mean, 
which indicates that, although there are no significant differences, there 
is a trend towards small differences in the expression of this function. 

3.2. Turn-end task 

As in the affect task, the features related to the fundamental fre-
quency are the most informative when classifying between Q and AF 
(Table 3). In the case of the TD group, a rate of 91.77% is reached only 
using two features, f0Range and f0Mean. These two features indicate 
that the range and the mean of the fundamental frequency are different 
for the Q samples and the AF samples. In addition, a feature related to 
the difference between the maximum and average intensity appears in 
the third position (iMaxavg), but this feature increases the classification 

rate by less than one percent. 
The results of Table 4 show that the differences between the minimal 

and maximal values (range) of the fundamental frequency in the 
expression of questions are higher than the range of the fundamental 
frequency in the expression of affirmative sentences for both groups. 
However, these differences are higher for TD speakers than for speakers 
with DS. These results indicate that TD speakers produced the question 
sentences with more differences in the use of the fundamental frequency 
than the speakers with DS. 

The results of Table 5 show that there are statistically significant 
differences in all cases except for TD-AF vs. DS-AF (f0Range) and TD-AF 
vs. DS-AF (f0Declination), which indicates that the production of affir-
mative sentences is more similar than the production of question sen-
tences when both groups of speakers are compared. 

3.3. Chunking task 

In the chunking task, the features which convey the highest classi-
fication rates are those related to duration for both groups of speakers 
(Table 3). The duration of the pause that follows the first word of each 
sentence (pauseLength) and the maximum duration of the vowel pho-
nemes (maxVocalLength) are the two most informative features and 
allow a rate of 92.53% to be obtained in the TD group (Table 3). In the 
DS group, the pauseLength feature is also the most informative, and 
maxVocalLength is replaced by ROSvariation. However, in the case of 
the DS group, the classification rates obtained are lower than in the TD 
case. 

The confidence intervals and the statistical tests presented in Ta-
bles 4 and 5 show that there are differences in the features pauseLength, 
maxVocalLength and ROSvariation in both groups between the different 
types of sentences, but the differences in pauseLength and maxVo-
calLength between BF and BS in TD speakers are higher than those in 
speakers with DS. The statistical differences observed in the TD-BS vs. 
DS-BS case, but not in the TD-BF vs. DS-BF case, show that speakers with 
Down syndrome can produce the boundary in the first lexical item in a 
similar way to TD speakers, but this is not the case in the production of 
the boundary in the second lexical item. 

4. Discussion 

4.1. Differences between TD and DS prosodic patterns 

Experimental results show clear differences between the production 
of prosodic features of TD speakers and speakers with DS. The present 
discussion will be supported by plots of prosodic patterns (Fig. 2) rep-
resenting the smoothing spline ANOVA (F0 and Intensity) of the word 
yogur (affect task), the word uvas (turn-end task) and the sentence barco 
pirata y agua (chunking task) of the two speaker groups. The contours are 
similar in the different items of the different tasks, so we have selected 
one item as an example with the aim of illustrating the contour pattern 
of the F0 and intensity curves. 

In the affect task, the contours are similar in shape in both groups of 
speakers, not only in the F0 curves, but also in the intensity curves. In the 
like case, the F0 curve has an inverted-u form and the intensity curve has 
a high rise in the beginning and a fall at the end, higher in the TD group 
than in the DS group. The U-pattern is prototypical for this kind of 
productions, as already reported in [37]. In line with our observations, 
[63] reports findings of increases in the F0 mean, F0 ranges and F0 
variability and mean energy related to joy. Concerning the dislike case, 
[63] reports a decrease in the mean, F0 range and mean energy and 
downwards-directed F0 contours on the acoustic features related to 
sadness, while our corpus shows that the F0 curve is much flatter than in 
the like case, with similar values in the TD group and the DS group, 
while the intensity curve has a higher fall in the DS group than in the TD 
group. Numerically, these differences have already been contrasted in 
Tables 4 and 5: f0Mean, f0Range and iMean are lower in DS than in TD, 

Table 5 
Mann–Whitney results for each feature and case. The values in bold are the ones 
with p − value < 0.05. L means Like, D means Dislike, Q means Question, AF 
means Affirmative, BF means Boundary in the first lexical item and BS means 
Boundary in the second lexical item.  

