PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: March 1, 2021
ACCEPTED: April 20, 2021
PUBLISHED: May 20, 2021

Supergravity solution-generating techniques and
canonical transformations of o-models from O(D, D)

Riccardo Borsato and Sibylle Driezen

Instituto Galego de Fisica de Altas Enerzias (IGFAE),
Universidade de Santiago de Compostela,
Campus Vida, Santiago de Compostela, Spain

E-mail: riccardo.borsato@usc.es, sibylle.driezen@usc.es

ABSTRACT: Within the framework of the flux formulation of Double Field Theory (DFT) we
employ a generalised Scherk-Schwarz ansatz and discuss the classification of the twists that
in the presence of the strong constraint give rise to constant generalised fluxes interpreted
as gaugings. We analyse the various possibilities of turning on the fluxes Hijk,Fijk, Q7"
and RY* and the solutions for the twists allowed in each case. While we do not impose
the DFT (or equivalently supergravity) equations of motion, our results provide solution-
generating techniques in supergravity when applied to a background that does solve the
DFT equations. At the same time, our results give rise also to canonical transforma-
tions of 2-dimensional o-models, a fact which is interesting especially because these are
integrability-preserving transformations on the worldsheet. Both the solution-generating
techniques of supergravity and the canonical transformations of 2-dimensional o-models
arise as maps that leave the generalised fluxes of DFT and their flat derivatives invariant.
These maps include the known abelian/non-abelian/Poisson-Lie T-duality transformations,
Yang-Baxter deformations, as well as novel generalisations of them.

KEYWORDS: Sigma Models, String Duality, Supergravity Models

ARX1v EPRINT: 2102.04498

OPEN AccESS, © The Authors.

Article funded by SCOAP?, https://doi.org/10.1007/JHEP05(2021)180


mailto:riccardo.borsato@usc.es
mailto:sibylle.driezen@usc.es
https://arxiv.org/abs/2102.04498
https://doi.org/10.1007/JHEP05(2021)180

Contents

1

2

Introduction

Reduction ansatz and constant fluxes

2.1 Generalised Scherk-Schwarz ansatz

2.2 Constant fluxes and pre-Roytenberg algebra
2.3 0O(d,d) parametrisation of the twist U

2.4 Twist ansatz for orbits with H-flux

Classification of orbits
31 0

3.2 F

3.3 Q

34 R

3.5 F,Q
36 F R
3.7 Q,R
3.8 F.Q,R
39 H
3.10 H, R
3.11 F,H
3.12 H,Q
3.13 F,H,R
3.14 H,Q,R
3.15 F,H,Q

Type II superstring and Ramond-Ramond fields

Conclusions and outlook

A Notation

os]

H H O Q

Brief recap on DFT and gDFT
B.1 Geometric interpretation

On the O(d, d) parametrisation of the twist
Details on RR fields and type II
DFT equations of motion

Other ansatze used for orbits with H-flux

© O ot G

12

16
17
17
20
22
23
25
27
27
28
30
30
34
38
40
41

42
44
47

48
49

51
52
59

60




1 Introduction

An important concept in physics is that of symmetry. Symmetries are powerful tools to
constrain the form of solutions of physical theories, and they may be used as a guiding
principle to construct new physical models. Certain symmetries are particularly useful
because they connect physical solutions as well as different theories that are at first sight
unrelated. A prominent example is T-duality in string theory, which provides such a
connection between strings on backgrounds with very different geometry [1, 2].! In this
paper we will employ generalised notions of T-duality that go beyond the case of reduction
on a torus implemented by Buscher’s rules. When necessary we will refer to the latter
case as “abelian” T-duality, to distinguish it from the “non-abelian” T-duality (NATD)
transformation of [4-6]. NATD may be viewed as a generalisation where a set of non-abelian
isometries of the string background are dualised to give rise to a new solution of the low-
energy (super)gravity equations of motion, modulo a known anomalous-free condition [7, 8.
The transformation can be implemented by a Busher-like gauging procedure of the initial
isometries, similar to the abelian case. Global issues of NATD still need to be understood [6]
and currently the transformation is viewed as a solution-generating technique rather than
a fully-fledged symmetry of string theory [9, 10]. Similar comments apply to a further
generalisation of NATD that goes under the name of “Poisson-Lie” T-duality (PLTD). In
this case there is still a notion of dualisation of a symmetry algebra, but the symmetry does
not need to be realised as an isometry of the initial background [11, 12]. This advantage puts
the original and dual models on an equal footing at the expense of losing the interpretation
of the gauging procedure. All these generalised notions of T-duality transformations were
recently shown to admit o’-corrections that promote them to solution-generating techniques
in the bosonic and heterotic strings at least to 2 loops (first order in o) [13-15].

Double Field Theory (DFT) [16-19] is an attempt to make (abelian) T-duality manifest
at the level of the low-energy action, at the expense of doubling the coordinates ™ of
the D-dimensional target-space by pairing them with a set of “dual” coordinates Z,, in
XM = (%,,,2™). Diffeomorphisms, B-field gauge transformations and T-duality maps are
combined into the O(D, D) group, defined by the matrices O/ that leave the O(D, D)

metric npsn invariant
0 o,
= , 1.1
NMN < 5.0 ) (1.1)

meaning that O* ONQUPQ = nyn- The action of DFT is manifestly invariant under
constant O(D, D) transformations of the coordinates X™ and of the dynamical fields of
the theory, i.e. the generalised metric H sy and the generalised dilaton d, where the latter
is an O(D, D) scalar. The DFT action reduces to the low-energy effective action of the
string when constraining the fields to depend only on the physical coordinates =™, also
known as the “strong constraint”. By relaxing the strong constraint DFT may also be
viewed as a way to go beyond supergravity to provide a description of backgrounds that are
locally non-geometric. Nevertheless, in this paper we will simply use DFT as a convenient

1Recently a notion of “T-duality” for point particles was introduced in [3].



O(D, D)-covariant rewriting of (super)gravity, and thus the strong constraint is always
assumed. We will use in particular the so-called “flux formulation” of DFT [20] where
the dynamical fields are the generalised dilaton d and a generalised vielbein E4™ for the
generalised metric, and where the equations of motion are written exclusively in terms of
the generalised fluxes Fapc and F4 and their (flat) derivatives.

(Super)gravity solution-generating techniques. One motivation of our work is the
study and possibly the classification of solution-generating techniques in (super)gravity,
where we focus on those that admit a description in terms of O(D, D). In this case we
assume that the starting point is a (super)gravity solution, say with Neveu-Schwarz-Neveu-
Schwarz (NSNS) fields Gyn, Bin, ¢ for the metric, Kalb-Ramond field and dilaton. The
question is whether it is possible to construct a map from these fields to a new set of

Gl s Bhons @ that also give rise to a (super)gravity solution. Our strategy is to rewrite the
D-dimensional fields in terms of the doubled fields of DFT, and demand that Gy, Bmn, @
and G',,,, Bl..., #' give rise to the same generalised fluxes and flat derivatives F = F', 0F =
OF'. This is a sufficient condition to have again a (super)gravity solution, and it is the
mechanism that applies also for the generalised T-duality transformations.? As remarked,
we are interested in classifying solution-generating techniques in (super)gravity rather than
the actual (super)gravity solutions, and for this reason at no point we need to impose the

DFT equations of motion.

Canonical transformations of o-models. Another motivation of our work is the clas-
sification of canonical transformations of 2-dimensional o-models, see [27] for a similar
discussion and the recent [28] for the relation between the symplectomorphism approach
to T-duality and geometric quantisation. Consider a o-model S = [d?0L whose La-
grangian can be put in the form? £ = %Gmndcmdﬁn - %Gmnaﬁ/mx’" — Bppa™a'™, which is
the Polyakov action in conformal gauge. Introducing momenta p,, conjugate to x™ and
going to the first-order formalism, the Lagrangian is £ = p,,,2™ — H with the Hamiltonian
H = %\IIM”HMN\IJN, where one has UM = (p,,, 2'™) and

o o ), "

H =

MN <(BG_1)m" G — (BG™1B)yn
which coincides with the known parametrisation commonly used for the generalised
metric of DFT.* Canonical Poisson brackets for z™ and p,, translate into Poisson

*Invariance of the generalised fluxes under NATD and PLTD was observed and used already in [13,
14, 21-24], and in the case of the Yang-Baxter deformations that we discuss later in [25, 26]. Ref. [15]
advocated more general local O(D, D) transformations leaving the generalised fluxes invariant.

3We are ignoring the overall string tension. A dot denotes derivatives with respect to the worldsheet
time 7, and a prime with respect to the worldsheet spatial coordinate o. In this case we limit the discussion
to the classical level, and we therefore ignore the dilaton.

If we further identify the momenta with the spatial derivatives of a dual set of coordinates

Pm = &, then XM = (Z,,2™) and we have the action of Tseytlin’s double o-model [29] S =
5771/
fd20 (%(%XM(UMN +QMN)80XN — %&XMHMN&XN), where the matrix Quny = ( g" 8 ) de-

notes the topological term used also in [30]. In this discussion we want to look at the standard o-model in
the Hamiltonian formalism and we therefore refrain from going to the doubled o-model.



brackets® for ¥y, and redefining the phase-space variables as V4 = F AMT s via a gener-
alised vielbein E4M for the generalised metric H s, one has

{Wa(01),Up(02)} = —Fap®(01)¥c(01)012 + 1450y, (01 — 02), (1.3)

where the generalised fluxes Fapc appear again. Therefore when two different o-models
admit a rewriting of the phase-space variables in terms of ¥4 and W/, respectively, and
when they give rise to the same generalised fluxes F4pc when computing the Poisson
brackets, the two o-models are related by a canonical transformation — possibly up to zero
modes. This last remark is a consequence of the fact that only the spatial derivative of the
coordinates '™ appear in W), and therefore with the above argument one is not able to
claim that the zero-mode contribution to the Poisson brackets remains invariant under the
map. To use a uniform terminology throughout the paper we will use the term “solution-
generating techniques” notwithstanding that we have in mind canonical transformations of
o-models as well.

Integrable o-models. Worldsheet (classical) integrability is a statement about the on-
shell 2-dimensional o-model, whose equations of motion can be put in the form of a flatness
condition for an object known as the “Lax connection”.® Canonical transformations provide
on-shell identifications of the two o-models, so that if one of the two models admits a
formulation in terms of a Lax connection, one can use the canonical transformation to
construct the Lax connection for the other o-model, and argue integrability also in that
case. Integrability has played an important role in the understanding of the AdSs/CFTy
correspondence [31], and much progress was reached also in lower dimensional holographic
examples. Being able to generate new supergravity solutions (for example starting from
AdS5x S%) that retain worldsheet integrability gives hope of applying exact methods to non-
maximally supersymmetric backgrounds. Additionally, at least when the transformations
can be understood as deformations of the original model, this motivates also the search
of the corresponding transformation of the holographically-dual conformal field theory (in
this example N/ = 4 super Yang-Mills). Yang-Baxter (YB) deformations are integrability-
preserving solution-generating techniques that recently have been extensively studied from
various points of view, and that started to be relevant for the superstring in [32, 33].
At least the so-called “homogeneous” YB deformations can be interpreted as solution-
generating techniques in the sense of this paper, since they leave the generalised fluxes
invariant. The original formulation, the so-called “n-model” or “inhomogeneous” YB-model

5The Poisson brackets are {¥r(01),¥n(02)} = %nMN(al —02)012— %QMN (014 02)d12 where we use the
shorthand notation 012 = 0o, 5, d12 = d(01 — 02), and Qun was defined in footnote 4. With appropriate
boundary conditions (91 + 92)d12 vanishes in the sense of distributions and the Poisson brackets can be
rewritten as {Urr(01), Un(02)} = nunOoy 6(01 — 02), which is the expression that is commonly used and
the one we use in the text. On the line (0 € R) test functions should be smooth functions with compact
support, and on the circle (¢ € S*) they should be periodic. In the case of the circle one cannot drop terms
with (91 4 02)d12 if the boundary conditions for test functions allow for non-trivial winding. We refer to [27]
for a discussion that uses the original form of the Poisson brackets.

5This is a weak notion of integrability, since in general one should argue that the full tower of conserved
charges obtained from the monodromy matrix are in involution.



constructed in [34, 35] will also be discussed later. The homogeneous YB deformations are
based on solutions of the classical YB equation on the algebra of isometries of the original
background, and they can be applied to generic isometric backgrounds [36] including the
integrable AdSs x S background, giving rise to generalisations of TsT transformations [37].
Preliminary proposals for the corresponding deformations of A' = 4 super Yang-Mills were
put forward in [38, 39]. As remarked, we are interested in classifying integrability-preserving
transformations of 2-dimensional o-models, rather than the actual integrable models, and
for this reason at no point we need to impose the existence of a Lax connection.

a’-corrections. The low-energy effective action of the string has higher-derivative o/-
corrections that admit an O(D, D)-covariant formulation at least to 2-loop order.” In
particular, as at leading order in o/, the o/-corrected equations of motion of DFT may still
be written in the flux formulation in terms of the generalised fluxes and their flat derivatives
exclusively. This observation can be used to extend the solution-generating techniques that
we classify to higher orders in o/. This strategy was first employed in [26] to obtain the first
o’-correction for homogeneous YB deformations, and later for NATD and PLTD® in [13—
15]. As argued in [15] the same methods can be applied to more general O(D, D)-covariant
solution-generating techniques, as the ones that we consider in this paper.

Summary of the paper. Starting with section 2, we will employ an ansatz for the
generalised vielbeins that is known in the literature as “generalised Scherk-Schwarz re-
ductions” [44-46]. Under this ansatz we identify a d-dimensional subspace of the full D-
dimensional spacetime, so that we can discuss the more general case of solution-generating
techniques acting non-trivially in d < D dimensions. Our discussion will be local and
we will not discuss global issues of the solutions. We will further restrict ourselves to
the case of constant generalised fluxes in d dimensions. This set-up encompasses the gen-
eralised T-dualities and the prominent integrable deformations so far considered in the
literature. Subsequently, we discuss the O(d, d) parametrisation of the “twist” used in the
reduction, as well as the constraints and the redundancies that arise. We finally explain
methods that will turn out to be useful to treat in particular cases with non-vanishing
H-flux. In section 3 we present the classification of the “orbits”, namely the possibilities
of turning on the different components of the generalised flux Fj;x (usually denoted as
H;jp, Fl-jk, Q7*, R*), and their “representatives”, i.e. the solutions for the twists that they
allow. While we initially focus on the fields of the NSNS sector, in section 4 we discuss
the Ramond-Ramond (RR) fields of the type II superstring as well. We finish in section 5
with conclusions and an outlook. In appendix A we collect our conventions on notation,
in appendix B we give a brief recap on some aspects of DFT and gauged DFT that are
relevant for our discussion, in appendix C we discuss how to obtain the parametrisation of
the twist that we use, in appendix D we give more details on the formulations to include
the RR fields of type II, in appendix E we review the DFT equations of motion in the flux

"Recently a tension was identified at 4 loops for the quartic-Riemann terms multiplied by ¢(3) that
appear for the (super)string [40].

8For applications of PLTD to obtain string solutions and for different approaches to discuss the o'-
corrections when applying PLTD see for example [41-43] and references therein.



formulation, and in appendix F we report on other attempts we made to treat orbits with
non-vanishing H-flux.

2 Reduction ansatz and constant fluxes

We start by discussing a specific ansatz for the generalised vielbein of DFT. In turn this
implies a specific ansatz for the NSNS fields (metric, B-field and dilaton) of the class of
backgrounds that we consider. We refer to appendix B for some definitions and details
that may be helpful for readers not familiar with DFT.

2.1 Generalised Scherk-Schwarz ansatz

To be more general, we assume that our backgrounds are parametrised by coordinates
x™ = (2", y"), where we take m = 0,..., D — 1 and u takes d < D values. In principle
y* may include the time direction. In this splitting of coordinates &* will play the role
of “spectators” — we will never specify the ©# dependence of the solution and & will
not participate in the solution-generating technique. The interesting discussion will there-
fore involve only the coordinates y*. From now on, we will use a boldface notation for
coordinates and fields of the full D-dimensional spacetime, to distinguish them from the
coordinates and fields of the d-dimensional spaces. We do not make any assumptions re-
garding their global properties, in fact our discussion will be valid only in local patches. We
refer to [47] for a discussion on how to construct generalised Leibniz parallelisable spaces
from generalised Scherk-Schwarz uplifts of gauged supergravities.
The ansatz we take for the generalised vielbein and generalised dilaton is [44-46]

EAM(x) = BA" (&) UM (y), d(@) = d(i) + A(y)- (2.1)

The factorisation of the dependence on the coordinates is what plays a crucial role. We
will use a dot for fields depending only on spectator coordinates. In the following we will
distinguish between M, N, ... indices and I, J, ... indices, and similarly for the boldface
version, and the reason will be clarified in section 2.3. See also appendix A for a recap of
our conventions on notation. The matrix U is in general an element of O(D, D), and U
and \ are usually called twists. Because of the role of spectators of the coordinates &, it is
natural to take U of block form, not mixing £ and p directions, and acting as the identity
in the spectator block, so that?

ab ab
o-() o (2). o

9Equation (2.1) is rather natural and it is hard to imagine a more general ansatz if we want to exploit

O(D, D). A possible generalisation of (2.2) is to replace the identity matrix in the spectator block with
another O(D — d, D — d) element. The simplest example is

UI»M: efv(y)(;ﬂl} 0 .
0 ev(y)(;ﬂv

where 7 playes the role of a generically y-dependent warping factor in front of G and By, see [45, 48].



where we assume that the indices are placed as Ur™ and UM, and

1p_4 0 00 00 1p_4 0
() (1) () () e

In the rest of this paper we will therefore work with the twist matrix U™ € O(d,d) C
O(D, D). This set-up is in fact known as “generalised Scherk-Schwarz compactifications”
and used also in gauged DFT, see appendix B for a short recap of certain aspects. Let
us also mention that if we define the generalised metric HMN — E,MHABERN and
parametrise it as in (1.2) in terms of Gy and By, (and similarly for the dotted fields)
then equation (2.1) implies that M = G — B is of the form

M = (Mb +d)"}(Ma + c), (2.4)

where M = G — B. This is the known transformation of M under O(D, D) trans-
formations. In other words the generalised Scherk-Schwarz ansatz is selecting a class of
backgrounds with metric, B-field (and dilaton) of a specific form.

Because of the above ansatz, the Weitzenb6ck connection constructed out of UrM is
non-vanishing only when the IJ K indices are of the type IJK, i.e. they are vector indices

of the O(d,d) C O(D, D) subgroup. The generalised fluxes then become

Fapc =Fapc+EA'Eg’ Ec™ Frx,

Fa=Fa+EAF, (25)
where TABC = 3Q[ABC], QABC = EA/l@ﬂEBJECJ, Fa=08p4+ ZEA"‘Gﬂd, and
Frix = 3Q11K]s Fr=Q7 51+ 2010, Qrix = U*0,U;NUkn. (2.6)
After defining the flat derivative 04 = E2™ s one finds that
0aFBep = Ba'0,Fpep + EaA'Eg’ Ec™ Ep™U "0, F i1, (2.7)

OaAFB = EA/'*@,-J-'B + EAIEBJUjuaufJ.

We will now further restrict the assumptions behind our calculations, and present the
constraints coming from Bianchi identities.

2.2 Constant fluxes and pre-Roytenberg algebra

In general Frjx, F; may be y-dependent but in this paper we assume them to be constant.
One motivation comes from interpreting the components of the 3-form generalised flux as
the coefficients defining the brackets of a Courant algebroid [49-51] on the Roytenberg
algebra [52, 53]. In general the Jacobiator of these brackets is non-vanishing, as can be
checked in an O(d,d)-covariant way by calculating the Jacobiator of the C-bracket (see
appendix B for its definition) of the generalised vielbeins (here the twists U) [20]. In fact

[[UI, Uiy UK] ?é) = []:IJLULa UK]]\;[J

1
© = <]:IJH]:KLH — OxFrjr + 25LfIJK) utM,

(2.8)



and the Jacobiator is
1
Jac (U],UJ,UK)M = (—Z[JKL+ 28L.FIJK> ULM. (2.9)

On the strong constraint the Bianchi identities for the generalised fluxes imply Z;5xr =0
(see appendix B). If we in addition want to deal with the structure of a Lie algebra rather
than the one of a Courant algebroid, it is natural to take the generalised fluxes constant,
OrLFrsx = 0, such that the Jacobiator vanishes. The assumption of constant fluxes (both
Fryi and Fr) will simplify considerably our calculations to identify the solution-generating
techniques, and ultimately this is the main motivation for this assumption. In particular it
will be easier to find different twists (U, A) and (U’, \') that give rise to the same generalised
fluxes Frjx = Fl i, Fr = Fy, and their constancy immediately implies that not only
F aBc, F a but also their flat derivatives remain the same, see (2.7).10 Let us remark that
demanding the invariance of Fr g, Fr is a stronger condition compared to the invariance of
F aBc, F a, and relaxing this assumption may lead to interesting generalisations on which
we will comment in the conclusions.

