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Abstract

Omachine learning e a intelixencia artificial estanse convertindo en técnicas

cada vez máis presentes na investigación en química computacional. A medida

que temos acceso a unha maior cantidade datos de química cuántica, aumentan

as posibilidades de uso de algoritmos intelixentes para a exploración do espazo

químico.

Por outra parte, aínda non dispoñemos de métodos eficientes para a predi-

ción de propiedades de reacción cuantitativas. Entre estas propiedades ató-

pase a enerxía de activación, cuxa predición de forma precisa proporcionaría un

método para o descubrimento de novos mecanismos de reacción e forneceríanos

control sobre a cinética das reaccións.

O presente traballo intenta buscar un algoritmo baseado en machine learn-

ing para a predición de enerxías de activación. O noso modelo depende dun

cálculo a nivel semiempírico (PM7) e proporciona unha predición a nivel DFT

mediante machine learning. Con este procedemento, conseguimos precisión

química cun custo computacional reducido. Ademais de obter un rendemento

equiparable ao estado da arte, esta alternativa contribúe con descritores per-

sonalizados, que poden ser incorporados en novos procedementos de minaría

de datos na química. Por último, tamén proporciona unha interpretación do

modelo dende a perspectiva da intuición química.

Resumen

El machine learning y la inteligencia artificial se están convirtiendo en

técnicas cada vez más presentes en la investigación en química computacional.

A medida que tenemos acceso a una mayor cantidad de datos de química

cuántica, aumentan las posiblidades de uso de algoritmos inteligentes para la

exploración del espacio químico.

Por otra parte, todavía no disponemos de métodos eficientes para la pre-

dicción de propiedades de reacción cuantitativas. Entre estas propiedades se
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encuentra la energía de activación, cuya predicción de forma precisa propor-

cionaría un método para el descubrimiento de nuevos mecanismos de reacción

y nos facilitaría el control sobre la cinética de las reacciones.

El presente trabajo intenta buscar un algoritmo basado en machine lear-

ning para la predicción de energías de activación. Nuestro modelo depende de

un cálculo a nivel semiempírico (PM7) y proporciona una predicción a nivel

DFT mediante machine learning. Con este procedimiento, conseguimos pre-

cisión química con un coste computacional reducido. Además de obtener un

rendimiento equiparable al estado del arte, esta alternativa contribuye con

descriptores personalizados, que pueden ser incorporados en procedimientos

de minería de datos en la química. Por último, también proporciona una in-

terpretación del modelo desde una perspectiva de la intuición química.

Abstract

Machine learning and artificial intelligence are becoming ubiquitous tech-

niques in computational chemistry research. With quantum-chemical data

becoming increasingly available, intelligent algorithms are taking the upper

hand in the exploration of the chemical space.

On the other hand, we still lack efficient algorithms when it comes to

predicting quantitative reaction properties. Within this properties, accurately

predicting activation energies would enable rapid discovery of new reaction

mechanisms and would grant control over chemical kinetics.

The present work intends to seek for a machine learning-based algorithm

to predict activation energies. Our model relies on a semiempirical calculation

(PM7 level of theory) and resorts to machine learning to DFT accuracy. With

this procedure, we can obtain chemical accuracy while limiting the computa-

tional expenditure. In addition to achieving state of the art performance, this

approach contribute with innovative custom descriptors that can be harnessed

in data mining techniques in the chemical domain and allow interpretability

from the perspective of chemical intuition.
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1 Introduction

Accurately predicting reactivity is certainly one of the most fundamental prob-

lems that can be faced in chemistry. Unravelling how any chemical system evolves

and transforms with time opens many possibilities to develop new synthetic routes

or enhancing current ones. A sufficiently trained chemist can definitely tell how

reactants behave and what product they would yield. Nevertheless, sometimes the

system is not tractable by human thinking. This limitation has lead to the de-

velopment of new computational methodologies and algorithms that can emulate

human-like performance, whose success is not only limited by computational power,

but also by intrinsic algorithmic design flaws.

From a computational perspective, in order to predict reactivity, the most crucial

parameter that must be determined in a chemical reaction is the activation energy.

Calculating reaction parameters for simple enough systems has been possible since

the development of Hartree Fock (HF) methods [1]. Despite HF scheme success, it

fails to produce useful calculations as the system becomes larger. In this situation,

semi-empirical methods emerged as a tool to handle large molecules by means of

integrating empirical parameters and approximations together with the HF formal-

ism. Semi-empirical methods [2] enabled large systems calculations, but their results

differed from experimental data if the system did not resemble those used for the

parametrization. In order to achieve higher accuracy, computational chemists had

to resort to density functional theory (DFT), which is another ab initio method [3].

DFT saw unprecedented success, attaining quantum chemical accuracy in many dif-

ferent sets of molecules. Then again, the limitation of DFT calculations is the size of

the system. There are other methods that provide even more accurate calculations,

CCSD(T) (coupled cluster calculations), considered by many quantum chemists as

the gold standard [4]. Coupled cluster methods are only restricted to very small sys-

tems becoming extremely expensive as the system becomes larger. For the purpose

of the present work, the discussion will remain at the DFT level.
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At this point, we can agree that our main target would be to find a way to surpass

DFT limitations while still obtaining the same rigorous results. There have been

many attempts to formulate a new theoretical framework that can utterly substitute

DFT, but they stumble in the same pitfall which is not being scalable. This situation

lead to stagnation within the theoretical chemistry field, until the rise of machine

learning in the physical sciences. Machine learning has been shifting the scientific

paradigm for the last decade, from purely theoretical modelling towards data-driven

discoveries.

The applications in chemistry cover a broad range, from complex problems in

retrosynthesis or reaction optimization to drug design [5] in the context of organic

chemistry. Analytical chemistry is probably the subfield in chemistry where machine

learning was first used, since the problems in analytical chemistry are typically

of statistical nature, such as evaluating food quality [6]. In inorganic chemistry,

recent developments of deep learning frameworks allow highly accurate prediction

for inorganic materials [7].

Regarding predictions of reaction parameters, such as activation energy, machine

learning based methodologies have seen significant growth as well. In particular,

deep learning algorithms (a subfield within machine learning) dominate this area.

Marquetand et al. [8] work was pioneering in the use of machine learning. They

proposed a high-dimensional neural network to fit electronic structure data and

construct potential energy surfaces for organic reactions. Allison et al. [9] described

the application of an artificial neural network to the prediction of reaction rate

constants for reactions involving OH radicals.

Closer related to the scope of our work, Green et al.(2020) [10] proposed a deep

learning approach to calculate activation energies and other quantitative data from

reaction data. They used a novel approach that relies on a directed message passing

neural network that encodes molecules as graphs and predicts the activation energy.

Nevertheless, this model does not utilize information available from the transition
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states and only relies on information from the atomic connectivity from reactants

and products.

