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ABSTRACT – Blood Serum Proteome-Mass Spectra (SP-MS) may allow detecting Proteome-Early Drug Induced 
Cardiac Toxicity Relationships (called here Pro-EDICToRs). However, due to the thousands of proteins in the SP 
identifying general Pro-EDICToRs patterns instead of a single protein marker may represents a more realistic 
alternative. In this sense, first we introduced a novel Cartesian 2D spectrum graph for SP-MS. Next, we introduced 
the graph node-overlapping parameters (nopk) to numerically characterize SP-MS using them as inputs to seek a 
Quantitative Proteome-Toxicity Relationship (QPTR) classifier for Pro-EDICToRs with accuracy higher than 
80%. Principal Component Analysis (PCA) on the nopk values present in the QPTR model explains with one 
factor (F1) the 82.7% of variance. Next, these nopk values were used to construct by the first time a Pro-EDICToRs 
Complex Network having nodes (samples) linked by edges (similarity between two samples). We compared the 
topology of two sub-networks (cardiac toxicity and control samples); finding extreme relative differences for the 
re-linking (P) and Zagreb (M2) indices (9.5 and 54.2 % respectively) out of 11 parameters. We also compared sub-
networks with well known ideal random networks including Barabasi-Albert, Kleinberg Small World, Erdos-
Renyi, and Epsstein Power Law models. Finally, we proposed Partial Order (PO) schemes of the 115 samples 
based on LDA-probabilities, F1-scores and/or network node degrees. PCA-CN and LDA-PCA based POs with 
Tanimoto’s coefficients equal or higher than 0.75 are promising for the study of Pro-EDICToRs. These results 
shows that simple QPTRs models based on MS graph numerical parameters are an interesting tool for proteome 
research. 
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1. Introduction 
The main basis for early detection of disease and drug induced toxicity nowadays remains finding translational 

and safety biomarkers that can predict or anticipate toxic manifestation and detect damage earlier in human trials. 
Specifically, cardiotoxicity is a serious adverse effect of chemotherapy that encompasses a spectrum of disorders, 
ranging from relatively benign arrhythmias to potentially lethal conditions such as myocardial ischemia/infarction 
and cardiomyopathy. The toxicity of chemotherapeutic drugs can cause loss of myocytes sarcolemmal integrity, 
release of bioactive markers into the extracellular environment (tissue and circulation) and ultimately leading to 
the necrosis of myocytes 1, 2. The extent and severity of the necrosis can be monitored by the levels of bioactive 
markers 3. However, the number of new biomarkers reaching routine clinical use remains unacceptably low 4, 5. At 
the same time, circulating carrier proteins have been recently found to act as a reservoir for the accumulation and 
amplification of bound low mass biomarkers, integrating, amplifying and storing diagnostic information like a 
capacitor stores electricity 6, 7. Consequently, a blood proteome represents a potential target for the early detection 
of diseases and drug induced toxicities. 

The blood proteome is changing constantly as a consequence of the perfusion of the organ undergoing drug-
induced damage and this process then adds, subtracts, or modifies the circulating proteome. Thus, even if these 
small peptide fragments are many degrees of separation removed from the actual insult, they can retain the 
specificity for the disease because this process can arise from a specific type of biomarker amplification based on 
the uniqueness of the tissue microenvironment where the organ toxicity occurs 8. Because body fluids such as 
serum, saliva or urine are a protein-rich information reservoir that contains the traces of what the blood has 
encountered on its constant perfusion and percolation throughout the body 8 and the optimal performance in the 
low mass range exhibited by mass spectroscopy 9, 10, the use of this method applied to proteomics may offer the 
best chance of discovering these early stage changes. 

However, due to the thousands of intact and cleaved proteins in the SP, finding the single disease-related 
protein could be like searching for a needle in a haystack, requiring the separation and identification of each 
protein biomarker. In addition, most commonly used toxicity biomarkers appear only when significant organ 
damage has occurred. For these reasons, to identify patterns by using the SP-Mass Spectra (SP-MS) instead of 
directly identifying a single marker candidate represents a more attractive and realistic choice for this purpose. In 
this sense, Petricoin et al. successfully identified patterns of low molecular weight biomarkers as ion peak features 
within the spectra, and used these patterns as the diagnostic endpoint itself for the early detection of drug induced 
cardiac toxicities 11, ovarian 12 and prostate cancer 13. Consequently, we can state that SP-MS may allow detecting 
Proteome-Early Drug Induced Cardiac Toxicity Relationships (called here Pro-EDICToRs) at the first stages. 

In the present work we decided to identify SP Pro-EDICToRs parameters and use it in generating a prediction 
model by using a graph theoretical approach instead of directly identify patterns within the high-throughput MS. 
The application of graph theory to MS was first proposed by Bartels for peptide sequencing14. The basic idea 
consists in transforming a mass spectrum into a graph called the spectrum graph. Basically, each peak in the 
experimental spectrum is represented as a node (or several nodes) in the spectrum graph and a directed edge (or 
arc) is established between two vertices if the mass difference of the two vertices equals the mass of one or several 
aminoacids. Several algorithms that make use of spectrum graphs have been designed for de novo peptide 
sequencing. Among the most popular are “SeqMS” 15, “Lutefisk” 16, “Sherenga” 17 and more recently “PepNovo” 
18.  