Let us now discuss the constraints coming from Bianchi identities for the generalised
fluxes Fryx and Fy. When these are constant the Bianchi identities (on the strong con-
straint) reduce to

1
Firs" Fryn =0, FEFrik =0, FlF - E.FIJK]:[JK = 0. (2.10)

The first can be understood as the Jacobi identity for a Lie algebra, while the rest are
constraints involving also F;. We introduce Lie algebra generators T; = (T ¢ T;) so that
[T7, T ;] = F1;5Tg, where indices are raised and lowered with the ad-invarant metric,

0 &
Ny = <5J- 0”) ; (2.11)

that corresponds to the pairing (T7, T;)) = nr;. We adopt the usual notation for the com-
ponents of the 3-form flux F ;x5 when choosing upper or lower indices F;ji, = Hyji, fijk =
Fijk, Fik = Q% Fiik = Rk Notice that such an algebra is unimodular Fr;7 = 0.

»11

The commutation relations of the “pre-Roytenberg algebra”"* spanned by T, and that we

denote by v, read

T3, Tj] = Fij* Ty + Hije T", 13, T7] = Q7" T, — Fy/ T, [T",77] = Q7T+ RI*T.

(2.12)
The Lie algebra of the Drinfel’d double is obtained by setting H = R = 0 and keeping F’
and @. When only R = 0 the above Lie algebra is known as quasi-Manin triple. In terms

10711 the context of gauged supergravities the constancy of the generalised fluxes is imposed to make sure
that the (D — d)-dimensional theory does not depend on the coordinates y. Our motivation is different and
at least in principle there would be nothing wrong with taking Frsx, Fr to be y-dependent.

11YWe follow the terminology usually employed in the literature, so that “Roytenberg algebra” is used in
the case of the Courant algebroid where Fx are generically non-constant, while “pre-Roytenberg algebra”
is just a Lie algebra with a pairing n;; that splits generators as T = (Ti, T;).



(F) < (Q) (H) < (R)
(F,Q) (F,H) < (Q,R) (F,R) < (H,Q) (H, R)
(F,Q, R) < (F,H,Q) (F,H,R) < (H,Q, R)
(F, H,Q, R)

Figure 1. Diamond representing the possible (sub)orbits. Arrows relate orbits connected by rigid
T-transformations. The orbits at the four corners of the diamond are self-dual under rigid 7-
transformations.

of all the fluxes the Bianchi identities read

Fi;" Hympie = 0, (2.13)

Fi"Fyy™ — Hy5 Q™ =0, (2.14)

Fi*Qi™ + Hyjp RM™ — 4Q M Py ™ = 0, (2.15)
Qe'Q™F — Fy iRk = 0, (2.16)

Qrl RME = 0. (2.17)

HijF* + F*Fo=0,  QFF—F/Fr =0,  R*F.+QMF =0, (218)
Hij R7* + 3F* Q" = 6 F,F". (2.19)

The more generic case is the one when all fluxes Fijk, Hijp, Qi’*, RY* are non-zero. Nev-
ertheless it is interesting to consider simpler cases in which only some of the fluxes are
turned on. We will call “orbits” the classes that have a definite set of fluxes turned
on. The elements of each orbit (namely the possible solutions for the twist U) will be
called “representatives” of the orbits. Turning on fewer fluxes essentially corresponds to
studying sub-orbits. The possible cases are organised in the structure of a diamond, see
figure 1, where each node of the diamond corresponds to a possible orbit and its dual
orbit under a rigid T-transformation, connected by an arrow. In particular under a rigid
T-transformation F' < @ and H < R, see also the next section. The four corners of
the diamond correspond to orbits that are self-dual under rigid 7T-transformations.'?> The
“empty” orbit (@) with all fluxes vanishing contains as representative the d-dimensional
torus with no flux turned on. One possible representative of the (F')-orbit is any back-
ground with isometries whose algebra has structure constants F;;*, so that in the (Q)-orbit
one finds for example their non-abelian T-dual backgrounds. Other examples worth men-
tioning are the torus with H-flux in the (H)-orbit, Wess-Zumino-Witten (WZW) models in
the (F, H) orbit, and Poisson-Lie (PL) symmetric models in the (£, Q) orbit. In section 3
we will focus on each orbit and discuss the representatives that appear in each of them.

128elf-duality is in general only at the level of the orbit, but it may be that even some representatives
are self-dual.



2.3 O(d,d) parametrisation of the twist U

Under mild assumptions (see [54] and appendix C) the most general O(d, d) parametrisation

of the twist U is o 4 L
5 89\ (6 0\ (M 0
UM—=|"" k ® 2.20
' (0 5 ) (bjk 5?) ( 0 (o) (220

where 8% and b;; are antisymmetric (B9 = —pit, bij = —bj;) and puj are components of
the matrix p € GL(d). From now on we will use the shorthand notation p;* = (p~1)*,
so that the placing of indices will indicate if we use p or its inverse. Our motivation is to
find different U, U’ and \, X' that give rise to the same generalised fluxes Fj i, F;. Notice
however that twists that are related by the group of allowed gauge transformations —
i.e. GL(d) diffeomorphisms and gauge transformations of the B-field in d dimensions —
should not be considered as genuinely different. We will call Hgeor, this group. Therefore,
rather than O(d,d), we should take U to belong to the coset O(d,d) \ Hgeom. Under a
GL(d) diffeomorphism one has the transformation U™ — U;N RyM where [55]

RN = (WM _(1) ) with — (r7 1), =9, V", (2.21)
0 (r )"

Therefore, we see that the action of GL(d) diffeomorphisms is all reabsorbed in the trans-
formation of p in (2.20), meaning p;** — p;*0,V#. This also implies that 5 and b in (2.20),
while they may be y-dependent, they must transform as scalars under GL(d) diffeomor-
phisms. This is the reason why we prefer to distinguish between 4, j and p, v indices, as
well as I,J and M, N for the double indices. Gauge transformations of the B-field in d
dimensions are obtained by the transformations U, M N IvM where [55]

Ju’ = (i“” 50V> ;o with @, = 0éy). (2.22)
nv Op
It is easy to see that this transformation is completely reabsorbed just by the redefinition
of bin (2.20) as by — by + pi*p;¥0;,€,. To conclude, when we say that U and U’ must be
different we mean that they must be different elements of the coset O(d,d) \ Hgeom, Or in
other words that there exists no element h € Hgeom such that U = U'h.
An important feature in our discussion is that the ansatz (2.1) is invariant under the
redefinition
EAI — EAJVJI, UIM — VJIUJM, (2.23)

with V37 € O(D, D) constant and decomposed in terms of a constant matrix V77 € O(d, d)
similar as U in equations (2.2) and (2.3). This redefinition by V;/ does not give rise to new
backgrounds, because it signals only the redundancy of the freedom in the decomposition
between E and U in (2.1). However, under the rotation by V' the generalised fluxes will be
rotated as F' 17 = ViVViV VW Fovw and F'1 = ViV Fir. This shows that different forms
of the commutation relations of the pre-Roytenberg algebra t may be in fact related by rigid
O(d,d) transformations, and therefore they need to be considered physically equivalent.
Hence, orbits are classified by equivalent classes, where the equivalence is given by a rigid



O(d, d) change of basis. Nevertheless, in section 3 we will list them in the intuitive way
of figure 1, since the grouping into equivalent classes may require additional knowledge on
the pre-Roytenberg algebra. On the other hand, given a background with E4f and UM,
if we are able to find a U™ that yields the same generalised fluxes up to a rigid O(d, d)
transformation, then we can apply a compensating transformation on E4! to make sure
that F s, F 4 remain invariant.

Another interesting rigid O(d,d) transformation, that now can give rise to new in-
equivalent representatives for the twist U, is

UIM — ﬁIM = WIJUJM, (2.24)

where again W7 is decomposed in terms of a costant matrix Wi/ € O(d, d) similar as U
in equations (2.2) and (2.3), and W;” implements an automorphism of the pre-Roytenberg
algebra t. Notice that here we are not transforming E4!. In particular, the fact that W
is an automorphism, i.e. it satisfies

Wi W Wi Fropger = Frok, (2.25)

guarantees that the transformation (2.24) leaves the generalised fluxes Fjjx invariant.
When studying (super)gravity solution-generating techniques we additionally require the
automorphism to satisfy Wi/ Fy = Fr. In this case, if UM is a representative, than the
transformation (2.24) generates a new representative UM = W;/U;M. Let us point out
that — since W € O(d, d) — after this transformation the twist can still be parametrized
as in (2.20). When viewing the transformation as a solution-generating technique, it will
be important to understand in which cases W gives rise to gauge transformations in Hgeom.
This may be complicated to discuss in general, but in certain explicit examples particular
conclusions can be made. For instance in the (F')-orbit, modding out by GL(d) transfor-
mations requires the automorphism W to be outer. Interestingly, when t is not semisimple
outer automorphisms may also involve continuous parameters. For example, given a 2-
cocyle w : v — t (see section 3.2 for the definition), then W = exp(Cw) is an automorphism
of the algebra with ( € R a continuous parameter. In order to avoid having W inner we
have to impose that w is not coboundary. Notice finally that using (2.23), the transforma-
tion by W in (2.24) may equally be seen as leaving the twist U invariant but transforming
the spectator contribution EAI of the background as EAI — EAJWIJ.

In general O(d,d) transformations with “off-diagonal” components will reshuffle the
types of fluxes in complicated ways. Given the commutation relations (2.12), an O(d, d)
redefinition T} = h;/T; with!3

o= (005 ) -
1% %

13This is (2.20) where we take p = 1 since it does not rotate the fluxes. However here b and § are constant
antisymmetric matrices.
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gives rise to the rotated structure constants [T}, 7] = F/,* T} +H[, T, [T],T"7] = Q" T}, —

FYIT, [T, 7] = QT + RIATY, where

Hijp = Hiji + 3F;i by — 3byabjim Qg™ + bitbjmben ™,
FlF = FiF — 3,10, 8™ — Hij % + 2b1;Q5)™ + 3byibjm @)™ B™ — babjmbpn R™™ B7F
+ bybjm R,
Q% = Q% + 4by Q™ BI™ + Bbyjiby QP B B™E — 2FyV B 4 3,87 BT
+ Himn 7™ B*" + by RIE — 20y, R gEIM 1 g1l ghIngy, 3y R™POB,;,
R/ijk — Rijk - 3blm/8l[szk]m o 3ﬁl[iRj|mpﬁ|k]qblmbpq _ Bilﬁjnﬁkalmbnpbqumpq
+3Q, gk —6Q,, 1 gin gikimy,, . — 36 gIln gIMap, b, QP
+ 35y, 0 gRIm 3l gilm glEIPy, B GBI SR (2.27)

Given a certain representative of a specific orbit, one may want to apply such an O(d, d)
transformation to see if it can be rotated to a different orbit with less (or just different)
types of fluxes turned on. In section 3 we will often use this possibility to go from one orbit
to another by means of rigid O(d, d) transformations. Alternatively, the above expressions
may be used to classify the automorphisms of v implemented by b- and $-shifts. Another
important case is to take U’ = TU related by the rigid T-transformation'*

0 &4
T, = 2.28

which leads to the usual T-duality-like relations among the fluxes
F't = §9F;, H'ijk = 06 jmOrn R™, Q' = 6,67 F!,

. g o 2.29
]:/i _ 5ij]_-j’ Rlz]k — 5zl5]m5anlmn’ F,ijk — 5il5jm5annlm~ ( )

This mechanism is what allows us to describe solution-generating techniques that involve
also rigid T-transformations, like abelian/non-abelian/Poisson-Lie T-duality.

Let us remark that the concept of “Poisson-Lie plurality” — namely the possibility
of decomposing the same Drinfel’d double 0 in terms of different choices of subalgebras
0=g®g=g9g ®g — can be understood as the transformation of U by a constant O(d, d)
matrix V as in (2.23). What we have here is a generalisation of the traditional definition
of PL plurality in the sense that we do not require v to have the structure of a Drinfel’d
double, and any O(d, d) transformation may in principle be considered, even those relating
different orbits.'®

Let us now look at the explicit expressions for the components of the fluxes in the
parametrisation (2.20) used for the twist U. One has

Frox = 0" 0570k Hjr + 301°6/7 6y Fig® + 30110150 Qi7" + 81136150k RVF,

Fr=0n F +6/ F
(2.30)

M The matrix form of 777 and 11 coincide, but notice the different position of indices in the two defini-
tions.
5For explicit examples on how to relate representatives of the (F, H) and of the (F, Q) orbits see e.g. [56].
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where

Hiji, = Fijik = Fliji)» N T (2.31)
QF = Fik = F,UH, Rk = Fiik — Fligk] '
are'®
Hyjie = 3(0bjag + wiis i),
Fij* = wii” + g Hij 5 39
Q7 = a7 — 26 FyM 1 BV BN Hyy, (232
Here we defined
81- = pi’”a#, wijk = —2p[i“pj]”8#pl,k. (233)

To make wijk appear also in the generalised flux with one index, we rewrite A = X\ —
%log det p so that using dlogdet p = Tr(dpp~"') we find

Fi= U}Z'jj + 2615\, Fi= 8jﬁji + ﬂik(wk]‘j + 28k5\) = ajﬁji + ,sz./—"k (234)

Notice that if wijk can be interpreted as structure constants of a Lie algebra, then its
definition is simply the Maurer-Cartan (MC) identity for p, which can then be taken of
MC form p = g~ 'dg = dy“p#iti, where t; € Lie(G) are the generators of the Lie algebra
with structure constants wl-jk and g € G. This happens for example for all orbits that
have H;j, = 0, since in this case the Bianchi identities imply that Fijk solves the Jacobi

identity and the above equations give Ejk = wijk.

We will see that the discussion for
orbits with non-vanishing H-flux is more complicated, and in the next section we present

some methods that we will use in this case.

2.4 Twist ansatz for orbits with H-flux

The methods explained in this section may be useful in general, but later we will actually
use them only for orbits which have non-vanishing H;j, so this section is not necessary
for reading the discussion of the other orbits.!'” The particular issue with non-vanishing
H-flux is that wijk may not be interpreted as structure constants of a Lie algebra (it may
not even be constant) and therefore p can not be taken of MC form. Nevertheless, we can
maintain a geometrical interpretation by exploiting the fact that the doubled manifold —
spanned locally by the coordinates y* and their T-duals gz — can be interpreted as a group
manifold R associated to the pre-Roytenberg algebra t, equipped with the bilinear ad-
invariant form 7 of split signature. This is in fact the set-up also known as DF Tz of [57]

16GQee for example [20] for similar expressions. The last two equations could be rewritten also as
Q" = 0,8 — 28wy — g7V B Hip,
Rk — _351[1'&5]"6] _ 3Bl[iﬁj\mwlm|k] _ Bl[iﬁj\mﬂlk]"Hlmn'

7For a discussion on dealing with orbits with H # 0 without appealing to the methodology of this
section, see appendix F.
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and employed also in [22]. We decompose the group elements g(YM) € R specifically as

g(Y) = m(j)m(y), where m = e™@T" and m = ™ ®Ti which is always possible locally.

Notice that the subspaces spanned by T; and T* are not necessarily Lie subalgebras of t.'8

Let us introduce in t the adjoint action by m and the right-invariant one-form dmm=! as

mTym™ = M T, =T, dmm™" = dy™Vy,/'T; = dy"V,'T; + dy?V,; T".
(2.35)
We will denote the inverse of V,,* as V;#, i.e. V,,'V;¥ = ¢y, and Vi#V, 7 = §. The MC identity

1

for the one-form dmm™" in t projected to the subspaces is

28[uv,j]i = VNjVVijki + QV[ujVV]ijki + VujVVkRijk,

’ | o (2.36)
201, V)i = VigVuk Q'™ + 2V, Vo Fig™ + Vi V" Hj..

I

In addition, to first order in the expansion m = emiTi, we have M;7 = §7 +m!Fj;7 +O(m?),
M'j = 8% — m'F;t + O(m?), M;j = m'Hy;; + O(m?) and MY = m!Q,;% + O(m?), so that
we can take M;’ and M"; invertible at least in a certain neighborhood around the identity,
while M;; and M% may not be invertible.

When the H-flux is non-vanishing, depending on the orbit in consideration, we will
consider two possible parametrisations for the twist U™ that are equivalent to further
specifications of the more general parametrisation given in (2.20). Essentially they encom-
pass an ansatz for the p-twist and a rewriting of the - and b-twist of (2.20). In particular,

we will consider!?

8% + &y €4 Vik, 0
Uf(l)M:(f s §j> Ia K <( 0y (2.37)
Wij i) E ) ik
or . . .
U(?)M — MIJ 6% +§]lwlk é-]k K (Vt)kﬂ 0 M (238)
! wir ), 0 W),

where the £4 wi; that we use in U (1) and U® are different because of the different position
of the adjoint action M;” in the above expressions. In general a twist given by U(") may not
be rewritten in the form of U®) | and viceversa, so generically speaking the two twists should
not be viewed as equivalent.?’ When, respectively, M% = 0 (M;; = 0) we will consider

8 The interpretation given in [22] is that the physical manifold is understood as a coset R\ M, where M
is parametrised by the §,. This is possible only when the R-flux vanishes, since in this case the generators
T* span a subalgebra of t. We will not need to appeal to this coset interpretation. The parametrisations
for the twists that we use manifestly satisfy the strong constraint.

197f we relaxed the strong constraint we could simply take for the twist the components of g~ 'dg, since
the MC identity would ensure that they satisfy the correct algebra relations. When imposing the strong
constraint this is not possible because of the non-invertibility of the would-be frame field. Therefore one
has to look for other solutions for the twists. Notice that U® is a generalisation of the twist used in [22],
which is necessary if one wants to be able to describe, for example, the so-called Yang-Baxter deformations.

M1 M2
Ms M4)
the relations @ = (My 4+ M3&)wM; ' and € = (My + M3£) ™' M1 € constraint with the consistency relations
WM My = (Mg 4+ M3€) ™ Maé and MyE(My + M3€) " *Ma M7 My = Mao(My + M3€&) ™' Msé. As we will
see these are consistent when M or M3 are vanishing. In general it may not be possible to solve these

20By equating the four block components of U<1)(£,(IJ) and U(Q)(&w) we will have for M = (

constraints since M2 or Ms may not be invertible.
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UM (U®) since the inclusion of the adjoint action realises a simple shift?! of w;; (V) in
terms of M;; (M™). Notice that both twists are automatically elements of O(d, d) since ¥
and w;; are antisymmetric matrices and the bilinear form 7 is ad-invariant. Furthermore
€9 and w;; depend only on the coordinates y* such that the twists satisfy manifestly the
strong constraint.

In the case that the R-flux R7* is vanishing and £Y = 0 the twist Ul(z)M coincides
with the generalised frame fields of [22] in which a part(ic)ular solution for w was found for
UM

general (F, H, Q)-flux. In fact, in the parametrisation we can generalise this solution
to include non-vanishing R“* and ¢ as well. In order to do so we follow [22] and observe

that the flux equations can be written as

Frox = M" My" Mc™ (Tp g + Spyger) = Trak + Stk (2.39)
where,
R R . . by W (VT gV
Trx =30 o (U N) Uk, UM = 05 +¢ wli» Vi tVs ;
wij (V') Vit (2.40)
R zkv By gij ’
Stk = 30" Figr, A = OV = (& RV )
IJK I Y JIK|L I I Vm VitV 60
and we have used the identity
oM = VS M*Fier”, (2.41)
as well as the fact that the adjoint action is an automorphism of t,
Fror = M My" M™ Fpryger. (2.42)

While the equations for Fijk, Q% and RY* become involved due to the presence of £7, the
equation for H;jj is independent of €Y (and the inclusion of RY*). In particular it reads

3VitV¥ VilP Oy = —2Hij1 — 3V Fjy 'V, (2.43)
where we have defined w,,, = V,‘w;;V,7. One can verify using (2.36) that a particular
solution for this (inhomogeneous) differential equation is given by w™™ = o) — Q)
where,

1 .
0 = SV Viidy! A dy”, (2.44)

which satisfies

@) =

1Fpp] (_VuiVVj VPkHiJ'k - V[uivl'j Vp]kﬂjk + V[uivl/j Vp}injk + ViV Vkaijk)

(2.45)

N |

2If we considered instead U (UWM), the p-twist would receive a contribution from the (unknown) w;;
(¢') which would further complicate the discussion.
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and Q3 chosen such that?2
1 1 ..
dn® = i VIAVIAVE 4 éR”k Vi AV A V. (2.46)

Notice that Q22 may not exist globally and an explicit expression can only be found by
choosing particular coordinates in a local patch. The most general solution to (2.43)
is then given by w;; = wi™™ + wj?™ where w%ljom'
out that this is a solution for the w form of U®), and it is not a solution for the w of

is a closed two-form. Let us point

UM in (2.37). Furthermore, within parametrisation U®), it is still necessary to solve
the other flux equations for Fijk , Q7% and RY* in terms of the unknown &7. Using the
equations (2.39) and (2.40) we find in particular

Sy = 2F;* — 2Q[iklAj]l + M+ €A
5% = Q" + AaRIF — 2F UM — 20, QUM ™, (2.47)
Sijk — 3Ql[z]€k}l + 3AmlRl[U£k]m,
with Aij = V;“VW', and
Ti* = i* 4+ €M H,y,
T% = 0,67 — 26Way™ — eV EN" Hipoy, (2.48)
T = —3¢0Q M — 3¢llgiimap,, M — ellgimelin,,,,,,
where we have used eqgs. (2.32) (by replacing 8% with ¥ and p;* with V;#) and defined
d; = Vi#9,, and Wk = —2Vl-“Vj]”8MVVk. Using the MC identity (2.36) we have
wi* = —F* 4+ 2QM Ay — AuAjm B, (2.49)
The equations for £V describing the (F, H, Q, R)-orbit can then be rewritten as
26" Hiji + € A Fig' — Aahjmn B™ = 0, (2.50)
067" + 20V Q™ + Mg R 4 205 A€V RN — €U €N Hyp, = 0, (2.51)
3QEH! 4 3¢lligimpy K _ 3elligilm glkpan, A, 4 oglligimelbingg,  — Ridk - (2.52)
where in the latter equation we have used (2.51). Using (2.50) we can rewrite (2.52) also as
3Q ekl 1 gelligiimpy Kl _ 9N, A, elleim RIMPa _ elligiimelking @ P — Rk (2.53)

We will not solve these equations in general, but rather use them when studying sub-orbits
with H # 0. Notice however that for a non-vanishing R-flux they do not allow a trivial
solution & = 0.

