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1 Introduction

Classical stringy corrections lead to an effective higher-derivative theory of gravity. In
such a theory, if the higher-derivative operators are suppressed by powers of `P , we are
guaranteed that the theory is well behaved. When the higher-derivative operators are
unsuppressed we have to analyze each theory individually; general statements regarding
the well-posedness of the theory are, alas, hard to come by. Even a fundamental property
as causality has to be re-examined. The generic existence of superluminal modes implies
that causality and hyperbolicity of the equations of motion are not guaranteed, and the
analysis has to be carried out for each specific theory — or class of theories [1, 2].

Despite, or maybe because of, all these characteristics, higher-derivative theories are
interesting in more than one way. In holography they provide a testing ground where to
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understand more deeply how holography works in theories whose duals are more generic
CFTs (different central charges, non-supersymmetric, etc.). Crucial holographic constructs
like the holographic entanglement entropy are modified in the case of higher derivative the-
ories [3–5], and certain subtleties arise [6]. We will discuss this in detail in the next sections.
The generic presence of superluminal modes in higher-derivative theories implies that previ-
ous causal constructs based on null rays have to be reexamined [7]. To add to the multitude
of ways in which higher-derivative theories differ from Einstein gravity in the holographic
context, there is also the question if a given higher-derivative theory is UV complete and,
thus, expected to have a sensible field theory dual, or not. Holographically, relationships
like causal wedge inclusion [8] and entanglement wedge nesting [9] are necessary conditions
for a background to have a field theory dual and, thus, can be used to rule out certain
higher-derivative theories from having unitary relativistic QFT duals. In [7] the authors
showed how causal wedge inclusion can be used to arrive to the same conclusion as [10].

In the vast landscape of higher-derivative gravities, Lovelock theories are among the
most studied; they have the advantage that they yield second order equations of motion.
Among them, the quadratic theory, Gauss-Bonnet, has served as a prototype for many
phenomena not present in Einstein gravity. From the violation of the η/s bound [11, 12],
to recent work related to the information paradox [13], Gauss-Bonnet theory has taught us
important lessons for holography. Cubic theories of gravity have been studied in the general
relativity community [14, 15]. Some of their holographic properties have been explored [16,
17], but the explicit form of the entanglement entropy functional, a fundamental quantity
in holography, was not known.1 In this paper we advance the understanding of cubic
theories in a holographic context by deriving the holographic entanglement functional for
a generic cubic gravity theory. This functional can be applied to cubic Lovelock, quasi-
topological gravity and Einsteinian cubic gravity theories. Our result is applicable to
general cubic gravity theories in any dimension, with the only restriction that the action
does not involve derivatives of the curvature tensors. Obtaining the functional presents
subtleties absent in quadratic theories. In [6, 20–22], the authors showed that, in general,
there is an ambiguity in the calculation of the entanglement entropy functional. This
ambiguity, known as the “splitting problem”, is related to the regularization of the action
near the conical singularity that appears in the Lewkowycz-Maldacena prescription [23].
We investigate this issue in detail and present the functional using two different splittings
that we refer to as “minimal” and “non-minimal”. The “non-minimal” prescription is known
to be correct at the perturbative level. At finite coupling, determining the correct splitting
is an open question. However, we illustrate our result calculating the HEE surface in a
theory that was built to avoid causality problems at the perturbative level, Einsteinian
Cubic Gravity (ECG).

The structure of the paper is as follows. In section 2 we review the general framework
for calculating the holographic entanglement entropy in higher-derivative theories. We pay
particular attention to the spliting problem and to the two different proposals that exist in

1There has been previous work on some particular cubic theories, such as quasi-topological gravity [18,
19]. In any case, the general cubic functional was not known, and the “splitting problem” — which we
discuss in section 2 — was overlooked.
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the literature to solve it. Section 3 contains our main result: we derive the entanglement
entropy functional for a general cubic gravity theory. We explore the result obtained
using the two different splitting prescriptions. We point out that quadratic theories are
insensitive to the differences between them, as also are Lovelock theories, for which the
Jacobson-Myers functional is valid [24]. However, for a generic cubic theory, the minimal
and non-minimal prescriptions lead to different answers. As an example of our results, in
section 4 we work out in detail the entanglement functional for a particular cubic gravity
theory, Einstenian Cubic Gravity (ECG) [15], and present some numerical results regarding
the minimal surface they produce. Finally, in section 5 we summarize our results, its
implications, and point out open directions.

2 Holographic entanglement entropy in higher-derivative gravity

In a holographic CFT dual to Einstein gravity, the entanglement entropy of a boundary
region A is given by the area of an associated codimension-2 surface [25, 26]:

S = Area(γA)
4GN

. (2.1)

The surface γA, also known as the Ryu-Takayangi or RT surface, is defined as the bulk
codimension-2 surface which has the minimal area among all those homologous to the region
A in the boundary (it has to end in ∂A if this is not empty). If we assume holography
holds, the work of Lewkowycz and Maldacena [23] constitutes a proof that (2.1) indeed
gives the entanglement entropy. We will briefly review their argument here in order to
set the stage for our future discussion concerning field theories dual to higher-derivative
gravities. The computation starts by considering the usual replica trick in the boundary
field theory. The entanglement entropy S can be computed as the limit n→ 1 of the Rényi
entropies:

Sn(A) = − 1
n− 1 logTr (ρnA) = − 1

n− 1 (logZn − n logZ1) , (2.2)

where ρA is the reduced density matrix of the subsystem associated with region A, and Zn
is the partition function of the field theory in the n-fold cover. This is a manifold consisting
of n copies of the original one, glued cyclically at the spatial region A. Z1 is thus just the
original partition function. We assume always that an analytic continuation to Euclidean
signature has been performed. Notice also that Rényi entropies are defined for n ∈ N?,
therefore an analytic continuation in n is also assumed before taking the limit n→ 1.

So far, all this discussion has been restricted to the field theory, but if this is holo-
graphically dual to a gravitational one, it should be possible to find a bulk solution Bn
dual to the n-fold cover. Then, logZn = −I[Bn], where I[Bn] is the on-shell gravitational
Euclidean action of this dual geometry. Naturally, logZ1 = −I[B1], B1 being just the
original bulk dual. Now, the n-fold cover boundary manifold has a Zn symmetry, due
to the fact that we can do permutations on the n copies of the original manifold. If we
assume that this replica symmetry is respected in the bulk, we can consider the manifold
B̂n = Bn/Zn, which has to be regular everywhere except in the codimension-2 submanifold
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Cn consisting of fixed points of the Zn. Notice that, in the boundary, ∂A are precisely the
fixed points of Zn. Also, since Bn is a regular bulk solution, the orbifold B̂n has a conical
defect of opening angle 2π/n at Cn. Due to the replica symmetry, we can write:

I[Bn] = nI[B̂n] , (2.3)

where in I[B̂n] we exclude contributions coming from the conical singularity (this is because
in the left-hand side of the previous equation there are no such contributions, the geometry
is regular).2 After doing a suitable analytic continuation of this B̂n to non-integer n, we
can finally write:

S = lim
n→1

n

n− 1
(
I[B̂n]− I[B1]

)
= ∂nI[B̂n]

∣∣∣
n=1

, (2.4)

where I[B̂1] = I[B1]. Once this expression is obtained, the computation of the entangle-
ment entropy of the region A has been reduced to a problem in classical gravity, which can
be solved in two steps:

1. The geometry with n = 1, B̂1, is a regular solution of the equations of motion.
In (2.4) we seem to be doing a first order variation away from this solution, so
we could naively expect that expression to vanish. This is not so because, when
varying, we are changing the opening angle at C1 = limn→1 Cn, which as mentioned
should be excluded from the action integral and that procedure introduces a boundary
where conditions are changing if we vary n. This localizes the computation of the
entanglement entropy in C1, and in fact in Einstein gravity it is possible to prove from
the form of the action (see [23]) that S is computed as shown in (2.1). γA should be
interpreted at this point as C1, where we have not proven its minimal property yet.

2. The remaining question is how we determine C1. Formally, it is defined by looking
for Cn in the analytically continued spacetime B̂n, and then taking the limit n→ 1.
Adopting adapted coordinates at the conical singularity (see appendix of [23]), it is
possible to show that the equations of motion derived from Einstein gravity for B̂n
impose, in the limit n→ 1, the minimal area condition:

Ka = 0 , (2.5)

where Ka are the traces of the extrinsic curvatures along the transverse directions to
C1, and a is an index which runs in these two directions (this notation will be clarified
in the following section). This shows that C1 is a minimal area surface, which can then
be calculated by minimization of the entanglement entropy functional (2.1). With
this condition, C1 can be characterized as the previously defined surface γA which is
homologous to the boundary region A.