After a thorough revision of the state of the art, it is clear that ML has taken

over the computational chemistry space when it comes to quantitative prediction

of reaction parameters. With the present work, we intend to expand on th type

of methods, overcoming the shortcomings and flaws on common ML approaches

by combining domain expertise as chemists and the most sophisticated machine

learning algorithms.
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2 Objectives and Work Plan

The present work seeks to expand current methods on reaction parameters pre-

diction. In particular, our goal is to develop a deep learning-based model that can

accurately predict activation energies while remaining computationally affordable.

In the previous chapter we mentioned how most approaches sought to surpass elec-

tronic structure calculations or molecular dynamics and provide a machine learning

model that can directly predict the desired activation energy.

Nevertheless, our approach is focused on leveraging a cheap calculation provided

by semiempirical methods into higher accuracy (DFT level of theory). More pre-

cisely, the semiempirical level employed will be PM7 provided by MOPAC and

the DFT functional with the desired precision is ωB97X-D3. This work can also

be understood as a correction for the semiempirical level of theory or even as a

reparametrization. In summary, we want to achieve higher accuracies without jeop-

ardizing computational efficiency.

In addition to providing this correction, the interpretation of the model output

from a chemical perspective will grant unique insights into how semiempirical and

DFT calculation differ, which can provide clues on how to offset parametrizations

for theoreticians working on these semiempirical methods.

With respect to the work plan, in order to train a model first it is necessary to

obtain a curated dataset containing enough samples. For this work, the database

produced by Grambow et al. (2020) [10] was used. They generated quantitative data

for almost 12000 organic reactions at the ωB97X-D3/def2-TZVP quantum chemistry

level. After scraping the data, sempiempirical calculations must be performed us-

ing geometries for the different chemical species specified in the database. Since

there is the possibility that a fraction of the calculations cannot be achieved at the

semiempirical level of theory, it was necessary to discard some of the data entries.

Having obtained data at the semiempirical level, it was then possible to obtain

7



the difference in activation energy between both methods, which is our target data.

Then, since the ML model needs input data (the precise term is descriptors, which

will be introduced in further detail in the next chapter) to produce a prediction, we

had to extract this information from the database. In our case, these type of data

involved finding new ways to encode the information encapsulated by a chemical

reaction. It can range from electronic structure calculations applied to the reactants

and products to topological and geometrical indices related to the transition state.

That is, we eventually wanted to translate the language used by chemists into chunks

that could be interpreted by a computer.

Upon completion of the dataset, it must be split into training, validation and

test in order to perform experiments. The experiments involved using different ML

algorithms to select the ones that produced better predictions. Then, the model

parameters were optimized to enhance the outputs and compare its performance

with results from state of the art models. The last step involved using different

mathematical procedures that enable the interpretation of the model from a chemical

perspective.
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3 Theoretical Framework

3.1 Artificial Intelligence and Machine Learning

While the emergence of Artificial Intelligence (AI) might evoke a sensation of

cutting-edge research and recent developments, it has been subject of active research

for the past centuries. A more rigorous approach can be dated back to the early 20th

century, as the philosopher Bertrand Rusell revolutionized formal logic in his work

Principia Mathematica [11]. From that moment, researchers began to investigate

how to formalize the mathematical reasoning previously depicted by philosophers.

The next milestone arrived with Alan Turing’s work on machine intelligence, defining

a formalized version of a general purpose computer. Because of this research, Turing

is usually referred to as the foundational father of AI. Skipping a few years of acute

developments on the field, it is worth emphasizing the results from Frank Rosenblatt

on his book The Perceptron (1957) [12]. He proposed the first implementation of

an artificial neural network (ANN).

Fast forward until the 21st century, to the era of machine and deep learning.

Faster and accessible computers enabled the usability of artificial intelligence tech-

niques across different fields, which harnessed the power of data driven algorithms

into both academic and industrial problems. Thus, thee current trend about using

machine learning in every problem is justified by a series of achievements on the last

decade.

This historical discussion grants an unique perspective on how and why AI is

so widely used to solve research questions. Sometimes the terms AI and machine

learning/deep learning are used interchangeably, but our next step will be to grant

a concrete definition of each term and depict their boundaries. The relationship

among these terms is usually visualized by means of the Venn diagram on Figure 1.
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3.1 Artificial Intelligence and Machine Learning

Figure 1: Venn Diagram on

AI/ML/DL

It is important to bear in mind that

machine learning is a subset within

AI. In particular, we can define ma-

chine learning as the subset of AI

which relies on data in order to learn

how to perform a certain task. Then,

deep learning is a subset of machine

learning which deals with a particular

type of algorithms.

Every deep learning algorithm can be classified as a machine learning algorithm,

but most machine learning does not resort to deep learning algorithms. The differ-

ence between these classes can be more subtle, but it will become clear as we dive

deeper on more details on how the algorithms work.

First, we will explain how machine learning works by describing the type of

problems that it solves. There are two major distinctions on machine learning:

supervised learning and unsupervised learning. For the scope of this work, we will

restrict to supervised learning. Within supervised learning, there are two separate

tasks that comprise every supervised problem: classification and regression.

Both classification and regression follow the same logic: we are granted a dataset

containing predictor variables X or "features"1 and a response variable Y . The main

difference relies on the nature of the response variable Y . For a regression task, Y

is a quantitative variable or continuous, while for classification it is qualitative or

discrete. For the scope of this work, regression will be the main focus.
1In the applications of ML in chemistry, features are usually called descriptors.
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3.1 Artificial Intelligence and Machine Learning

Figure 2: Regression Example using

Decision Tree [13]

As an example of how a regression

task works, we will use a one dimen-

sional example problem, where the

target data Y is a function of only

one feature X, displayed on Figure

2. Thus, the objective is to obtain a

model such that its predictions match

Y . Ultimately, the procedure is

equivalent to that of linear regression,

but in reality data does not always fol-

low linear behavior (in fact with ML

it is not necessary to assume a func-

tional relationship between features

and target data) and the dimension-

ality is higher than one.

At this point, the model can be treated as a black-box which receives an input

X and produces a prediction ŷ. In order to enhance its predictions, a loss function

is used, which is another key concept in machine learning. In general, loss functions

receive model predictions ŷ and ground truth values Y as arguments and produce a

number that can be understood as how the predictions differ from the ground truth.

There are numerous loss functions used in ML and they can be as simple as the

MSE, usually used for regression problems:

J(Y, ŷ) =

∑N
i=1(Yi − ŷi)2

N
(1)

Taking into account this interpretation of the loss function as a measure for the

discrepancy between our predictions and the values present in the response variable,

it is clear that our objective should be to minimize the loss function. Then, we have

reduced or simplified our problem into an optimization problem. There are different
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3.1 Artificial Intelligence and Machine Learning

mathematical optimizers available, but the underlying principle is the same. Figure 3

illustrates this situation, where the loss function is plotted as a function of the model

parameters in a 1-dimensional setting. The generalization to higher dimensions is

trivial, but the simpler case is easier to visualize.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0

J(
)

J( ) Global Minimum

J( ) with initial Weights

Loss Function

MSE Loss Function

Figure 3: Loss function

Let us recapitulate the formulation of our model and how predictions are im-

proved. First, we use our model to predict, then a loss function is calculated and

model parameters are updated via an optimizer with respect to the loss function.