While we will use these methods to look at orbits with non-vanishing H-flux, let us
point out that the framework described here can cover the most general representatives of
the (F), (Q), (F,Q) and (F, R) orbits derived later.

22When RY* = 0, the three-form dQ® takes a nice expression in terms of the group elements m, in
particular [22]

10 = L dmn ™, [amm =, dm ™).

~15 —



Comments on other possible ansatze. The methodology described above to find
a suitable twist when H # 0 is far from the most general parametrisation considered
in (2.20): there are still several possibilities to generalise the two ansatze considered
in (2.37) and (2.38).

(i) The most obvious generalisation is to replace V,,% in (2.37) and (2.38) as V,,* — A"V,
for some matrix A,”(y) which, to exclude diffeomorphisms, is not of the form 9,a”
for some (vector) a”(y). Up to a rewriting, this is now equivalent to the general
parametrisation (2.20), which will be more convenient to use in practice.

(ii) Another possibility is to consider a different parametrisation of the group elements
g € R. In particular we can take instead g(Y) = m(g)m(y), with m = eI
and m = emi(g)Ti, and define all the quantities of the twist U in terms of the group
elements m (so that, again, U manifestly satisfies the strong constraint). We define
M7 T; =mTnt and V = divim ! = dy”VmTi + dy“VMiTi. When trying to find
non-trivial solutions for the equivalent of £€¥/, this parametrisation could be convenient
when the generators T% span a subalgebra of t such that f/,f =0and MY =0. In

that case, we can consider the following twists

wjk. 5jk T 0 6lel“ K
~ g (6] + &y, &IF SF(Vhy,, 0
gWM _ g (% K LN M 2.55
! ' wik 6%/, 0 ouV) 7 (2.55)

where we have included a rigid T-transformation, and where we have denoted the
inverse of ‘7,”- as V. Because MY = 0 these two parametrisations are actually
equivalent. When span(Ti) does not form a subalgebra, however, we expect that not
much is gained compared to the parametrisations of (2.37) and (2.38).

Although we will not consider these generalisations further, it would certainly be inter-
esting to systematically understand whether non-trivial and inequivalent solutions for &
can be found in specific orbits within these other ansatze. See also appendix F for some
further comments.

3 Classification of orbits

In the following we will discuss the orbits found by turning on all combinations of the
fluxes F, H,Q and R as in figure 1. Let us remark that when looking at solution-generating
techniques in supergravity we want to impose that both Frjx = F 5 and Fr = F}, while
when looking at canonical transformations of o-models it is enough to impose Frjx =

77k That means that there may be certain (classical) canonical transformations of
the o-model that cannot be interpreted as supergravity solution-generating techniques.
Examples of this kind are non-unimodular homogeneous Yang-Baxter deformations, that
will be discussed in the (F)-orbit (see [58] for some exceptions in this class).
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31 0

The simplest orbit is the one where all fluxes are zero. From the equation for Fijk one gets
wijk = 0, which can be solved up to GL(d) transformations by pui = 5;. The equation
for H;j;, can be solved at least locally by taking b;; constant up to gauge transformations.
Finally, the equation for Q7% is solved by taking also 8% constant, and the equation for
RUk is automatically satisfied. If the space is compact,?® this is the example of the d-
dimensional torus with no flux, decorated with constant b- and S-shifts.

3.2 F

In this orbit we assume that the only non-vanishing flux is the F-flux. First let us discuss
the restrictions imposed by the Bianchi identities. They imply that Fijk satisfies the Jacobi
identity. We will call g the corresponding Lie algebra with generators 7; € g. The remaining
generators T of the pre-Roytenberg algebra t form an abelian algebra §, so that we have
t=g®g. Moreover Ejk]:k =0 and Fj;? F* = 0 imply that

Fr = 01if Ty, € [g, 9], FF=0if Ty ¢ Z(g), (3.1)

where [g,g] is the derived algebra and Z(g) is the center of the algebra. Notice that
for semisimple algebras this means that F; = 0 and F' = 0. Finally we also have the
orthogonality condition F*F; = 0.

Let us now turn to solving the equations (2.32) for the fluxes in terms of the functions
p, b, B appearing in the parametrisation of the twist U. First we have Ejk = wijk and,
therefore, the definition of w;;* in (2.33) reads like the (left) MC identity. Although
we can take p of MC form, this solution can be generalised by taking p;* = W;/p;*
with p = g~ 'dg of MC form for a § € G and W an automorphism of the Lie algebra,
WilemFlm” = Fijka". To mod out by GL(d) diffeomorphisms, we have to take W to
be an outer automorphism. The dressing by the automorphism W will burden the following
expressions, but we prefer to keep W explicitly because different outer automorphisms W
will correspond to inequivalent representatives.

Solving for H;j;, = 0 globally is a question about the second de Rham cohomology of
the manifold. It is well known that if g is the Lie algebra of the compact and connected
Lie group G, then the n-th cohomology group H"(G) with real coefficients is isomorphic to
H"(g,R), the n-th Chevalley-Eilenberg Lie algebra cohomology with coefficients in R [59].
In other words, one has to impose H;;, = 0 with b;; constant, which leads to the equa-
tion F[ijlbk}l = 0 implying that b;; is a constant 2-cocycle. It is useful to rewrite this in
operatorial form. Given a 2-cocycle w;; solving F[ijlwk}l = 0 one can construct a linear
operator w : g — g such that wT; = wijTj , where algebra indices are raised?* and lowered
with a symmetric invariant bilinear form on the algebra, x;; = (T3, T}). Then the 2-cocycle
condition in operatorial form reads

wlz,y] = [wx, y] + [z, wy], T,y € g. (3.2)

Z3Remember that for R? the second de Rham cohomology is trivial, and the exact bi; can be gauged away.
24Notice that when we write T* we mean T" = ™ T}, which is different from the other generators T* of .
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Because we want to mod out by gauge transformations of the B-field, we have to impose that
b;; is not coboundary, in other words b;; # Fijka;k for some constants xj, or equivalently
in operatorial form b # ad, for some constant x € g. If g is semisimple, all 2-cocycles
are 2-coboundaries — the second Lie algebra cohomology is trivial. Therefore, in the
compact case interesting solutions to H;j; = 0 are possible only for g non-semisimple. In
the non-compact case there is no general theorem relating the Lie algebra and de Rham
cohomologies.?> Putting global issues aside, the equation H;;;, = 0 may be solved for
example by by; = bij+bi; with by; = (T}, T;) and by; = (0, T}, Tj), where @y = W~ olzo0W,
cfjg = Adg_1 ol oAdg and both @ and & are constant 2-cocycles that are not 2-coboundaries.
The equation for 89 coming from Q7% = 0 is

0,67 — 28"V FyM = 0, (3.3)
and its most generic solution is

B = (ry(T"), (1)), (3.4)

with ry = W-1to rgoW,rg = Ad;1 or o Adg and r a constant and antisymmetric r* = —r
linear operator on the algebra. Transposition is understood with respect to the ad-invariant
symmetric bilinear form of g, i.e. (x,ry) = (r'z,y). It is easy to argue that the above is
the most general solution. In fact, we may view r = AdgW oo w1 Adg_1 just as a
redefinition of the variables for which we want to solve the equation. But then, by using
dAdy = Adgady—144, one finds that the differential equation for 3 is equivalent to Burij =0,
and therefore r must be constant.

The equation R7* = 0 reads
pligim gy, K = o, (3.5)

which is known as the classical Yang-Baxter equation (CYBE) on g. Therefore both 3%
and 7 must solve the CYBE. To rewrite it in operatorial form we may introduce the
linear operator 7 : g — g such that 7 = r¥Tj. Then the CYBE is

[rz, ry] — r([re,y] + [z, ry]) = 0, Vx,y € g. (3.6)

Notice that » may come with an overall continuous parameter — in fact its entries may
depend on several independent parameters — so that we can interpret it as a deformation
of a representative with g = 0.

It is simple to discuss the rigid O(d, d) automorphisms that leave this orbit invariant.
From (2.27) one sees that the algebra is invariant if and only if F| [ijlbk]l =0 and Fylgkl =
0. The former is a constant b-shift by a 2-cocycle, while the latter a constant [(-shift
where [ commutes with the adjoint action on the algebra. Both are included in the

above solutions.26

Z5For example R? is de Rham trivial, but the 2-dimensional abelian algebra has non-trivial Lie algebra
cohomology. In fact it admits a non-trivial 2-cocycle giving rise to the three-dimensional Heisenberg-
Weyl algebra.

Z6Notice that for such 8 one has ry = r because the adjoint action commutes with S.
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One also finds
Fi = Fij7 + 20, Fi=—pIFFt 4280\, (3.7)
Notice that for consistency 9;A must be constant which means aﬂ(pi”&j) = 0. This in
turn implies GM&,/_\ = 8le,ipf@€5\. Antisymmetrising in p, v and using the invertibility of
p one gets the condition
Ey*ppt0,\ = 0. (3.8)
If an algebra g is such that its derived algebra is strictly a subalgebra [g,g] C g, i.e. there
are certain generators of g not contained in [g, g], then for those generators d;\ is not set to
zero by (3.8). Solvable algebras are examples of this kind of algebras, and in this case one
may have 9;\ = constant but \ not constant. If the algebra is semisimple, then the above
equation (and the invertibility of p) imply A constant. Notice in addition that § must be
such that F* is constant.
To summarise, the (F')-orbit contains representatives that are invariant under a group
G of isometries. They are found by taking p of MC form and setting § = 0. From these
representatives one may construct the so-called Yang-Baxter (YB) deformations. They
are found by switching on g of the above form, in general multiplied by a deformation
parameter. We refer to the section on the (F, R)-orbit for a discussion on the relation of
YB-deformations to PL-plurality. Finally we have also included the possibility of outer
automorphisms in this (F)-orbit.

Comments on Yang-Baxter deformations. Notice that if we start from an isometric
background (3 = 0) then F* = 0, and if we turn on a YB deformation (3 # 0) then to have
invariance of F we must have 5ijjki =239 8]-5\. If the original dilaton is isometric (X is
constant), then this implies the unimodularity condition for 5 and r [60]. Otherwise it looks
like a generalisation of this condition. We can use YB deformations to give an example
of the discussion on the geometric interpretation of the backgrounds as in appendix B.1,
and see how the fluxes in curved indices change under a YB deformation of an isometric
background. We refer to [61] for a comprehensive review on non-geometric backgrounds
in string theory. As the starting point (8 = b = 0) we take a background that has only
non-vanishing F},,”. From (B.15) with

hayN = oy —B where " = pip;" B, V= pulpV
M = _b,‘uy 5uu+b/”p5/p1/ ) = Pi Py ) w = Pu Pv7 Y4,
(3.9)
one finds that the fluxes in curved indices after the transformation are
1
HIMVP = 6b/5[u|/6/ O(l['ﬁozllﬂblﬂhv
F' P =F,°+4b s, 8P F, %
Iz Z slu Vo (3.10)

Q/HVP _ 2/3/B[VFMBP}7
R'"P =,

where we used the 2-cocycle condition for b and the CYBE for 8. Notice that we have the
relations 3
Fluf = Fuf +25,Q ", H oy = §b’a[pF’W]a. (3.11)
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To conclude, R*"? remains vanishing, but it is possible to shift F},,” and generate H,,, and
Qu"?. In general YB backgrounds have therefore an interpretation as T-folds, see also [62].

3.3 Q

The (Q)-orbit is related to the previous one by a rigid T-transformation. Because the (F')-
orbit contains isometric backgrounds, the (Q))-orbit will contain their non-abelian T-duals.
Similarly to the previous case, Bianchi identities imply the Jacobi identity for Q;7*. Now
the generators 7" span a non-abelian algebra §, while the generators Tj span an abelian
algebra g so that t =g ® g.

The conditions F;;* = w;;* = 0 and H;jx = 0 may be solved as in the (0)-orbit by
taking p;# = §;* and, at least locally, b constant up to gauge transformations. The equation
Q7% = 0;47% is the interesting one in this orbit and it is easily integrated to

B9 = yhs, QL1 + &', (3.12)

with @ the constants of integration. Finally, imposing R”7* = 0 at each order in y and
using the Jacobi identity for Q;7*, we find that & must be a 2-cocycle of §

QM = 0. (3.13)

Notice that in this case the role of upper and lower indices is exchanged compared to the
previous (F')-orbit. The 2-cocycle @ may be multiplied by an overall continuous parameter
— in fact its entries may depend on several independent parameters — so that we can
think of it as a deformation of the & = 0 case. Also in this discussion the above solutions
are already including the rigid O(d,d) transformations of the pre-Roytenberg algebra t
under consideration.

For the generalised flux with one index we have

Fi = 20\, Fl= Qi7" + 20\ + 207 QM O . (3.14)

Constancy of the fluxes implies A = a;4° + Ag and jSkak = 0, for all 4,7, for some
constants a; and A\g. Therefore the fluxes become F; = 2«;, and F! = iji + 20" .
Bianchi identities imply

QM FL=0, QF =0, FF=0, (3.15)

which again imply that Fj, = 0 if T% ¢ Z(g) and F* = 0 if T* € [g,§]. Notice that the
first and third conditions above hold thanks to Q;*aj; = 0 and antisymmetry of @. The
second condition reads Q7 Q;"* + 2Q, Y& a; = 0. Recall that in the case of § semisimple
we have the stronger conditions F; = F* = 0.

The fact that the (F))- and (Q)-orbits are related by a rigid T-transformation means
that starting with an Fj;* we can relate it to a Q7% as F;;* = 6;0;,,6F"Q},'™. Similarly,
Fi= 6ij]-"/j and F! = (5ij.7-"]’-, and the generators are identified as T; = 5Z~jT/j, Tt = (WTJ{ SO
that the roles of g and g are exchanged.
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Comments on non-abelian T-duality. If the starting point is an isometric background
with only Fijk # 0, the above 3 with @” = 0 is in fact the S-twist of non-abelian T-duality
(NATD), as can be easily seen by comparing to (2.4). Starting from F; = Fj;7 + 20;\ and
Fi =0 in the (F)-orbit, then invariance of the fluxes implies F! = 2a; = 0 in the Q’-orbit,
and also Q;ﬁ = §%%(F};7 4 20k\) which means ;A = —F;;7. For an isometric dilaton A is
constant, and one gets also in this case a unimodularity condition Fj;? = 0 which is the
anomaly-free condition of [7, 8]. Let us use the example of NATD to see how the fluxes
in curved indices can transform, following the discussion of appendix B.1. We start again

with an isometric background where only F,,” # 0. From (B.15) we have

GBS gk SR _pA, v
hoN = T0MiBY0; 00" ) v P 3.16
M (5;11(1 +083)i 8k~ —0"bi; 67 pi” P + (08) s —bp" (319

where P, = 5ﬂi5ij5jkp,,k and l;ﬂ” = 5ﬂil~)ij5jkpk”. We are being explicit in writing all
tensors and indices, and we prefer to use a tilde (rather than a prime) both on the functions

and on the coordinate indices when they refer to the NATD representative of the (Q)-orbit.
After the NATD transformation the fluxes are

Hiop = 3003057 053,00, Fy*

Frp? = 261,265:0P%b; Fy?

G (3.17)
Qu"" = 0pid™ 6P Fyi,

R .

where we used that /3 is a 2-cocycle for the Lie algebra with structure constants Q;7%. Notice
that Qﬂf’ﬁ is always non-zero when we dualise a non-abelian algebra, and the background
has the interpretation of a T-fold. If we turn on b we can also generate geometric fluxes.
Finally we have the relations FM,,p = 255[MQV195, ﬁ“yp = —%l;a[ppw}“, notice the different
sign in the last equation compared to the YB case.

Comments on “deformed T-duals”. When in the (Q)-orbit we turn on @% (which
may include an overall deformation parameter) we generate representatives that can be
understood as deformations of NATD, and that in [63] were called “deformed T-duals”
(DTD). See also [36, 64]. It turns our that YB-deformations are actually related to DTD
models [63, 65], and here we rephrase this fact in O(d, d) language. In order to do that we
will take the point of view of the YB-deformation, and for this reason we will have structure
constants Fijk for the non-abelian Lie algebra g. This also means that we will need to lower
the indices of @ with deltas @;; = 5ik(5ﬂdjkl to take care of the duality relation. First let us
point out that in the above discussion g does not need to be semisimple. Actually, if we want
@;i; to generate a non-trivial deformation from the point of view of DTD, then we must
take g non semisimple.?” Therefore in the following we will not assume semisimplicity.

2TIn fact, given that the second Lie algebra cohomology of semisimple algebras is trivial, any @;; would be
a coboundary (i.e. @;; = Fj;"cy for some cx). Therefore we could remove @& by redefining the coordinates.
It may still be interesting to consider @ coboundary because we can still relate to it YB deformations, as
we are about to see. These will be equivalent to NATD only when the deformation parameter takes finite
values, the limit 7 — 0 being degenerate. Prominent examples are Jordanian deformations, see [33, 66].
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Nevertheless, we will assume that g is a subalgebra of an algebra f that admits a non-
degenerate symmetric invariant bilinear form k. If T; are generators of g, we generate the
subalgebra g* of § by T%, where we use £~! to raise the indices of T;. We can think of @
as a linear operator in f if we restrict it to the subalgebras @ : g — g*. Let us now assume
that @ is invertible in this restriction and let us call r : g* — g the inverse of @. This
means that 7@ = P and &r = PT, where P, PT project on g, g* respectively. Because & is
a 2-cocycle in g, r satisfies the CYBE (on the whole §). Now, given the coordinates y used
in the DTD model, let us consider the following change of coordinates

y = gPTTialogg, geaG. (3.18)

Here y = y“émTi € g*. One can prove that this change of coordinates implies [64]
Pl(ad, +(@)P = (PT(05)P,  dy = (PT(wz9 'dg), (3.19)
where @z = Adgj1 @ Adg, which in components read?®
YO fi® + (i = C(@g)ij, dyt = ¢di” p' (@g)i; 67", (3.20)

where we define p such that dy”p,'T; = g~'dg. We can take into account the above change
of coordinates in the twist U under consideration by using the above substitution and
Jacobian, so that

- (08)\ (15 — (068 [1¢owso [ ((pwgd)t 0
U—<50><01>—>U—<50><0 1g>< 09 gl(pwng)l) (3.21)

where the last matrix implements the Jacobian, and we are writing explicitly the §% or d;;
while omitting the indices. A straightforward calculation gives

T — 0 nrgp '\ [1nrg 1 0 a0
U_ (—ngﬁt ﬁg—l ) — (O 1g> <_ng 1) (O ﬁ—1> (322)

where we used that r is the inverse of w and n = (~!. Thanks to a diffeomorphism, we
were therefore able to rewrite the twist of DTD in terms of the one of a YB-deformation,
plus a shift of b so that H;;, = 0. Interestingly, this U is not included in the discussion of
appendix C.

34 R

Having H = F = @ = 0 immediately implies that R = 0. Indeed, it is well-known that
the (R)-orbit is not realisable when imposing the strong constraint. Notice that therefore
we cannot include the rigid T-transformation of the (H)-orbit as a solution-generating
technique.

Z8When writing the equations in components we are automatically implementing the projectors, because
the indices i, j were restricted to g from the beginning.

- 29 —



3.5 F,Q

In the (F,Q)-orbit the Bianchi identities imply that both the F- and Q-flux satisfy the
Jacobi identity on their own, and in addition there is an identity mixing them

Fi* Q'™ — 4QM ™ = 0. (3.23)

Hence, F' and @) can be interpreted as the structure constants of Lie algebras g and g
respectively, with generators T; and T%. Together with the ad-invariant pairing 7 the
structure v = g @ g is known as a Drinfel’d double. Furthermore the Bianchi’s for F; read

- ) ) 1 L
Fj*Fe=0, Q"Fr=0, Q’7F -F/F=0  FF'= §FiijkZJ. (3.24)

The first two identities imply
Fi=0ifT; € [g,g), F =0ifT" € [g,3g). (3.25)

Finally notice that by tracing the mixed Jacobi identity (3.23) over i = [ and j = m we
can also write the last identity as F; F! = Qijiijk.