The construction of the spectrum graph of all these algorithms share the basic idea proposed by Bartels with 
their respective particularities. The SeqMS algorithm first assumes a list of possible ion types with corresponding 
probabilities. The list is then used to transform the experimental MS into a spectrum graph. Each peak will 
correspond to a set of nodes in the spectrum graph, according to the list of ion types.  A graph is then obtained by 
linking all pairs of vertices that differ by the mass of an amino acid or the combination of several amino acids 15. 
In Lutefisk algorithm the experimental spectrum data is first reduced to a list of significant fragment ions. The N- 
and C-terminal evidence list, which reveals the possible N- and C-terminal ions respectively, is then determined 



 3

and a “sequence spectrum” (a term proposed by Bartels) is derived were the x ordinate consist on mass/charge 
(m/z) values for the b-ions and the y ordinate consists on the probability of cleavage of each site 16. The Sherenga 
algorithm is also based on ion types. Because of it, a method is designed to automatically learn ion types from a 
training set of experimental spectra of known sequences, without knowing a priori the fragmentation patterns. 
After the ion types are learned, the experimental MS is transformed into a spectrum graph 17. The nodes in the 
spectrum graph used in the PepNovo algorithm are assigned by creating for each mass in the experimental 
spectrum a set of nodes at different masses. Nodes having similar masses are merged (since it is likely that they are 
created by different ion fragments from the same cleavage site). Here the nodes are scored according to a 
probability-based score that gives premiums for present fragment ions, and penalties for missing ones 18. 

On the other hand, many graph based representations have been introduced for biological data different from 
MS as for example: single DNA, RNA and protein sequences or even for 2D proteomics maps. In several cases we 
can calculate from these graphs numerical indices, sometimes called Topological Indices (TIs) or Connectivity 
Indices (CIs), encoding important biological information.19, 20 In this sense, we can call the attention of readers on 
the works after Randic, Liao, Nandy, Basak, and many others, which developed some of these graph theory based 
representations with applications in proteome research in general including Toxicoproteomics.21-41 A novel 2D 
representation for proteins sequence similar to the proposed by Nandy for DNA sequences 42-44 was introduced by 
our group to study protein sequences. This 2D graph embedded in a Cartesian space assigns each one of the four 
aminoacid groups to each axis direction according to the physicochemical nature of the aminoacids (polar, non-
polar, acid, or basic) 45. The numerical parameters that characterize the previous representations can be used to 
seek a Quantitative Structure-Activity Relationship (QSAR) models to predict systems function. System herein in 
the more broad sense in proteomics and bioinformatics including drugs activity, protein function, proteome-
disease relationships, proteins structure NMR, gene microarray data, proteomic electrophoresis 2D maps or 
proteome MS. In general, these sequence, graph, and/or higher dimension numerical indices can be combined with 
data analysis methods such as Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Artificial 
Neural Networks (ANN), Genetic Algorithms (GA), k-Nearest Neighbors (KNN) and/or other machine learning 
classifiers in bioinformatics, medicinal chemistry, and proteomics.20, 46-60  

Among the multiple applications of the above mentioned numerical indices we can list: data dimensions 
reduction, clustering, and/or ordering, in addition. With these goals in mind one can performs different studies 
apart from and/or complementary to LDA, SVM, ANN, GA, or KNN including: Principal Component Analysis 
(PCA) and/or Complex Network construction. PCA, have been largely used alone or combined with these methods 
to reduce data, construct parameters spaces, and rank cases or samples in proteins drug inhibitors search, protein 
characterization, and proteome research with important applications in Toxicogenomics and Toxicoproteomics 
too.61-74 In addition, Complex Network construction based on the above mentioned parameters is also very useful 
in genomics, proteomics, medical-social research or science in general. These networks are large objects 
composed at least by nodes and edges or arcs. Drugs, genes, RNAs, proteins, organisms, brain cortex regions, 
diseases, patients or environmental systems to name only a few examples that may play the role of nodes. 
Otherwise, edges represent some kind of similarity/dissimilarity relationships between nodes often.20, 75-99 As 
mentioned above, after using system structural numeric parameters as inputs for LDA, SVM, ANN, KNN, PCA 
analysis or Complex network prediction we can employ the outputs of these methods or direct experimental data to 
construct sample orders. Orders based on only one ranking attribute are simple but may fail in describing all 
remarkable sample features for complex cases or samples such as DNA sequence, proteins structure, proteomics 
maps or gene microarray data. In this cases, may be more useful the construction of a Partial Order (PO) based on 
more than one ranking parameters (xi). These POs can be represented with the so called Hasse diagrams, which are 
also graphs or network like representations. The nodes of Hasse diagrams are the samples or cases (as above 
expressed: chemicals, proteins, proteomics maps, organisms, environmental systems) and edges herein express 
ordering instead of similarity/dissimilarity relationships.100-117  

Despite the proved efficacy of graph/network representations based numerical parameters few works have 
been reported integrating Toxicoproteomics MS data with QPTR models, PCA, Complex networks and PO 
analysis based on graphs other than the classic fragmentation MS graph. This field of study appears to be 
promising in the study of Pro-EDICToRs and proteome research in general. In the present work, we propose an 
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alternative Cartesian 2D graph representation to the MS graph based on an adaptation of representations similar 
those proposed by Nandy, Randic, Liao and others, for protein and DNA sequences respectively.  Next, we 
derived from the new graphical representation numerical indices based on Graph and Markov chain theory. These 
numerical indices, called node overlapping parameters (nopk), are then used to find a QPTR model for early 
detection of drug-induced cardiac toxicities. A visual representation of the approach proposed in this work is 
shown in Scheme1. In addition, we perform alternative Principal Components Analysis (PCA) and construct by 
the first time a Complex Network of Pro-EDICToRs. The outputs of the three analysis LDA, PCA, and Complex 
Neworks were used to propose alternative Partial Orders (PO) of the samples. 