2Boundary terms at the asymptotic boundary where the field theory lives should be included as usual,
since they must appear also in I[Bn].
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2.1 The entropy functional and the splitting problem

The previous program can be carried out, with an increasing level of technical difficulty,
when the gravitational theory contains higher-derivative corrections to the Einstein-Hilbert
action. Following the two steps we have just described, [4] and [5] first obtained the expres-
sion for the functional computing entanglement entropy in the presence of higher-derivative
terms. Using (2.4), and considering a Lagrangian containing arbitrary contractions of the
Riemann tensor (but not its derivatives), one obtains:

SEE = 2π
∫
C1
dD−2y

√
g

[
∂LE
∂Rzz̄zz̄

+
∑
A

(
∂2LE

∂Rzizj∂Rz̄kz̄l

)
A

8KzijKz̄kl

qA + 1

]
. (2.6)

where LE = LE (Rµνρσ) is the Euclidean version of the Lagrangian. Let us explain the
notation in this expression, which employs the conventions of [4]:

• The full manifold has dimension D, and we denote generic coordinates in it by xµ.
Indices for this D-dimensional manifold are µ, ν, ρ, σ, . . . The surface on which the
previous functional is evaluated, C1, is (D− 2)-dimensional. Coordinates in it are yi,
and indices will be labelled i, j, k, l, . . . We assume an embedding xµ = xµ(yi), so that
we can define tangent vectors (mi)µ ≡ ∂ix

µ, and then take two extra orthonormal
vectors na to complete the basis, Gµν(na)µ(nb)ν = δab. Indices a, b, c, d, . . . will be
used for these two directions.

• The functional (2.6) is defined using a particular set of adapted coordinates for C1
(see [4]), where tangent coordinates are xi(y) = yi, and we introduce two extra
complex coordinates z, z̄ such that the metric factorizes:

Gzz̄|C1
= 1

2 , Gij |C1
= gij , Gzz̄

∣∣∣
C1

= 2, Gij
∣∣∣
C1

= gij , (2.7)

with the remaining components vanishing at C1.

• Ka
ij is the extrinsic curvature of C1 along the direction na:

Ka
ij ≡ (mi)µ(mj)ν∇µ(na)ν = −(na)µ

[
∂i∂jx

µ + Γµνρ∂ixν∂jxρ
]
, (2.8)

where (na)µ = δabGµν(nb)ν . This appears in (2.6) as a spacetime tensor defined in the
usual way: Kµ

νρ ≡ Ka
ij(na)µ(mi)ν(mj)ρ. Notice that, in the adapted coordinates,

the orthonormal vectors are going to be taken as:

n1 =
√
z

z̄
∂z +

√
z̄

z
∂z̄ , n2 = i

(√
z

z̄
∂z −

√
z̄

z
∂z̄

)
. (2.9)

There remains to explain the sum over A in the last term of (2.6), usually called
the anomaly term. Its origin is subtle, coming from potentially logarithmically divergent
terms in the action at C1 when taking the limit n→ 1. For those terms, a careful analysis
of the limit has to be performed, and it becomes essential to understand the analytic
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continuation of the geometry and the regularization of the conical singularity at C1.3 This
regularization has to be done guaranteeing that the equations of motion of the theory are
satisfied. This was at first overlooked in [4], where a minimal regularization was employed.
It is nevertheless useful to quote the result obtained, since it will allow us to see more clearly
the differences introduced when other regularizations are used. For the computation of the
entropy functional, all the study of the behaviour of the action around C1 boils down
to the following algorithmic procedure. In a general theory, the second derivative of the
Lagrangian in the last term of (2.6) will be a polynomial in curvature tensors. In this
polynomial we expand every curvature tensor using the following expressions:

Rαβij = R̃αβij + gkl [KαjkKβil −KαikKβjl] ,
Rαiβj = R̃αiβj + gklKαjkKβil −Qαβij , (2.10)
Rikjl = rikjl +Gαβ [KαilKβjk −KαijKβkl] ,

where indices α, β, γ, . . . denote values z or z̄, rikjl is the lower-dimensional Riemann tensor,
and R̃αβij , R̃αiβj and Qαβij are defined in [4] but their particular form will not be needed
here. Once the expansion is done, we label each of the individual terms with A. Considering
any of them, we associate a value qA to it equal to the number of factors of Qzzij and Qz̄z̄ij
plus one half the number of factors of Kαij , Rαβγi and Rαijk. Once this is done, we divide
by qA + 1, as indicated in (2.6). This expansion is what we denote by the sum over A, and
when it is completed one can rewrite, if desired, everything again in terms of the original
curvature tensors using (2.10).

As mentioned, this prescription (which we will call minimal prescription) does not take
into account the fact that the regularized metric at the conical singularity has to satisfy the
equations of motion when computing (2.4). The existence of several ways to regularize the
metric (with relevant consequences for the entropy functional) has been called the splitting
problem in the literature, and discussions around this issue can be found in [20–22].

For a general higher-derivative theory, it can be quite complicated to impose the on-
shell condition for the regularization, but one can make a first approach to the problem
by studying the constraint imposed by Einstein gravity. This produces a functional which
is at least perturbatively correct, since the leading order area term is independent of the
splitting chosen. This is done in great detail in [22] (and in [6], although the final result
is expressed assuming the surface has Ka = 0, so that it has extremal area), and it is
shown that the final effect for the entropy functional is a different prescription for the A
expansion (we will call this non-minimal prescription). After expanding all the curvature
tensors according to (2.10), we have to rewrite Rzz̄zz̄ and Qzz̄ij in terms of two new objects:

R′zz̄zz̄ = Rzz̄zz̄ + 1
2
(
KzijKz̄

ij −KzKz̄

)
, (2.11)

Q′zz̄ij = Qzz̄ij −Kzi
kKz̄jk −Kzj

kKz̄ik + 1
2KzKz̄ij + 1

2Kz̄Kzij , (2.12)

3This is because the computation of (2.4) can be localized at C1, as already mentioned. See [4] for more
details.
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and associate qA = 1/2 to Kαij , Rαβγi, and Rαijk; and qA = 1 to Qzzij and Qz̄z̄ij . Then we
must divide by qA + 1 as indicated in the general expression (2.6), and finally, if desired,
undo the expansions, writing everything in terms of curvature tensors again.

We have presented two ways to define the functional computing entanglement entropy
in the presence of higher-derivative corrections to the gravitational action. Let us emphasize
that for quadratic theories the functionals obtained using the minimal and non-minimal
prescriptions are the same. As shown in [4], this is also the case for Lovelock theories,
where the Jacobson-Myers functional is known to be correct. This is a special property
of Lovelock theories, for which the entanglement entropy functional depends only on the
intrinsic geometry of the surface, rijkl. However, we will show that for general cubic
gravities the functionals obtained are different.

Until now, we have only completed the first step of the general strategy outlined in the
previous section, i.e., we have shown how to obtain the entanglement functional starting
from the action of the theory. We still have to find the position of the surface C1, in other
words, where to evaluate the functional. In principle, the equations of motion of the theory
should determine the location of the surface, in much the same way they determine it to
be a minimal area surface in General Relativity. The idea is to explicitly evaluate the
equations of motion in the conically singular metric for generic n to linear order in n− 1.
One does not expect divergences in the stress-energy tensor, but these generically appear
in the metric part of the equations of motion, so cancelling them imposes conditions which
determine the position of the surface in the limit n → 1 (in particular, GR equations of
motion impose the well-known condition Ka = 0). Further details can be found in [21, 23].
In practice, this procedure has the drawback of requiring to deal with the equations of
motion of higher-derivative theories, which can be extremely complicated. Fortunately,
in [27] it is shown that the same procedure one employs in Einstein gravity is also valid in
general: after computing the correct functional, one can minimize it to obtain the surface
C1 in which it is going to be evaluated.4,5

3 Entanglement entropy functional in cubic gravity

This section contains our main result, we will derive the entanglement functional for a
generic cubic gravity theory that does not involve explicit derivatives of the curvature ten-
sor. We will use the method diuscussed in section 2 to compute the different contributions
to the holographic entanglement entropy functional in cubic gravities.

As a warm-up exercise, let us revisit the known result for quadratic theories. As ex-
plained in section 2, there are different prescriptions to calculate the entanglement entropy

4Notice that the equations of motion are still necessary in principle, because one has to determine
the correct splitting. It is only possible to state the correctness of the non-minimal prescription at the
perturbative level.

5Previous work on the question of whether minimizing the functional is equivalent to the Lewkowycz-
Maldacena prescription found some issues for certain theories [28]. This may be due to the fact that the
splitting problem is being ignored, but it would be interesting to check it explicitly.
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functional in higher-derivative theories. In quadratic gravity theories,

LE = λ1R
2 + λ2R

µνRµν + λ3RµνρσR
µνρσ , (3.1)

any prescription leads to the same result for the holographic entropy functional [29]. The
reason for this is that for quadratic theories the expansion in A is trivial: after two deriva-
tives of the Lagrangian we obtain something which does not contain curvature tensors, so
essentially qA = 0 always. This guarantees that, in the case of quadratic gravities, the
result obtained using either the minimal or non-minimal splitting is the same,

Squad
EE = −4π

∫
ddy
√
g

[
2λ1R+ λ2

(
Raa −

1
2KaK

a
)

+ 2λ3
(
Rabab −KaijK

aij
)]
, (3.2)

where Ka ≡ Kaijg
ij . This is not the case for cubic gravities. Consider the following generic

cubic Lagrangian:6

LE = µ8R
3 + µ7RµνR

µνR+ µ6Rµ
νRν

ρRρ
µ + µ5R

µρRνσRµνρσ + µ4RµνρσR
µνρσR

+µ3R
µνρ

σRµνρτR
στ + µ2R

µν
ρσR

ρσ
λτR

λτ
µν + µ1Rµ

ρ
ν
σRρ

λ
σ
τRλ

µ
τ
ν .