Let us now solve the flux equations (2.32) for the twist U(p,b, 5). The solution for
the p- and b-twist found from the F- and H-flux equation, respectively, are equivalent to
the solutions derived and explained in the (F)-orbit, see section 3.2. Recall that, up to
diffeomorphisms, we have p;# = W,/ p;# with W an outer automorphism of g and p = g~'dg
of (left-invariant) MC form. The S-twist, however, must now solve

Q% = 9;8% + 28V . (326)

Notice that this is a linear inhomogeneous partial differential equations (PDE). The most
general solution to such equations is found by adding the most general homogeneous so-
lution to a particular solution Binom. Of (3.26). The S-twist of Poisson-Lie symmetric
backgrounds [11, 12, 67], appropriately dressed by the automorphism W, is an example of
such a particular solution. It is given by

B, = (Adgo1 -P - Adg W(T7), W (7)), (3.27)

where W = W~ is an automorphism of g, P projects on g, and recall that we have defined
the bracket (T, T;) = n7;.2° The most general homogeneous solution is known from the
discussion in the (F)-orbit, i.e. given by (3.4), which we denote here as

Bil . = n{rg(T7), T7), (3.28)

where, recall, r; = W1 o Ad;1 oroAdgoW, rt = —r and T = kYT with r;; = (T;,T}).
Notice also that here we explicitly introduce a deformation parameter n. At this point this
is not necessary, but we can do it because we are solving a homogeneous equation, and it
will be useful to solve for the R-flux equation. Therefore, turning on S, can be seen as

2The property /V‘V;: W™ follows from requiring that W and W form an automorphism in the Drinfel’d
double as W (r) = W(§) & W (g) which preserves the bilinear form nz;.
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a deformation of the PL-symmetric background at n = 0. Concluding, the most general
solution to (3.26) is ¥ = B om + Bil... Solving for R¥* = 0 gives additional algebraic
conditions on the operator r. In particular, by expanding order by order in 7, it must

satisfy the equations®’

i j ! ;
26ir[11ilom. fu‘;: Em /Bh[ozm.Ql]k] = 07 (329)
Bl By =0, (3.30)

where we have used the identity Bmhom ﬁljnl;:fm Fy,, %) ﬁilr[,iom_Qljk} =0 (see e.g. [67]). There-
fore, from the second condition we find again the requirement that r must satisfy the
CYBE (3.6).3! The first condition, on the other hand, should be viewed as a compatibility
condition between Bihom. and Byom.. In order to interpret it in a field-independent way it
will be convenient to write out the components of the adjoint action by g in the Drinfel’d
double t,

gTig~ ' = (Ady)T;,  gT'g ' = (Ady)VT; + (Ady)';T7. (3.31)
From Ad; € O(d,d) and AdgoAd;—1 =1 we can derive the relations (Adg)’; = (Adg-1);",
(Adg-1)" = (Ady)?* and (Adg)¥ = —(Adz-1),(Ady)™ (Adg)n?. The solution for % can

now be written as
BY =W BmW !, BY = (Adg)" (Adg-1) +n(Adg—1)'r"™ (Adg-1)m’ . (3.32)

Using the previous relations, the automorphism properties for W and those for Adj in t,
in particular using

Q7% = (Ady)i' (Ady-1)m? (Ady—1), Q™" — 2(Ady)i (Ady-1)mU (Adg) "y, ™, (3.33)
we find that the compatibility condition (3.29) takes the following simple form
QM = o, (3.34)

which is the condition of % being a 2-cocycle of g.

It is interesting to see in which cases we are genuinely in the (F, @)-orbit modulo rigid
O(d, d) transformations. From (2.27) we find that we can turn off the Q-flux — and thus
describe only the (F)-orbit — when it is of the form Q;7% = 2F;U8*! for some constant
antisymmetric Y which satisfies the CYBE S Fj,,,7 8™ = 0 on g. Equivalently, the F-
flux can be turned off by a rigid O(d, d) when it is of the form lej = —2bl[z-Qﬂ”‘ for some
constant antisymmetric b that satisfies the CYBE by;bmQp Im — 0 on g.

For the generalised flux F; we have

Fi=Fy7 +20,\,  F=Q;7 — plEy + 2899, (3.35)

39This is where the explicit parameter 1 becomes useful. Because of the presence of 7, the R-flux equation
gives two equations for Sinhom. and Bhom. which have a nice interpretation. However this splitting is not
necessary, and in general one gets one single algebraic constraint on f.

31Let us point out that when § is abelian, and thus Q;7* is vanishing, then 3 = 0, and we safely

inhom.

reduce to the most general representative of the (F')-orbit in which r must satisfy the CYBE.
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Similarly to the (F')-orbit we must have that Fz-jk(‘?k;\ = 0 such that ;)\ = «;, and thus F;,
is constant. Additionally, notice that the B-twist must be such that F? is constant. One
can verify that this is already implied by using the ordinary Jacobi identities, the trace of
the mixed Jacobi identity (3.23) over j,m and the mixed Bianchi identity for F* and JF;.
Summarising, in this orbit we identified the possibility of a generalisation of a homoge-
neous Y B-deformation — compatible as a 2-cocycle with the Q-flux — which deforms the
ordinary PL symmetric backgrounds [11, 12] described previously in the literature.?? Inter-
estingly these deformations can be implemented even when the initial background has no
isometry, in contrast to the usual homogeneous YB-deformations described in the (F)-orbit.

3.6 F,R

In the (F, R)-orbit the Bianchi identities imply that F;;* are the structure constants of the
Lie algebra g generated by T; and that the R-flux satisfies F},,,, ¥ R™ = 0. In turn the latter
implies the (weaker) condition that R;j; = milmjmmkanm” with x;; = (T3, T}) is a 3-cocycle
of g. For the fluxes with one-index we must impose that Ejkfk = FyJFk = Rk F, =0
as well as the orthogonality F;F° = 0. Hence we must have the same conditions as given
in (3.1) together with R¥*F; = 0.

The solutions for (p, b, 5) to the flux equations (2.32) are equivalent to the solutions of
the (F')-orbit apart from the condition that follows from the R-flux equation. Hence, the
expression for the B-twist is given in (3.4) and the solution for p is given by p;* = W;J Pt
where W is an outer automorphism and p = §g~'dg is a left-invariant MC of g. The R-flux
equation now reads by using W, Ad; € Aut(g)

(W) (Wg)m? (W), R = 3plligilm K], W; =W - Ady. (3.36)

Using the fact that in ¢ the adjoint action by g is of block-diagonal form, i.e. (Adg);; =
(Adz)¥ = 0, and that Adj is an automorphism of v, one can derive the following iden-
tity (Adg);'(Adg)m? (Adg),*RIM™ = RU* so that the condition (3.36) is in reality field-
independent and can be written as

Rk = gllipimpy, Wi = (Wt (w ) (3.37)
A natural choice is to take the R-flux of the form
R* — arxI™Fy, k. (3.38)

which is a 3-cocycle of g, and where « is a real constant. This is of course always a
possible choice. Assuming it from now on, (3.37) requires that 7 solves the modified CYBE
(mCYBE), that is

[TI‘,Ty] - T‘([Tl’,y] + [.T,Ty]) = —CQ[J,‘,y], V%,y €49, (339)

with, up to redefinitions of the 7 operator, ¢ = a = {—1,+1}. Here ¢ = 1 is known as
a split m-matrix while ¢> = —1 as a non-split r-matrix. Notice that when r satisfies the

32 As in the case of the standard homogeneous YB-deformation of the (F)-orbit, it should be possible to
understand also this case as a version of PL plurality, and it would be interesting to see this explicitly.
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mCYBE then so does . Turning on an outer automorphism W can therefore be seen as
mapping different solutions of the mCYBE to each other. When g is a semisimple (and
bosonic) Lie algebra, the canonical solution of the mCYBE is known as the Drinfel’d-Jimbo
r-matrix [68, 69] which is unique [70] up to a GL(l, C) freedom on the Cartan subalgebra
(CSA) directions of g with [ the rank of g. In particular the canonical Drinfel’d-Jimbo
r-matrix is given in a Cartan-Weyl basis of the complexified algebra g¢ and annihilates
the Cartan generators while multiplying positive and negative roots with Fc respectively.
When the real form gg¢ is compact, no split solutions exist and one can only consider a
non-split r-matrix. When the real form is non-compact, however, both possibilities can
exist. Since an outer automorphism of semisimple algebras maps the CSA and the set of
simple roots to itself, the inclusion of W will not affect the canonical r-matrix.

To truly sit in the (F, R)-orbit we must take ¢ # 0 such that the R-flux does not
vanishes. This means that “turning on” r (equivalently, 3), e.g. by means of a deformation
parameter, can not be seen as a solution-generating technique in the (F, R)-orbit. Hence,
in the (F, R)-orbit, and assuming the flux configuration of eq. (3.38), we can describe only
the split (¢> = 1) and the non-split (c> = —1) inhomogeneous Yang-Baxter models (see
e.g. [34, 35, 71]). One can verify that in these cases we are genuinely in (F, R) under rigid
O(d, d) equivalence relations. In other words, we cannot turn off the R-flux and F-flux as
can be seen by rewriting (2.27) for H = Q = H' = Q' = 0 such that

for some constant antisymmetric matrix 8%. In general there may be no real solution for
(% that sets R"* to zero.>> When we cannot turn off RV* we can also conclude that we
cannot turn off F;*. Otherwise, we would be in the (R)-orbit and recall that this orbit
cannot be realised under the strong constraint.

However, an interesting observation is that these (F, R)-representatives can be mapped,
using a particular rigid O(d,d) transformation, to the self-dual (F, @Q)-orbit of Poisson-Lie
symmetric backgrounds. From (2.27) and taking b;; = 0 and 8% = (FT"%, T7) we find that>*

Hj, =0, FjF=r Q7% =-2rUp" R =o, (3.41)

2

for generic ¢, so that this discussion applies also to the homogeneous YB-deformations of

the (F)-orbit. Here Q';/* are the structure constants of g, whose Lie bracket is defined as
[, ylr = [re, ) + [z, ry), Yoy e, (3.42)

and which precisely underlies the bi-algebra structure corresponding to the Drinfel’d double
t = g®g, that in the ¢ = —1 case gives rise to the PL-duality between the inhomogeneous
YB-model and the A*-deformation [72-74]. Therefore, when assuming the expression for
R given in (3.38), the discussion of the solution-generating techniques in this orbit (as

33Interestingly, it would be possible to remove the R-flux if the algebra g admitted both split and non-
split solutions of the mCYBE. It would also be interesting to understand the consequences of removing R
by relaxing the reality of 3.

34Notice that here we do not require Q' = 0 so that we do not have the expression (3.40) for R'.
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well as the discussion on the Fr-flux equations) is implicitly captured by the discussion
given in section 3.5. As already remarked, the above rigid O(d, d) transformation that sends
us to the (F, Q)-orbit can be understood as a notion of a PL-plurality transformation.

3.7 Q,R

In the (Q, R)-orbit the Bianchi identities imply that Q;/* can be interpreted as structure
constants of a Lie algebra and that RY¥ is a 3-cocycle. Solving the flux equations (2.32)
gives, for the same reasons as in section 3.3 for the (Q)-orbit, that ppf = 5/2 and that 3%
is given by (3.12). Using the Bianchi identity the R-flux equation becomes

Rk = _3!liQ, ik, (3.43)

where recall @ is an antisymmetric constant matrix. Importantly, a rigid O(d, d) trans-
formation as in (2.27) can undo this R-flux contribution at no other expense, and therefore
we are effectively describing the (Q)-orbit.?> Hence, the genuine (Q, R)-orbit with non-
vanishing R-flux can not be realised when imposing the strong constraint, and therefore
we do not expect to be able to apply a rigid T -transformation from the (F, H)-orbit when
the H-flux is non-vanishing. This is reminiscent of the known anomaly obstructions to

gauging global symmetries in WZW models [75], which are part of the (F, H)-orbit.36

3.8 F,Q,R

In the (F,Q, R)-orbit the Fl-j]C flux can still be interpreted as the structure constants of a
Lie algebra g spanned by the generators T}, while in general the @Q;7* flux satisfies Bianchi
identities mixed with RY* and 7%, see (2.15)—(2.17).

To solve for the twist functions (p, b, 5) of U parametrised as in (2.20) we can observe
that the flux equations for H;jy, Fijk and Q;7* are identical to the equations in the (F,Q)-
orbit of section 3.5. Therefore, the b-twist is found from the second de Rham cohomology
of the manifold while the p- and S-twist take the form3”

p=g7tdg, B = (Adgr-P- Ady T TT) + (g (T9), T7), (3.44)

with g € exp g and ry = Ad,-1 oroAd,. For simplicity we have dropped here the possibility

of automorphisms of t but recall from the general discussion around eq. (2.24) that this

38

is always possible.”® What does change in this orbit, however, is the algebraic R-flux

3%In section 3.3 for the (Q)-orbit, ©* was constrained to be a 2-cocycle in order to have vanishing R-flux.
In that discussion it was assumed that the symmetry in (2.23) had been fixed, or in other words that Eis
not allowed to transform. Here we do not need to impose any constraint on &* because the R-flux is not
required to vanish at the start, it is rather removed by the transformation (2.23) under which E is allowed
to transform.

36Notice that in our framework we can only deform/dualise one copy of the symmetry group of the WZW
model, e.g. the left one.

37See section 3.5 for the definitions of the various objects, which are not affected by the presence of
the R-flux.

38For example, recall that p;* = W;? p;* with W7 € Out(g) and p = g~ 'dg, § € expg, is also a solution
for p. When we take for instance the automorphism W;” € Aut(t) to be block-diagonal, i.e. Wi; = W% =0
then we will have Wij = Wij = (Wﬁl)ji as well as the relations Qijk = Wilekaanm" and RYF =
W4HWI,, W*,R"™" so that the solution of the Q-flux equation for 3% given in (3.27) still holds.
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equation. We find

Rk = 38l gilm p k] _ 35l k] gglli - gilm g k] (3.45)

hom./~hom. hom. inhom./”hom.

or in terms of the adjoint action by ¢ in t,
(Ady)i (Adg)m? (Ady)n*R™™™ = 3p2rllipim gy, M — 3prlliQuH) (3.46)

where we have used the identity (3.33) (which we note is not affected by the presence of R-
flux). In the (F, Q) orbit, in order to have vanishing R-flux, r was required to be a solution
of the CYBE for Fijk and to satisfy the 2-cocycle condition with Q;7*. These conditions
are now relaxed by the presence of the non-trivial R-flux. Notice that the right-hand-side
of the above equation is constant (i.e. g-independent), which puts a strong constraint on
the left-hand-side. Taking g = €* with x € g and expanding order by order in  we have
respectively at leading and first order

Rtk = gp2pllipilmp, K _ 3,100,k Ey,,FRIFIm — 0, (3.47)

The first condition then implies that we can remove the R-flux using a rigid O(d, d) trans-
formation. Indeed taking in (2.27) b = 0 and § = —nr we can turn off the R-flux at the
expense of shifting the Q-flux and, therefore, we are effectively describing here the (F, Q)-
orbit. Therefore we do not expect to be able to apply a rigid T-transformation from the
(F, H, Q)-orbit of quasi-Manin triples to the (F, @, R)-orbit.

39 H

We now start the discussion of orbits with non-vanishing H-flux, following the framework
explained in section 2.4. The first example is the (H)-orbit. Notice that the Bianchi
identities for Fjjx are trivially satisfied while those for F; require H;;,F k — 0 and the
orthogonality F;F* = 0.

Using the notation of section 2.4, for the adjoint action by m and the one-form V! we
simply find in this orbit that

50 ’ , 1.

J _ J — — k

Mp” = (m’“Hijk 6#’) c Vi =0t V= =gV m g (3.48)
As argued, since M“ = 0, we continue with the twist U I(l)M to solve the flux equa-

tions (2.32). In terms of the functions p, b, 8 of (2.20) we have p,’ = V,,%, % = £ and
bij = wij +2V*V,;. In fact this pui can be gauged away by a diffeomorphism to get

Ul(l)M

p,f = 52, which we understand as a consequence of the ansatz , and thus we have

wijk = 0. Consequently, solving for F,-jk = 0 constrains 4% to satisfy
BMH;j = 0. (3.49)

Solving for Q7% = 0 gives that 3% must be constant, and R¥* = 0 is solved automatically.
From (2.27) one sees that this constant S-transformation satisfying (3.49) is precisely an
automorphism of the pre-Roytenberg algebra, and therefore it can be removed by a rigid
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O(d, d) transformation as in (2.23). Then we are describing the example of the torus with
H-flux, see e.g. [76]. To complete the discussion we can also solve for the b-twist, or
equivalently w;;. By defining b, = puibij p,,j and observing that b,, = w,, — 2w, with @
defined as in (2.44), we find that
30),w,, = —2Vu' ViV, Hyj, (3.50)
which has a particular solution w;f,i‘om' = %VMZVW, so that we have an explicit expression
at least locally. The most general solution is wy,, = wip™™ + wig™ with w"™ a closed
two-form.
For the generalised flux F; we have F; = 20;,\ and F! = 0 (after setting 8 = 0 by
the rigid O(d,d) transformation) so that the above Bianchi identities are automatically

satisfied.

Another class of representatives. Let us now present another class of representatives
within the (H)-orbit that are not captured by the above discussion and the methods of
section 2.4.39 We will try to look for representatives with non-vanishing wijk. In particular
we will restrict to the case of constant wij"’ and we will want to interpret them as structure
constants of a Lie algebra g, so that we will prefer to use the notation fijk = wijk . This
can be achieved simply by taking p = g~ 'dg of MC form, with g a group element of G such
that g = Lie(G). Then from Fj;* = 0 we have

fii* = =B H . (3.51)

For g non-abelian this is possible only if we turn on a certain [, and in general it is
consistent only if 5lez‘jl is constant. The Jacobi identity for the structure constants fijk
now implies

B™ H,, (15 Hygip 8™ = 0. (3.52)

While a non-constant S may be still possible, let us take a constant 8 to simplify the
discussion further. Then from Q;/* = 0 it follows

A fk =0, — Bt gE™ Hiypp = 0, (3.53)

which is a weaker condition compared to (3.49). Notice that when this condition holds,
both R7* = 0 and the Jacobi identity for fijk are automatically satisfied. For the fluxes
Fr1 we have that F; = — ijlﬁjl +209;A and F' = 28% 9, \, where (3.53) was used, and the
Bianchi identities involving Fr are automatically satisfied. Constancy of the fluxes imposes
also the condition fijkakj\ = 0, which is equivalent to the Bianchi identity H;j;F k=0.

One can check that in d = 3 there is no solution to (3.53) but already in d = 4 there
are several. Given a basis e; we first write the 3-form H-flux as

H = 4h[l€i Nej /\ek] = hies ANegsNeg—hoei Neg Neg+ hger Aea Aeg — hyaeq Aes Aes. (3.54)

39For more comments on solving the (H)-orbit without relying on section 2.4 see appendix F.
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Then one possible solution to (3.53) is found by setting for example all 3 = 0 except %3,
and h; = hy = 0. The only non-vanishing components of the structure constants are then

fl42 - _h26237 f143 - _h3/8237 (355)

which define a Heisenberg algebra
[tl, t4] = —523(h2t2 + h3t3). (3.56)

Interestingly we may view this class of representatives as a deformation of the representa-
tives described previously. It would be nice to extend the methods of section 2.4 to include
these also.

3.10 H,R
In the (H, R)-orbit the Bianchi identities read

H;jxRM™ =0, Hijp FF =0, R9*F, =0, FiFi=0. (3.57)

Following section 2.4, one can verify that, compared to the (H)-orbit, the adjoint action by
m and the one-form dmm™"' do not change with the presence of R-flux and thus are given
in (3.48). Using the Bianchi identities notice that we therefore have that VR = 0.4
Continuing with the parametrisation U I(l)M and solving for the flux equations with p,f =
Vui, 9 = €4 and bij = w;j + 2V;#V,; we ultimately find that RY* must be vanishing and,
therefore, that we reduce to the (H)-orbit. Hence, we must conclude that the (H, R)-orbit
(with non-vanishing R-flux) can not be realised within the framework of section 2.4.

311 F,H

In the (F, H)-orbit the Bianchi identities imply that Fj;* satisfies the Jacobi identity and
can be interpreted as the structure constants of a Lie algebra that we will call f. We should
however point out that the generators are not 7; (since their commutation relations in ¢ are
of the form [T, T] ~ FT + HT), and we will denote them by t; € f. Moreover, the Bianchi
identities imply that H;j;j is a 3-cocycle of § and that Hijk}"k + Fijk}'k =0, F/FF =0
and F;F' = 0, and in particular F* = 0 if ¢, ¢ Z(f). When f is semisimple the Bianchi
identities imply JF; = F* = 0.