This process is repeated iteratively until convergence of the loss function when it

reaches a global minimum.

The next step will be to specify how parameters themselves are updated in order

to solve the optimization problem. Minimization is attained by means of gradient

descent [14] (there are numerous optimizers, but the fundamental processes are
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3.1 Artificial Intelligence and Machine Learning

inspired from gradient descent):

θi = θi − α
∂J

∂θi
(2)

Where α is a parameter named learning rate. Introducing learning rate this way

leads to a natural discussion about different type of parameters in machine learning

models. Within a model, it is crucial to distinguish among parameters (such as

weights and biases) and hyperparameters (such as learning rate, number of hidden

layers or number of neurons). Parameters are those which can be trained with every

iteration and hyperparameters are fixed from the beginning. They are susceptible

to being optimized as well, but this process will be explained later.

Figure 4: Gradient Descent

Figure 4 illustrates how gradient descent works in a pictorial way. It shows a

3-dimensional plot representing the cost function J in the z axis as a function of two

parameters. The path drawn shows how parameters are updated in the direction of

steepest descent with respect to the surface spanned by the loss function. Eventually,

gradient descent stops at the global minimum. This plot serves as an example of

the importance of selecting the appropriate learning rate. The significance of the

learning rate is serving as a sensitivity on how much the parameters are updated in
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3.1 Artificial Intelligence and Machine Learning

every iteration. If the learning rate is too large, global minimum might be skipped

and the optimization might land in a local minimum. If is too small, the learning

optimization process can be too slow.

3.1.1 Artificial Neural Networks

Armed with the global vision on how machine learning problems work, now we

should specify how parameters are updated and how predictions are made for the

particular case of neural networks, even though that the same process is used for

different models.

An artificial neural network is a computing system which learns patterns from

data and whose functioning rationale is inspired by how biological systems process

and share information.

Figure 5: Artificial Neural Network representation

Every layer in a neural network is comprised of neurons, which can be understood

as its building blocks. A collection of neurons comprise each of the layers shown in

Figure 5. There are different types of layers, named input layer, hidden layers and

output layer. Hidden layers are optional, and so are the number of hidden layers

in a neural network. The purpose of each type of layer will become clear in the

following paragraphs. At this point, we must focus on the building blocks. Each

14



3.1 Artificial Intelligence and Machine Learning

neuron contains two sets of parameters: weights (θi) and biases (bi). When data

is fed from the input layer, every neuron computes a linear function by using its

weights and biases:

Z = θ ·X + b (3)

Note that if neural networks only performed linear calculations, they would be

equivalent to linear regression. In order to be able to compute non linear patterns,

it is necessary to introduce another function. In ML terminology, this (presumably)

non linear function is often referred to as activation function. In general, it can be

expressed as:

A = g(Z) = g(θ ·X + b) (4)

There are several activation functions, among those the most popular options are

sigmoid or ReLu (Rectified Linear unit) functions, defined as:

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g(
x)

ReLu Activation Function
ReLu Function

a) ReLu Activation Function

3 2 1 0 1 2 3
x

0.2

0.4

0.6

0.8

g(
x)

Sigmoid Activation Function
Sigmoid Function

b) Sigmoid Activation Function

Figure 6: Activation Functions

g(x) =
1

1 + e−x
(5)
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3.1 Artificial Intelligence and Machine Learning

g(x) = max(0, x) (6)

Where equations 6 and 5 refer to ReLu and sigmoid functions respectively. Fig-

ure 6 a) displays ReLu and b) Sigmoid activations functions. These two steps are

performed sequentially, using the output from one layer as input for the next layer

until output layer is reached. The output layer already produces our predictions,

which will be used to calculate the loss function. Steps up to this point comprise

what is usually known as feedforward step.

Next steps, which will be called backwards steps, are the reason why neural

networks are so widely used. The underlying algorithm which explains how NN learn

is backpropagation [15]. Backpropagation is a method to calculate partial derivatives

of the cost function with respect to the weights (parameters) of the model. Keeping

in mind that each neuron computes a complex function depending on the output

from previous layers, it is clear that in order to calculate partial derivatives, this

relationship must be considered by means of the chain rule. Thus, backpropagation

becomes an efficient implementation which enables a rapid computation of gradients

in parameter space.

∂J

∂θ[L]
=

1

N

∂J

∂Z [L]
g(Z)T =

1

N

∂J

∂Z [L]

(
A[L−1]T

)T
(7)

∂J

∂b[L]
=

1

N

N∑
i

∂J

∂Z [L](i)
(8)

∂J

∂A[L−1]
=
(
θ[l]
)T ∂J

∂Z [L]
(9)

Equations 7 to 9 show how backpropagation is performed, where the L index

refers to the layer and the other quantities were already defined previously. This

is the most general version, it must be noticed that the exact implementation will
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3.1 Artificial Intelligence and Machine Learning

depend on which activation functions and loss function are chosen. Nevertheless,

we will not elaborate more on this topic, since the most relevant bit of information

to retain and which must be emphasized is that backpropagation is just a method

to compute gradients. Eventually the computation of these gradients are needed for

gradient descent algorithm to perform optimization with respect to the loss function

as explained in the previous section.

After revising the details and intricacies in neural networks, we will summarize

how information flows within this model. First, predictor variables X are fed to the

input layer, which initiates the feedforward step until it reaches the output layer,

producing a prediction ŷ. Cost function is used by the neural network to learn the

optimal parameters to optimize the prediction by means of backpropagation and

gradient descent. The process is repeated for a number of epochs until convergence

of the loss function. Equipped with the knowledge on how to train models, now we

will move on to discuss how to perform machine learning experiments.

3.1.2 Experimentation in ML

Experiments in machine learning usually follow the same approach. First, the

dataset is partitioned typically into train, validation and test sets by randomly

selecting data entries and assigning a percentage of the dataset to each one. The

train set, as the name suggests, is the one used to optimize the model parameters

such that it learns how to perform the task. The validation set is used to measure

how the model behaves with respect to a given metric and evaluates how the model

works with unseen data. In the context of regression, the most common metric

is arguably the mean absolute error (MAE , equation 10). Test set serves as an

assessment on how the model is able to extrapolate to data which was not used

during training nor as validation of the model performance. The difference between

validation and test might seem subtle, but after performing an experiment it becomes
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3.2 Quantum Chemistry

clearer.