(3.3)

Note that the second derivative of the Lagrangian (3.3) is linear in the curvature tensor.
Therefore, unlike in quadratic gravity, the two different splittings discussed in section 2 lead
to different entanglement functionals. The details of these highly technical calculations are
presented in appendix A. The final result for the entropy functional obtained following the
minimal splitting prescription is:

Smin
EE = 2π

∫
dD−2y

√
g
(
SR2 + SK2R + Smin

K4

)
, (3.4)

where

SR2 =− 6µ8R
2− 2µ7 (RµνRµν +Ra

aR)− 3µ6RaµR
aµ−µ5

(
2RµνRaµaν −RabRab +Ra

aRb
b
)

− 2µ4
(
RµνρσR

µνρσ + 2RRabab
)
−µ3

(
RaµνρR

aµνρ + 4RaµRbabµ
)

− 6µ2RabµνR
abµν + 3µ1

(
RaµbνR

aνbµ−RaµaνRbµbν
)
, (3.5)

SK2R= +µ7KaK
aR+ 3

2µ6KaK
aRb

b + 2µ5KaK
a
ijR

ij − 1
2µ5KaK

aRbc
bc + 4µ4KaijK

aijR

+ 2µ3KaikK
a
j
kRij +µ3KaijK

aijRb
b + 2µ3KaK

a
ijRb

ibj + 12µ2KaikK
a
j
kRb

ibj

+ 3µ1KaijK
a
klR

ikjl− 3
2µ1KaijK

aijRbc
bc + 6 (2µ2 +µ1)KaikKbj

kRabij , (3.6)

Smin
K4 = + 1

2µ7KaK
aKbK

b +µ5KaK
a
ij

(
KbK

bij − 2Kb
i
kK

bjk
)

− 1
4 (6µ7 + 3µ6− 8µ4)KaK

aKbijK
bij − 1

2 (12µ4 +µ3− 3µ1)KaijK
aijKbklK

bkl

− 3
2 (4µ2 + 3µ1)Kai

jKbj
kKa

k
lKb

l
i + (−2µ3 + 3µ1)Kai

jKa
j
kKbk

lKb
l
i . (3.7)

6We do not consider terms with explicit derivatives of the curvature tensors, such as ∇µR∇µR. These
could in principle appear also at cubic order, but they complicate considerably the calculations, and many
of the known cubic gravity theories like Lovelock [30], quasi-topological gravity [14, 16], and ECG [15] do
not include them. How to deal with these terms can be found in [20].
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Using the non-minimal prescription we obtain:

Snon-min
EE = 2π

∫
dD−2y

√
g
(
SR2 + SK2R + Snon-min

K4

)
, (3.8)

where the first two terms are given by (3.5) and (3.6), and the last one is:

Snon-min
K4 = + 1

4 (µ5− 3µ1)KaK
aKbijK

bij − 1
4µ5KaK

aKbK
b + (µ3− 6µ2)KaK

a
ijKb

i
kK

bjk

−µ3KaK
a
ijKbK

bij + 3
4µ1KaijK

aijKbklK
bkl + 3

2µ1KaijKbklK
bijKakl

− 3
2 (4µ2 + 3µ1)Kai

jKbj
kKa

k
lKb

l
i + 3 (4µ2 +µ1)Kai

jKa
j
kKbk

lKb
l
i .

(3.9)

Equations (3.4) and (3.8) are two of the main results of this paper. Let us pause and
take stock of these results. First, it is natural to inquire whether we can identify where the
difference in the two functionals comes from. As the separation of the functional in three
different parts makes manifest, we observe that terms which are proportional to the square
of background curvature tensors are equal in both prescriptions and given by (3.5). This is
because they come from the first term in the general functional (2.6) (theWald term), which
is independent of the splitting. The same thing happens for terms linear in background
curvature tensors (3.6): although these come from the A expansion, they are such that after
the rewriting and counting procedures the result is the same for both prescriptions. At
the end, differences arise only in K4 terms. Second, as previously mentioned, determining
the correct splitting for a generic cubic theory with finite coupling is an open question.
It could be a splitting as yet unknown, different from the previous ones. However, after
having obtained the entanglement entropy functional using the minimal and non-minimal
prescriptions one can turn the question around and ask: if we use these functionals for
a cubic theory with a finite coupling, will either of them produce unwanted, unphysical,
behaviour? In the next section we set out to do just that, we investigate a fundamental
property known as causal wedge inclusion. This property states that, in a spacetime that
has a CFT dual, the causal wedge is completely contained in the entanglement wedge,
C(A) ⊆ E(A). Casual wedge inclusion can be used as a criterion to constrain the space
of theories with CFT duals. Studying the causal structure of a generic higher-derivative
theory is usually a thorny issue because in these theories gravity can travel slower or faster
than light. The causal structure is determined by characteristic hypersurfaces that are
generically non-null. A thorough study of this issue was carried out for Gauss-Bonnet
theory in [1, 2], but the understanding of causality and hyperbolicity properties in cubic
theories is an open problem. Therefore, when investigating causal wedge inclusion we will
restrict ourselves to a case where we are guaranteed that the causal structure is given by
null rays.

4 A concrete example: Einsteinian Cubic Gravity (ECG)

In the previous section we derived the entanglement entropy functional for a generic cubic
gravity theory in D dimensions with the only restriction that the action does not involve
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derivatives of the curvature tensors. Many such theories exist in the literature [14, 15]. In
this section we will focus on one of these theories to carry out a concrete calculation in full
detail. We will compute the entanglement entropy functional of both a disk and a strip
in the state dual to vacuum AdS in 4-dimensional Einsteinian Cubic Gravity (ECG), and
explore properties of the entanglement surface.

4.1 Preliminaries

Before proceeding with the calculation of the entanglement functional in ECG, let us review
some aspects of this theory. We refer the reader to the original works [17, 31, 32] for further
details.

Einsteinian Cubic Gravity. Einsteinian Cubic Gravity (ECG) [15] is the unique theory
containing corrections up to cubic order in the Riemann tensor such that:

1. It has the same spectrum than Einstein gravity when linearized on a maximally sym-
metric background, that is, it propagates a single transverse and massless graviton.

2. The coefficients appearing in the Lagrangian are dimension-independent.
3. The cubic correction is neither trivial nor topological in four dimensions.

The action of ECG is

I = − 1
16πGN

∫
d4x
√
G

[
R+ 6

L2 −
µL4

8 P
]
, (4.1)

where

P = 12RµρνσRρλστRλµτ ν +RµνρσR
ρσ
λτR

λτ
µν − 12RµρRνσRµνρσ + 8RµνRνρRρµ . (4.2)

A similar construction exists for higher orders in the derivative expansion [33]. Black holes
solutions in this theory exist in the literature and some of their properties have been studied
in [31, 32].

If we demand stable AdS4 vacua, the coupling µ is constrained to a range of values
determined by the equation

1− f∞ + µf3
∞ = 0 , (4.3)

where f∞ relates the curvature scale of the AdS background L? and the action length scale
L, L−2

? = f∞L
−2. To have AdS4 vacua, the roots of (4.3) should be f∞ > 0, and thus

µ ≤ 4
27 . The root f∞ which produces a stable AdS vacuum is

f∞ = 2√
3µ sin

[
1
3 arcsin

(√
27µ
4

)]
. (4.4)

For µ < 0, there is a single stable (i.e., positive effective Newton constant) vacuum, but it
is not possible to have black hole solutions. For 0 ≤ µ < 4

27 , there is one stable vacuum
connected to Einstein gravity in the limit µ → 0, and it is possible to have black hole
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solutions. This root satisfies f2
∞ < 1

3µ .7 Finally, holographic studies show that positivity
of energy fluxes at null infinity in the CFT imposes a more stringent constraint in the
coupling: −0.00322 ≤ µ ≤ 0.00312. In [17], the authors argued that the holographic dual
of ECG is a non-supersymmetric CFT in three dimensions,8 and obtained some entries of
the holographic dictionary.

Causal wedge inclusion. Let us denote D[A] the causal diamond of a boundary region
A. The causal wedge, C(A), is the bulk region causally connected to D[A]. That is, C(A)
is the region of spacetime where there are causal curves that start and end in D[A]. On
the other hand, the entanglement wedge, E(A), defines the region of the bulk that consists
of all points spacelike related to the RT (or HRT) surface [8, 34]. Subregion duality and
AdS/CFT imply a constraint between these two holographic constructs: the causal wedge
is completely contained in the entanglement wedge, C(A) ⊆ E(A). This relation is known
as causal wedge inclusion. Backgrounds that do not satisfy causal wedge inclusion are not
viable as holographic duals of a boundary field theory.