Let us now ask when we are genuinely inside this orbit, and not in simpler sub-orbits,
or in other words when there exists a transformation of the pre-Roytenberg algebra that
sets either F' or H (or both) to zero. From (2.27) one sees that H can be removed by a rigid
O(d, d) if it is of the form H;jj, = —SF[ijlka for some constant b, i.e. if H is a coboundary
for §. We therefore want to restrict ourselves to H in the third Lie algebra cohomology
of f. For f semisimple H3(f,R) = R™ [77], where n labels the number of simple factors in
f, such that one can take Hjj, = >, aaFijlmk with k;; = (t;,t), and o, a = 1,...,n
real constants. Viceversa, starting from (F, H) and using (2.27) one sees that F' can be

40This is consistent with the MC identity (2.36) for V,,°.
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removed if it is of the form Fijk = l-ﬂﬁ”“ for some constant 8 which additionally satisfies
Hpn 371 35™ = 0 such that the Q and R-fluxes are to remain vanishing.
Following section 2.4, the adjoint action by m now takes the form

M’ = 5 3.58

where, using ad-invariance of 77, we have M?; = (M~1);* and M;; = —M;' My (M~1);*.
Furthermore, using that M € Aut(t) we have the following identities

Ej' M = M M;™ Fy,

! —1y 1 m ! Lyg.m (3.59)
Fij My + Hin (M) = 2Mg M j)"™ Frge” + Mi" M;™ Hyppe,
of which the last identity can be rewritten as
MM My Hyp, = Hijy, + 3F ;' My)™ My, (3.60)

Notice in addition that the components M,/ give an automorphism of §.
Since M" = (0 we prefer the parametrisation U](l)M for the twist, that corresponds to

pi‘u = MijVj“, ,Bij = fij, bij = wij + Miijk . (361)

Using the MC identity (2.36), the expression for the derivatives of M’ (2.41) and the
automorphism properties, we find wijk = Fijk. Hence we might as well take the p-twist as
pit = Wil p;# with p = g~1dg, g € expf and W € Out(f). Solving for the F-flux equation
now implies that

BMH ;= 0. (3.62)

Solving for Q7% = 0 and RY* = 0 then simply gives the homogeneous YB solution for
B = (ry(t'),t7) — asin (3.4) but defined with different generators — in which the constant
antisymmetric operator r solves the CYBE on f. Notice that f is, however, constrained
by the condition (3.62). Finally, to solve for the b-twist we rewrite the H-flux equation
as 30|,

b,,p] = puipyjppkHijk with by, = pyi(wij + Miijk’)p,,j, and observe that for B;w =
pﬂl iijkaj we find

30,bup = pu' P’ pp" Hijr, + 2V, Vi,V  Hygy, + 3V, 'V, V. iy, (3.63)
where we have used (2.36), (2.41), (3.59) and (3.60). From the definitions for @) and Q®)
given in (2.44) and (2.46) we can solve the H-flux equation for b,, by

b =032 —Q

v ;(1,21/) + BMV =) - ) + PuiMiijkPuj- (3.64)

A pv

Notice that the most general solution adds closed two-forms admitted by the manifold to
b, but also that this solution might not exist globally.
Finally for the equations for the generalised flux /7 in this orbit we have

Fi=Fijf +20;,  F=-p'Fy+28%y (3.65)
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where we have used Blelij = 0 and where, as before, a; = 9;\ is a constant, which implies
Fijkak = 0. The Bianchi identities for F; therefore read

Fy' Fi™ — Hiji ™ Fr! =0, 2Fy7 8"y, — Fy? B ' = 0. (3.66)

One can verify that the second identity guarantees also the orthogonality condition F*F; =
0. Together with the second identity and the Jacobi identity for Fijk one can verify that
all these conditions guarantee also the constancy of F'. Notice that if the algebra § is
semisimple and the dilaton is isometric (o; = 0) these condition reduce to the requirement
that § as well as § and the r-operator are unimodular [60].

An example of a o-model in the (F, H)-orbit is the Principal Chiral Model (PCM) with
the addition of a Wess-Zumino (WZ) term (in the absence of spectators in fact we describe
the whole o-model). When fixing the correct normalisation between the coupling in front
of the PCM and the WZ actions, this becomes the WZW model [78], which is in addition a
conformal field theory. The pure NSNS bosonic-string background AdSs x S3 x T* can be
realised as an SL(2,R) x SU(2) WZW model plus four free bosons parametrising the torus.

Inhomogeneous and homogeneous YB-deformations of PCM 4+ WZ models were dis-
cussed in [79]. The homogenous-type deformations leave the generalised fluxes invariant
and therefore can be included in our discussion. However we would like to point out that
the homogeneous YB-deformations of [79] are always such that the image of the r-matrix
(which is a subalgebra f of the full Lie algebra of the group used to construct the models)
is a solvable algebra. As a consequence of Cartan’s criterion, the components of the H-flux
computed from the WZ term (e.g. Hyj, = o fijlnkl for some constant «) are zero when all
three legs are along f. Selecting a solvable subalgebra is equivalent to splitting the coor-
dinates ™ of the full target-space into spectator coordinates 4 and coordinates y* such
that H,,, = 0. Therefore in our language the homogeneous deformations of [79] should
be viewed as a deformation of the simpler (F')-orbit. Notice that the solvability condition
can be seen as a possible solution to (3.62). New deformations of the PCM + WZ model
correspond to solving (3.62) whilst relaxing the solvability condition.

Let us now turn to the generically inhomogeneous YB-deformation of the PCM + WZ
model of [79-81]. To compare to those results let us consider the O(d,d) matrix

— 7 f(ab\ [~ tcosh(¢rk) v 'k~ sinh(Ckr)
e ( ) N ( vk sinh(Crr) ~ cosh(Ckr) ) ’ (3.67)

where v,( € R are parameters, s;; is a symmetric matrix that we will interpret as the
Killing metric of an algebra §, and r¥ is an antisymmetric matrix. No further restriction
on r is required for U to be in O(d,d). However, to have an integrable o-model further
conditions are necessary, see [79-81]. If we take H!/ = Ux! "5 U7, where simply

W = <””' 0 ) (3.68)

0 k%

~32 -



and in the absence of spectators, then using (2.4) it is easy to check that the combination
of metric and B-field M = G — B parametrising H will be

—1
_ 1+ 2 1+~2
M:( it —624*““) ( +7 +e2<”> K. (3.69)

1—~2 1—~2

Comparing to equation (1.2) of [79] we see that in order to rewrite the o-model action in
an O(d, d) covariant form it is sufficient to take for example the twist*!

10\ = (2" 0
o= (1) (2 ). -

with v = dgg™! and g € expf, and where the b-shift of the B-field takes care of the WZ
term. Let us mention that U is of the form of (2.20) with

p=~"Y(cosh(Ckr))™t, B=~"2k"Lsinh(Crr)(cosh(Ckr))™t, b=~%ksinh(Crk)cosh((rk).

(3.71)
Let us now ignore the WZ term for a moment (13 = 0). The v-twist is very simple and when
taken alone it gives rise to F-flux only, in particular Ejk =— fijk in terms of the structure
constants of §. The multiplication by U from the left can be seen as a rigid O(d, d) rotation,
and for this reason (when b = 0) we can still interpret the model as being in the (F)-orbit.
On the other hand, if we include U when computing the fluxes we obtain

F;* = —y[(cosh ¢kr);! (cosh Crr) ;™ (cosh Crr)Fy,

+ 2(cosh Cm’)[il( inh ¢xr) ;™ (sinh Cre)* ] fim™,
Q7% = —y7(sinh ¢xr);! (sinh (7k)7,, (sinh Crr)*,

+ 2(cosh Ckr);! (sinh Crer), (cosh Cre )L, ] £,
R7% = —3~73(sinh ¢rx)l (sinh Crr)’,y, (cosh Cre)Hl, fmm,

Hiji = —37%(cosh Cnr)[il(cosh Crr); ™ (sinh Ck7) 1" fimn,
s
1

(3.72)

where the indices of f;;* are raised and lowered with x~! and x. Notice that all the fluxes
above are non-zero. While, as already mentioned, at b = 0 this is just a rigid O(d,d)
rotation of a representative of the (F')-orbit, when including now b the new fluxes written
in terms of the above ones are

Hls = Hijr, + 3F;5' by — 3byibj1m Qg™ + bitbjumbien R™™ + Hijy,
FJ* = Fj* + 2by;Q % + bybjm R,
Q7% = Q* + by RY*,
Rk _ Riik

(3.73)

where ﬁijk is the shift of the H-flux produced by b. The requirement is that in the
undeformed case (( = 0,7 = 1) the H-flux is proportional to the structure constants of

“1To relate to the parameters in [79] we have to identify i*_'j; =eXand ( = —p/2.
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f, namely —Sf[ijl?)kﬂ + H'Z-jk = afyji for some coefficient «. It would be interesting to see
if there is a different parametrisation of the twist of the inhomogeneous YB-deformation
of PCM + WZ that gives rise to simpler expressions for the fluxes, and if there is a
parametrisation in which the fluxes are manifestly constant. This would help understand
what is the simplest orbit in which one can describe this model. Notice that we have not
used the mCYBE for r above, and it will likely play a role in that computation.

3.12 H,Q

In the (H,Q)-orbit the Bianchi identities imply that the Q-flux represents the structure
constants of a Lie algebra § with generators 7% and that the H-flux satisfies Hy;Qu mk — (.
The latter in turn implies that H* = g7 gk Hy,,.. . with % = (T%,T7) the Killing form,
must be a 3-cocycle of §g. Moreover Q;7*F, = 0 and Q,“F* = 0 imply that F, = 0 if
TF ¢ Z(§) and F* = 0 if T* € [g,§]. We also have the orthogonality condition F;F* = 0
as well as Hijk}"k =0.

Since in this orbit the H-flux is non-vanishing we turn to a particular parametrisation
of the twist U explained in section 2.4. As all of the components of the adjoint action
M7 = {(mTym=1,T7) are turned on, we prefer to continue with U}z)M given in (2.38),
where we know in general the solution for w;;. In terms of the functions (p,b, §) of (2.20)
we have in general

pit = (M;;€7% + Mij5f)Vk“,
Bpit = (M5 + MISH) Vi, (3.74)
bijp! = (M (6 + €w) i + M wip) V.~
Recall from section 2.4 that the H-flux equation is solved, up to closed two-forms, by
w=w—03. Instead of trying to solve the other flux equations given in eq. (2.32) directly,
it will be more convenient to use the expressions given in (2.50)—(2.53). In this orbit

they read
M H; =0, (3.75)
9,9 + 2V,miQ,, N =0, (3.76)
QM = 0. (3.77)

Notice that £ = 0 is a trivial possible solution. To solve these equations in general, it will
be important to consider the series expansion of the one-form dmm™!. We find

Oumm ™' =V, T+ VT = > —————adl . 0,m' T}, (3.78)
= (V+ 1) :
with
i S 1 j Ny i
_ 3.79
9] 1 )
- J A . Ny
Vi = Z (2N+2)!8Hm (mH);i((mQ - mH)™)";,

2
I

0
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where we have defined (mH);; = m'Hy;; and (mQ)¥ = m!Q,", and which can be proven
by induction. Notice that we can always write V,; = A{fH jki for some tensor A which
carries all the field dependence. With this observation, it is now easy to show that using
eq. (3.75) and the Bianchi identity Hk[ile]mk = 0 that

V™" = 0. (3.80)

Hence eq. (3.76) simply requires that £ must be a constant matrix. Then the remaining
conditions are algebraic: eq. (3.77) implies that £ must be a 2-cocycle for g while eq. (3.75)
can be seen as a compatibility condition requiring that & and H must be orthogonal.
Therefore, turning on such a particular £ from & = 0 can be interpreted as a deformation
which is a (novel) solution-generating technique.

To have the expression of the (p, b, §)-twists it will again be convenient to consider a
series expansion, now of M;;. One finds in particular M;; = > ¥_g (%(mH)u((mQ :

‘ IN+I)!
mH)N)!; so that upon (3.75) we have M;;¢7% = 0. Hence

pit = MV, BY = (MY R MY + MM, bij = M wyn M;™,
(3.81)
where we have used M;! M7, + M;M3" = §;7 and Milel—i—Milel =0, from M € O(d, d),
as well as Mi]{jk = 0. We can now easily calculate the expression for wijk resulting in

wii® = HypgM™ (M™H)n", (3.82)

Let us now consider the conditions in which case a rigid O(d,d) transformation
by (2.27) describes a simpler orbit in disguise (i.e. H or @ can be turned off at no other
cost). We find that we can not turn off the H-flux with a constant b and /3 transforma-
tion since the condition found from ngk = 0 together with the consistency condition from
Fl-’jk = 0 requires H;j;, to be vanishing, which is of course not possible. The same holds for
the Q-flux where the condition required from Q¥ = 0 does not match with the conditions
found from R = 0 as well as F//* = 0.

To complete the discussion of this orbit in general we have for the generalised fluxes F;
Fi = wij? + 20, Fl= Q7" +2B99;, (3.83)

with wijk&-;\ = 0 such that F; is constant. From the requirement that JF; is constant,
9;F7 = 0, we therefore also must have that Q;"*9,A = 0. From the Bianchi Q;/*F;, = 0
we then find the condition Q;/*wy! = Q7% Hippn ™ = 0. Furthermore Hl-jk}"k = 0 implies
HZ-]-le”C =0, and QY F* = 0 implies QY Q;** +2Q17 B*a; = 0. Notice that the orthogo-
nality condition J;F* = 0 will be automatically satisfied because of the previous conditions.

(Asymmetrical) A-deformations on group manifolds. It is known from [22], when
ignoring spectators, that the WZW model and its A-deformation [82] can be described by
the particular twist U with ¢ = 0 and by a particular choice of fluxes (or, equivalently,
a particular pre-Roytenberg algebra). In the following we will show that, generalising [22],
also the asymmetrical A\-deformation on group manifolds of [83, 84| fits within the same
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pre-Roytenberg algebra. We take v = € @& ¢ where £ is a Lie algebra with generators ¢; and
structure constants fijk . The bilinear form 7 is taken to be [22, 74]

({zr, 1} {z2,92}) = (21, 22) — (Y1, 92), (3.84)

where z;,y; € € and k;; = (t;,t;) is the Killing form on £. The generators T with structure
constants Q;7¥ generate the diagonal embedding § = £, in t by the map =+ {z,z}/v/2.
This subgroup is maximally isotropic. The complementary isotropic subspace, spanned
by T, is the anti-diagonal embedding by the map x — {z, —z}/v/2. Hence, in this case
we have

1 . 1 X .
ﬁfijl/ilka QI = %Fvim]mﬁk"fmnl, % =0, Rk = 0.  (3.85)

Notice that the Bianchi identities for Fj i are automatically satisfied upon the Jacobi

Hij =

identity for fijk and the ad-invariance of x;;. To connect to the A-deformed background
in terms of the metric and B-field there is a subtlety in choosing a good parametrisation
of the group element m = ™ Wi Following [22] we take m = {g,g~ '} with § € exp(¢)

and define a group element § = g* € exp(). Using this identification in the twist U I(Q)M
we find in terms of the general parametrisation (2.20) that*?
1 s -1 1 - AA(i~ -1 _
pit = ﬁ(l + Adg)i’ 0", f=—kK TAdZ’ b=bo+p lwp", (3.86)
with 1
bo = 7 (Ad; — Ad; Yk, (3.87)

and 9 = djg—'. Deviating from [22] we now consider a different parametrisation denoted
by m = {g,97'} with g € exp® and which is related to the previous parametrisation as
Adj = AdgoW and v = v = dgg™! in which W is a constant outer automorphism of £
which preserves the metric k. In particular this means that the group elements ¢ and g
are not related by a trivial field redefinition.*® The twist functions simply become

1 1—Ad, W
—1 -1 -1 g
= 1+Ad, W =— 3.88
p \/5( + g )U ’ B K 1+ Adg W, ( )
1
b= Z(Adg W —-w! Ad;l)m +p twpt. (3.89)

A final subtlety in calculating the background from the twist functions is the choice of
the matrix E4!, which is constant when we turn off the spectator fields. To obtain the
(asymmetrical) A-deformed background we must take E4” such that [22, 74]

14+

. : . 0

HI = BA€JHAPERT = (16" Hﬁ_l) , (3.90)
1+

“?Tor details of this calculation see [22]. Following the logic of [22] we find that to find the same deformed

geometry, we should replace e = g~ 'dg with v = dgg~*

in their frame fields of eq. (5.63), an overall minus
sign is missing in entry (1,2) and (2,1), and we should take A — —X in eq. (5.66). This likely corresponds
to a known symmetry of these backgrounds [85] and indeed we agree on the final result.

43 A useful trick to get this generalisation Ad; = Ad, oW and ¥ = v = dgg~' is to consider a constant
w € exp g such that § = gw and define W (t;) = wTiw ™. This W would be an inner automorphism and it
would be removed by a trivial field redefinition, but the dressing by W in the formulas above is the same

also in the case of outer automorphisms.
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in which A is the eponymous deformation parameter. The metric and the B-field can
then be extracted from the generalised metric HMYN = U I(Q)M HY U§2)N resulting, in the
coordinate frame, in

1
G= 5 v0 KO, B = §U<0g/ﬂl — kO " — w, (3.91)

with Oy = (1—AAd, W)~ and where dw = —3 fi;,0° Avd AvF gives rise to the well-known
WZ term. This coincides precisely with the metric and B-field of the asymmetrical \-
model on the group manifold G' = exp ¢ [83] and with the original A-model when W = 1 [82].
Let us point out that here W should not be mistaken with an automorphism of the pre-
Roytenberg algebra as given in (2.24).

Curiously this implies that the WZW model background, which can be found by taking
the limit A — 0, is described in the (H, Q)-orbit as well as the (F, H)-orbit. This then begs
the question if there is a rigid O(d, d) transformation (2.27) that relates the (H, Q)-orbit
(with the H and () fluxes proportional to each other via the Killing form as in (3.85)) to
the (F, H)-orbit (with F' and H again proportional). However, in general there is no such
rigid O(d, d) transformation, as can be checked for example in the su(2) case.

On the other hand, a rigid O(d, d) transformation does allow to describe the (asym-
metrical) A-models in the self-dual (F, Q)-orbit of Poisson-Lie symmetric backgrounds. By
taking 8% = 0 and bij = (Tti, t;), with 7 a constant antisymmetric operator that satisfies
the mCYBE (3.39) for ¢ =1 on ¢, we find

Hi;, =0, N G Qi* = \}iﬁilﬁjmﬁknfmnl, Rk =0,
(3.92)

where we have used the ad-invariance of . This is now up to analytic continuations
(essentially sending ¢ = 1 to ¢ = —1 or vice versa) the Poisson-Lie dual of the non-split
n-deformation [22, 72-74] of which the (F,Q)-fluxes were given in eq. (3.41).

Let us emphasise that the generalised fluxes F7jx remain invariant when turning on
a non-trivial automorphism W from the (original) A-model representative with W = 1.
Hence this map can be understood as a solution-generating technique — recall that in
the case of supergravities we have to require that also F; stays invariant.** Furthermore
starting e.g. with the A-model representative (¢ = 0), and turning on a constant £ which
is orthogonal to H as well as a 2-cocycle for @, is a novel solution-generating technique.
In fact, if we transform the twist by a constant S-shift from the left, the fluxes transform
as in (2.27), with 8 = £ and b = 0 in this case; then demanding that the fluxes remain
invariant produces the two conditions (3.75) and (3.77). Therefore turning on a constant
¢ can be understood as the implementation of an automorphism of the pre-Roytenberg
algebra as in (2.24). Interestingly this deformation may be viewed as a generalisation of
the DTD models (which on its own generalise ordinary NATD) in the (Q)-orbit, but now
with the addition of H-flux.

“Notice that in this parametrisation A enters E, and for this reason turning on A is not necessarily a
solution-generating technique. It is in fact known that the A-deformation is not a marginal deformation of
the WZW model [82], and in general one has to add RR fluxes to get a supergravity solution [60, 86, 87].
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Comments on finding other representatives. Let us illustrate that outside of the
ansatz considered in this section, the (H,Q)-orbit may still capture different non-trivial
representatives. Since the generators 7% span a subalgebra §, another interesting ansatz
allowing for systematic progress is the twist considered in eq. (2.54) or eq. (2.55). Taking
the latter, and assuming that d;; is an ad-invariant bilinear form of g, we find for the
equivalent of the F-, Q- and R-flux equations of (2.39) and (2.40) that

MHiy = 6,Q;", QI = 0% = 36,6mUQuM, 3N — eligmQ,, Mgy, = 0,

(3.93)
with &; = 6ij‘7j“8“ and wijk = 5ilelk . In this case notice that the expansion of f/m- is in
terms of Q instead of H, namely V,; = > y_o ﬁl)amf(mcg)i i- It is now indeed clear
that these equations may hold a genuinely different solution. We leave this problem, and
the possibility of other ansatze, open.