MAE =

∑N
i |Yi − ŷi|
N

(10)

Another concern regarding the experimentation process can be raised with respect

to the partition into train and validation sets. Since we have agreed that it must be

done randomly, the final distribution might result in a pathological division which

leads to particularly poor results or, conversely, to a division which places examples

in the validation set which are remarkably easy to predict. In order to solve this

issue, cross-validation can be used, which consists of randomly splitting the dataset

into train and validation several times and then taking the average values. With

this technique, extreme values are smoothed and results are more likely to be able

to generalize to new samples.

3.2 Quantum Chemistry

In addition to the theoretical foundations on ML, a thorough review on quantum

chemical calculations must be considered to understand what type of assumptions

and limitations are needed in each case. For the scope of the present work, only

semiempirical level of theory will be covered. Since DFT is only used as a reference

method and due to the limited nature of this report, we will avoid expanding on the

intricacies behind the method. Due to its increasing popularity, the essentials can

be found in most introductory physical chemistry textbooks like Atkins [16].

3.2.1 Semiempirical Methods

Semiempirical methods are considered ab initio electronic structure methods

which emerged as an efficient implementation of Hartree-Fock schemes. Never-

theless, Hartree-Fock methods require solving large matrices and integrals beyond
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3.2 Quantum Chemistry

numerical feasibility. Assuming that the wavefunction can be approximated in the

form of a Slater determinant containing the molecular orbitals as N one-electron wave

functions, the next step would be to find the Slater determinant that minimizes the

energy by means of the variational principle. That is, finding the wavefunction that

minimizes the integral:

E = min
ΘS→N

〈ΘS|Ĥ|ΘS〉 (11)

Where Ĥ is the electronic Hamiltonian and ΘS is the Slater determinant. In the

LCAO MO approximation, an electron can be described by means of a molecular

orbital (OM), written as a linear combination of atomic orbitals (LCAO):

ϕ(ri) =
1√
Ni

∑
l

cilφi(ri) (12)

Where φi(~x) represents individual atomic orbitals and each cli is a coefficient that

must be determined by means of a variational method. The normalization constant

is determined by:

Ni =
∑
l

∑
k

cikc
i
lSkl (13)

Skl is the overlap integral between k and l atomic orbitals. At this point it is

useful to define three integrals which are central to the Hartree-Fock framework.

The overlap integral is calculated as:

Skl =

∫
ϕk (r2)ϕl (r2) d3r2 (14)

Then, the Coulomb integral which accounts for the electronic repulsion is defined
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3.2 Quantum Chemistry

as:

Ckl =

∫
ϕk (r1)2

(
1

Rkl

+
1

r12

− 1

rk1

− 1

rl2

)
ϕl (r2)2 d3r1d

3r2 (15)

Finally, the exchange interaction integral which does not have a classical analogue

with no clear physical explanation. It accounts for quantum mechanical phenomena:

Jkl =

∫
ϕ∗k (r1)ϕ∗l (r2)

(
1

Rkl

+
1

r12

− 1

rk1

− 1

rl2

)
ϕl (r1)ϕk (r2) d3r1d

3r2 (16)

A thorough explanation on how to expand this calculation can be found in a

regular quantum chemistry textbook as it is out of the scope of this work. We will

only present results, where we can skip to the following formula:

FCk = εkSCk (17)

Which is known as the Fock secular equation, where Ck is the matrix containing

the coefficients. F matrix is the Fock matrix, where the ith element is computed as:

Fi = hi +

N/2∑
j

(2Cj − Jj) (18)

Where hi is the corresponding one-electron hamiltonian. Then, the problem

is reduced to a diagonalization exercise, which requires computationally expensive

integral evaluations in order to obtain both F and S matrices.

It is important to emphasize the final objective of this method. We want to find

a diagonal matrix Ck which contains the coefficients that grant a functional form

for the wavefunction. Calculating the energy by means of equation 11 leads to the

ground state energy.
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3.2 Quantum Chemistry

Since evaluating the integrals needed for the variational method are extremely

expensive from the computational perspective, there were several attempts to elude

them. The prevalent version of these approximations is the so called NDDO type

of semiempirical methods. NDDO stands for neglect of diatomic differential overlap

and its purpose is to equate a certain type of integral to zero. In summary, it

neglects the overlap over two basis functions ϕiϕjdr where the functions ϕi(r−RM)

and ϕn(r−RN) are centered on different nuclei. The consequence is that the number

of repulsion integrals that must be computed is drastically reduced [17].

In summary, semiempirical methods are Hartree-Fock based schemes where an ad-

ditional approximation is considered in order to elude the calculation of an enormous

number of integrals. This is where semiempirical methods attract more attention

compared to DFT. DFT scaling law follows cubic complexity O(n3) while semiem-

pirical NDDO methods as those incorporated in MOPAC lead to linear complexity

O(n).

While there is a wide variety of semiempirical methods currently available, PM7

[18], included in MOPAC, is corroborated as the best performing method. PM7 was

parametrized to achieve greater performances with molecules outside of the subset

of molecules employed for the parametrization. With respect to the approximations

and assumptions made for PM7, two major modifications were reviewed. First, it en-

hanced the description of non-covalent interactions by means of including dispersion

and hydrogen bonds. Then, errors under the NDDO formalism were corrected.

Discussions regarding quantum chemical methods open the opportunity to clarify

a term widely used in this work. When we refer to activation energies, we are actually

referring to barrier heights. Nevertheless, after an extensive literature research, the

term coined for barrier heights in the context of machine learning is activation

energies. True activation energies are dependent on the temperature and would

pose a much more intricate problem.
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4 Experimental Procedure

4.1 Database Curation

As mentioned previously, the first task we need to carry out after downloading

the database contents is to perform the calculations at the semiempirical level. Our

target data is Y = EDFT
a −EPM7

a , which makes necessary the calculation of barrier

heights at both the DFT and PM7 levels of theory. The database contains 11960

folders including output files produced after the optimizations for reactant, transi-

tion state and product. These output files were generated from Q-Chem software,

at the ωB97X-D3 level of DFT theory using def2-TZVP basis expansion. Barrier

heights are directly obtained by subtracting the TS final energy minus the reactant

energy, considering ZPE.

On the other hand, obtaining barrier heights at the semiempirical level entailed a

much more complex process, as several sanity checks are required. Figure 7 presents

a flow chart diagram explaining how the calculations are performed step by step.

Further explanations are needed and the following paragraphs are allocated to un-

derstanding the diagram.

First step, labeled as TS optimization in Figure 7 consists on parsing transition

state coordinates from the database and performing an optimization step using

MOPAC at semiempirical level of theory starting from the database geometry. After

this step, it is crucial to check whether this TS connects reactants and products

present in the database. That is, we must inspect if the optimized TS with MOPAC

corresponds to the same reaction as per the database.

In order to verify which reactants each TS leads to, the Intrinsic Reaction Coor-

dinate (IRC) must be followed. The reaction path IRC method consists on finding

the reaction path corresponding to the steepest descent curve from the first-order

saddle point. That is, the path which maximizes the gradient starting from the TS
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4.1 Database Curation

Figure 7: Dataset generation flow diagram

coordinates within the potential energy surface and eventually arriving at a mini-

mum. This steepest descent reaction path in mass weighted coordinates is usually

what is referred to by IRC [19].