4.2 Entanglement entropy of a disk in 4-dimensional ECG

Consider Euclidean AdS4 written in boundary polar coordinates:

ds2 = L2
?

z2

(
dτ2 + dz2 + dr2 + r2dφ2

)
. (4.5)

Take the boundary region to be defined as r ≤ R, φ ∈ [0, 2π) at z = 0 and some fixed
τ . This is a disk which will produce an entanglement surface penetrating into the bulk
which we choose to parametrize as r = ξ, z = Z(ξ) (plus the angular, symmetric direc-
tion). In appendix B, the different geometric quantities relevant for the computation of
the entanglement entropy functional associated with this surface can be found. We will
present in a moment the explicit form of the functionals following both the minimal and
the non-minimal prescriptions, but notice a relevant fact that can already be anticipated
at this point. For both funcionals (3.4) and (3.8) there is a term (SR2) which involves
quadratic curvature contractions (proportional to 1/L4

? when evaluated on pure AdS, in-
dependently of the entanglement surface) and an extra piece (SK2R +SK4) which depends
on the prescription and which is at least quadratic in extrinsic curvatures. As shown at
the end of appendix B, the RT or minimal area surface with correct boundary conditions
is just an spherical shell Z(ξ) =

√
R2 − ξ2, which happens to have vanishing extrinsic

curvature. This surface will therefore also minimize the complete functional (whether it
is (3.4), (3.8), or in fact any other prescription), because the SR2 piece in pure AdS will
be just a constant times the area of the surface, while the extra parts will produce terms

7A second, positive root of the characteristic equation with f2
∞ > 1

3µ gives rise to an unstable vacuum,
in which the effective Newton constant becomes negative. The case µ = 4

27 , f
2
∞ = 1

3µ = 9
4 is a critical limit

of the theory, in which the roots merge and the effective Newton constant blows up. We will not consider
it here.

8One of the parameters characterizing the three-point function of the stress tensor, t4, is shown to be
different from zero, contrary to what happens in a supersymmetric CFT.
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in the Euler-Lagrange equations for extremization proportional to the extrinsic curvature,
which therefore vanish for the spherical shell.

Just as a reassuring check, we can explicitly write the functionals obtained with each
of the prescriptions. For the minimal one:

Smin
disk = πL2

?

2GN

∫
dξ
[
ξ
√

1 + (Z ′)2

Z2 + 3f2
∞µ

4ξ2Z2 [1 + (Z ′)2]9/2
Smin

]
, (4.6)

where

Smin ≡− 2ξ3
[
3− 2(Z ′)4

] [
1 + (Z ′)2

]3
− 4ξ2Z

[
1 + (Z ′)2

]2 [
3 + 2(Z ′)2

] [
Z ′ + (Z ′)3 + ξZ ′′

]
− ξZ2

[
1 + (Z ′)2

] [
3
(
Z ′ + (Z ′)3

)2
+ 2ξZ ′Z ′′

(
1 + (Z ′)2

) (
7 + 4(Z ′)2

)
+ 3ξ2(Z ′′)2

]
− Z3

[
Z ′ + (Z ′)3 + ξZ ′′

]3
− Z4Z ′Z ′′

[(
Z ′ + (Z ′)3

)2
+ ξ2(Z ′′)2

]
. (4.7)

For the non-minimal prescription:

Snon-min
disk = πL2

?

2GN

∫
dξ
[
ξ
√

1 + (Z ′)2

Z2 + 3f2
∞µ

8ξ2Z2 [1 + (Z ′)2]9/2
Smin

]
, (4.8)

where now

Snon-min ≡− 2ξ3
[
3− 4(Z ′)4

] [
1 + (Z ′)2

]3
− 4ξ2Z

[
1 + (Z ′)2

]2 [
3 + 4(Z ′)2

] [
Z ′+ (Z ′)3 + ξZ ′′

]
− ξZ2

[
1 + (Z ′)2

] [(
Z ′+ (Z ′)3

)2
+ 2ξZ ′Z ′′

(
1 + (Z ′)2

) (
1 + 8(Z ′)2

)
+ ξ2(Z ′′)2

]
−Z3

[
Z ′+ (Z ′)3− 3ξZ ′′

] [
3Z ′+ 3(Z ′)3− ξZ ′′

] [
Z ′+ (Z ′)3 + ξZ ′′

]
−Z4Z ′Z ′′

[
3
(
Z ′+ (Z ′)3

)2
− 8ξZ ′′

(
Z ′+ (Z ′)3

)
+ 3ξ2(Z ′′)2

]
.

(4.9)

While not immediate to discern from these complicated expressions for the functionals, one
can compute their Euler-Lagrange equations and verify that Z(ξ) =

√
R2 − ξ2 is indeed a

solution, as the general argument presented before shows.
Since the entanglement surface coincides with the minimal area one (i.e., the one we

would have obtained without higher curvature corrections), and taking into account that
the causal structure around pure AdS for ECG is also the same than for Einstein gravity,
we conclude that causal wedge inclusion is respected in this case just like it is respected
in pure Einstein gravity. Incidentally, this means that it is marginally respected, which is
to say that both the entanglement and the causal wedge coincide, as can be easily checked
by verifyng that the projection of the causal wedge into the fixed τ slice coincides with
the entanglement surface, z2 + r2 = R2. The simple disk geometry in the boundary we
have considered is therefore not able to constrain ECG in any way, since it respects the
conditions imposed by subregion duality in AdS/CFT. Let us consider a different geometry
to see whether we can extract any useful information.
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4.3 Entanglement entropy example: a strip in 4-dimensional ECG

Similarly to what we did in the previous section, consider Euclidean AdS4 as the bulk
metric, but written now in boundary Cartesian coordinates:

ds2 = L2
?

z2

(
dτ2 + dz2 + dx2 + dy2

)
, (4.10)

and take the boundary strip to be x ∈ (−`/2, `/2), y ∈ (−∞,∞) at z = 0 and some fixed
τ . We parametrize the entanglement surface with (x, y) as z = Z(x), since y is a symmetry
direction. We refer to appendix C for the computation of the relevant geometric quantities
of this entanglement surface. Taking those results into account, we can write the functional
for a strip in ECG (4.1) following both of the splitting prescriptions. With the minimal
one we obtain, starting from (3.4):

Smin
strip = L2

?

4GN

∫
dy dx

[√
1 + (Z ′)2

Z2 + 3f2
∞µ

4Z2 [1 + (Z ′)2]9/2
Smin

]
, (4.11)

where

Smin ≡− 6 + 12(Z ′)8 + 4(Z ′)10 − 12ZZ ′′ − 3Z2(Z ′′)2 − Z3(Z ′′)3 + (Z ′)6 (6− 8ZZ ′′
)
−

− 14(Z ′)4 (1 + 2ZZ ′′
)
− (Z ′)2

[
18 + 32ZZ ′′ + 3Z2(Z ′′)2

]
. (4.12)

We can start from (3.8) instead to obtain the functional following the non-minimal pre-
scription:

Snon-min
strip = L2

?

4GN

∫
dy dx

[√
1 + (Z ′)2

Z2 + 3f2
∞µ

8Z2 [1 + (Z ′)2]9/2
Snon-min

]
, (4.13)

where now

Snon-min≡− 6 + 24(Z ′)8 + 8(Z ′)10− 12ZZ ′′−Z2(Z ′′)2− 3Z3(Z ′′)3− 2(Z ′)6 (−9 + 8ZZ ′′
)
−

− 2(Z ′)4 (5 + 22ZZ ′′
)
− (Z ′)2

(
18 + 40ZZ ′′+Z2(Z ′′)2

)
. (4.14)

A couple of comments are in order. First of all, recall that in order to have AdS with
curvature radius L2

? = L2/f∞ as a background in ECG, f∞ must satisfy:

1− f∞ + µf3
∞ = 0 , (4.15)

and we are taking the solution of this equation which has positive effective Newton constant
and connects with the GR solution f∞ = 1 in the limit µ→ 0, given by (4.4). Second, both
functionals have an obvious IR divergence, since the y integral is infinite. An IR-regulator
must be therefore included, cutting the strip at some fixed length. Notice also another
suprising feature of the previous functionals. As already mentioned, the entanglement
entropy of the strip should be given by the functional obtained employing the correct
splitting prescription for ECG (which might be none of the previous ones), and evaluated
at the surface determined by the Z(x) which extremizes that functional. If the correct
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(a) µ = −0.50.
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(b) µ = +0.010.

Figure 1. Causal wedge (orange, dashed) and entanglement surfaces corresponding to ECG in
the case of minimal prescription (blue), ECG in the case of non-minimal prescription (red), and
Einstein gravity (green, dashed) [35] for the boundary strip length ` = 3 and two different values of
µ outside the interval −0.00322 ≤ µ ≤ 0.00312. In both cases, we verify that causal wedge inclusion
is satisfied for both prescriptions.

splitting happens to be one of the previous ones, then we have to obtain the Euler-Lagrange
equation for Z(x) starting from the corresponding functional. In both cases, we have up
to second derivatives of Z, so the corresponding differential equation for Z will be fourth
order. This contrasts with the second-order character of the equations of motion for the
perturbations around a maximally symmetric background in ECG, which is one of its
defining properties.

In the following section we disregard this fact and assume each of the functionals to be
correct, as a test to see what would happen. We numerically solve for the surface profile
Z(x) which extremizes the corresponding functional,9 and we plot the result. This will
serve as a probe to understand how the higher-derivative corrections to the entanglement
entropy change the bulk surface in which the functional is to be evaluated.