AFFECT TD-L vs. DS-L vs. TD-L vs. TD-D vs.  
TD-D DS-D DS-L DS-D 

f0Mean 0.0 0.0 0.15 0.06 
f0Range 0.0 0.0 0.0 0.16 
iMean 0.0 0.0 0.0 0.0 

TURN-END TD-Q vs. DS-Q vs. TD-Q vs. TD-AF vs.  
TD-AF DS-AF DS-Q DS-AF 

f0RisingMean 0.0 0.0 0.0 0.0 
f0Range 0.0 0.0 0.0 0.87 
f0Mean 0.0 0.0 0.0 0.0 
f0Declination 0.0 0.02 0.01 0.19 

CHUNKING TD-BF vs. DS-BF vs. TD-BF vs. TD-BS vs.  
TD-BS DS-BS DS-BF DS-BS 

pauseLength 0.0 0.0 0.99 0.0 
maxVocalLength 0.0 0.0 0.0 0.01 
ROSvariation 0.0 0.0 0.19 0.53  
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Fig. 2. Typical F0 and intensity patterns (with 95% confidence interval computed with smoothing spline ANOVA described in Section 2.4) of the different group of 
speakers and prosodic functions under analysis, corresponding to the oral productions of the word yogur (yoghurt) in the affect task, the word uvas (grapes) in the 
turn-end task, the sentence barco pirata y agua (pirate ship and water) in the chunking task. 
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both in L and D categories. It seems that speakers with DS produce 
correct affect patterns with a lower intensity, affecting both energy and 
F0. 

In the turn-end task, the F0 contours have a final high rise in ques-
tions (with a higher slope in the TD group) and a flatter contour in the 
affirmative case. The final rise is a prototypical pattern that allows for 
the difference between declarative and question sentences to be marked 
[64,65]. As reported for affect, the differences between DS and TD 
speakers are related to the extent of the pattern with higher values in the 
case of TD speakers in all the cases except for affirmative sentences (F0), 
where speakers with DS have higher values than TD speakers. Numeri-
cally, these differences can be seen in Table 4 in that, for questions, 
f0RisingMean, f0Mean and f0Range are higher values in the TD group 
(the differences being statistically significant, as shown in the TD-Q vs 
DS-Q comparison in Table 5). In the TD-AF vs. DS-AF case, there are also 
significant differences in f0RisignMean and f0Mean; in this last case, the 
values of speakers with DS are higher than those of TD speakers. A 
similar behavior is observed in the energy patterns with respect to the 
one observed in the affect task, with lower energy values for the speakers 
with DS; however, in these cases, no significant differences are observed. 

The chunking task seems to be the most problematic case for 
speakers with DS. The F0 curve has two consecutive rises in the BF case 
in the TD group, while the DS group does not show this pattern. In the BS 
case, there is a unique rise in the F0 curve in both groups. A similar effect 
can be seen in the intensity curve, with an initial fall in the BF case, and 
without an initial fall in the BS case for both groups. The role of the 
position and number of intonation groups seems to be determinant. The 
typical pattern for chunking in Spanish is using a short pause that is 
frequently preceded by an F0 inflection [64,66,48]. TD speakers mark 
two intonation boundaries in the BF case and only one in the BS case 
(two peaks versus only one). This is not the case in speakers with DS, 
who seem to mark only one. Numerically, this fact is observed in the 
feature maxVocalLength of the case TD-BF vs. DS-BF, as the intermedi-
ate prosodic boundaries are also marked with a lengthening that is clear 
for TD speakers, but not for speakers with DS. Once again, in both cases, 
the intensity is lower in the DS group than in the TD group. 

To sum up, while the expression of chunking clearly differed between 
groups, similar patterns were found in the TD and DS groups for the 
affect and turn-end tasks (with lower values of either F0 or intensity in 
the case of DS). However, classification accuracy is lower in speakers 
with DS than in TD speakers. This can be explained by considering that 
the automatic classification of the prosodic function for a given task is 
more difficult in speakers with DS because the differences between the 
values of the prosodic features within a minimal pair are smaller than 
those in the TD speakers, as can be seen in Table 4 and Fig. 2. This will be 
discussed below. 