 
Scheme 1. Schematic representation of the SP-MS Cartesian graph-based early detection of drug-induced cardiac 
toxicities 
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2. Methods 
SP-MS data set. For the generation of the SP-MS based QTPR model we used tab-delimited data files 

containing mass/charge (m/z) and peak intensity (I) values taken from serum proteome high-resolution spectra 
reported by Petricoin et al. 11. According to Petricoin et al., the high resolution mass spectrometer used in 
generating the respective mass spectra is a hybrid quadrupole time-of-flight mass spectrometer (QSTAR pulsar I, 
Applied Biosystems Inc., Framingham, Massachusetts). The data files are generated by first exporting the raw data 
file generated from the QSTAR mass spectra into tab-delimited files that generated approximately 350,000 data 
points per spectrum. The binning process condenses the number of data points to 7105 points per sample. The 
high-resolution spectra is binned using a function of 400 parts per million (ppm) such that all data files possess 
identical m/z values (e.g., the m/z bin sizes linearly increase from 0.28 at m/z 700 to 4.75 at m/z 12,000) 11. Using 
the Spontaneously Hypertensive Rat (SHR) model, in which animals were challenged with doxorubicin or with 
mitoxantone +/− dexrazoxane (a routinely used cardioprotectant), over 200 samples collected and stored frozen 
over a 4-year period (N = 203) were analyzed. This study system has both well known pathological and serum 
biomarker endpoints (cardiac lesion histological changes and serum cardiac troponin concentrations, respectively) 
that have been used recently to measure effects of therapeutic compounds on cardiac damage 118-121. Since the 
cardiac toxicity profile of 88 out of 203 samples analyzed was reported as unknown, only 115 samples were used 
in this work:  

1. Definitive Positive (34 samples with overt cardiotoxicity): Tab-delimited data files exported from SP high-
resolution spectra belonging to sera from SHR model with overt cardiotoxicity (cTnT≥0.15 ng/mL and 
histologic lesion scores ≥1.0). Also included as positive were rats with lower cTnT levels (≥0.08 ng/mL) 
but also with mild apparent pathologic changes determined by the histological lesion scores. 

2. Probable Positive (10 samples with probable cardiotoxicity): Tab-delimited data files exported from SP 
high-resolution spectra belonging to sera from SHR model with low serum cTnT (between 0.08 and 0.15 
ng/mL). 

3. Definitive Negative (28 samples without cardiotoxicity): Tab-delimited data files exported from SP high-
resolution spectra belonging to sera obtained from control SHR prior to treatment or following only 1–3 
treatments with saline alone and whose cTnT = 0. 

4. Probable Negative (43 samples without clear evidences of carditoxicity): Tab-delimited data files exported 
from rats serum that were expected to be classified as negatives (histological score = 0 or not taken) but 
were older as they were on long-term (6-to 12-week dosing) saline alone or dexrazoxane. Because the 
animals were older and SHR develop hypertension and myopathy as they age, they had been considered as 
probable negatives. 

Cartesian coordinates spectrum graphs. For the generation of the SP 2D Cartesian coordinates spectrum  
graphs we used high-dimensional data produced by high-throughput mass spectrometry consisting of binned data 
files derived from raw data files generated from SP-MS 11.  Although the binned process reduces efficiently the 
number of data points, it is steel unmanageable for graph generation. Hence, the number of data points in the 
binned data files was condensed to 71/36 by including in each new data point the averaged m/z and I values of 
100/200 consecutive data points. Each new data point condenses now the information encoded on 100/200 binned 
data points making the search of Pro-EDICToRs a more tractable problem. Due to the number of data points in the 
binned data files, the last data point was generated by using the last 105/205. Considering the successive 
transformations applied to the raw data (binning and averaging processes) all the averaged m/z and I values were 
replaced by their respective standardized values. The values were standardized in order to bring all of them 
(regardless of their distributions and original units of measurement) to compatible units from a distribution with a 
mean of 0 and a standard deviation of 1. Standardization also makes the results entirely independent of the ranges 
of values or the units of measurements. After that, a new averaged and standardized data file is generated 
consisting of 71/36 data points which can be used now in generating a SP spectrum graph by using a Cartesian 
2D/spiral representation. In so doing, a cut off value of 0.5 it is chosen for both m/z and I values related to each 
averaged data point. This cut off value is used to codify each data point according to their respective average m/z 
and I values allowing their representation as a node on a Cartesian 2D space. Each data point in the averaged data 
file is placed in a Cartesian 2D space starting with the first data point at the (0, 0) coordinate. The coordinates of 
the successive data points are calculated as follows in a similar manner to that for DNA spaces 122: 
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a) Increases in +1 (abscissas) if the absolute m/z value < 0.5 and the absolute I value > 0.5 for a data point 
(rightwards-step) or: 

b) Decreases in -1 (abscissas) if the absolute m/z value > 0.5 and the absolute I value < 0.5 for a data point 
(leftwards-step) or: 

c) Increases in +1 (ordinates) if the absolute m/z and I values > 0.5 for a data point (rightwards-step) or: 
(upwards-step): 

d) Decreases in -1 (ordinates) if the absolute m/z and I values < 0.5 for a data point (downwards-step). 

Once we applied the above mentioned transformations we obtained a SP spectrum graph in a Cartesian 
coordinates 2D space; were each node encode information related to m/z and I values of a condensed spectral 
region. The Figure 1 illustrates the appearance of the SP spectrum graphs obtained within the graphical interface 
of MARCH-INSIDE software. 