4.3.1 Numerical results

In this section we present some of the curves for the numerical solutions obtained by min-
imizing the functionals (4.11) and (4.13). The boundary region is a strip of width ` = 3 in
the x direction and infinite in the y direction. We solved the fourth-order equations (D.11)
and (D.12) to obtain the corresponding entanglement wedge. All the details regarding the
numerical procedure, along with more cases of µ values for which the solution was obtained,
are presented in appendix D.2. The resulting plots, in which we also include the causal
wedge, can be found in figures 1 and 2.

These plots show that the causal wedge is safely included in the entanglement wedge
for both prescriptions, and for all values of the coupling within the range tested (in ap-
pendix D.2 we present examples which prove this to be the case for, at least, −104 ≤ µ ≤
+0.01). Thus, just like for the boundary disk, causal wedge inclusion applied to the bound-

9We also had to numerically solve for X(z) in order to construct the whole surface profile, as explained
in appendix D.2.
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(a) µ = −0.002.
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(b) µ = −0.002.

Figure 2. Causal wedge (orange, dashed) and entanglement surfaces corresponding to ECG in the
case of minimal prescription (blue), ECG in the case of non-minimal prescription (red), and Einstein
gravity (green, dashed) [35] for ` = 3 and µ = −0.002, a value within the interval −0.00322 ≤ µ ≤
0.00312. We include a close-up of the entanglement surfaces near x = 0 to tell them apart better.

ary strip in Poincaré AdS does not constrain the allowed values of the coupling in ECG.
Note that causal wedge inclusion in a Gauss-Bonnet black hole background does constrain
the allowed values of the coupling [7]. A crucial ingredient to arrive at the results of [7]
was the modified causal structure of the higher curvature theory due to the presence of
superluminal modes. Here we are working in AdS and the causal structure is still governed
by null rays. In addition, the disk has the same entanglement surface in both Einstein
gravity and ECG, and therefore although causal wedge inclusion is marginally respected,
it is so for all values of the coupling. For the strip geometry, in the case of Einstein gravity
(µ = 0), causal wedge inclusion is safely respected, as the previous plots show. Thus, to
violate causal wedge inclusion, it would be necessary a big modification of the surface due
to turning on the coupling µ. This does not happen.

Clearly, to explore the effects of causal wedge inclusion in ECG it would be better to
study a black hole background, just like the authors did in [7] in Gauss-Bonnet gravity.
However, in order to construct the causal wedge in a higher curvature theory, a complete
investigation of the superluminal modes that determine the causal structure is required.
A different possible avenue to harness the power of causal wedge inclusion is to investi-
gate perturbative modifications of the disk region and solve the Euler-Lagrange equations
derived from (4.6) or (4.8) with the perturbed boundary condition, but still in pure AdS,
similarly to what [36] did for Einstein gravity. Since causal wedge inclusion is marginally
respected there, it could happen that a perturbative violation occurs for some values of
the coupling, which would therefore have to be excluded. The complicated form of the
Euler-Lagrange equations makes this an extremely involved problem at the technical level,
which we therefore leave as an open question.

5 Conclusions and future directions

In the present paper we have obtained the entanglement entropy functional for a generic
cubic gravitational theory not involving derivatives of the curvature tensor in the action.
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This constitutes our main result. We have done this using two different prescriptions: the
minimal one, introduced in [4], and the non-minimal one, presented in [6, 22] and which
is known to be perturbatively valid. The existence of these two alternative functionals is
an explicit manifestation of the splitting problem one is forced to face when deriving the
entanglement entropy functional for cubic or higher order gravitational theories. Despite
knowing that for a particular theory there must be a single, correct functional, we have
also performed some consistency checks for both of them in a particular cubic theory. In
particular, we investigated whether the functionals obtained for Einsteinian Cubic Gravity
produce via minimization entanglement surfaces which satisfy the causal wedge inclusion
property for both a boundary disk and a boundary strip in Poincaré AdS. We find that,
for all the values of the couplings studied, causal wedge inclusion is respected.

Our work makes it possible to investigate several questions that will advance our
understanding of the role cubic theories play in a holographic context.

Bit threads
In [37] the authors put forward an alternative formulation of the holographic entan-
glement entropy that does not rely on minimizing an area functional but invokes a
divergenceless vector field, dubbed bit threads. Many aspects of bit threads have
been studied [38–43], but a formulation of bit threads for higher-derivative theories
was missing. Recently this gap was closed in [44], where the authors derived a bit
thread formulation for a general higher-derivative theory. Now that we have the en-
tanglement functional for cubic theories in the minimal and non-minimal splitting, it
would be interesting to investigate if using bit threads we can understand better the
splitting problem.

Dynamics
Holographic entanglement entropy in dynamical backgrounds has been widely studied
in Einstein gravity, with and without charge. It led to interesting insights regarding
the thermalization time [45–47]. Similar work has been carried out for Gauss-Bonnet
backgrounds [48–50]. If a Vaidya type of solution can be written down for black holes
in cubic gravity, then dynamical studies in these theories along the lines suggested
would be quite interesting.

More general boundary regions
We have learned valuable lessons studying HEE for different boundary regions: as
an example, the divergence structure of the holographic entanglement entropy on
regions with corners uncovered cut-off independent coefficients. These coefficients
were shown to be universal and to encode important field theory data in Einstein
and Gauss-Bonnet theories [51, 52]. It would be interesting to study regions with
corners in cubic theories.

Derive the correct splitting for finite coupling
Clearly, an important open question is to formally find the correct splitting for a
general cubic theory with finite coupling. This highly technical problem can be
approached following [6, 22].
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Causal structure of cubic theories
In section 4, as an example of the functional we derived, we calculated the entangle-
ment surfaces of a disk and a strip regions in an AdS background solution of ECG.
More interesting phenomena regarding the causal and entanglement wedges can be
expected if we were to consider black holes in any cubic gravity theory. However,
black hole backgrounds in higher-derivative theories will generically have superlu-
minal modes, and their causal structure is no longer determined by null rays. A
complete study of the causal structure and hyperbolicity of equations of motion of
cubic theories similar to what was done for Gauss Bonnet [1, 2, 53] is of interest not
only for the GR communities but also in a holographic context.

Perturbative calculations in field theory
The non-minimal functional is known to be the correct one for any perturbative
cubic theory which does not include covariant derivatives of the curvature tensors.
Furthermore, perturbatively, we know that the entanglement entropy functional can
be evaluated in the Ryu-Takayanagi surface obtained in General Relativity. This is
because the area term of the functional is minimal for the Ryu-Takayanagi surface,
and therefore even if the surface changes at first order, it does not produce a change
of that part of the functional. The first order variation of the Ryu-Takayanagi surface
can also be neglected for the remaining part of the functional coming from the higher-
derivative terms. This approach will be explored elsewhere [54].
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A Calculation of the entanglement functional

A.1 A first, detailed example

In order to understand better how the entanglement entropy functional is obtained for a
generic cubic theory, let us present an example in detail. Consider the following (Euclidean)
Lagrangian:

LE = λRµνρσR
µνρσR , (A.1)
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where λ is a constant. We will compute separately each of the terms in the general form
of the functional (2.6), and for the second one we will do it following the two prescriptions
presented in section 2. First of all, for the Wald term, we need the following derivative:

∂LE
∂Rzz̄zz̄

= −2λRµνρσRµνρσ + 2λRRzz̄zz̄ . (A.2)

If we want to use this expression in a situation in which we do not have at our disposal
the set of (complex) coordinates adapted to the surface, as will generically be the case, we
need to covariantize the last term. This is done by going to the orthonormal basis (2.9):

n1 =
√
z

z̄
∂z +

√
z̄

z
∂z̄ , n2 = i

(√
z

z̄
∂z −

√
z̄

z
∂z̄

)
. (A.3)

The simplest way to do this is by first writing the expression as a contraction in the complex
coordinates z and z̄, using the fact that the only non-vanishing components of the metric
are Gzz̄ = Gz̄z = 1/2:

Rzz̄zz̄ = −4Rzz̄zz̄ = −2Rαβαβ , (A.4)

where the antisymmetry of the Riemann tensor in the two pairs of indices has been taken
into account. Now we use the fact that a contraction in an α-index can be substituted for a
contraction in orthonormal directions, since tangent directions have no z or z̄ components:

Tαα = T ab(na)α(nb)α = T aa , (A.5)

where T is any tensor, possibly containing extra indices. The Wald term is then:

∂LE
∂Rzz̄zz̄

= −2λRµνρσRµνρσ − 4λRRabab . (A.6)

This is written in a form which can be evaluated in any set of coordinates just constructing
the two orthonormal vectors na to the surface.

Consider now the anomaly term. The first step is to obtain the second derivative of
the Lagrangian:

∂2LE
∂Rzizj∂Rz̄kz̄l

= 2λgi(kgl)jR . (A.7)

Now we have to expand R following the two prescriptions. For this we have to write it in
terms of Riemann tensor components and expand them following (2.10):

R = GαβRαβ + gijRij = GαβGγδRαγβδ + 2GαβgijRαiβj + gijgklRikjl = (A.8)
= GαβGγδRαγβδ + 2GαβgijR̃αiβj − 2GαβgijQαβij + gijgklrikjl + 3KαijK

αij −KαK
α .