This calculation can be performed in different directions starting at the TS ge-

ometry. Each direction is represented in the flow diagram by means of the keyword

IRC = 1 or IRC = -1. Ideally, after performing this step, the minima obtained for

each TS should correspond to the reactants and products present in the reaction

involving that specific TS. Thus, the next step boils down to comparing different

geometries and resolving whether they represent the same molecule. This step can

be automated by resorting to spectral graph theory.

A graph is the natural mathematical representation of a molecule, encoding how

atoms are connected (bonds) in matrix form. The most relevant matrix is the
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4.1 Database Curation

adjacency matrix, which can be easily visualized by means of the example displayed

in Figure 8. This figure represents a cyclobutadiene molecule with carbon atoms

labeled. The adjacency matrix is a 4× 4 matrix where the diagonal is always filled

with zeros and the elements outside of the diagonal are 1 at position aij if the atoms

ij are bonded and 0 otherwise. In this particular case, carbon number 1 is attached

both to carbon number 2 and carbon number 3. Thus, elements {a12, a13, a21, a31}

are non-zero.

Figure 8: Cyclobutadiene


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 (19)

Adjacency Matrix

It is clear from this example that the shape of the adjacency matrix is dependent

on the labelling of the molecular graph. Thus, a graph invariant must be used to

compare whether two different matrices represent the same molecule. This graph in-

variant can be obtained by substituting each diagonal element by the atomic number

of the atom that it represents. Then, eigenvalues for this modified adjacency ma-

trix are computed. The eigenvalues are labelling invariant and only depend on the

molecule connectivity. We have found a graph invariant to automate the verification

of whether IRC reactants and products match those present on our database.

If the connectivity differs, the reaction must be discarded. If they are the same

molecule, both the geometry from the database and the geometry from the IRC

calculation are optimized at PM7 level of theory. Finally, the last step on the flow

diagram refers to the corroboration of both molecules being the same conformer.
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4.1 Database Curation

This last step is performed in a similar manner using methods from spectral graph

theory.

In conclusion, this database curation lead to the discard of part of the reac-

tions present in the database, either because the species could not be optimized at

PM7 level of theory or the IRC calculation lead to different reactants and products.

From the initial 11960 reactions, 8355 survived this screening process, meaning that

roughly 70 % of the samples could be utilized.

Considering these available data entries, we could calculate the activation energy.

Equations 20 and 21 refer to how the barrier height from reactants to transition

state and product respectively are computed.

Ea = (HTS
F + ZPETS)− (HR

F + ZPER) (20)

∆H = (HP
F + ZPEP )− (HR

F + ZPER) (21)

Where HF refers to the heat of formation, which stands for the total electronic

energy optimized by MOPAC and ZPE is the Zero-point energy, the vibrational

energy corresponding to 0 K. This accounts for the differences between how ab

initio and semiempirical methods represent the energy of a chemical system.

Both of these quantities will be our target variables. Remember that our pur-

pose is to predict differences involing DFT and semiempirical level of theory, which

can be written as Y = (EDFT
a − EPM7

a ,∆HDFT − ∆HPM7). Even though we are

mainly interested in predicting activation energy, predicting both of these properties

simultaneously tend to enhance the training process (usually known as Multitask

Learning [20]). At this point, the dataset is already curated and cleansed to start

with the machine learning pipeline.
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4.2 Dataset Description

4.2 Dataset Description

The first step in a machine learning problem is to investigate and analyze the data

which will be used. In this case, exploratory data analysis (EDA) was performed

on the Grambow et al. (2020) database. Figure 9 shows histogram plots depicting

different characteristics of the reactions in the database. Figure 9 a) refers to the

number of bonds either broken or formed in the reaction and b) the number of rings

being formed in the product or broken. Last picture, Figure 9 c) shows the number

of atoms per element present in each reaction.
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Figure 9: Exploratory Data Analysis of the reactions present on the database
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4.2 Dataset Description

These histograms provide a powerful insight on the type of compounds present

in the database and the statistical distribution of the type of molecules depending

on the elements as well as bonds involved in the reactions.

This analysis grants a vision on the chemical nature of the compounds present in

the database. Since the database is comprised of reactions connecting reactants with

products, it is interesting to visualize a selection of reactions to understand what

type of transformations we are working with. Figure 10 displays different examples,

with the type of reactions ranging from ring opening/formation to tautomerisms

(enolization).

Reactions in the database contain up to seven heavy-atoms (that is, carbon,

nitrogen or oxygen) per molecule and consist on unimolecular reactants that can

yield multi-molecular products (even though most reactions are isomerizations).

The purpose with this dataset was to represent the widest spectrum of reactions

while covering a broad range of activation energy values.

All these reactions are in gas-phase, with every reagent sampled from the chem-

ical space spanned by GDB-7 dataset [21]. It is worth noting that for this type

of reactions, it is possible to include the reverse reactions. Since our dataset con-

tains information for every species involved in the reaction, we could extract reverse

barrier heights.

Including direct and reverse barrier heights leads to doubling the number of re-

actions accessible. This procedure is a form of the common technique in ML known

as data augmentation [22]. Data augmentation allows an increment on the number

of training samples without the need for further electronic structure calculations.

27



4.3 Descriptor Calculation

Figure 10: Reaction examples from the database entries

4.3 Descriptor Calculation

The most crucial step in this project is calculating a set of descriptors that encode

the most useful information present in every reaction. These descriptors are the

dependent variablesX that serve as input for the model to predict the target variable

Y . The nature of these descriptors range from purely topological (based on each
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4.3 Descriptor Calculation

molecule connectivity) to electronic structure (obtained from MOPAC calculations).

In chemoinformatics, descriptors are usually calculated using RDKit library [23].

RDKit provides a set of descriptors based mostly on heuristics and demanding the

molecule structure as the only input. In this project, descriptors were calculated

both for products and reactants and the final descriptors used involved the difference

XRDKit = XProduct
RDKit −XReactant

RDKit . If the specific descriptor remained invariant both in

products and reagents (molecular weight, for instance), the difference would always

yield zero. In this case, the raw value was used.

In order to provide an intuition on some of the other descriptors provided by

RDKit, we name some examples. Some desriptors can be as simple as the molecule’s

molecular weight or as sophisticated as calculating the topological polar surface area

(TPSA) [24]. TPSA refers to the surface occupied by polar atoms, calculated by

means of an heuristic method described on RDKit documentation [23].

There was still plenty of information that is not encapsulated in RDKit descrip-

tors. Information regarding how the reaction occurs was not being employed. Then,

another set of descriptors consisted on counting the number of broken and formed

bonds for each reaction, as well as counting the number of bonds per type of atom in-

volved. That is, number of carbon-carbon bonds broken, number of oxygen-hydrogen

bonds formed, etc. Even the count of atoms per type of element was used as a de-

scriptor, since the parametrizations in semiempirical methods are highly dependent

on the type of elements.