3.13 F,H,R

In the (F, H, R)-orbit the Bianchi identities imply that the F-flux represents the structure
constants of a Lie algebra § whose generators we denote by ¢; and which — as in section 3.11
— do not coincide with 7;. Then H;j;, and R;j, = /iil/{jmﬁkanmn, with ki; = (t;,t;), are 3-
cocycles of f. In fact the R-flux satisfies the stronger condition Fj; (kRlmli — (0 Additionally
we have H,j, RF'™ = 0 as well as the Bianchi identities (2.18) and (2.19) for J;.

Since the H-flux is non-vanishing we turn again to methodology of section 2.4. Com-
pared to the (F, H)-orbit of section 3.11, notice that the presence of R-flux does not affect
the adjoint action M’ given in (3.58). Therefore taking the ansatz U}l)M of eq. (2.37) we
have in terms of the (p, b, §)-twists again that

pift = MIVH, BT =€, by = wy + My MjF (3.94)

Now, however, the equation for wijk = —2pi"p;" Oupy

}k will in principle receive contribu-
tions from V,,; R“* by using the MC identity (2.36) and the expressions for the derivatives
of M7 (2.41). Before calculating w;;* let us first derive several useful properties. First

notice from the automorphism identities that we have from the vanishing @-flux that
My R™™ =0, (3.95)
where we have used the fact that M?; has an inverse. Hence the automorphism property

for Fij"’ becomes simply Fijk = Milem(M_l)nkFlm”. Additionally it will be useful to
calculate the expansion of the one-form V' = dmm ™! in terms of m = exp(m'T;). In general

we have
. . i 1 .
Oumm™t = V' T, + V7t = > vy = mad%maumm. (3.96)
N=0 ’

Using the commutation relations in v we have the following expressions
) 0 1 . .
Vi =D gy Ourmd (mF ),
= (V+1)!

) (3.97)

o) 1 'N—
Vii= —0,m’ NEmEN K L H - (mFYHE)
1% ]VZ:1 (N—|—1)' M I(ZZO( ) ( ( ) )]
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where we have defined (mF);/ = mlFlij,(mFt)ij = mlFlji and (mH);; = mZHlij, and
which can be proved by induction using the relation YW+ — %adi(N ). An important

consequence is that using the Bianchi identities F;; [k Rlmli — () and Hiijklm = 0 we have
VuR7* = 0. (3.98)

In particular with H;;;RF'™ = 0 this is easily seen for the case K = 0 in (3.97). When
K # 0 it is sufficient to verify that, upon using Fj; [kRmli = (0 enough times, eventually
an index of R“* will be contracted with an index of H;j;p.. Using all of the above in the
calculation for wijk we find that the contributions of the R-flux will vanish

k k ! k
wij" = Fii" = pit'pi" ViuVymn ™M™

3.99
Iy (399)

The same is true when trying to solve the H-flux equation in terms of the b-twist: in the
calculation of db with BW = p#iMiijkpl,j the contributions received from R%* are all of
the form V,,; R¥%. Hence, also in this orbit the solution for the b-twist is given in eq. (3.64).

From solving the F-flux equation of (2.32) we now have the condition S*H,; = 0,
again like in the (F, H)-orbit. Instead of the parametrisation p;* = M;?V;* we might now
as well take p = g~ 'dg with g € expf some group element of the Lie group associated to
£.45 Then solving for Q7% = 0 gives f7 = (rgt',t7), with ry = Ad;1 oroAdy, t' = k¥t; and
r a constant antisymmetric operator. Notice only the difference in generators compared to
eq. (3.4). Furthermore r must additionally satisfy

Tleijl =0. (3.100)
The R-flux equation, on the other hand, gives
(Ady)’(Adg)m? (Ady)n " R™" = 3rilipim g, M (3.101)

where we have used that Ad, is an automorphism of f. Notice that the matrices (Adg);’
and M7 coincide if we parametrise g € expg as g = €™ %, which is most easily seen when
writing both in a series expansion. Indeed in that case

o0

Z mFN (3.102)
N:O

Additionally, since M = 0 we also have from (2.42) that M M7, M*, R = RV* where
M'; = (M~1);%. These observations combined ensure that eq. (3.101) becomes simply
Rk = 3pllipilmp, K], (3.103)

When we consider RV* = ax'xI™E,,F, with a € R, eq. (3.103) becomes ax’kI™F),,* =
3rilipilm gy, 1 which is precisely the mCYBE (3.39) on f for ¢ = a as in the (F, R) orbit,
cf. section 3.6.

45We ignore again here the possibility of (outer) automorphisms of which the general discussion is given
around eq. (2.24).
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Interestingly, using a rigid O(d, d) transformation the R-flux can be traded for Q-flux
when we take b = 0 and 5 = r in (2.27), so that this representative can be equally described
in the (F, H,Q)-orbit. In particular, in that case we will have

Hiy = Hye,  FjF=Fg*  Q/F=—2FRUM RO —o0, (3.104)
so that, as in the (F, R)-orbit of section 3.6, the @-flux are the structure constants of g,
whose Lie bracket was defined in (3.42).

On a different note, the (F, H, R)-orbit that we are describing is a simpler orbit in
disguise if we can turn off at least one of the three types of fluxes. The possibilities that we
have are: (i) we can turn off the H-flux if it is of the form H;j, = —3F[Z~jlbk]l —bilbjmbkanm”
for some constant antisymmetric matrix b satisfying 2Fj; U kI — b, RUE 4 2b,,byy, R gEIM —
0 for some constant antisymmetric matrix 5. The F- and R-flux will obtain in that case a
shift, F/;* = Fj;* + bybjm R™F and R"* = Rk 4 35!l RiMmp, , which vanishes when we
take 3 = 0 (since then we must have b; RY* = 0); (ii) to turn off the R-flux we find from
Q7% = 0 and taking b = 0 for simplicity in (2.27) the condition H;p, ™ ™ —2F; VU gH = 0,
so that the R-flux should be of the form RY* = gligilmp, K In that case H stays
invariant while F' receives a shift Fl’jk = Fl-jk — Hijlﬁlk . Notice that while in the previous
discussion we did take the R-flux of this form with 3 = v/3r, the condition (3.100) also
implies FjlUrkll = 0 which is inconsistent with the mCYBE unless @ = 0 from the very
beginning, which is actually not the case that we want to consider. Finally (7ii) we do not
need to discuss the possibility of turning off the F-flux since in that case we would end up
in the (H, R)-orbit which, as discussed before, can not be realised on the strong constraint
with the methods of section 2.4, while here we do find possible representatives.

Finally let us close the discussion of this orbit by briefly commenting on the generalised

fluxes F;. We have
Fi=Fid 420\,  F'=-pl'Fy +28%9\. (3.105)

Constancy of F; implies Fijk(‘)ij = 0 while one can verify that constancy of F* is guaranteed
by the Bianchi Fj;F* = 0. In addition, this condition as well as Hiijklm = 0 implies
also the Bianchi F;F% = 0. At last we point out that when writing down all the Bianchi
identities for Fj explicitly one finds immediately that they are satisfied when § is semisimple,
the dilaton is isometric, and v as well as § are unimodular.

3.14 H,Q,R

In the (H,Q, R)-orbit, the Bianchi identities imply that @Q;/* are structure constants for
d = span(7T") and that the R-flux is a 3 cocycle of §. Furthermore we have H, k[ile]mk =0
and Hiijklm = 0. Within the ansatz of 2.4 this again implies several simplifications.
First notice that the R-flux will not alter the series expansion of the one-form dmm™!
given in (3.79) as well as the expansion of M;;. Hence, upon the Bianchi Hiijklm =0
we have

VR =0,  MuRY" =o. (3.106)
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Let us now use the parametrisation U?) of (2.38) where, recall, we have the general solution
of the H-flux equation in terms of the two-form w. For the expressions of the other flux
equations in terms of the yet unknown &% we refer to the most general orbit discussed in
section 2.4 by setting F' = 0 in the equations (2.50)—(2.53). Let us point out here that
due to the presence of R-flux, £ = 0 will not be a solution. Using (3.106) the expressions
simplify to

¢MH;j =0, (3.107)
9,9 + 2V,,6miQ,, N =0, (3.108)
3Q,[ ekl = Risk (3.109)

Similarly as in section 3.12 the Bianchi identity H, k[ile]mk = 0 implies that Vulﬁm[iQmj]l =
0 so that £ must simply be a constant matrix. However, given a rigid O(d, d) transforma-
tion it is possible to turn off the R-flux for this particular constant £%. In order to do so one
should take in (2.27) the constant matrices b;; = 0 and 8Y = —£%¥ such that Hijkﬁkl =0.
This rigid O(d,d) will leave the other fluxes invariant and thus we are in fact describ-
ing the (H,Q)-orbit (which, recall, is a genuine orbit modulo rigid O(d,d)). Concluding,
within the ansatz of section 2.4 we cannot describe a particular non-trivial representative
in the (H, @, R)-orbit and, therefore, we cannot describe a rigid T-transformation from the
(F, H, R)-orbit as a solution-generating technique. It would be interesting to explore other
ansatze for this purpose.

3.15 F,H,Q

The (F, H, Q)-orbit describes what is known as a quasi-Manin triple. The generators 1"
span a subalgebra § of v with structure constants Q;/*, while the generators T; do not.
Furthermore we have the Bianchi F[iijlm]k = 0 as well as (2.14) and (2.15). To discuss
this orbit we use the ansatz of section 2.4 and the parametrisation U?) of (2.38) for the
twist. The general solution of the H-flux equation was given in terms of w;; in (2.43). The
equations to be solved for the unknown &% can be found in section 2.4 by setting R = 0
in (2.50)—(2.53). They are

268 Hijy + € A Fij' = 0, (3.110)
0it* 4 20560 Q M — gV |, = 0, (3.111)
3QUIEN  3¢lligim M — lligdmelting, L By = 0 (3.112)

In the first place, we always have the trivial solution £ = 0. Recall that no genuine repre-
sentatives exist in the (F, @, R)-orbit, so that we cannot employ a rigid T-transformation
as a solution-generating technique in this case. On the other hand, it is possible to consider
a rigid S-transformation relating this representative and the one of the (F, H, R)-orbit. It
would be interesting to find also non-trivial solutions for £ within this orbit in the hope
of having solution-generating techniques mapping cases with different £’s. We leave this
problem open.
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4 Type II superstring and Ramond-Ramond fields

Let us now include also the RR fields in the discussion of the solution-generating tech-
niques, which in general may be relevant for type II backgrounds. RR fields in the doubled
formulation were discussed in various works, see for example [88-90]. Here we will employ
the spinorial formulation of [88] following the rewriting of [20]. In this section we will
review only the essential ingredients of the construction, and we refer to appendix D for
more details. One uses a democratic formulation [91, 92] where all even (odd) forms from
1 to D = 10 are used for the RR fields strengths of type IIA (IIB). The RR potentials are
encoded in a spinor |¢) and the RR field strengths in a spinor®® |§). Given Gamma matrices
I'“ in 2D-dimensions satisfying the Clifford algebra relations {T'4, TB} = 2n4B (notice the
flat indices) we write T'4 = v/2¢p4 so that {1pg, 9’} = 68, {1pa, ¥} = 0, {1, ®} = 0 are
anticommutation relations for the fermionic oscillators 14, 1¥®. Starting from the Clifford
vacuum |0) such that 14 |0) = 0 for all a, we rewrite the spinor |§) as

D .o
e? .
5 => — Foyomy€a,™ €0, YN - p |0). (4.1)
p=0 P
This rewriting relies on the one-to-one map between spinors |§) and polyforms F, where
F= pD:() ]%le...mpdmml .--dx™ on RYP~1. Here we are using e,™ which is the (in-

A

verse) vielbein for the metric Gy Importantly, Fip,...;m, are the RR field strengths that
are commonly used in type II supergravity (they are the F' of [88]), and they are the ones
that appear in the quadratic couplings of the fermions in the Green-Schwarz formulation
of the superstring (they are the F' of [93]). The two spinors |§) and |¢) are related by

5) = ($20a — Fanc 0~ JFaA )1 =Y I, ¥=d-FV-JFY, (1)

where .F(n) includes the 1/n! factor. Gauge transformations of RR potentials read as
dx|c) = Y |A) and Bianchi identities as ¥ |§) = 0. Notice that these Bianchi identities
are a consequence of WZ = 0 which holds on the strong constraint. After defining ¥_ =
(1o + °) (1 — 1) -+ - (19 — ¥”) we also impose the self-duality condition ¥_ |F) = |F).
Notice that this differs from [20], see appendix D. The self-duality condition translates into
the duality conditions for the p-forms as*” F'(®) = —(—1)%1”(7’*1) s F(10-p),

The transformation rules of RR fields le...mp under the O(D, D) solution-generating
techniques are found by the observation that |§) is in fact invariant under these trans-
formations. Notice that knowing that the generalised fluxes F are invariant under the
O(D, D) solution-generating techniques, it is obvious that keeping also |§) invariant en-
sures that even when including the RR sector we still have a solution of the supergravity
equations, and that we correctly satisfy the Bianchi identities and the constraints. The

*0ur |§) is G of [20]. Our |F) and |F) appearing later are respectively |F) and |F) of [88].

“"The Hodge dual is defined as (xA)m,...m, = ﬁgmlm o+ Gmyn,frt1kIOm e Ay ko where
el =1 €. =—1, gm0 = ﬁeml'”m“’, Emy-mig = V—GEmy...mi,.- We also have x x w® =

—(—1)PA0=P)5y(P) where the additional minus sign is due to the Lorentz signature.
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fact that we can identify a dynamical field (in this case |§)) that remains invariant under
the transformation is again a confirmation of the usefulness of the DFT formulation that
we are employing.

The fact that |§) is invariant does not mean that the RR fields ﬁ‘ml...mp remain in-
variant. This is similar to what we saw in the NSNS sector: while the generalised fluxes
are invariant, the background metric Gy, the field By, and the dilaton ¢ do transform.
To present the transformation rules it is useful to define |F') = e*dS[;El} |§) where Sig is a
Spin(D, D) element corresponding to the O(D, D) element E. See the appendix for more
details. Another useful rewriting of the spinor for the RR field strenghts is | F') = Sip) |F),
where we use the Spin(D, D) element Sg) = exp(— 3 Bmn¥™9") with B,y the B-field of
the supergravity background We will then write |F) = 25:1 Z%le...mp@bml o™ |0)
and |F) = 25_1 1 Fmym, Y™ -+ p™2 |0), which is compatible with (4.1). From the
invariance of |§) and using that E = EU and d = d + ), it follows that

|F) = eS| F), (4.3)

is also invariant under the O(D, D) transformations. If we use primes to denote the new
background related by the O(D, D) transformation, this fact can be exploited to compute
the RR fields of the new solution just by identifying |F) = e’\'S[U/] |F").
From an operational point of view, starting from the polyform F =
p 15 L le m,dx™ - dx® of a supergravity solution, we can get F' = exp(B@) A F
with B( ) = §andwm A dx™, which is a consequence of the relation between the corre-
sponding spinors. To obtain F' we write the Spin(D, D) element Sjgy; = Spp S[B} S[_I—)]l which
follows from the rewriting of the twist U as

SEEIE-ED6IE e

where 5 = p~'3p~! and b = pbp' have curved indices. We prefer this rewriting because it
simplifies the translation of the action on polyforms. In fact

IF®)y = Sz 1F) = et IRy —  FO P F 4y bAF+ %B/\B/\F—i—...,
' (4.5)
dey“ A dy” and

[FO) = 55 |F) = 2?0t [Py —  FO) = VF = F+B\/F+%B\/5VF+...,

' (4.6)
where BV F = 1811, F and 15, dz™ = 6%, tm (0P A (D) = 150®) A (D 4 (=1)Pw®) A
tmX 9. Finally one has

St | F) = (det p) /2 exp(— ™ Ry ™) Z Frnyoom, ™ -7 |0)
— p!

det,ol/QZ e, i ™ i, |0)

(4.7)
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where p = exp R acts as the identity on spectator coordinates #* and coincides with p on
the y-block. In other words the only action of Sp,) is to translate curved indices y, v into
algebra-like indices i, j, and multiply by (det p)'/2. Notice that this factor cancels in |F')
once we rewrite A = \ — % log det p. With the above formulas and starting from F.U, X one
can obtain F', and given another representative with U’, \' one can similarly compute F’
and F’ by the same formulas.

As we argued in the previous sections, the solution-generating techniques that we
are studying cover not only those that leave the generalised fluxes invariant. They also
cover those that relate different sets of generalised fluxes by constant O(D, D) transfor-
mations, the prominent example being the rigid T-transformation implemented by the
matrix in (2.28). Let us show how the RR fields transform when this 7-transformation
is involved. When the fluxes are related as in F)y, 5/ = TyATe BTeC Fape and Fl =
TyAFy, from (4.2) and using S[T}¢ASEF% = pBTpA one sees that we have the relations
5) = Sy 18) and [¢) = Sipy|c), provided that |c) is taken to be independent of the co-
ordinates that are being dualised.?® Notice that the chirality of the spinors remains the
same if we dualise in even d dimensions, and changes in odd d. In addition notice that
this transformation®” gives ¥ = SpW¥_S! = (—1)?W_, therefore in d-even dimensions it
preserves the self-duality condition, while in d odd it changes the sign, see also [88].

To obtain the transformation rules of RR fields one uses the fact that the relation to
the dualised model is via a twist

D) (RN

that now has an additional matrix implementing the T-transformation. Also in this case
it is preferable to pull the GL(d) block with p to the left, because this rewriting permits
to implement the action of the T-duality matrix (the second block in the last equation)
on polyforms in a simple way. Notice that because of the above rewriting we can think of
the operation as a dualisation of d coordinates not just in the case of abelian T-dualities,
but also in their generalisations. When dualising more than one coordinate we can think
of it as a factorised product of single T-dualities along the m direction implemented by
Spy = (PH — ¥,.)(—=1)VF. Under such transformation one has in polyform notation

|FW) =S, |[F) = FW=FAdy"+FVdy", (4.9)
where if A is a p-form AV dy* = (=1)P"ldy* v A = (—1)P711, A. A similar point of view
to obtain the transformation rules of RR fields under PL duality was used in [23].

5 Conclusions and outlook

We have discussed an ansatz for the generalised vielbein of DFT by demanding that it
takes a “twisted” form, as in generalised Scherk-Schwarz reductions of D-dimensional back-
grounds on d-dimensional spaces, and that the twist U gives rise to constant generalised

“®Notice that the ansatz for the spinor taken in [94] is equivalent to this condition, and a similar condition
is taken also in [22, 23].
“9In the presence of RR fields we assume that we do not dualise the time direction.
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fluxes in the d-dimensional space when imposing the strong constraint of DFT. The results
are organised as in figure 1 into orbits depending on which of the different fluxes F, H, QQ and
R are turned on, and in general they can be related by rigid T-transformations by F' <+ @
and H <> R, or more generic O(d, d) transformations. Our classification of the representa-
tives is complete when the H-flux is vanishing, while we have employed particular methods
for the cases with non-trivial H-flux which may not cover all possible representatives.

When an orbit contains more than one representative, or when by means of a rigid
O(d,d) transformation (including a rigid T-transformation) we can relate it to another
orbit that admits representatives, we can view the maps relating two of them as a solution-
generating technique in (super)gravity, as well as a canonical transformation at the level
of the o-models. Therefore when one of the two o-models is classically integrable it follows
that the other enjoys the same property. Our results add new possibilities to the known zoo
of generalised T-dualities and Yang-Baxter deformations. Generic O(d, d) transformations
relating possibly different orbits may be seen as generalisations of the so called PL-plurality,
which is traditionally defined as the possibility of decomposing in different ways the same
Drinfel’d double. Let us remark that in this paper we have only imposed the O(d,d)
symmetry of the background (i.e. the fact that it takes the form of a generalised Scherk-
Schwarz ansatz and that it gives rise to constant Fr g, Fr). At no point we have imposed
the DFT (or supergravity) equations of motion, and this is actually not relevant if one
is only interested in canonical transformations of o-models. In general, one may have
to choose appropriate RR fields and/or spectator background fields in order to solve the
DFT /supergravity equations. Similar comments apply to the integrability of the o-models
giving rise to the backgrounds that we describe. At no point we imposed the existence of
a Lax connection, and in general this may introduce additional conditions.

Let us now summarise our classification. In the (F')-orbit one can independently switch
on a twist [ satisfying the CYBE, which corresponds to possible (homogeneous) YB defor-
mations [33-35] of isometric backgrounds. This orbit is related by rigid T-transformations
to the (Q)-orbit, which contains backgrounds that arise from applying NATD [4] to the
ones in the (F')-orbit, and more generally include the DTD models of [36, 63]. The (F, Q)
orbit contains representatives that are PL-symmetric [11, 12], and it allows also for novel
deformations that can be understood as the natural generalisation of the homogeneous YB-
deformations, now without the need of having isometries in the initial background. Because
the fluxes remain invariant, these deformations preserve the integrability of the o-model.
When we perform this generalised deformation combined with a rigid T-transformation,
the resulting map may be understood as a generalised notion of T-duality. The (R)-orbit is
empty, it contains no non-trivial representative when demanding the strong constraint. The
(F, R) orbit contains the so-called inhomogeneous YB-model (or n-model) [34, 35|, slightly
generalised in our treatment by the presence of spectators. The (@, R) and (F, @, R) orbits
are trivial in the sense that one can turn off the R-flux by a rigid O(d, d) transformation.