Now, in the minimal prescription the last two terms have qA = 1, while all the rest have
qA = 0 (notice that GαβQαβij involves only Qzz̄ij). Therefore, when doing the A expansion
we have to multiply them by 1/2. Doing that and then rewriting back everything in terms
of the Ricci scalar, the minimal prescription gives:

∑
A

(
R

1 + qA

)min

A

= R− 3
2KαijK

αij + 1
2KαK

α . (A.9)
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For the non-minimal prescription we need to rewrite Rzz̄zz̄ and Qzz̄ij in terms of the primed
versions (2.11). This is done as follows:

GαβGγδRαγβδ = −8Rzz̄zz̄ = GαβGγδR′αγβδ +KαijK
αij −KαK

α , (A.10)
GαβgijQαβij = 4gijQzz̄ij = GαβgijQ′αβij + 2KαijK

αij −KαK
α . (A.11)

The Ricci scalar is now written in terms of the basic objects for this prescription as:

R = GαβGγδR′αγβδ + 2GαβgijR̃αiβj − 2GαβgijQ′αβij + gijgklrikjl , (A.12)

so that there are no terms with non-vanishing qA. We can then immediately rewrite
everything in terms of the Ricci scalar, obtaining:∑

A

(
R

1 + qA

)non-min

A

= R . (A.13)

This completes the A expansion for the non-minimal prescription. Notice that, in (A.7),
the metric tensors are not affected by the expansion, and we can contract them with the
extrinsic curvatures appearing in the general formula (2.6) as follows:

gi(kgl)jKzijKz̄kl = KzijKz̄
ij = 1

4KαijK
αij . (A.14)

All contractions in α indices can now be traded for contractions in a indices as explained
when discussing the Wald term.

We conclude this little example by collecting all contributions, which would produce
the following entanglement entropy functionals for the Lagrangian (A.1):

Smin
EE = 4πλ

∫
dD−2y

√
g
[
−RµνρσRµνρσ − 2RRabab + 2KaijK

aijR−

−3KaijK
aijKbklK

bkl +KaijK
aijKbK

b
]
, (A.15)

Snon-min
EE = 4πλ

∫
dD−2y

√
g
[
−RµνρσRµνρσ − 2RRabab + 2KaijK

aijR
]
. (A.16)

The following sections contain the contributions to both the Wald and anomaly terms of
the functional using both prescriptions. We include all numerical factors except for the
global 2π appearing in (2.6).

A.2 Minimal prescription

L3,8 = R3 ,

Wald : −6R2 , (A.17)
Anomaly : 0 . (A.18)

L3,7 = RµνR
µνR ,

Wald : −2RµνRµν − 2RaaR , (A.19)

Anomaly : KaK
a
(
R− 3

2KbijK
bij + 1

2KbK
b
)
. (A.20)
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L3,6 = Rµ
νRν

ρRρ
µ ,

Wald : −3RaµRaµ , (A.21)

Anomaly : 3
2KaK

a
(
Rb

b − 1
2KbijK

bij
)
. (A.22)

L3,5 = RµρRνσRµνρσ ,

Wald : −2RµνRaµaν +RabR
ab −RaaRbb , (A.23)

Anomaly : 2KaK
a
ij

(
Rij −Kb

i
mK

bjm + 1
2KbK

bij
)
− 1

2KaK
aRbc

bc . (A.24)

L3,4 = RµνρσR
µνρσR ,

Wald : −2RµνρσRµνρσ − 4RRabab , (A.25)

Anomaly : 4KaijK
aij
(
R− 3

2KbklK
bkl + 1

2KbK
b
)
. (A.26)

L3,3 = RµνρσRµνρτR
στ ,

Wald : −RaµνρRaµνρ − 4RaµRbabµ , (A.27)
Anomaly : 2KaikK

a
j
kRij +KaijK

aijRb
b + 2KaK

a
ijRb

ibj− (A.28)

− 2Kai
jKa

j
kKbk

lKb
l
i − 1

2KaijK
aijKbklK

bkl .

L3,2 = RµνρσR
ρσ
λτR

λτ
µν ,

Wald : −6RabµνRabµν , (A.29)
Anomaly : 12KaikKbj

kRabij + 12KaikK
a
j
kRb

ibj − 6Kai
jKbj

kKa
k
lKb

l
i . (A.30)

L3,1 = Rµ
ρ
ν
σRρ

λ
σ
τRλ

µ
τ
ν ,

Wald : −3
(
Raµ

a
νRb

µbν −RaµbνRaνbµ
)
, (A.31)

Anomaly : 3KaijK
a
klR

ikjl + 6KaikKbj
kRabij − 3

2KaijK
aijRbc

bc+ (A.32)

+ 3
2KaijK

aijKbklK
bkl − 9

2Kai
jKbj

kKa
k
lKb

l
i + 3Kai

jKa
j
kKbk

lKb
l
i .

A.3 Non-minimal prescription

L3,8 =R3 , (A.33)
Wald :−6R2 , (A.34)
Anomaly :0 . (A.35)
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L3,7 =RµνR
µνR , (A.36)

Wald :−2RµνRµν − 2RaaR , (A.37)
Anomaly :KaK

aR . (A.38)

L3,6 =Rµ
νRν

ρRρ
µ , (A.39)

Wald :−3RaµRaµ , (A.40)

Anomaly : 3
2KaK

aRb
b . (A.41)

L3,5 =RµρRνσRµνρσ , (A.42)
Wald :−2RµνRaµaν +RabR

ab−RaaRbb , (A.43)

Anomaly :2KaK
a
ijR

ij − 1
2KaK

a

(
Rbc

bc + 1
2KbK

b− 1
2KbijK

bij

)
. (A.44)

L3,4 =RµνρσR
µνρσR , (A.45)

Wald :−2RµνρσRµνρσ − 4RRabab , (A.46)
Anomaly :4KaijK

aijR . (A.47)

L3,3 =RµνρσRµνρτR
στ , (A.48)

Wald :−RaµνρRaµνρ− 4RaµRbabµ , (A.49)
Anomaly :2KaikK

a
j
kRij +KaijK

aijRb
b + 2KaK

a
ijRb

ibj+ (A.50)
+KaK

a
ijKb

i
kK

bjk −KaK
a
ijKbK

bij .

L3,2 =RµνρσR
ρσ
λτR

λτ
µν , (A.51)

Wald :−6RabµνRabµν , (A.52)
Anomaly :12KaikKbj

kRabij + 12KaikK
a
j
kRb

ibj− (A.53)
− 6KaK

a
ijKb

i
kK

bjk − 6Kai
jKbj

kKa
k
lKb

l
i + 12Kai

jKa
j
kKbk

lKb
l
i .

L3,1 =Rµ
ρ
ν
σRρ

λ
σ
τRλ

µ
τ
ν , (A.54)

Wald :−3
(
Raµ

a
νRb

µbν −RaµbνRaνbµ
)
, (A.55)

Anomaly :3KaijK
a
klR

ikjl + 6KaikKbj
kRabij − 3

2KaijK
aij

(
Rbc

bc + 1
2KbK

b

)
+ (A.56)

+ 3
4KaijK

aijKbklK
bkl + 3

2KaijKbklK
bijKakl− 9

2Kai
jKbj

kKa
k
lKb

l
i + 3Kai

jKa
j
kKbk

lKb
l
i .
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B Geometry of the entanglement surface for a boundary disk

Let us collect here the results needed to evaluate the tensors appearing in the entanglement
entropy functional for a boundary ball in Poincaré AdS (we consider the case of a 2-
dimensional disk in the main body of the paper, but results will be presented here for the
case of a general (D − 2)-ball). Consider then the bulk metric:

ds2 = L2
?

z2

(
dτ2 + dz2 + dr2 + r2dΩ2

D−3

)
, (B.1)

where the length scale L? is determined by imposing this to be a solution of the equations of
motion for the theory at hand. The ball in the boundary will be parametrized at fixed τ as
r ≤ R, so the surface anchored at its boundary and going into the bulk is parametrized as:

τ = τ0 , r = ξ , z = Z(ξ) , Ωp = ψp , (B.2)

with ψp coordinates in the (D − 3) unit sphere, ξ ∈ (0, R), and Z(R) → 0. Basis vectors
tangent to the surface are then:

m1 = mξ = ∂r + Z ′∂z , mp+1 = mψp = ∂Ωp . (B.3)

This induces a metric on the surface of the form:

ds2
C1 = L2

?

Z2(ξ)
[(

1 + Z ′2
)

dξ2 + ξ2 dΩ2
D−3

]
. (B.4)

We then choose our two normalized vectors orthogonal to the surface to be:

n1 = Z

L?
∂τ , n2 = Z

L?
√

1 + Z ′2

(
Z ′∂r − ∂z

)
. (B.5)

This produces the following extrinsic curvature components:

K2
ξξ = L?

Z2
√

1 + Z ′2

[
1 + Z ′2 + ZZ ′′

]
, (B.6)

K2
ψpψq = L?