The next set of descriptors was focused on extracting the most relevant informa-

tion from the transition state itself. First, we decided to include descriptors that

represent the TS connectivity and topology. From its adjacency matrix, several

topological indexes can be computed. These topological indexes are graph invari-

ants (remember the importance of using invariant objects). Using a more concrete

example, one of the indexes employed was Randić’s molecular connectivity index

[25], which is a measure on the branching for an organic compound.
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4.4 Model Selection

Apart from how atoms are connected in a molecule, it is also important to know

what type of bonds are involved. In order to encode this information, we parsed the

bond order matrix from MOPAC output files and calculated its eigenvalues. The

eigenvalues of this bond order matrix served as new descriptors.

There was still room for capitalizing on the information provided by MOPAC cal-

culations. By providing special keywords, it is possible to compute electrophilic and

nucleophilic delocalizabilities, as well as charge densities [26]. These quantities pro-

vide an estimation on the energy stabilization upon the attack from an electrophilic

or nucleophilic agent respectively. In general, they provide a picture of how the

charge is distributed within a molecule.

4.4 Model Selection

After obtaining the complete set of descriptors, it is important to investigate if

there are highly correlated variables. Correlated features would only add statistical

noise to the model and the usual procedure is to remove descriptors that exceed a

correlation threshold. The correlation measure employed was Pearson correlation

coefficient:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(22)

Where xi are the values for descriptor x and yi for descriptor y. Considering every

possible descriptor, a correlation matrix can be built where each entry represents

the pairwise Pearson correlation coefficient between every pair of descriptors. A

correlation threshold was established such that if a pair of descriptors exceed this

value, one of them had to be dropped from the dataset. This threshold was optimized

by cross-validation and the final value was set to ρ = 0.9.

The next step, as outlined in the previous chapter regarding experimentation in
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4.4 Model Selection

ML, involves partitioning the dataset into training, validation and test sets. Follow-

ing common practices in ML literature as well as considering the size of our dataset,

we decided to use 85 % of the data for training purposes, 5 % for validation and 10

% for the test set.

After separating the test set, it is time to select the optimummodel which provides

the best performance in the validation set. Following the procedure outlined in the

previous chapters, in order to obtain the best performing model we need to optimize

its hyperparameters.

In the context of deep learning, there are several hyperparameters that can be

fine-tuned. Since searching for the optima for every combination of hyperparam-

eters simultaneously would be extremely computationally expensive, a sequential

approach was carried out.

First, it was necessary to elucidate the number of hidden layers and the number

of neurons per layer. The minimum was obtained by resorting to a grid search.

This method entails trying every possible combination and examining the one that

minimizes a given metric. For our experiment, we decided to use MAE as the

optimizing metric. It is important to emphasize that this metric is validated on

the samples not used for training, meaning that this metric is computed for the

validation set.

With the aim of obtaining more general results, we used cross-validation. Cross-

validation involves testing the model performance with different train/validation set

partitions with the purpose of preventing pathological cases. Table 1 shows MAE

for the different combinations that assemble various forms of model architecture.
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Number of Hidden Layers Number of Neurons per hidden layer MAE (kcal/mol)

4 128× 256× 64× 32 5.04± 0.34

4 128× 128× 64× 32 5.14± 0.33

4 128× 64× 64× 32 5.21± 0.33

5 128× 256× 128× 64× 32 8.1± 4.3

5 128× 128× 64× 64× 32 5.13± 0.40

5 128× 64× 32× 64× 32 5.19± 0.36

6 128× 256× 128× 64× 64× 32 8.1± 4.5

6 128× 128× 64× 32× 64× 32 5.14± 0.28

6 128× 64× 32× 16× 64× 32 5.21± 0.23

Table 1: Neural Network Architecture hyperparameter tuning

Uncertainties were assigned by means of the standard deviations obtained because

of the cross-validation procedure. More precisely, 3-fold cross-validation was em-

ployed, meaning that per every combination of hyperparameters, 3 different dataset

partitions were used and the presented values refer to the mean value. After se-

lecting 4 hidden layers as the optimum value with the corresponding number of

neurons, we could fix what is usually referred to as the network architecture. Apart

from obtaining the minimum MAE from this architecture, there is another reason

to choose the model with the lowest possible number of hidden layers and neurons.

In the situation where two different models perform equally on the same dataset,

it is always preferable to choose the simplest model. In this case, that would be

the model with the least number of parameters, which depends on the number of

neurons. The simpler the model is, the better it will extrapolate to data entries

outside of the training and validation sets. Occam’s razor is commonly mentioned

as the argument to avoid high complexity models on deep learning approaches [27].
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Reducing model complexity serves as a hedge against another undesirable phe-

nomenon which can happen in machine learning settings. This issue is overfitting,

which consists of training a model which learns to predict data on the training set

to an extremely high accuracy but achieving poor performance on the test set. The

main evidence that a model is overfitting is that it performs drastically better on

the training set than on the test set and the more iterations, the worse result is

obtained in the test set.

There are several approaches to avoid overfitting apart from increasing model

simplicity. The most widely used resource is introducing dropout [28] within the

model architecture. Dropout involves ignoring some connections between hidden

layers with a given probability, such that statistical noise is introduced in the model

in order to prevent the model from learning to excessively adapt to the training

data. Dropout probability can be included as a hyperparameter as well which must

be fine-tuned in a similar approach as network architechture.

Dropout probability was optimized together with another pair of hyperparame-

ters: learning rate and batch size. Batch size in interpreted as the number of data

entries that are passed down to the input layer per iteration and learning rate is a

measure on the magnitude of parameter update in every gradient descent iteration.

Table 2 shows the results from validation set performances for different combina-

tions of the hyperparameters using 3-fold cross-validation again. Since parameter

space is still tractable , we decided to perform discretized grid search again, pursuing

every possible set of parameters.
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Batch Size

Learning Rate Dropout Rate 128 256 512

0.01 0.15 14.26± 0.19 14.24± 0.15 14.23± 0.17

MAE kcal/mol

0.001 0.15 4.61± 0.44 4.41± 0.40 4.38± 0.39

0.0001 0.15 4.34± 0.35 4.30± 0.36 4.34± 0.36

0.01 0.25 14.23± 0.16 14.24± 0.16 14.25± 0.15

0.001 0.25 4.75± 0.31 4.57± 0.37 4.59± 0.32

0.0001 0.25 4.52± 0.45 4.50± 0.37 4.60± 0.40

0.01 0.35 14.24± 0.16 14.25± 0.14 14.23± 0.16

0.001 0.35 4.99± 0.44 4.81± 0.30 5.01± 0.30

0.0001 0.35 4.65± 0.34 4.78± 0.49 4.85± 0.35

Table 2: Hyperparameter Optimization

From this experiment we can conclude that the optimum model is obtained by

using 0.15 as dropout rate, 0.0001 as learning rate and a batch size of 128 samples.