2D SP-MS node overlapping parameters (nopk). We used a Markov model (MM) to codify information 
about SP-MS regions. Specifically, in this work we introduced the 2D SP-MS node overlapping parameters (nopk) 
as numerical indices of the SP-MS Cartesian 2D graph. In this study, the stochastic matrix of the classic MARCH-
INSIDE approach used for small molecules, RNAs, and proteins has been adapted to characterize the new 
Cartesian 2D graphs. The method uses essentially three matrix magnitudes:61, 123-131  

a) The matrix 1Π (see Eq. 1). This matrix is built up as a square matrix (n × n). Note that the number of nodes 
(n) in the graph may be equal or smaller than the number of data points in the MS averaged data files. The 
matrix 1Π contains the probabilities 1pij to reach a node ni with n coincident spectral data points (dpi) 
moving throughout a walk of length k = 1 from a node nj with n overlapping spectral data points (dpj): 

)1(

1

1

∑
=

⋅

⋅
= n

G
Gij

jij
ij

dp

dp
p

α

α
                   )2()(

1

0

∑
=

= n

G
G

jA

dp

dp
jp  

Where, αij represents the adjacency relationships between nodes (if nj is adjacent to ni then αij = 1; 
otherwise αij = 0). 

 

Figure 1. MARCH-INSIDE software view of a SP-MS Cartesian graph. 
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b) The spectral data points vector 0Δ. The method considers that a number of spectral data points or weight 
(dpj) can be assigned to each node. The number of MS data points of the node is equal to the sum of the 
MS data points coinciding in the same node. So, to retain a more compact matrix notation all dpj are 
arranged as a column vector 0Δ. 

c) The zero order 2D average spectral proteomic information content vector 0ω (see Eq. 2). This vector lists 
the absolute initial probabilities Apk(j) with which a node nj selected at random encode a given MS 
proteomic information content. Due to the particularities of the graph representation used here one node 
can contain information related to the m/z and I of more than one averaged data points. Consequently, the 
initial absolute probability to encode a given information content of a node depends on the number of data 
points coinciding on the node nj (dpj) and the total number of data points on the spectrum graph (dpG). 

The use of MM theory thus allows calculating the node overlapping parameters ( nopk) for any node nj that one 
can reach in the 2D Cartesian graph by moving from any node ni throughout the entire graph using walks of length 
k. Considering that the nopk values are discrete average values we determine them as the sum of two-terms 
products. The first term is the probability of reaching node nj by moving from any node ni throughout walks of 
length k and the second the number of MS data points coinciding on the node dpj (see central member of Eq. 3 
below). 

( ) )3(
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j
jk
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The nopk encode the properties (m/z and I) of the different MS regions (nodes) in the 2D Cartesian graph. It is 
remarkable that nopk can be written using a MM as the product of 0Δ and the natural powers of the matrix 1П 
based on the Chapman–Kolgomorov equations (see right member of Eq. 3 above).132 

Statistical Analysis. The nopk values were calculated with the MARCH-INSIDE (MARkovian CHemicals IN 
SIlico DEsign) software 133, which is used here for the first time to codify the information content encoded in a SP 
mass spectrum. MARCH-INSIDE software, specifically the sub-routine BIOMARKS134 has been applied intensely 
to the field of proteins 61, 123, 124, 135-143. Using this methodology we can attempt to develop a linear QPTR model to 
find Pro-EDICToRs with the general formula: 

∑ ⋅+=⋅++⋅+⋅+= ⋅⋅ )4(...2111 kkkk nopbbnopbnopbnopbbCT  

Here, nopk values act as the independent or predictive variables. We selected linear discriminant analysis 
(LDA) 144 to fit the Pro-EDICToRs discriminant function. The QPTR model classifies the rat’s SP spectrum into 
two general groups based on cardiotoxic risk (CTR) indicator. The groups are cardio-toxic risk group (CTR = 1 for 
definitive and probable positive samples, respectively) and no-cardio-toxic risk or NCTR group (CTR = -1 for 
definitive and probable negative samples, respectively). In QPTR model, bk represents the coefficients of the 
classification function, determined by the least square method as implemented in the LDA module of the 
STATISTICA 6.0 software package 145. 

Best subset method was used for variable selection146-148. The statistical significance of the LDA model was 
determined by Fisher’s test by examining Fisher ratio (F) and the respective p-level (p). At the same time, the 
square Mahalanobis’s distance (D2) between the centroids of each one of the two groups (CTR and NCTR groups) 
was examined to test discriminatory power of the function developed 149. All the variables included in the QPTR 
model were standardized in order to bring it into the same scale. Subsequently, a standardized linear discriminant 
equation that allows to compare their coefficients is obtained 150. 

We also inspected the percentage of good classification, samples/variables ratios (ρ parameter), and number of 
variables to be explored to avoid over-fitting or chance correlation146, 147. Training of the QPTR model was carried 
out by selecting at random 86 (75%) out of 115 available samples. Specifically, in the training set were included 
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53 negative samples (21 definitive and 32 probable) and 33 positive samples (25 definitive and 8 probable). The 
remaining 29 samples (25%), never used for training, were employed to test the Pro-EDICToRs predictive ability 
of the QPTR model. This prediction set was composed by 18 negative samples (7 definitive and 11 probable) and 
11 positive samples (9 definitive and 2 probable). 