Z2
√

1 + Z ′2

(
ξ + ZZ ′

)
ξ γpq , (B.7)

where γpq is the metric on the unit round sphere and the rest of the components of the
extrinsic curvature vanish. Transforming the last two indices to coordinate ones:

K2
zz = Z ′2

(1 + Z ′2)2K
2
ξξ , K2

zr = Z ′

(1 + Z ′2)2K
2
ξξ , K2

rr = 1
(1 + Z ′2)2K

2
ξξ ,

while K2
pq = K2

ψpψq . The trace of the second extrinsic curvature is then (clearly K1 = 0):

K2 = 1
L?ξ(1 + Z ′2)3/2

[
ξZZ ′′ + (D − 3)ZZ ′

(
1 + Z ′2

)
+ (D − 2)ξ

(
1 + Z ′2

)]
. (B.8)

Notice that the RT surface satisfying the prescribed boundary conditions (which is the one
solving K2 = 0) is given by Z(ξ) =

√
R2 − ξ2. In particular, this implies ZZ ′ = −ξ and

ZZ ′′ = −(1 +Z ′2), showing that not only K2 = 0, but the whole tensor satisfies K2
µν = 0.

This fact is relevant when discussing minimal surfaces for boundary disks in the main body
of the paper.

– 22 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
6

C Geometry of the entanglement surface for a boundary strip

The aim of this short appendix is to collect the results needed to evaluate the tensors
appearing in the entanglement entropy functional for a boundary strip in Poincaré AdS.
Consider then the bulk metric:

ds2 = L2
?

z2

(
dτ2 + dz2 + dx2 + δpq dypdyq

)
, (C.1)

where the length scale L? is determined by imposing this to be a solution of the equations of
motion for the theory at hand. We have separated the spatial coordinates in the boundary
into x and yp (with p = 1, 2 . . . , D− 3) because we will consider in this spacetime a surface
anchored to a boundary strip finite in extent in the x-direction, parametrized as:

τ = τ0 , z = Z(ξ) , x = X(ξ) , yp = ψp , (C.2)

with ψp ∈ (−∞,∞), ξ ∈ (ξi, ξf ), X(ξi)→ −`/2, X(ξf )→ `/2, and Z(ξi), Z(ξf )→ 0. Basis
vectors tangent to the surface are then:

m1 = mξ = X ′∂x + Z ′∂z , mp+1 = mψp = ∂yp . (C.3)

This induces a metric on the surface of the form:

ds2
C1 = L2

?

Z2(ξ)
[(
X ′2 + Z ′2

)
dξ2 + δpq dψpdψq

]
. (C.4)

We then choose our two normalized vectors orthogonal to the surface to be:

n1 = Z

L?
∂τ , n2 = Z

L?
√
X ′2 + Z ′2

(
Z ′∂x −X ′∂z

)
. (C.5)

This produces the following extrinsic curvature components:

K2
ξξ = L?X

′2

Z2
√
X ′2 + Z ′2

[
X ′ +

(
ZZ ′

X ′

)′]
, (C.6)

K2
ψpψq = L?X

′

Z2
√
X ′2 + Z ′2

δpq , (C.7)

with the rest of them vanishing. Transforming the last two indices to coordinate ones:

K2
zz = Z ′2

(X ′2 + Z ′2)2K
2
ξξ , K2

zx = X ′Z ′

(X ′2 + Z ′2)2K
2
ξξ , K2

xx = X ′2

(X ′2 + Z ′2)2K
2
ξξ ,

while K2
pq = K2

ψpψq . The trace of the second extrinsic curvature is then (clearly K1 = 0):

K2 = X ′

L?(X ′2 + Z ′2)3/2

[
(D − 2)

(
X ′2 + Z ′2

)
+ ZX ′

(
Z ′

X ′

)′]
. (C.8)

As a final comment, we are employing a generic parametrization, but the results in the main
text are presented with z = Z(x). For that case, we can just set X ′ = 1. For numerical
computations we also employed x = X(z), in which case we set Z = z and Z ′ = 1.
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D Details of the HEE in ECG calculation

This appendix contains the calculational details of the example presented in section 4. First
we will obtain the equations to solve, and then present details of the numerical integration.

D.1 Minimizing the entropy functional for a strip in ECG

Consider the boundary strip in a state dual to the 4-dimensional vacuum AdS in ECG, with
bulk metric given by (4.10). For this setup, the functionals (3.4) and (3.8) have been already
obtained in the minimal and non-minimal prescriptions for the z = Z(x) parametrization,
eqs. (4.11)–(4.14). Similar expressions are needed for the x = X(z) parametrization, since
it will be used in the first two parts of the numerical procedure. With the minimal splitting
regularization we obtain

Smin
strip = L2

?

4GN

∫
dy dz

[√
1 +X ′2

z2 + 3f2
∞µ

4z2 [1 +X ′2]9/2
Smin
x

]
, (D.1)

where

Smin
x ≡ 4− 14X ′6 − 18X ′8 − 6X ′10 + 28zX ′3X ′′ + 32zX ′5X ′′ + 12zX ′7X ′′

+X ′4
(
6− 3z2X ′′2

)
− 3X ′2

(
−4 + z2X ′′2

)
+ zX ′X ′′

(
8 + z2X ′′2

)
. (D.2)

Minimizing this functional we obtain a fourth order differential equation for X(z) to solve,

4
[
2X ′ + 2(X ′)3 − zX ′′

] [
1 + (X ′)2

]5
− 3µf2

∞

[
176(X ′)9 + 72(X ′)11 − 6z(X ′)10X ′′

+12(X ′)13 + (X ′)7
(
224− 60z3X ′′X(3)

)
+ zX ′′

(
−4 + z2(X ′′)2 − 12z3X ′′X(3)

)
+(X ′)8

(
−38zX ′′ + 6z3X(4)

)
+ 2(X ′)6

(
−41zX ′′ + 45z3(X ′′)3 + 9z3X(4)

)
+

+(X ′)4
(
−78zX ′′ + 37z3(X ′′)3 + 96z4(X ′′)3X(3) + 18z3X(4)

)
+

+(X ′)2
(
−32zX ′′ − 52z3(X ′′)3 + 84z4(X ′′)2X(3) + 6z3X(4)

)
+

+2X ′
(
4 + 27z4(X ′′)4 − 3z4(X(3))2 − 3z3X ′′

[
−2X(3) + zX(4)

])
−4(X ′)3

(
−14 + 36z4(X ′′)4 + 3z4(X(3))2 + 3z3X ′′

[
3X(3) + zX(4)

])
−6(X ′)5

(
−26 + z4(X(3))2 + z3X ′′

[
18X(3) + zX(4)

])]
= 0 .
(D.3)

If we use the non-minimal splitting instead, the functional obtained is

Snon-min
strip = L2

?

4GN

∫
dy dz

[√
1 +X ′2

z2 + 3f2
∞µ

8z2 [1 +X ′2]9/2
Snon-min
x

]
. (D.4)

where

Snon-min
x ≡ 8− 10X ′6 − 18X ′8 − 6X ′10 + 44zX ′3X ′′ + 40zX ′5X ′′ + 12zX ′7X ′′

+ zX ′X ′′
(
16 + 3z2X ′′2

)
+X ′2

(
24− z2X ′′2

)
+X ′4

(
18− z2X ′′2

)
. (D.5)
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Minimizing this functional, the equation to solve is

8
[
2X ′ + 2(X ′)3 − zX ′′

] [
1 + (X ′)2

]5
+ 3µf2

∞

[
−184(X ′)9 − 72(X ′)11 + 6z(X ′)10X ′′

−12(X ′)13 + 4(X ′)7
(
−64 + 5z3X ′′X(3)

)
+ zX ′′

(
8 + 13z2(X ′′)2 + 36z3X ′′X(3)

)
+

+(X ′)8
(
22zX ′′ − 2z3X(4)

)
+ 2(X ′)6

(
38zX ′′ − 30z3(X ′′)3 − 6z3X(4)

)
−

−(X ′)4
(
−42zX ′′ + 119z3(X ′′)3 + 228z4(X ′′)2X(3) + 6z3X(4)

)
−

−2(X ′)2
(
−14zX ′′ + 38z3(X ′′)3 + 126z4(X ′′)2X(3) + z3X(4)

)
−

−2X ′
(
8 + 81z4(X ′′)4 − 9z4(X(3))2 − z3X ′′

[
14X(3) + 9zX(4)

])
+

+4(X ′)3
(
−22 + 108z4(X ′′)4 + 9z4(X(3))2 + z3X ′′

[
19X(3) + 9zX(4)

])
+

+26(X ′)5
(
−102 + 9z4(X(3))2 + z3X ′′

[
34X(3) + 9zX(4)

])]
= 0 .
(D.6)

It will prove convenient for the numerical calculation to work also with the entanglement
functional in terms of Z(x) instead of X(z). Recall that, with the minimal prescription,
the functional reads:

Smin
strip = L2

?