At this moment, it was interesting to include the data augmentation technique

mentioned earlier. That is, including reverse barrier heights to increase the training

data.

Using twice the training data lead to results that were within the confidence in-

terval spanned by the optimized model: (4.34± 0.35) kcal/mol . We concluded that

data augmentation in this case does not lead to better performances while penalizing

computational expenditure. A sensible explanation is that our descriptors are heav-

ily dependent on the transition state and reverse reactions share transition states

with direct ones, introducing noise during training. This approach was abandoned

and only direct reactions were finally used.
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Figure 11: Learning Curves

Figure 11 represents how MSE and MAE evolve on the training and validation

(dev) sets. This procedure serves to identify and troubleshoot potential problems

during training process. Since both metrics evolve similarly for every iteration, with

the validation loss function only diverging in the end, we can state that the model

effectively learns to predict samples from the training set and it is able to extrapolate

to the validation set successfully. In other words, from evaluating this plot we can

explore whether underfitting or overfitting is involved in this learning problem.

In order to visualize the final model architecture and dimensions, Figure 12 dis-

plays a representation containing all the information needed to reproduce this model.
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Figure 12: Final model architecture

Apart from the number of neurons per layer, the activation function used is also

included, as well as how dropout was implemented. Dense layers refer to hidden

layers where every neuron is fully connected. Note that the input layer requires
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entries to have 222 dimensions, which corresponds to the number of descriptors

needed. On the other hand, the output layer produces two dimensions, due to the

fact that we are simultaneously predicting both activation energies and product-

reactants energy differences.

Upon obtaining a model with the optimum hyperparameters, it is time to compare

its performance with respect to simply using PM7 calculations. Figure 13 shows on

the left activation energies calculated at DFT level vs activation energies at PM7

level for the test set. Using MAE as a metric, the value obtained is 11.24 kcal/mol,

with semiempirical calculations inducing systematic errors, as PM7 underestimates

high activation energies (for higher values of activation energies, the majority of the

points lie above the y = x black line).
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Figure 13: DL corrected activation energies

On the right, activation energies at DFT level vs DL-corrected activation energies.
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The model performs equivalently well in every energy range, with no systematic bias,

obtaining a MAE on the test set of 3.69 kcal/mol.

The previous plot does not provide an accurate picture on how the model per-

forms for the test set, because most of the samples from the test set are around

100 kcal/mol. Figure 14 shows how the correction works with a color code repre-

senting the number of data points lying in the same pixel. With this type of graph,

it is clear that there is a compact density of points whose activation energies are

accurately corrected.
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Figure 14: Density of corrected activation energies values.

Apart from harnessing the power of this model with respect to its predictive

power, it is equally important to asses how interpertable the model is (as opposed

to black-box models). In order to extract more information from this model, we will

employ Shap values [29]. Shap values is an approach that helps understanding how
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a machine learning model output is produced. Its foundation lays in the domain of

game theory, but we will not provide a detailed explanation since it is out of the

scope of this work. In order to comprehend the intuition behind this, it tries to

make a prediction without employing a certain descriptor and validating how the

model performs without this descriptor. Thus, we can obtain a measure of the most

important descriptors and how they affect the prediction.

Figure 15: Shap values sorted by descriptor importance

Figure 15 represents the most relevant descriptors sorted by importance. It is

interesting to notice how the activation energy computed at low level (MOPAC)

as well as the exponential of this value represent the most important descriptors.

Then, another point that emphasizes the interest behind our approach is how the

most important features were novel descriptors proposed in this work rather than

descriptors obtained from RDKit library.

The model weights descriptors related to charge distribution as high priority de-

scriptors, such as Parr and Pople absolute hardness (Par_n_Pople) and Mulliken

electronegativity (Mul), which are both HOMO and LUMO linear combinations.
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Then, descriptors related to the topology of the transition state are next in impor-

tance, such as the first frequency (freq) and the second eigenvalue of the laplacian

matrix (lap_eig_1 ), which grant information regarding how tight or loose the TS

state is. Last, it is also worth underlining that bonds participating in the reaction

can serve as powerful descriptors, such as formed carbon-hydrogen bonds (ch_f ) or

formed carbon-oxygen bonds (co_f ).

4.5 Alternatives

After seeing the success achieved using artificial neural networks type of models,

we investigated the implementation of more sophisticated models. At this point,

given the proven record of successes in the field of computer vision [30], we opted

for using Convolutional Neural Networks (CNNs). The intuition behind how CNNs

work with images is that by performing a convolution operation on different regions

of the input images, it is possible to extract new features that resemble how humans

interpret visual information.

CNNs are incredibly powerful at pattern recognition from matrices that represent

images. The idea behind this approach is encoding molecules as matrices. Then,

our model would recognize patterns such as functional groups and their influence in

the prediction on activation energies. We decided to use Coulomb matrices, defined

by equation 23.

Cij =

 0.5Z2.4
i i = j

ZiZj

||Ri−Rj || ∀i 6= j
(23)

Where Zi refers to the atomic number or nuclear charge on atom i and Ri is its

position in atomic units (Bohr radii a0). Thus, the purpose of Coulomb matrices

is to account for the electronic (Coulombic) repulsion. It is important to note that

these matrices are translation and rotation invariants but they depend on atom
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permutations. In order to solve this issue, rows must be sorted by their L2-norm.

Figure 16 shows a representation of the coulomb matrix of an organic molecule.

Figure 16: Coulomb Matrix representation [31].

After generating a dataset containing Coulomb matrices for each transition state,

we decided to train a CNN model with the architecture described by Andrew Rabi-

novich et al. (2014) [32]. Even though this type of model performs extraordinarily

well for image classification tasks, it can render robust results for regression tasks

as well.

Results from training this model are displayed on Figure 17. On the left, MSE for

both train and dev sets are shown and MAE on the right. Both figures evidence an

important problem with this model. As more iterations progress, the model learns to

predict activation energies from the training set surprisingly well. For the validation

set, not only does it not improve its accuracy with every iteration, but actually

provides worse results. This situation confirms that the model fails to extrapolate

to unseen data and suffers from overfitting.
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Figure 17: DL corrected activation energies

When working with CNNs, there is another approach when the dataset is limited.

Transfer learning consists on using a pre-trained model, with parameters trained on

a different task. Then, the output layer is extracted and replaced by a new one,

customized for the problem that we are trying to solve. Then, we used VGG-16

model [33], trained on a large dataset containing images. This approach lead to the

same results shown in Figure 17, suffering from the same overfitting issue and unable

to generalize to molecules outside of the training set. In order for CNN models to

work for this problem, we would need either to generate a larger dataset or to obtain

a pre-trained model from a closer application. For image recognition tasks, dataset

usually rely on millions of samples, which is orders of magnitude above our database.
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5 Conclusions

This work firmly argues in favor of all the excitement around machine learning and

artificial intelligence in the physical sciences. By resorting to machine learning, we

could predict activation energies at DFT level with the computational expenditure

of semiempirical calculations.