4.2. Less interclass separation in speakers with Down syndrome 

The results obtained in the classification tasks seem to indicate that 
the separation of the different classes is greater in TD speakers than in 
speakers with DS because the classification rates are better in the TD-TD 
case than in the case of DS-DS: Table 3 shows that while the TD-TD case 
exceeds 90% accuracy in all functions, the classification rate with DS 
samples drops considerably. This fact affects the three prosodic func-
tions, but it is less pronounced in the case of affect, where classification 
rates of 88% are reached in the DS-DS case. 

In Section 3, we saw that there were similarities in both the DS and 
TD patterns in the Affect and Turn-end cases, but this was not the case in 
the Chunking with the BF function. This fact is also reflected in the re-
sults of Table 3. The classification rates obtained by the classifier trained 
by TD data and tested with DS data are similar to those obtained by the 
classifier trained by DS data and tested with DS data, although the dif-
ferences are bigger for the chunking task. In this task, the difference 
between the best DS-DS rate (78.78%) and TD-DS rate (74.49%) is 4.29 
percentual points, and it is 0.53 and 1.82 percentual points in the case of 

affect and turn-end, respectively. 
Analyzing each function independently, we find (see Table 4) that, 

for the affect function, the differences in the average values of the fea-
tures are bigger in the TD-L vs. TD-D case than in the DS-L vs. DS-D case, 
for all the features except in the case of iMean, where the separation is 
greater in the energy graphs for speakers with DS. This points to the fact 
that speakers with DS do not reach the ranges of variation in the F0 
curve that TD speakers do, but that they could complement this infor-
mation with a different energy modulation. The use of this feature seems 
to be more effective when expressing the prosodic function of affect than 
when expressing the other two prosodic functions. 

As for the turn-end function, we see in Table 4 that the differences in 
the DS-Q vs. DS-AF are smaller than in the TD-Q vs. TD-AF ones. 
Although these distances are statistically significant (Table 5), they are 
not so effective for the automatic classification of the minimal pairs. In 
this case, there is also less inflection in the curve of F0 and the 
compensation of energy does not seem to be enough. In the case of the 
chunking function, we also see that the poor production of the pauses of 
the speakers with DS reported in the previous section makes the dif-
ferences in the DS-BF vs. DS-BS excessively small, causing the task of the 
chunking type function identification to be very difficult in the case of 
speakers with DS. 

4.3. Implications for intervention 

Deriving implications for clinical practice related to how to expres-
sively use prosody by people with DS is the goal of many studies [16]. 
The information provided by the experimental procedure opens the way 
to the always challenging task of preparing personalized exercises aimed 
at improving the communication skills of speakers with DS. First, it is 
important to focus on the prosodic features that are less discriminant 
within a given prosodic function; in a second step, it would be important 
to design exercises that allow speakers with DS to get closer to the 
performance of productions made by TD individuals. 

Although designing specific training exercises is outside the scope of 
this paper, we consider that, of the two aforementioned objectives, the 
separation between prosodic categories within the same function, on the 
one hand, and an approach to typical speakers, on the other, the most 
important is the first. Getting speakers with DS to clearly distinguish the 
categories within the same prosodic function is more important than the 
fact that their production should be as similar as possible to that of TD 
speakers, because the ultimate goal of oral communication is to make 
themselves understood and, for that aim, it should not be necessary to 
precisely follow a given standard. Different speakers would assume that 
there are oral productions that can be different and that all can be valid. 
It is especially important to take this into account, because we are facing 
a group of users with muscular hypotonia problems [67], which makes it 
difficult for them to reach certain inflections of F0. They also have short- 
term memory limitations [68], and these can make it difficult for them 
to correctly produce pauses in a given sequence. 

5. Conclusions 

The methodology presented in this work has allowed us to show that 
differences can be detected between the way prosodic functions are 
produced by TD speakers and those with DS. We have shown that the 
ability to express differentiated prosodic functions (as presented in the 
PEPS-C test) is lower in speakers with DS. In addition, the results provide 
information concerning the prosodic features that better discriminate 
the categories of prosodic function, and also, to what extent the use of 
these prosodic features differs between TD speakers and speakers with 
DS. 