4GN

∫
dy dx

[√
1 + (Z ′)2

Z2 + 3f2
∞µ

4Z2 [1 + (Z ′)2]9/2
Smin

]
, (D.7)

where

Smin ≡− 6 + 12(Z ′)8 + 4(Z ′)10 − 12ZZ ′′ − 3Z2(Z ′′)2 − Z3(Z ′′)3 + (Z ′)6 (6− 8ZZ ′′
)
−

− 14(Z ′)4 (1 + 2ZZ ′′
)
− (Z ′)2

[
18 + 32ZZ ′′ + 3Z2(Z ′′)2

]
. (D.8)

And following the non-minimal prescription:

Snon-min
strip = L2

?

4GN

∫
dy dx

[√
1 + (Z ′)2

Z2 + 3f2
∞µ

8Z2 [1 + (Z ′)2]9/2
Snon-min

]
, (D.9)

where now

Snon-min ≡− 6 + 12(Z ′)8 + 4(Z ′)10 − 12ZZ ′′ − 3Z2(Z ′′)2 − Z3(Z ′′)3 + (Z ′)6 (6− 8ZZ ′′
)
−

− 14(Z ′)4 (1 + 2ZZ ′′
)
− (Z ′)2

(
18 + 32ZZ ′′ + 3Z2(Z ′′)2

)
. (D.10)

Then, the equations to solve are

4
[
2 + 2(Z ′)2 +ZZ ′′

] [
1 + (Z ′)2

]5
− 3µf2

∞

[
12 + 8(Z ′)12 + 6ZZ ′′+ 72Z3(Z ′)5Z ′′Z(3)+

+36Z3Z ′Z ′′Z(3) (2 + 3ZZ ′′
)

+ 4(Z ′)10 (14 +ZZ ′′
)

+ 36Z3(Z ′)3Z ′′Z(3) (4 + 3ZZ ′′
)

+

+4(Z ′)8 (39 +ZZ ′′
)

+Z3
(
17(Z ′′)3− 6Z(4)

)
+ 6Z4

(
3(Z ′′)4− (Z(3))2−Z ′′Z(4)

)
+

+(Z ′)6
(
224 + 78ZZ ′′− 6Z3Z(4)

)
− (Z ′)4 (−176− 82ZZ ′′+

+Z3
[
127(Z ′′)3 + 18Z(4)

]
+ 6Z4

[
(Z(3))2 +Z ′′Z(4)

])
− 2(Z ′)2 (−36− 19ZZ ′′+

+Z3
[
55(Z ′′)3 + 9Z(4)

]
+ 6Z4

[
15(Z ′′)4 + (Z(3))2 +Z ′′Z(4)

])]
= 0 ,

(D.11)
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if we use the minimal splitting, and

8
[
2 + 2(Z ′)2 +ZZ ′′

] [
1 + (Z ′)2

]5
− 3µf2

∞

[
12 + 16(Z ′)12 + 6ZZ ′′+ 8Z3(Z ′)5Z ′′Z(3)+

+4Z3Z ′Z ′′Z(3) (−2 + 81ZZ ′′
)

+ 8(Z ′)10 (11 +ZZ ′′
)

+ 4Z3(Z ′)3Z ′′Z(3) (−4 + 81ZZ ′′
)

+

+4(Z ′)8 (51 + 7ZZ ′′
)
−Z3

(
5(Z ′′)3 + 2Z(4)

)
+ 18Z4

(
3(Z ′′)4− (Z(3))2−Z ′′Z(4)

)
+

+(Z ′)6
(
256 + 42ZZ ′′− 2Z3Z(4)

)
+ (Z ′)4 (184 + 28ZZ ′′+

+Z3
[
67(Z ′′)3− 6Z(4)

]
− 18Z4

[
(Z(3))2 +Z ′′Z(4)

])
+ (Z ′)2 (71 + 22ZZ ′′+

+Z3
[
62(Z ′′)3− 6Z(4)

]
− 36Z4

[
15(Z ′′)4 + (Z(3))2 +Z ′′Z(4)

])]
=0.

(D.12)

when using the non-minimal splitting.

D.2 Numerics

We consider an interval of width `/2 = 1.5. The Z(x) parametrization is problematic
if we want to start integrating from the boundary keeping the endpoints of the interval
fixed. It is more convenient to work — at least initially — in terms of X(z). Our strategy
will be to start with a series expansion for X(z) close to the boundary, at X(0) = `/2,
then numerically integrate equation (D.3) (or (D.6) depending on what splitting are we
considering) and, finally, when the X(z) parametrization becomes problematic, switch to
Z(x) and numerically integrate (D.11) (or (D.12)) until x = 0, where we reach the deepest
point of the curve, Z(0) = z∗.

D.2.1 Series expansion close to the boundary

To solve the relevant equation ((D.3) or (D.6)) starting from the boundary, we perform
a series expansion of X(z) and the corresponding differential equation to order 23 for
values close to z = 0. The zeroth-order term is determined by the boundary condition
X(z = 0) = `/2, whereas all the other coefficients depend on the value of the third-order
coefficient in the expansion, related to X ′′′(0) as well as the value of µ. This series expansion
is a good solution up to some small z = ε. The value of ε is chosen such that the numerical
error is less than 10−5 at any point 0 ≤ z ≤ ε, see figure 3a for a representative case.

D.2.2 Numerical integration

For ε ≤ z ≤ zI , we integrated numerically the differential equation for X(z). The value zI
was determined for each case as the largest value of z for which the errors remained below
10−5 at any point in the interval of integration — see figure 3b. At the point (xI , zI), we
changed parametrization to z = Z(x) and we integrated numerically until we reached the
z axis, thus completing the solution.

Recall that the value of the third derivative in the series expansion at z = 0 is so
far an initial free parameter, so for a single value of µ we obtain a family of solutions
characterized by different values of the third derivative. In figure 4, each curve corresponds
to a different choice for the initial parameter. Note that this added complication arises
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(a) Series expansion of X(z) for 0 ≤ z ≤ 0.35. Nu-
merical integration of X(z) for 0.35 ≤ z ≤ 1.90.
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RealExp(ΔZ )

(b) Numerical integration of Z(x), 0 ≤ x ≤ 1.087.

Figure 3. Order of magnitude of ∆, the result obtained by evaluating the numerical solution into
the corresponding differential equation, for µ = −0.002 in the non-minimal case. Similar plots were
obtained for all the other values of µ that were considered, for both prescriptions.
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0.5
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1.5

2.0

2.5

Figure 4. A family of curves anchored at x = ±`/2 for µ = −0.003 in the non-minimal prescription.
This set of curves was obtained by varying the initial parameter (related to the third derivative
X ′′′(z) at z = 0) from −0.30 to −0.40 in steps of −0.02. The curve identified as the actual
entanglement surface for this case has an initial parameter close to −0.346.

because we are dealing with fourth order differential equations, unlike the second order ones
we encounter in Einstein and Gauss-Bonnet gravity. All these solutions are good solutions
of the differential equation. However, in a holographic context we expect that the curve
will be smooth at x = 0. Therefore, among all the possible values of the third derivative
we have to choose the one that produces a curve with Z ′(x = 0) = 0, and this curve will
be the RT surface. In table 1 we list the deepest point of the RT surface, z∗, obtained for
different values of the ECG coupling µ.

The causal wedge in AdS is known to be a semicircle, thus, for a boundary region with
`/2 = 1.5 the deepest point of penetration of the causal wedge is zc = 1.5. If, for any value
of µ considered, we find that z∗ < zc, this would be a clear violation of the causal wedge
inclusion. For all the µ values for which the solution was found there is no indication of
such violation, see table 1. We also show the plots for various cases of µ values for which
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µ z∗ Minimal prescription z∗ Non-minimal prescription
−104 2.05742 1.84623
−10 2.08559 1.87208
−0.50 2.16944 1.95529
−0.003 2.50557 2.46914
−0.002 2.50837 2.48912
−0.001 2.50798 2.50665
+0.003 2.42368 2.7211
+0.010 2.64287 2.75594

Table 1. Values of z∗ obtained from numerical solutions, for different values of µ.
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(a) µ = −10.
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(b) µ = −104.

Figure 5. Causal surface (orange, dashed) and entanglement surfaces corresponding to ECG in
the case of minimal prescription (blue), ECG in the case of non-minimal prescription (red), and
Einstein gravity (green, dashed) [35] for the boundary strip length `/2 = 1.5 and different values
of µ outside the interval −0.00322 ≤ µ ≤ 0.00312. In both cases, we verify that zc < z∗ is satisfied
for both prescriptions.

the solution was obtained in figures 5 and 6. Note that as we make µ more negative, the
value of z∗ decreases for both prescriptions; even for µ = −104, which is the most negative
value for which the solution was obtained, we verified that z∗ > zc.
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(a) µ = −0.003.
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(b) µ = −0.003.
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(c) µ = −0.001.
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(d) µ = −0.001.
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(e) µ = +0.003.

Figure 6. Causal wedge (orange, dashed) and entanglement surfaces corresponding to ECG in
the case of minimal prescription (blue), ECG in the case of non-minimal prescription (red), and
Einstein gravity (green, dashed) [35] for the boundary strip length `/2 = 1.5 and different values of
the coupling constant in the interval −0.00322 ≤ µ ≤ 0.00312. For negative values of µ, we include
a close-up of the entanglement surfaces near x = 0 to tell them apart better.
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