When the H-flux is non-zero our classification is not exhaustive, because the methods of
section 2.4 that we employ in these cases do not guarantee that we are covering all possible
representatives. Nevertheless we identify interesting possibilities for the (H), (F, H), (H, Q)
and (F, H, R) orbits. The (H, R) and (H, @, R) orbits seem trivial within these methods
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since the R-flux can again be turned off by a rigid O(d, d). The (F, H)-orbit contains the
PCM+WZ model as well as a novel generalisation of the homogeneous YB-deformation
in which the YB-operator is constrained to be compatible with H. When applied to the
integrable PCM+W7Z model, this deformation preserves integrability. The (H, Q) orbit
contains the integrable (asymmetrical) A-model [82, 83] as well as additional novel deforma-
tions by 2-cocycles compatible with the H-flux, which are reminiscent of the deformations
of NATD in the (Q)-orbit that were called DTD. The map between an (F, R) representative
and the generalised DTD representative of (H, Q) by means of a rigid T-transformation
can be understood as another generalised T-duality. In the (F, H, R)-orbit we can describe
a generalisation of the inhomogeneous YB-model® as well as the fact that a rigid O(d, d)
relates it to the (F, H, Q)-orbit. Within the methods that we use, the (F, H, Q)-orbit ad-
mits at least the solutions of [22]. The question of having more general representatives in
this orbit, as well as representatives in the most general (F, H, @, R)-orbit, remains open.
Finally in the (H)-orbit we identified possible deformations of the torus with H-flux with-
out relying on the methods of section 2.4. This confirms that it should be possible to go
beyond these methods, and it would certainly be interesting to do so in a systematic way
in the other orbits with non-vanishing H-flux. It would also be interesting to look at this
classification from the point of view of para-Hermitian geometry [95]. Let us stress that all
the maps connecting different representatives of the same orbit (up to rigid O(d,d)) can
be used to generate integrable o-models when starting from another known one.

A general observation that we made, which generalises previously known results, is
that a constant automorphism W of the pre-Roytenberg algebra t (modulo gauge trans-
formations) may generate a new representative from a known representative for the twist.
They must not be mistaken with the rigid O(d,d) transformations of (2.23), since these
automorphisms do not involve a compensating transformation of the spectator background.
For instance, in the (F')-orbit the automorphism reduced to the subalgebra generated by
Fijk must be an outer automorphism. An interesting possibility is that for non-semisimple
algebras outer automorphisms may involve continuous parameters and can therefore be
seen as deforming the background.

While we have focused on the NSNS sector in most of the paper, in section 4 we have
explained how to obtain the transformation rules of RR fluxes by demanding that the maps
under consideration are in fact mapping type II solutions to type II solutions.

Let us now comment on several interesting open questions.

While we have discussed in our classification of representatives various known inte-
grable 2-dimensional o-models, it would be interesting to rewrite in this language also
others such as the bi-YB-deformation of [80, 81, 96] and the deformations of [97].

In this paper we have not analysed the special case of solution-generating techniques
involving (super)cosets, and this would be a very interesting future direction. In the (su-
per)coset case the spectator background fields are expected to project on the coset part
of the algebra, and can therefore give rise to solution-generating techniques even when

50We stress that we cannot view it as a solution-generating technique from the PCM+WZ model since
we are going from the (F, H) to the (F, H, R) orbit by turning on R.

— 46 —



demanding conditions that are weaker than the invariance of the O(d, d) generalised fluxes
Frik, Fr, see [58, 98] for an observation along these lines. In this paper we cannot view
the inhomogeneous YB-deformations (the n-deformation) as a solution-generating tech-
nique from 1 = 0 to n # 0, because in general it entails going from the (F')-orbit to the
(F, R)-orbit, but it is possible that the (unimodular) n-deformation of the superstring [99]
turns out to be a solution-generating technique because of these additional features of the
supercoset. The transformation rules of the NSNS and RR fields [60] are in fact strongly
suggesting the underlying O(D, D) structure also in this case. Similar comments apply to
the A-deformation of the superstring [86], as well as to the construction of [87].

Another possible future direction, which is also necessary for the point above, is to
discuss solution-generating techniques that involve superalgebras. It is likely that for this
purpose the formulation of [90] for type II superstrings in DFT language will be more useful
than the formulation of [88].

It would be interesting to relax some assumptions that we have made. In particular,
the solution-generating techniques discussed in this paper arise by demanding that the
generalised fluxes (and their flat derivatives) remain invariant under the map. To find
more general solution-generating techniques in supergravity, one may try to look for more
complicated symmetries of the DF'T equations of motion that do not necessarily leave the
generalised fluxes invariant, see [58] for a step in this direction. Additionally we were
interested in backgrounds that satisfy the strong constraint of DFT, namely those whose
fields depend only on the physical coordinates y and not on the dual . In the context of
gauged DFT it is possible to relax the strong constraint as done in [54], and it would be
interesting to look at this generalisation of the classification as well. One may also relax
our analysis by looking for solution-generating techniques in the context of the generalised
supergravity equations of [100, 101].
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A Notation

We follow the convention of using a boldface notation for the objects (and their indices) of
the full D-dimensional space, both before and after the doubling (e.g. we have the metric
G and the generalised fluxes F apc), and the same notation but without boldface for
the corresponding quantities in d dimensions, (e.g. Gy, and Fapc). A recap on our indices
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conventions is as follows:

m,n,... Curved D-dimensional indices of coordinates ™
Wy V..., B,... Curved d-dimensional indices of y*
ft,7,... Curved (D — d)-dimensional indices of spectator coordinates i

M,N,... Curved O(D, D) indices
M,N,... Curved O(d,d) indices

A,B,... Flat O(1,D —1) x O(D — 1,1)-dimensional indices
I,J,... Algebra indices in 2d dimensions
i,7,... Algebra indices in d dimensions

B Brief recap on DFT and gDFT

The generalised vielbein may be parametrised as

1 ( e (G — B)pum e(+)“m>

E,M = (B.1)

V2 \ —eS7"(G + B)m €57
Here e(®) are two vielbeins for the metric Gy and By, is the Kalb-Ramond field. The
generalised vielbein satisfies the following relations with the O(D, D) metric (1.1) and the
generalised metric (1.2)

where .
n* 0 AB Nab 0
= , H" = . B.3
s ( 0 —m) 0 i (5:5)
Curved indices M, N,... are raised and lowered with n™*~ and nysn, while flat indices

A, B,... with 4B and nsp. The generalised dilaton is d = ¢ — %log(— det G) with ¢
the usual dilaton. The generalised fluxes are defined as

F aBc = 3Quapc) Fa=9Ppa+2E4M0nd (B.4)
in terms of the generalized Weitzenbdck connection
Qapc = EsM0mEp" Ecn, (B.5)
and they satisfy the following Bianchi identities
3
OaF Bcp) — 1-7'- aB”Fcpip = ZaBcD,
28[A-FB] +(8C—FC)J-'ABC = ZApB, (B.6)
1 1
O4F 4 — 5JUAJ-'A -+ EJ—"ABC}"ABC =Z
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where

3
ZaBcD = _ZQE[ABQECD]a
Zap = (MM E LN )Epn — 29° 4pdcd, (B.7)
1
Z = —204d0d + 20404d + ZQABCQ ABC-

On the strong constraint one has Zapcp =0, 245 =0 and Z = 0.
A generalised diffeomorphism is implemented on tensors Vjs™Y and on the generalised
dilaton (transforming as a density) as

S Var™N = LV = eP0p VN + (0N€p — 0peN )\ VT + (00€F — 0P en) VT,

dee 2 = Lee =0y (EMe), = Sed=Led=¢MOyd - %aMgM,
(B.8)
where ﬁg is the generalised Lie derivative and &M the parameter of the transformation.
On the strong constraint the generalised fluxes transform as scalars under generalised
diffeomorphisms. In terms of the generalised Lie derivative they may be written also as

FaBC ZﬁEAEBMECM, Fa ZQﬁEAd. (B.g)

The strong constraint is again a sufficient condition also for the closure of the algebra of
generalised diffeomorphisms, so that [ﬁgl,ﬁgz] = ﬁﬁu with &0 = [El,ﬁg}%) = %(551%\/[ —
5e,6M) = 2,5[11’81:55]4 + Mg ng given by the C-bracket.

The point of view of this paper is similar to the setup of gauged DFT [46, 102].
Rather than the original interpretation of [102], where the O(D, D) theory is gauged by
shifting the generalised fluxes by some constant gaugings, we are closer to the interpre-
tation of [46] where an appropriate generalised Scherk-Schwarz (gSS) reduction from D
to (D — d) dimensions essentially gives the same construction, i.e. generalised fluxes for
the (D — d)-dimensional theory that are gauged by the fluxes of the d-dimensional space.
If tensors are decomposed as in the gSS ansatz VsV (x) = V37 (&)U 7 (y)UsN (y) then
generalised diffeomorphisms with parameter €M = €'UM respect the ansatz in the sense
that 5£VMN = 5£-VIJUIMUJN where in the case of a vector SéVI = 5£‘VI+.FIJK£JVK.
Imposing the strong constraint both on the “external space” (with coordinates &) and “in-
ternal space” (with coordinates y) is a sufficient condition for closure of the algebra of the
55: transformations, since [551, 552} = 55;12 where 5{2 = [é%,éz]([]_—) = [Sl,fz](lc) +fIJKélJ€§('
Notice the relation to the C-bracket [51,52]%) = [51,52](1f) Ur™. While the strong con-
straint on the internal space is a sufficient condition to define consistently gauged DFT, it
may be relaxed, as long as Z;jxr = 255 = Z = 0.

B.1 Geometric interpretation

The fact that the solution-generating techniques that we discuss do not modify the gen-
eralised fluxes when written in flat indices, still allows for the possibility of finding maps
between geometric and (globally) non-geometric backgrounds. (Non)geometry is in fact
captured by the fluxes written in curved indices — otherwise their definition in flat in-
dices is dependent on the chosen double-Lorentz gauge, see [49] for a discussion. We refer
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to [61] for a comprehensive review on non-geometric backgrounds in string theory. After
going from flat to curved indices, the independent components of Fpsnp are usually di-
vided into geometric fluxes FyunP, Hynp and non-geometric fluxes Q,"P, R™™ [49], see
also [20, 103]. These fluxes are often used to distinguish between

e geometric backgrounds, i.e. backgrounds that are well defined globally when using
diffeomorphisms and B-field gauge transformations as transition functions in different
patches. They have Q,,,"P = R™"P = (.

e globally non-geometric but locally geometric backgrounds, e.g. T-folds, that require
T-duality transformations to glue different patches. They have @, # 0 and
R™P = (.

e locally non-geometric backgrounds, i.e. depending on dual coordinates. They have
Q" # 0 and R™™P +£ (.

We do not consider locally non-geometric backgrounds because we always impose the strong
constraint. If ' 4pc = F apc then the generalised fluxes in curved indices are related as

F'unpe = huPhn®hp® Fors, where  hpy@ = E'y*E 9 =U0'U?. (B.10)

Notice that because of the assumptions we made on the twists U, U’, the matrix has9 is of
block diagonal form as U in (2.2), i.e. it acts as the identity in the block for the (doubled)
Z coordinates, while it is

hy@ = Uy UL, (B.11)

in the block for the y-coordinates. If hj% has off-diagonal components hup, WP then it
is possible that the type of fluxes (in curved indices) change after the transformation. To
show examples we say how they change in solution-generating techniques involving the (F)
and (Q)-orbits. Notice that

Fune = U UN'UpE (Frix + Frix), (B.12)

where j:IJK = EIAEJBEKCf'ABC and fIJK = 36[IﬂEJ|BaﬂEB|K]. Because of the
derivative at least one leg is dotted in Fryg, and the corresponding U and h act as the
identity on that leg. The other two legs are not necessarily in the dotted directions, so
that U and h can act non-trivially on them. Therefore let us stress that in general it is
important to include the contribution of F 17K to understand how the fluxes change under
the transformation.”® However, in order to have a more concrete discussion, we will look
in the following only at the piece coming from Frjx, and we remind that this is non-zero
only for IJK = IJK. We are therefore looking at flux components with all legs along
y-directions, and these do not mix with the contributions from F that have at least one
leg along dotted coordinates. Hence we will analyse only these contributions to the fluxes

Funp = U UNUPE Fryg, F'une =U U N U p5 Frik, (B.13)

®!Tn the standard example of the T-duality chain on the 3-torus with H-flux done for example in [76] one
dualises one leg at a time, and therefore the contribution to the flux that is discussed in each step is indeed
coming from ]-"UK, with two legs undotted.
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that are related as
F'unp = ha@hnhp® Fors. (B.14)
Separating the components we have
Fup = hﬂahVﬁhﬂv}—aﬁv + 3h[uahvﬁhph}-aﬁ’y + ?’h[uahulﬁh\ph]:a&Y + huahuﬁhm]’—amv
F i = hy P00 Fogy + (hp 1 hey + 2k, Pl hP) Fog?
+ (hyughoy P + 20y, hyysh? ) Fo + hyuahygh? Fo9,
Flre = huahyﬁhp’yfaﬁ'y + (h,wh"o‘hp'@ + 2huah[y|ﬁh‘p]7)]:ag7
+ (R ghPoy 4 2h,sh WP FL Y 4 by hY gh? FOPY

Flmvp — h“o‘h”ﬁhw}'am + 3h[“|°‘h|”|5h|”]7]-"a57 + 3h[u\ahlvﬁhp}7]:aﬁv + h“ah”gh%}'am
(B.15)

C On the O(d, d) parametrisation of the twist

Here we explain why we take (2.20) as a parametrisation of the twist U. The O(d, d) group
is generated by the matrices [103]

¢ po_ pw
Py 0 N_ [0 0 N _ [ MUy, U
RMN = < ( _ 1/) s JM = R T = o ol |
0 (p l)u buv Op M u;(w) 5;//_“;(1)

(C.1)
where p € GL(d), b' = —b and u(,) = u(?) = diag(0,...,0,1,0,...,0), where the 1 is at
the position o € {1,...,d}. The matrices R and J generate two separate subgroups, which

together generate a larger subgroup of O(d, d) that we call Ggeom. Notice that RJ = J'R,
with ¥ = p~'bp~t. Hence we can always use this move to write any element of Ggeom €.8- in
the order JR. Each Tl can be understood as a T-duality along the direction 0. When
we involve the matrices T1%! we generate also different types of matrices. A distinguished
one is given by the multiplication of all the 7'

uv
Ty = (TRl N — ( o ) (©2)
uv

which we will call a rigid T-transformation since it is constant. Notice that 72 = 1 and
that 7' is not equivalent to the O(d, d) metric 1, because of the position of the indices in
the definitions. We also have matrices S = TR
0 (o hH)w
SylV = , C.3
M < (O't)uy 0 ( )
with ¢ € GL(d), which form a subgroup on their own. Notice that TRT = R’ where
p' = p~t. Finally, we also have matrices K = TJT

o,
KyY = , C4
M < 0 5,;/) (C4)
with 8t = —f, which again form a subgroup on their own. More complicated elements

occur if instead of T we multiply by single T1° matrices. However, we will not consider
this case here since we will assume that we have already reduced from D to d dimensions,
so that T-duality is implemented on all the d coordinates.
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One way to classify the possibilities in the parametrisation of the most general O(d, d)
element is to observe whether they involve an even or an odd number of 7’s, which we
consequently call “even” and “odd” elements respectively. Let us first analyse the most
generic parametrisation for an even twist and argue that they are generated by the matrices
R,J, K. As we have remarked TRT = R’ and we can pull any R to the right of any .J.
Notice that the same considerations apply for K. Therefore, any even twist can be written
as a generic product of J’s and K'’s times a single R. Finally notice that we can always
write JK = K'J'R’ where

p=0+b8)"", W =b1+pb), B =B1+b8)", (C.5)

if we assume that 1 + bf is invertible. Therefore, under this assumption we can always
re-arrange the order of the matrices J and K in the product, at the cost of introducing a
matrix of type R. We can therefore conclude that any twist U of even type can be written
as the product

Ueven = KJR, (CG)

for some K, J, R. Notice, however, because of the previous assumption we may be excluding
twists involving products of the type JK with 1+ b3 not invertible. Let us finally discuss
the most generic parametrisation for odd twists. As they must be generated by an odd
number of T’s we can write them as a generic product of Ueyen’s and T’s (odd). By
noticing that TKJR = (TKT)(TJT)(TRT)T = JJK'R'T = K"J"R"T where we used
T? = 1, we conclude that we can always pull T to the left, for example. Then the most
generic parametrisation for an odd twist is

Usaa = TKJR. (C.7)

The only effect of the rigid 7" matrix in the odd twist is to map an orbit to its dual.

D Details on RR fields and type 11

In this appendix we collect some additional details that are useful for the DFT formulation
of type II supergravity. We closely follow [88] and [20] and highlight the differences when
present. In this appendix we will always assume that D = 10. We will also remove the
boldface from all objects and indices, since the reduction from D to d dimensions is not
relevant here, and we prefer to have a simpler notation.

Given the Clifford algebra C(D, D) generated by the Gamma matrices I'y; satis-
fying {T'ar,T'n} = 2nan (notice the curved indices as in [88]) we can define ¢y =
Tar/ V2 so that we can have a representation in terms of fermionic oscillators Y™ UV,
satisfying {{m,v"} = 67, {m,¥n} = 0, {¢™, "} = 0. The Clifford vacuum |0) is
defined such that v, |0) = 0 for all m. A generic spinor can be rewritten as |x) =

5:0 I%C’ml...mpz/;ml -+ -1 |0) which is consequence of the one-to-one map between spinors
x and polyforms C' = Z;j?:o I%C’ml...mpd:rml .- dz™ on RVP~1. One fixes the normalisation
(0/0) = 1 and defines conjugation such as (™ -+ ¢p™ [0))T = (0| th,, = - - Y, -
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Pin(D, D) is a subgroup of C(D, D), see [88] for its definition. The algebras of O(D, D)
and Pin(D, D) are isomorphic and if we call Jysn the generators of the algebra of O(D, D)
satisfying [JMN,JPQ] = TZMPJQN - anJQM - 77MQJPN + UNQJPM then in the spinor
representation we can identify JMV = %FM N where I'M1Mp ig the totally antisymmetric
product of p Gamma matrices, with the factor 1/p! included, e.g. TMY = %[FM, I'V]. We
denote by p the group homomorphisms p : Pin(D, D) — O(D, D). Pin(D, D) is in fact the
double cover of O(D, D) because p(S) = p(—S) for S € Pin(D, D). We have

STMG=t = TNppM, where p(S) = he®. (D.1)

This is a change of conventions compared to [88], where they define p such that p(S) = h®,.
Notice that this amounts to swapping the two diagonal blocks of h, and the two off-diagonal
blocks. Spin(D, D) is the subgroup generated by the S made out of only an even number
of Gamma matrices and under the group homomorphism p it is mapped to SO(D, D).

There are some distinguished elements of Spin™ (D, D) that are important for the rest
of the section. Their definition and the corresponding SO™ (D, D) elements are

Sip) = exp(—5bmnth™ "), Sig=exp(3B8™ Ymibn), Sy = (detr) "/ Zexp(¥ Ry "),

10 1p r=10
h[b]:<_b1>, h[m:(Ol)a hm:( 0 T)-

Above we have r,," = (exp R),," € GL1(D), where the plus stands for elements with a
positive determinant. Other useful elements of Pin(D, D) that are not in Spin(D, D) are
SiE =™ 4 ), They satisfy (Si£)%2 = £1 and

p<srt>=—<1‘“m i ) p<s;>=—<1‘“m thn ) (D.2)

—Um 1 — U, Um 1 — U,

where u,, = diag(0,...,0,1,0,...,0) has 1 only at position m. It is nevertheless preferable
to implement one factorised T-duality along the direction m as in [23] by S},,) = (¥™ —
V) (—=1)VF with (—=1)VF to be defined below. In fact this corresponds to S[m]wMS[_ml] =
PV TJ[Vm]M where T implements T-duality along direction m, and acts as the identity on
other coordinates, without other unwanted signs.

The charge conjugation matrix is defined as C' = (0 — o) (e — 1) -+ (¥ — 1hg)
and it satisfies C~! = —C. One has the relations Ct,,,C~! = ™ Cy™C~! = 1), and
CTMC=1 = (TM)t, CT O~ = (T'y)'. Defining the T-duality matrix as in (2.28) one sees
that CTy;C~' = TyyNT'y and therefore p(C) = T. Under conjugation CT = C~!, and we
have that St = CS~1C~1if S € Spin* (D, D), while ST = —CS~'C~! if S € Spin~ (D, D).
Moreover (S;h)t =CStC—1.