Apart from beating state of the art models when it comes to quantitative reaction

properties prediction, there are other features of equal importance in this work.

First, we demonstrated how low level, computationally inexpensive semiempirical

calculations serve as a stepping stone to provide more accurate models.

With respect to descriptors, it is important to emphasize the interest behind

using information contained in transition states, a detail vastly omitted in common

literature. On top of that, our custom descriptors, based on graph-theoretic aspects

and electron density (amongst others), can be adapted by practitioners to expand

on current data mining techniques used in chemistry.

On the other hand, we introduced the utility behind explainable machine learning

models in the context of chemoinformatics which connects descriptors calculated

and model outputs. Not only this approach leads to insights on the most important

features, but on how they influence predictions. This line of work can benefit further

parametrizations on semiempirical methods. It is worth noting how analyzing the

most relevant descriptors, the model prioritized our custom designed descriptors

rather than the ones used from common literature.

Further work on this topic can be extended from project, as there are several

aspects that were unexplored. The most straight-forward solution to enhance model

accuracy and its ability to extrapolate to different systems is to expand the database

by performing more high-level calculations and increasing the number of reactions

contained. In particular, it would be interesting to include molecules which are

sufficiently different such that the underlying statistical distribution comprises a

43



5.1 Conclusiones

wider variety of systems and became less homogeneous.

As the size of the dataset increases, more sophisticated models can be used which

require less information (less descriptors) to achieve chemical accuracy, such CNN

previously described in. As a concluding remark for this project, we can state that

while machine learning approaches are already present in computational chemistry

research, there is still room for exploiting the gargantuan amount of data available

in this domain.

5.1 Conclusiones

Este trabajo proporciona evidencia a favor de la exaltación entorno al uso de

machine learning e inteligencia artificial en las ciencias físicas. Al recurrir a ma-

chine learning, conseguimos predecir energías de activación a nivel DFT con el coste

computacional de cálculos semiempíricos.

Además de superar modelos que suponen el estado del arte en cuanto a predicción

cuantitativa de propiedades de reacción, presentamos otros resultados de importan-

cia equivalente en este trabajo. Primero, demostramos como un cálculo a bajo nivel,

barato computacionalmente sirve como base para obtener modelos más precisos.

En cuánto a los descriptores utilizados, es importante enfatizar el interés en re-

currir a la información encapsulada en los estados de transición, un detalle omitido

generalmente en la literatura. Además de esto, nuestros descriptores adaptados,

basados en aspectos de la teoría de grafos y la densidad electrónica (entre otros),

pueden ser adoptados por los usuarios para expandir las técnicas de minería de datos

empleadas habitualmente en química.

Por otra parte, introducimos el interés de utilizar modelos de machine learning

explicables o interpretables en el contexto de la química. Esta forma de abordar el

problema no sólo proporciona los descriptores más importantes, además nos informa

de la influencia de cada descriptor sobre la predicción. Esta línea de trabajo puede
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5.2 Conclusións

beneficiar próximas parametrizaciones de métodos semiempíricos. Es importante

destacar como al analizar los descriptores que el modelo considera más importantes,

encontramos que los descriptores propuestos en nuestro trabajo son los priorizados

por el modelo en vez de los extraídos de la literatura.

Futuro trabajo en este tema puede extenderse a partir de este proyecto, ya que

todavía quedan alternativas por explorar. La solución más directa para mejorar

la precisión del método y su habilidad para extrapolar a sistemas diferentes es ex-

pandir la base de datos mediante más cálculos a alto nivel para aumentar el número

de reacciones contenidas. En particular, sería interesante incluir moléculas suficien-

temente diferentes para que la distribución estadística subyacente tuviese en cuenta

una mayor variedad de moléculas y fuese menos homogénea.

A medida que se incrementa el tamaño del conjunto de datos, es posible recurrir

a modelos más sofisticados que requieren menos información (menos descriptores)

para conseguir precisión química, como las CNN probadas en este trabajo. Como

una nota concluyente para este proyecto, podemos afirmar que aunque las soluciones

basadas en machine learning ya están presentes en investigación en química com-

putacional, todavía se puede explotar más la ingente cantidad de datos de los que

disponemos en este campo.

5.2 Conclusións

Este traballo proporciona evidencia a favor da exaltación entorno ao uso de ma-

chine learning e intelixencia artificial no eido das ciencias físicas. Ao recorrer ao

machine learning, conseguimos predicir enerxías de activación a nivel DFT co custo

computacional de cálculos semiempíricos.

Ademais de superar modelos que supoñen o estado da arte en canto a predición

cuantitativa de propiedades de reacción, presentamos outros resultados de importan-

cia equivalente neste traballo. Primeiro, demostramos como un cálculo a baixo nivel,
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5.2 Conclusións

barato computacionalmente serve como base para obter modelos máis precisos.

En canto aos descritores empregados, é importante enfatizar o interese en empre-

gar a información encapsulada nos estados de transición, un detalle omitido xeral-

mente na literatura. Ademais disto, os nosotros descritores adaptados, baseados

en aspectos da teoría de grafos e a densidade electrónica (entre outros), poden ser

adoptados polos usuarios para expandir as técnicas de minaría de datos usadas ha-

bitualmente na química.

Por outra parte, introducimos o interese de empregar modelos demachine learning

explicables ou interpretables no contexto da química. Esta forma de abordar o

problema non só proporciona os descritores máis importantes, ademáis infórmanos

da influenza de cada descritor sobre a predición. Esta liña de traballo pode beneficiar

próximas parametrizacións de métodos semiempíricos. Cómpre salientar como ao

analizar os descritores que o modelo considera máis importantes, atopamos que os

descritores propostos no noso traballo son os priorizados polo modelo en vez dos

extraídos da literatura.

Futuro traballo neste tema pode extenderse a partir deste proxecto, xa que aínda

quedan alternativas por explorar. A solución máis directa para mellorar a precisión

do método e a súa habilidade para extrapolar a sistemas diferentes é expandir a base

de datos mediante máis cálculos a alto nivel para aumentar o número de reaccións

contidas. En particular, sería interesante incluir moléculas suficientemente diferentes

para que a distribución estatística subxacente tivese en conta unha maior variedade

de moléculas e fose menos homoxénea.

A medida que se incrementa o tamaño do conxunto de datos, é posible recorrer a

modelos máis sofisticados que requiren menos información (menos descritores) para

acadar precisión química, como as CNN probadas neste traballo. Como nota con-

cluínte, podemos afirmar que aínda que as solucións baseadas en machine learning

xa están incorporadas na investigación en química computacional, podemos explotar

máis a inxente cantidade de datos da que dispoñemos neste campo.
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