Principal Component Analysis (PCA). We used as inputs for the PCA the five values of nopk (nop0, nop1, 
nop3, nop4, nop5) selected as the more important in the LDA analysis (see Results section). We selected 
specifically these values because they proved to efficiently detect Pro-EDICToRs separating CRT from non-CRT 
samples. In total we used as input for PCA analysis a dataset composed by the five values of nopk for the 115 
samples, which represents 575 data points. All the analysis was developed with the software STATISTICA, using 
the default parameters. The higher variance explained with the lower possible number of components was the 
criteria used to stop the process of inclusion of new components. The amount of variance explained and the 
absolute value for the respective eingenvalue were used to rank the importance of a component. The loadings of 
each sample for the main principal components or factor (F1) were used to rank the samples.151-153 

Complex Network Analysis. In order to construct a Complex Network of MS blood proteome samples for the 
study of Pro-EDICToRs we carried out the following steps:  

1. First, we selected as inputs the five values of nopk (nop0, nop1, nop3, nop4, nop5) selected as the more 
important in the LDA analysis (see Results section).133 

2. We calculated the contributions of each nopk to the CRT probability for each one of the 115 samples by 
substituting the molecular descriptors into the QPTR equation using the Microsoft Excel application. 154 In 
means that, we calculated the result of the multiplication of each nopk for every sample by its own coefficient 
(bk) in the QPTR model (see above). Consequently, in so doing we transformed the previous data set of 575 data 
points (five nopk for each one of the 115 samples) into another data with the same dimensions but containing 
weighted *nopk = bk·nopk values instead of the original nopk values. 

3. All the contributions *nopk predicted were used as input for the software STATISTICA employed to 
calculate the blood proteome ith-sample/jth-sample Regression coefficients (Rij). These coefficients were  used as 
pair similarity measures and represented actually as a 115x115 sample-sample R-matrix. This matrix was 
derived using the Basic statistics module of STATISTICA.153, 155   

4. Using Microsoft excel154 again we transformed the matrix derived with STATISTICA into a Boolean 
matrix. The elements of this matrix are equal to 1 if two proteome samples have a sample-sample Rij lower than 
certain cut-off. This cut-off or threshold value used was selected in such a way that it minimizes the average 
node degree given that we guarantee 0% of disconnected nodes in the total network including all CTR and 
NCTR cases.155 

5. The line command used in Excel to transform the distance matrix into a Boolean matrix was f = if (A$1 = 
$B2, 0, if (B2 > 0.9999971, 0, 1)). It allows transforming distance into Boolean values and equals the main 
diagonal elements to 0 avoiding loops in the future network. The Boolean matrix was saved as a txt format file. 

6. After, renamed the .txt file as a .mat file we read it with the software CentiBin.156, 157 Using CentiBin we 
can either represent the network or highlight all samples (nodes) connected to a specific sample and calculating 
many parameters including node degree. 

7. The large Complex Network derived was split into two sub-networks (CRT and non-CRT samples). Next, 
the Pajek software158, 159 was used to calculate different network topological indices (TIs) in order to compare 
the Pro-EDICToRs patterns in both networks. The TIs calculated with Pajek were: the number of nodes (n), the 
Total adjacency index or the same: number of edges (m), The Zagreb group index (M1), The Zagreb group index 
(M2), The Randic connectivity index (Xr), The Platt index (F), Index of relinking (P).20 The comparison was 
based on the value of the relative difference (D%) between the CTR with respect to NCTR sub-network for each 
TI. The values of D%(TI)CTR,NCTR were calculated as follows: D%(TI)CTR,NCTR = [TI(CTR) – TI(NCTR)]·100/ 
TI(NCTR).  

8. CentiBin software was used to generate ideal random networks by four different algorithms with the aim of 
comparing these networks with the predicted ProEdictors sub-networks of CTR and non-CTR class. The ideal 
networks list include: Barabasi-Albert random network, Kleinberg small wolrd network (SWN), Erdos-Renyi 
network and Epsstein power law network (PLN). All these ideal networks were generated with a number of 
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nodes between the number of nodes of the CTR and non-CTR sub-networks.157 The comparison was based on 
the value of the relative difference (D%) between the actual network a (CTR or NCTR) with respect to the ideal 
ith-sub-network for each TI. The values of D%(TI)a,i were calculated as follows: D%(TI)a,i = [TI(CTR) – 
TI(NCTR)]·100/ TI(NCTR).  

Partial Order Analysis. We used three sample attributes as inputs for the construction of alternative two-
attributes POs schemes: CTR posterior probabilities predicted with the LDA model, PCA F1 scores, and Complex 
Network node degrees for each sample xi (see the three previous sections). Different test and statistics where 
calculated to compare and assess the quality of these alternative POs, including the two more important: T(g1, g2) 
index: Tanimoto’s coefficient and χ2: Chi-square. The Chi-square is a classic statistic and the T(g1, g2) indices for 
two alternative POs of two posets (A and B) can be calculated as follows:107-111, 113-116, 160-164 
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Where, g1 and g2 are weights that can take the values of either 0 or 1 and to explain the above equation Sorensen 
and Burggemann et al. introduced the following notations for comparable (<A, <B, ≤A, ≤B) or incomparable 
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Other important statistics reported were the P(IB): Stability of ranking, d(N): Diversity, t(N): Selectivity, NL: 
Number of Levels, NEL: Number of Elements in the Largest Level, V(N): Comparability, U(N): Contradictions, 
K(N): Level of degeneracy, NEC: Number of equivalent classes, and C: Complexity, see references for details. We 
carried out the PO analysis using the software Hasse for Windows (WHASSE), which was kindly released by Prof. 
R. Bruggemann.107-110, 113, 115, 116 

3. Results 
QPTR model for Pro-EDICToRs study. LDA and other predictors combined with a clustering technique such 

as PCA can be used for data processing in bioinformatics and proteomics including the compression and 
classification of large MS data.62, 165-167 For this kind of analysis the MS data points can be used directly, without 
transformation, or previously transformed. For instance, Lilien et al. have developed an algorithm called Q5 for 
probabilistic classification of healthy versus disease whole serum samples using MS. The algorithm employs 
PCA followed by LDA on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-
TOF) MS data and was demonstrated on four real datasets from complete, complex SELDI spectra of human 
blood serum. Replicate experiments of different training/testing splits of each dataset were employed to verify 
robustness of the algorithm. The probabilistic classification method achieved excellent performance with 
sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one 
prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral 
classification techniques and can provide clues as to the molecular identities of differentially expressed proteins 
and peptides.168 