One can define chiral spinors from the number operator Np = >, ¥, that gives
Nr ), = I, nd (<Y D) = S0 Gy, 7 <47 [0). Chiral projee-
tions of spinors are therefore defined as [y+) = 3(1 £ (—1)V7) [x) so that (—1)"F [x4) =
+ |x+). We have that x is mapped to even forms and y_ to odd forms. Notice that the
action of Spin(D, D) preserves the chirality.
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The generalised metric A is an element of SO~ (D, D) because it has determinant
1 and we are in Lorentz signature. One therefore takes an $ € Spin™ (D, D) such that
p(8) = H**. Notice again the change in conventions, in [88] one has p($) = Hee. Here it is
$ rather than H that is considered the fundamental field. We have $ = $T = —C$~1C~1.
Let us further define S = 0%y — 1Poy?, then S = S[Tﬁ] = S[jﬂl € Spin~ (D, D). If G
is the NSNS metric of the background and G = efjel in terms of a standard vielbein e
and the Minkowski metric 7, then we can define Sig = S¢S S[Te] where Sy = Sp—e],
and where we used the definition of Sj,; above. We then have p(S[a) = diag(G,G71).
Given the NSNS field By, of the background we can further define Siz = Sj;—p) using the
definition of Sp above. Then if we define Sy, = S[TB] S[_Gl]S[B] we have p(Sjy)) = H*®. Notice
that because of our identification p(S) = he®, if we consider an O(D, D) transformation
H' = hTHh on the generalised metric, then it corresponds to $ = S$S which again
differs from [88]. For later convenience it will be useful to define also K = C~18, so that
p(K) = p(C™1)p(S) = TH* = H.*.

To write the contribution of RR fields to the DFT action according to [88] one uses
a spinor |y) that encodes the RR potentials. The contribution of RR fields to the La-
grangian is

1 1 =
Lrr = 3 (@)'SPx = ZouxTMKT Yoy x = L (@0)Kdx. (D-3)

where we dropped the bra/ket notation and we defined ¥ = x'C and @ = %FM oy =
V" Oy, + 1, 0™, Using the C (D, D) relations and the weak constraint it is easy to see that
@2 = 0. Reality of the action follows from $' = $ and the fact that y is Grassmann even.
Under the constant Spin(D, D) transformation x — S~'y and XM — XVhyM (where
p(S) = h so that 9y — (R~ N0y ) one has @y — S~'@x, and the Spin(D, D) invariance
of the Lagrangian is manifest. It is not invariant under the full Pin(D, D) because this
would break the chirality of x. In addition to the above Lagrangian, and after deriving the
equations of motion, one imposes the duality relation

Px = —Kdx, (D.4)

which are invariant under y — S~'y,$ — ST8S for S € Spin* (D, D). The restriction to
only Spin™(D, D) (and not Spin(D, D)) invariance has to do with the Lorentz signature,
so that timelike T-dualities would spoil the relations. Notice that the duality relation is
consistent with X2 = 1. The equations of motion for x that one obtains from the above
Lagrangian are @(K@x) = 0. They are consistent with the duality relation and the identity
(32 = 0 valid on the weak constraint. The abelian gauge symmetries acting on RR potentials
are here implemented as 6yx = @\, and because 6 @y = (}92)\ = 0, the invariance of the
Lagrangian is obvious.

The above Lagrangian can be rewritten as a Lagrangian for the RR fields in the usual

52 : : : _ D 1
way.”?  We recall that we are taking the spinor x rewritten as [x) = > Hle...mp
"™ -9 |0) which we associate to a polyform C = 1?:0 I%lel..mpdazml ceedzx™e.
Let us now define Fiy.m, = Py, Chpy.m,) S0 that on the strong constraint

To do so it is useful to notice that exp(y)™Rm"¥n)¢” |0) = (exp R)mP 9™ [0) and Si;y™ |0) =
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(i.e. taking O™ = 0) we have |F) = |dx) = p 1L )T ) 10my O, W™ - - |0) =
5: i Emyem, W ™ |0) and in polyform notation F' = dC'. Using the NSNS B-field
an we also define |F) = exp(— 2B tp™ ™) |F> S0 that F = exp(—B@)AF where B®?) =
$ Brndaz™ Adz™. The conjugate is obtained by (F| = ,p 1 p, (O] Y, - - "l[)mlﬁml.“mp. With
thls rewriting the RR Lagrangian becomes

Lrr = 1<ax>*$ax = 1 (FISugF) = 3 {FISEIE)

P—lq 1 .
_ ~ N 1 R .
= Z 12, F2 = i Fmn, G G Foy
p=1

where we used (0|, - - Y Y™ - - - "|0) = p!dpqd[mnll . -5;?;. This is the Lagrangian in
the democratic formulation, see [88]. In fact lemp are the RR field strengths that are
commonly used in type II supergravity (they are the F of [88]), and they are the ones that
appear in the quadratic couplings of the fermions in the Green-Schwarz formulation of the
superstring (they are the F' of [93]).

In terms of |F) the self duality relation reads as |F)) = =S C |F') and in terms of

p-forms £®) = —(—1)%p(p+1) s« F'(10-1)  The Hodge dual is defined as
1

(*A)my -y, = w

where €10 =1, ¢)..10 = —1, gm0 = ﬁeml“""lo, Emy-mio = V—G€mymy,. We also

have * * w® = —(=1)P10-P),(P) where the additional minus sign is due to the Lorentz

Gmlnl . Gmpnp5 p+1° K107 npAkp+1~~-k10’ (D.G)

signature.

Under the abelian RR gauge transformations the spinor transforms as 6y [x) = @ |\)
which implies §,C = d\. Under D-dimensional diffeomorphisms d¢Cypn;...m, = LeCy-omny s
i.e. it transforms with the standard Lie derivative as expected. Under the gauge trans-
formation of the B-field with gauge parameter ¢ the transformation is 5£~C’m1...mp =p(p—
1)6[m1£m20m3,,.mp], meaning (550 = d€ A C where 553(2) = df. Therefore F is not in-
variant under gauge transformations of the B-field, but F' is invariant. Defining A=

e~B® /\ C (ie. C = B A A) then oz A = 0. Notice that in terms of these new poten-

tials F = dA + H A A, with H = dB If we further define A® = A® for p # 4 and
AW = AW 4 5 B@ A A(Q) then one finds

FO = g40), F? = gA®),

F® =dA® 4 g A A0, FW =dA® + HAAY,  (py)

260 — ga® L L a 4@ _ Lpe 4@
2 2 ’

=0 pyp? |0). It follows that
m m 1 min mpn
S[G]"/] 1 1/} P |0> = 7\/?5 i 5 pGn1q1 ...anquql ...wqp |0>7
SiGv™ W™ [0) = —V=GGT GG B, 0 [0),

where G is the determinant of the metric G
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where on the left we have IIB and on the right IIA. These are the more familiar parametri-
sations of the RR field strenghts in terms of potentials [88].
To rewrite the above results as in [20] one has to pass from a basis of Gamma matrices

'™ in terms of curved indices to a basis T'4 in terms of flat indices. This can be done
-1
[E] —

I'ME\A. Tt is also necessary to change vacuum, since we have to go from a vacuum
defined as I';;, [0) = 0 to a new one such that I';, [0') = 0. In the following we will omit the
prime but always think in terms of the new vacuum. Notice also that we can still take the

by using Sg, the Pin(D, D) representative of the generalised vielbein, as S[E]FAS

charge conjugation matrix C' and Sz to be defined as before, while we interpret the 1 as
being defined in terms of flat indices. We first define
13) = Sy | F) - (D-8)

Because we can decompose Sjp = S[e]

3)=>

n

15[31 and we get

¢
iFmr--mnemml R R U (U (D.9)

From the definition it follows that |§) = @ |¢) + Sgy™ oy Sy' [¢) + e?dnre=%pM |¢) in terms

of |x) = e*dSE] |c). This may be rewritten (see also [94]) using® EAM('?MS[E]SE] =

%QABCwBC as well as QapcdYByC = %]—'AgchBC + QB paA, which is a consequence
of the C(D, D) relations. To conclude

13) = <¢A5A - é]:ABc%DABC - ;fMﬁA) ) =¥ c), y=9-F" - %f(1)7 (D-10)

where F ™) includes the 1 /n! factor. Notice that WZ = 0 on the strong constraint. Now
gauge transformations read as dy [¢) = ¥ |\), and the Bianchi identities as YV |§) = 0. The
Lagrangian of [88] is readily rewritten as

1 1 .
Lrr = 16_% (3157 '13) = —16_2‘1 (FlOSTS) - (D.11)

Now we have

CS7H = (" — o) (W' — 1) -+ (b7 — o) (1 4Po — 1ho1?)
= (" — o) (¥ %0 — You®) (P! — 1) - - (¥ — 1) (D.12)
= — (% + o) (W — 1) - (B0 —hy) = T_,

and therefore we conclude 1
LRrRr = —16_2‘1 Fv_|3). (D.13)

®3Given the Lie algebra isomorphism betweem O(D,D) and Pin(D, D) one can identify the gen-
erators JMN — wMN and use them to construct group elements EAM = eXp(APQJPQ)AM and
Sip) = exp(ApQwPQ) with the same Apg. Therefore one has (BMEE_I)BC = EMPQ(JPQ)BC and
8MS[E]S[;;] = EMpQwPQ with the same Zjpg. It follows that EAMGMS[E]S[;;] = EAMEMPQ'LQPQ =
%EAMEMPQ(%E;Dé‘C”)wBC = IBAMENpo(JF)BcpPC = LEAM(OMEE " )pcy®C = 1Qapcy®C,
where we used the matrix realisation (JMM)p? = 255;\4771\[]@. In (4.32) of [94] only the leading term
in the expansion is taken into account.
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Varying the Lagrangian with respect to |¢) one finds the equations of motion YW _ |§) = 0.

The above Lagrangian is different when comparing to [20], since they have ¥ instead
of U_, where Wy = (1o F9°) (1 £ 1) - -- (g £4°). To further test the mismatch we first
move to prove (A.9) of [20]. Using VA = FHABYp T4 one finds

1
U fw) =3 — oy e, Ut -4 [0)
o

_y &

1 n
L e HOBY - H B - W [0)

1,
_ Z o Wa, - annaﬂn A nanbn¢b1 . '¢bn¢0¢l . '@ZJQ |0> (D‘14)
oy !
( )n(n 1)

= (10 — n)! Way- an77f11b1 . ﬁa"bneln-~~bnbn+1~~~b10¢b"+1 . 1/’b10 10)

n

én bn b

- Z n' ]_O _ n+1~-.610a1 @ Wan.‘.al’(/) +1 ... dj 10 ’0) .

n

This agrees with (A.9) of [20]. In the first step we used the commutation relations between
U, and the 7’s. In the second step we used ¥, |[0) = —0y'---4?|0), in the third one
we used (5.39) of [88] (notice that that equation is written with an e with upper indices,
so there is an overall minus sign when written for an epsilon with lower indices). In the

(n

last step we got a factor of (—1) by rearranging the indices of w and a factor of

(—1)"(10*”) by swapping the position of the by ---b, and b,11---bp indices in €. In the
last line, indices in the epsilon tensor are raised with the Minkowski 7.

The computation for ¥_ is identical, since also ¥_ [0) = —¢%! - .- 4% |0), but because
of the different sign in the commutation relations with the 1’s one gets an additional factor

of (—1)"

<_1)n b b
—Jw) = €b, 1 1bio ™ VW, gy YOI - 1pP10 [0) (D.15)
2 {10 = o 1

Let us now compare to (A.11) of [20]. First we compute

1

c ’X> = Z gXar“anCwal e W" ’O>
1

= Z Hxal"'an¢al e ¢anc ‘O>

X o (D.16)
=3 vt 00

n(n—1)

(-1) > a1+@nbpy1--b10,/b b
— Z S Naya,€ nbrt1b10g)bnt1 L qpb10 |0> ’
— n!(10 — n)! ™™

where in the last step we used again (5.39) of [88]. Now using (C'|x))" = (x|CT = — (x| C
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we find

n(n—1)
(_I)T 1 —-@nbpi1--b Crm,
<X|C‘I/+‘w> = — Z n‘(lo _ n)' m'(lO _ m)'Xal...aneal anOn41 1O€dm+1--~d1061 c We, ey
nm "’ . . .
X <0|¢b10 e wbn+1¢dm+1 e wdlo |O>
n(n71>
_ Z n'n' 10 'Xal anealv.-ananFl...bloebn+1mblocl...cnwcnmq
n(n 1)
1) (=1t
_Z TR0 )] Xalmanebnﬂ bioa1 anebn+1~"blocl g ey
n(n 1)
—5—(—1)n(10—n) B
= Z ( ) Xay - anTlalbl s na"b”wbn...bl
n !
n(n—1) n(n—1)
<—1>T<—1>n<10—n><_1>f )
- Z n! Xay - annalbl e 'Uanb"wbl.,,bn
n :
(=n" a1b —anb
- Z n! Xai-an'] “n 'nan " Why by, -
n

(D.17)
Compared to (A.11) of [20] we have an additional factor of (—1)"™. In the computation above
irebio ST = —nl(10 — p)lijlaler . anlen - The computation
for W_ works in the same way, and because of the previous factor we have in fact

1 i}
(XICUJw) =D —Xaran T 71" Wy (D.18)

n

we used also ebn+1broa1an g

This computation is independent from the one that was giving us W_ in the Lagrangian,
and it is a further confirmation that W_ rather than W, should be used there, since with
U, there would be an additional factor of (—1)™ when matching the DFT action to the one
of standard supergravity. In the IIB case this would affect the sign of the RR Lagrangian
(because for n odd (—1)" = —1) while for ITA using ¥_ or ¥ is inconsequential.

Let us also remark that the self-duality condition ¥_§ = § (rather than VU, § = F) is
in fact consistent with the conventions of [88]. The left-hand-side is

(*1)71 ai--an i b1 bio
Z 7|€bn+l"'b10 "Fan...alw ntl. . 1/1 |0>

n'(lO —n)!
10 n)

— Z il 10 ant1- a10Fa10 a‘n+117/)b1 . wbn |0) (n—10—n)

(=t~ ")(—1) M0 e :
- Z nl(l() _ n)l ettt alobl"'analo"'an+1¢b1 o 1/}17,1 |0> (6 — € )

(_1)(10—71)(_1)n(10—n)(_1)(10—71)(10—71—1)/2 R R
=2 n!(10 — n)! €N by Fly g ang®” " [0)

(Falﬂ'“anﬂ - Fanﬂ-"am)
n(n+1)

_ (_ ) 2 ean+1...a10b b Fa ) alowbl . “¢bn |0>
=) 0 S DA ,
— n!(10 —n)!
(D.19)
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which implies the self-duality relation

n(n+1)
— 2 A A
- Wﬁan+lmalobl...anan_‘_l..‘alo = Fbl"'bn7 (DQO)

in agreement with the conventions of [88].

E DFT equations of motion

In this appendix we continue to omit the boldface notation, since the dimensional reduction
plays no role. The action in the NSNS sector is Sxgng = [ dX e 2R where we prefer to
use the rewriting of [58]

_ _ _ 1 (-
R = A0 Fi) + 2FAFT) = Fige FOAPC - SFpd FEAve, (E.1)

Here Py = L(n+ H) and F§E = (Po)aBFp, Fip = (Py)aP(Pe)sP(Pe)c" Foer,

]-"f];ic) = (PL) AP (Py) ¥ (Py)c" Fper. To compute the equations of motion one finds
that dpSNsNs = dee_QdEﬁgNSAAB where Aap = —Apy = 5EAMEBM and dgSNSNS =

[ dXe 21=xgngdd where [20]

E&Sgs = 48[,4./?;? + (]:C - 8C)fC[AB] + ./%CD[A]:B]CD,

(E.2)
Ensns = —2R,
where we defined .7},43(; = S'ABCA/BIC/]:A/B/C' and

. 1 1 1 1
Sapcarpcr = sHaamsp Moo + snaaHppnce + snaanspHeo — sHaaHppHeo
2 2 2 2

— nAAaMBBNCc!
= —2(PPEOPES + PO PS) S + PLIPS PEO + PLIPLLPGE)
(E.3)
It is convenient to write S in the second way, which is the unique way to write it as a linear
combination of products of projectors. In fact it is then easy to check that

—) =[A'B’ —_ —_ - — —
PP oS, S =l 4 (0 - 5OV FLFO
(E.4)

Notice the transp/os/ition of C'D indices in the last term. One also has PIS‘;),P](SQ,EKSIIEQ =0
and Pf;l), P 1(379)/51[\?858} = 2PIE‘?4), P](gjg),Z A'B" . (0 where the last is a constraint of DFT. Finally,

. — —[A’B’ —_ —_ _ .
using P(A),ng,:l[\ISNS} = —22'N5NS we can conclude that :E‘\Sgls ~ :’&Sgﬂs (i.e. on the

constraint of DFT). Hence because we can project with P&, El[\ilsgﬂs = 0 is equivalent to

—/NSNS _ 0
e AB e .

When considering the RR contribution to the action one has [20] 6 Spr= [ dX e 2=4E
Ayp and 64SRRr = dee_QdERR(Sd where ng] = —i@@ZJABS and Zgrgr =0 after imposing
the self-duality condition. The full equations of motion in the type II case are then Z|,p5) =

—NSNS | =RR

= _ = _ =NSNS _
‘_'[AB] +'_'[AB]_O and_—u =0.
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F Other ansatze used for orbits with H-flux

In this appendix we will report on other attempts to deal with orbits with non-vanishing H-
flux in the standard parametrisation of (2.20) rather than appealing to the methodology of
section 2.4. In particular, by preferring an ordinary Lie group G action on the coordinates
y, we will assume here that p,’ of (2.20) are the components of a (left-invariant) Maurer-
Cartan form p = g~ ldg = dy“puiti where t; € g = Lie(G) are the generators of the Lie
algebra and g € G is a Lie group element. In this case the components wijk defined in (2.33)
are precisely the structure constants of g so that we can write them in the more standard
way wz-jk = fijk. Furthermore, we can use the well-known expansion of the MC form

1 i Y N
p=g “dg= 7|adx dz, T € g. (F.1)
= (N +1)!
The main difficulty with pursuing in this way is finding the most general solution to
the differential equation obtained from the @-flux equation of (2.32). Focusing here on the
simplest homogeneous equation (Q = 0) with ' = 0 we must solve

0uB87 + pu" BV B Hyt, = 0, (F.2)
or equivalently upon the F-flux equation
8u5ij - P#nﬂl[ifnlj] = 0. (F3)

Let us remark here that by lowering all indices in eq. (F.3) with the Killing form and
antisymmetrising in i, j, k we find that a necessary (but not sufficient) condition is that
as a two-form (3 is closed, and possibly exact. For semisimple algebras b it is known that
there exists no non-trivial closed two-forms which are not exact. An exact form such as
B9 = p“i 0,0\ for some one-form A does not, however, solve eq. (F.3). We can therefore
conclude that for semisimple algebras no non-trivial solutions to eq. (F.3) exist.

To find a non-trivial solution of (F.3) we have considered for 3% the following ansatze.>*

(i) In the (H)-orbit of section 3.9 we found a non-trivial representative, where p is of
MC form, by considering 3% to be a constant matrix.

(ii) Take now a non-constant /3

B =(O'ROt,¢7),  O= ayadl,

N=0 (F.4)
o o
Nyi plk Myj
= Z anapy(ady ) R™(ady ),
N=0M=0
41n the calculations that follow it is useful to use the identity
N A
N _ \K ' N-K K
lady dz,y] = Kz;o( ) KN K K)!adz adazad, y,

which holds for any z,y € Lie(G) and which can be proved by induction and the Jacobi identity.
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(iii)

where R is an antisymmetric matrix and where t' = k%¥t; and r;; = (t;,t;) is the
Killing form of g. In this case one can observe that fixing the unknown coefficients
an becomes inconsistent at order O(d,x, z'). When generalising (F.4) as

pI=3"% anar(ad) 0 ER (adMyl, (F.5)
N=0M=0

where EY = S% 4 RY with S a symmetric and R an antisymmetric matrix, and axy s
unknown coefficients, one will find that the symmetrical part does not contribute and
this is effectively equivalent to the ansatz (F.4).

Instead take 8 = O — O! with O a series in ad, as defined above, which is important
to resonate with the MC form. Hence
Y =2 Z an (adN )yl (F.6)
N=0

This ansatz turns out to be empty: for every N € IN we find ay = 0.

We have also considered the possibility that p is not of MC form and therefore tried to

solve the PDE (F.2) instead. Assuming nevertheless an underlying Lie algebra g we take

H;jp, = ozlfijlmk for some real constant o, and we expand p as

pu' = by(ad)) mdums™,  weg, (F.7)
N=0

for some undetermined coefficients by. Then,

(iv)

(v)

Taking 8 as in (F.6) we find that the resulting recursive relations will be empty,
ay = 0 for all N, and independent of the coefficients by.

Adding the inhomogeneous term Qijk = o fim "KM Ky, (with e a second real con-
stant) in the PDE as Q7% = 9;87% + BligKm L, we find for the ansatz (F.6) the
following solution that we verified until N = 10,

4NN —1) B _ _
asny = 0, arN-1 = ( 5 ) (2]2\[]\;!04?[ g o, (F.8)
and B
by = 4NFH (AN — 1)(2]\?7%04{\[04?ng+17 ban-1 =0, (F.9)

where By is the Bernouilli number. Given the form of H and @ this should coincide
with the A-model solution of section 3.12. However, the above is clearly not workable
and thus the methods of section 2.4 are preferred.
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