There are differences in the way speakers with DS produce prosodic 
functions, and those differences depend on the prosodic function itself: 
speakers with DS make more use of energy than TD speakers in order to 
produce affect; they have problems to articulate declination to produce 
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declarative sentences; and, in chunking, the variation of speech rate is 
higher in speakers with DS than in TD individuals. 

While for TD speakers the acoustic features allow the minimal pairs 
that are compared for each prosodic function to be accurately separated, 
the automatic classifier performance decreases in the case of speakers 
with DS. Although the shorter distances between pairs of each prosodic 
function for DS speakers do not prevent the identification of the inten-
ded prosodic category by the therapist, within a given prosodic function, 
we have found that, in general terms, speakers with DS separate pro-
sodic categories less than TD speakers. In the case of affect, the 

separation is better than in the case of turn-end and chunking. However, 
for accurately producing affect, speakers with DS seem to follow an 
alternative strategy: using energy to complement F0 excursions. 

The proposed methodology gives some cues about the prosodic fea-
tures that need to be trained in speakers with DS, both for distinguishing 
more clearly different communicative functions and for getting closer to 
the typical production patterns. This opens a path to prepare specific 
exercises for speakers with DS to be trained in prosodic skills with the 
goal of improving the production of prosodic functions. 
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Appendix A. Description of the features 

The acoustic features used in the paper are shown in Table A.6. 
Section 2.2 describes the feature extraction procedure and tools used to 
calculate them. 
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Table A.6 
Description of the acoustic features used in the paper.  

PITCH (F0) DOMAIN 

Feature Description 

f0Mean The average of the fundamental frequency (semitones) 
f0Sd The standard deviation of the fundamental frequency 

(semitones) 
f0Range The difference between maximum and minimum of the 

fundamental frequency (semitones) 
f0Maxavg The difference between maximum and average of the 

fundamental frequency (semitones) 
f0Minavg The difference between average and minimum of the 

fundamental frequency (semitones) 
f0RisingMean Average of the rising segments of the fundamental frequency 

(semitones) 
f0FallingMean Average of the falling segments of the fundamental frequency 

(semitones) 
f0Declination The difference between the last value and the maximum value 

divided by the time interval between these values (semitones) 
f0Contour The difference between the first value and the maximum value 

plus the range (semitones)  

INTENSITY DOMAIN 

iMean The average of the energy (decibels) 
iSd The standard deviation of the energy (decibels) 
iRange The difference between maximum and minimum of the energy 

(decibels) 
iMaxavg The difference between maximum and average of the energy 

(decibels) 
iMinavg The difference between average and minimum of the energy 

(decibels) 
iRisingMean Average of the rising segments of the energy (decibels) 
iFallingMean Average of the falling segments of the energy (decibels)  

TEMPORAL DOMAIN 

ROS Rate of speech, the number of phones per second 
VIR The vocalic intervals ratio, as the sum of the lengths of vocalic 

intervals divided by the total duration of the sentence, excluding 
pauses (seconds) 

dV The standard deviation of the duration of vocalic intervals 
(seconds) 

dC The standard deviation of the duration of consonant intervals 
(seconds) 

varV The standard deviation of vocalic interval duration divided by 
mean vocalic duration within the utterance (seconds) 

varC The standard deviation of consonant interval duration divided by 
mean consonant duration within the utterance (seconds) 

rPVI.V First form of the Pairwise Variability Index with variants for 
vocalic segments (seconds) 

rPVI.C First form of the Pairwise Variability Index with variants for 
consonant segments (seconds) 

nPVI.V Second form of the Pairwise Variability Index with variants for 
vocalic segments (seconds) 

nPVI.C Second form of the Pairwise Variability Index with variants for 
consonant segments (seconds) 

ROSvariation The ratio between the ROS of the first word in the sentence 
divided by the ROS of the other words in the same sentence 
(seconds) 

pauseLength The pause length of the pause that follows the first word of the 
sentence (seconds) 

maxVocalLength The maximum of the duration of vocalic phones in the sentence z- 
normalized across the speaker group (seconds)  
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[37] P. Martínez-Castilla, S. Peppé, Intonation features of the expression of emotions in 
Spanish: preliminary study for a prosody assessment procedure, Clin. Linguist. 
Phonet. 22 (4–5) (2008) 363–370. 
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