In the present work we are proposing the use of high-throughput MS graph theory parameters instead of PCA 
to reduce data dimension and later combine it with LDA in the field of Toxicoproteomics. To illustrate the 
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potentialities of this approach on the early detection of Pro-EDICToRs research we decided to develop a QPTR 
model based on graph theoretical indices derived from the Nandy like graph representation of the SP-MS proposed 
above, which has been used for DNA sequences.169, 170 The nopk values proposed above are used here as numerical 
indices of the SP-MS Cartesian graph in the development of the QPTR equation described below: 

  7.17 =    0.0002 = p   0.74 =    U1.43 = D   5.54 = F   86 = N

)6(67.016.1324.8056.84394.17861.0
2

54310

ρ

−⋅+⋅−⋅+⋅−⋅= nopnopnopnopnopCTR
 

As shown in Table 1, this model predicts correctly 80.23% of cases (69 out of 86 samples) used for training. 
Specifically, 24 out of 33 CTR samples (sensitivity = 72.73%) and 45 out of 53 NCTR samples (specificity = 
84.91%) were classified correctly, respectively. The statistical significance of the model was evaluated through a 
Fisher’s test where F is the Fisher ratio and p represents the overall significance of the variables included in the 
model. Parsimony was tested by ρ value which is the ratio between number of cases and adjustable parameters. A 
satisfactory ρ value (7.17 > 4) discard any possibility of over-fitting. On the other hand, the square of 
Mahalanobis’s distance (D2) and Wilk’s U statistic provide a measure of the model’s discriminatory power, 
respectively. These values indicate a statistically significant separation of the two groups (CTR and NCTR) by the 
LDA technique, despite of the complex nature of the discrimination problem under consideration.171, 172 

Table 1. QPTR Model’s performance on training and test sets, respectively 

Training Set classification matrix a Parameter Test Set classification matrix a 

 NCTR CTR  (%)  NCTR CTR  

NCTR 45 8 84.91 Specificity  72.22 13 5 NCTR  

CTR 9 24 72.73 Sensitivity  72.73 3 8 CTR  

   80.23 Accuracy  72.41    

a Row entries are the observed frequencies and column entries the predicted ones. 

This is a logic result for a SP-MS since the number of protein related to a toxic event is presumed to be 
insignificant in relation to the total number of serum proteins. The values of the respective nopk computed and 
included on Eq. (5) for all the cases belonging to both CTR (represented by an open square) and NCTR 
(represented by a solid square) groups were plotted to illustrate this point (Figure 2 depicts one of these plots as 
matter of example).  

 

Figure 2. Example of scatter plots for one variable (nop1) included on QPTR equation.  
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In addition, the receiver operating characteristic curve (ROC curve) obtained, indicate that the model is not a 
random, but a statistically significant Pro-EDICToRs’ classifier (see Figure 3). A ROC curve plots the Sensitivity 
vs. one minus the Specificity. An ideal classifier hugs the left side and top side of the graph, and the area under the 
curve is 1.0. A random classifier should achieve approximately 0.5.173, 174  

 

Figure 3. ROC curve related to QPTR equation  

 The next step is to find out whether or not the model fulfill the basic assumptions of LDA147, 149. On the case 
of severe violations, the reliability of the Pro-EDICToRs predictions may be compromised. LDA establishes a 
linear, additive relationship between the predictive variables and the response variable and indeed, this is the 
simplest functional form to adopt with no prior information. Visual inspection of the distribution of the 
standardized residuals for all drugs (standardized residuals vs. cases; see Figure 4) supports this choice as no 
systematic pattern is seen 149. 

 

Figure 4. Plot of residuals vs. case number 
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The parametric assumption of homocedasticity (i.e.: homogeneity of variance of the variables) was also 
checked out by simply plotting the square standardized residuals for each predictor variable 149. These plots reveal 
an adequate scatter on the points, without any consistent pattern, validating a posteriori the pre-adopted 
assumption of homocedasticity (see Figure 5 to visually inspect one of these plots). As the term related to the 
error (represented by residuals) is not included in the LDA equation; the mean must be 0. Actually, the residual 
mean value for our model is close to the assumed value of 0. 

 

Figure 5. Example of plot for square residual vs. nopk included on QPTR equation  

Moving on to the next important parametric assumption of LDA, i.e.: normality of residuals, it was found that  
the residuals exhibit adequate values of skewness (-0.18) and kurtosis (0.86) 149, which is a characteristic of a 
normal distribution fitting. Additionally, the hypothesis of normality of residuals is confirmed by a Kolmogorov-
Smirnov statistic (D = 0.95) with a p-level < 0.2, a Shapiro-Wilk’s statistic (W = 0.98) with p = 0.16, and 
Lilliefors hypothesis test with p < 0.1. See also the distribution histograms in Figure 6. 
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Figure 6. Histogram of QPTR equation residuals distribution 

Finally, we detected certain co-linearity exhibited by the variables included in the model (pair correlation 
between some variables higher than 0.7). However, this fact in general do not inhibit the model’s ability to make 
inferences about the mean responses or predictions of new observations 175. In this sense, we assessed the 
predictive ability of the model by using an external test set, never used to train the model. The proposed model 
was able to classify correctly 21 out of 29 test samples (global predictability = 72.41%). In particular, 8 out of 11 
CTR samples (sensitivity = 72.73%) and 13 out of 18 NCTR samples (specificity = 72.22%) were classified 
correctly (see Table 1).  

PCA study of ProEdictors. As explained above LDA combined with PCA can be used for data processing in 
bioinformatics and proteomics including the compression and classification of large MS data.62, 165, 168 We 
substituted above PCA by the graph theoretical parameters nopk in order to codify MS information. In any case, 
we can still use PCA for other goals. For instance, a classic use of PCA is the construction of low dimension 
spaces for systems structural parameters. The PCA scores derived for each system, sample, or case (drugs, 
proteins, proteomes, and brain cortex regions) can be used to rank the importance of each sample with respect to 
the others. System can be understood here in the broader sense including drugs, proteins, or brain connectivity.61, 

123, 151, 176-181 In this work we performed PCA on the *nopk values for the 115 blood proteome samples to study the 
Pro-EDICToRs patterns extracting the first four principal components (F1, F2, F3, F4, and F5). The Figure 7 
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illustrates the fade of the explained variance with respect to the number of order of the components (1, 2, 3, 4, and 
5). 

 

Figure 7. Plot of eigenvalues of factors vs. number of order (PCA variance explained is used as point label). 

The first principal component or factor (F1) with eigenvalue 4.1 explained the 82.7% of variance of all the data. 
The second principal component (F2) explains 16.88% and the third only 0.53% of variance, which justify the use 
of only F1 to rank the samples in a 1D order if necessary and only the two first principal components (F1 and F2) 
to construct a ProEDICToRs 2D-PCA space. The Figure 8 depicts the 2D-PCA space, which illustrates the 
distribution of training, validation and/or CTR or non-CTR samples. 
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Figure 8. 2D-PCA space for the 115 samples. 

Complex network study of ProEdictors. Next, all the nopk values present in the QPTR model were used to 
construct by the first time a Pro-EDICToRs Complex Network (CN). As discussed above the nodes of the 
networks are the samples, which may vary from drugs, proteins, or tissues, to individuals in social networks; and 
the edges indicate high similarity between two samples or cases.182-185 First we constructed a general Pro-
EDICToRs network using all the 115 samples. The average node degree was 47.48 with a threshold cutoff of R = 
0.9999971, which guarantee 0% of disconnected nodes in the total network including all CTR and NCTR cases. 
Next, in order to perform a comparative study of overall connectivity patterns predicted for both contrasting 
groups (cardiac toxicity and control samples) we split the network into two sub-networks186: the CTR and the non-
CTR or NCTR sub-network. The Figure 9 and the Figure 10 graphically illustrates both sub-networks. We 
compared the TIs of both sub-networks; finding an average relative difference of D%(TI)CTR,NCTR = 38.6% for 7 
TIs studied, including the small/higher differences of 9.5 and 54.2 % for the re-linking P and Zagreb M2 indices 
respectively.20 The Table 2 summarizes the results for this comparison. Between the TIs reported we can find n 
(the number of samples). Considering that we built the general network with a cutoff that guarantee 100% of 
connected nodes the difference D%(n)CTR,NCTR = 38.0% between both sub-networks with respect to n reflects only 
differences in the large of the number of samples used for the analysis. Consequently, for this specific case 
D%(n)CTR,NCTR does not reflect any important topological similarity or dissimilarity between both sub-networks. 
Conversely, the number of links (blood proteome sample-sample pairs) in the network clearly depends in this case 
on the procedure used to construct the network (MS graph parameters, similarity measure, cutoff selected).155 
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Table 2. Results of the Complex network study of CTR vs. NCTR cases 

Parameter a CTR sub-network NCTR sub-network D%(TI)CTR,NCTR b 

n 44 71 38.0 

m 533 837 36.3 

M1 33808 61380 44.9 

M2 540686 1187725 54.5 

Xr 20.00 34.22 41.6 

F 32742 59706 45.2 

P 11.29545 10.32 9.5 
a The number of nodes (n), Total adjacency index or the same: number of edges (m), The Zagreb group index (M1), The Zagreb group index (M2), The Randic connectivity 
index (Xr), The Platt index (F), Index of relinking (P). b D% is the relative difference between the Topological Index (TI) for the sub-network CTR with respect to NCTR 
sub-network and was calculated as follows: [TI(CTR) – TI(NCTR)]·100/ TI(NCTR). The average node degree was 47.48 with a threshold cutoff of R = 0.9999971 to 
guarantee 0% of disconnected nodes in the total network including all CTR and NCTR cases. 

 

 

Figure 9. Complex Pro-EDICToRs sub-network for CTR samples 
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Figure 10. Complex Pro-EDICToRs sub-network for NCTR samples 

We also compared these networks with well known models of random networks such as: Barabasi-Albert, 
Kleinberg Small World, Erdos-Renyi, and Epsstein Power Law, finding similarities in some cases.187  The Table 3 
illustrates the pictures of the networks derived with the software CentiBin. This table also summarizes the basic 
TIs for all the networks. The ideal random networks derived have different remarkable properties. For instance the 
Kleinberg network is by definition a small-world network having a relative low average topological distance Dist 
= 2.6 despite its large diameter (D = 4) and very low average node degree (δ = 6). For instance, the rest of the ideal 
random networks present notably higher node degrees (δ > 20) in all cases despite having lower diameter (D = 2) 
in all cases.  
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Table 3 Comparison with some ideal random network models 

CTR sub-Network Value TIs Value Non-CTR sub-Network 

 

44 n 71 

 

533 m 837 

1056 W 1560 

1.0 D 1.0 

24.2 δ 23.6 

1.0 Dist 1.0 

Barabasi Albert Random Network  Value TIs Value Kleinberg Small World Network 

 

59 n 64 

 

631 m 192 

5582 W 10438 

2 D 4 

21 δ 6 

1.6 Dist 2.6 

Erdos Renyi Random Network Value TIs Value Epsstein Power Law Network 

 

59 n 59 

 

640 m 648 

5554 W 5548 

2 D 2 

22 δ 22 

1.6 Dist 1.6 
a The TIs used are: number of nodes (n), number of edges (m), Wiener index (W), diameter (D), and the network average values for node 
degree (δ), topological distance (Dist). 

As often happen in science, the non-ideal or real-world networks resemble some models of ideal networks in 
some aspects and others models in other features.188, 189 For instance, both CTR and NCTR sub-networks have 
very low topological distances (Dist = 1) like in small-world networks190, 191 but have a notably low diameter (D = 
1) and high node degrees (δCTR = 24.2 and δNCTR = 23.6). Notably the Wiener index, which encodes network graph 
branching, is comparatively low for our non-ideal network (WCTR = 1056 and WNCTR = 1056). These values a low 
not only compared with respect to the small-world network (W = 10 438) but with respect to the remnant networks 
too. The Table 4 summarizes the relative differences of CTR and NCTR sub-networks with other networks 
D%(TI)CTR,i and D%(TI)NCTR,i as well as the average values of each differences across all networks families or TIs 
types. 
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Table 4. Summary of the comparative study of the actual vs. ideal networks 

Network TIs TI average Barabasi-Albert Kleinberg Erdos-Renyi Epsstein 
D%(TI)CTR,i

n 26.9 25.4 31.3 25.4 25.4
m 56.9 15.5 177.6 16.7 17.7 
W 83.2 81.1 89.9 81.0 81.0 
D 56.3 50.0 75.0 50.0 50.0
δ 84.6 15.2 303.3 10.0 10.0 

Dist 44.2 38.7 61.2 38.7 38.3 
D%(TI)CTR,i Network average 37.7 123.1 37.0 37.1 

D%(TI)non-CTR,i

n 18.0 20.3 10.9 20.3 20.3 
m 107.1 32.6 335.9 30.8 29.2 
W 75.2 72.1 85.1 71.9 71.9 
D 56.3 50.0 75.0 50.0 50.0
δ 80.1 12.4 293.3 7.3 7.3

Dist 44.2 38.7 61.2 38.7 38.3 
D%(TI)non-CTR,i Network average 37.7 132.5 36.7 36.6 

a The TIs used are: number of nodes (n), number of edges (m), Wiener index (W), diameter (D), and the network average values for node 
degree (δ), and topological distance (Dist); D%(TI)n,i = (TIn – TIi)·100/ TIi, where TI refers to an specific topological index, n points to 
the predicted sub-network (CTR or non-CTR) and i to the corresponding random network (Barabasi-Albert, Kleinberg, Erdos-Renyi. 
Partial Order of ProEDICToRs. Ordering of samples may be very useful for the MS-based classification and 
comparison of blood proteome samples for the study of drug-induced cardiac toxicity. In principle, we may 
propose different 1D alternative orders for all the 115 samples (xi). These orders may be constructed based on 
different sample features. In this study is easy to realize that some of the parameters calculated above can play the 
role of ranking attributes by themselves to order the samples. For instance, a total 1D order may base on least three 
different inputs: QPTR model LDA probabilities, PCA F1-scores and/or Complex network node degree. In any 
case, a total order based on one singe parameter is less rich in information content and may easily fail in capturing 
all the biologically remarkable sample characteristics due to the high complexity of the blood proteome samples. 
Consequently, is more reasonable to construct a 2D order of samples based on more than one feature at time. In 
PO theory one may use different combinations of sample features to construct the PO scheme. The general 
principle is to order or rank different elements or samples (xi) using multiple ranking attributes or sample features. 
Consequently, the study of the best set of attributes or sample features used to build the PO becomes of the major 
importance. 100-105, 109, 111, 112, 163, 164, 192-198 The Table 5 depicts general statistics of different POs based on two or 
the three parameters for all the samples or both groups of samples (CTR vs NCTR) separately as well as.  
Table 5. General statistics (All samples, CTR, and NCTR) for different PO schemes. 

Parameter a Comparing posets by Tanimoto’s analysis 

 PCA vs. CN LDA vs. CN LDA vs. PCA 

 CTR NCTR All CTR NCTR All CTR NCTR All 

T 0.75 0.78 0.77 0.67 0.40 0.47 0.55 0.82 0.70 

|CTR∩NCTR| 411 909 1320 411 909 1320 411 909 1320

CTRΔNCTR 137 247 384 200 1344 1544 332 199 531 
a T is the Tanimoto’s coefficient and CTRΔNCTR = |CTR|+|NCTR|- 2| CTR∩NCTR | 
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 In our case, is desirable a PO scheme maximizing the separation of CTR from NCTR samples and the 
concordance between the ordering ranks based on different features. In this sense, we used Tanimoto and Chi-
square analysis to compare the different POs proposed. The similarity measure denoted the Tanimoto index, T(g1, 
g2) may substitutes the Spearman´s rank correlation in this cases when more than one attribute is used 
simultaneously. PO of samples forbids the use of the Spearman’s coefficient, which is applicable only to orders 
using the same single variable.164 In Table 5 one can note high PO overall similarity between the orders of PCA 
vs. CN as well as LDA vs. PCA with total Tanimoto’s coefficients of 0.77 and 0.70 respectively. In any case, the 
PCA-CN based PO is more coherent in ordering Pro-EDICToRs with coefficients equal to 0.75 and 0.78 for CTR 
and NCTR samples respectively. Conversely, LDA-PCA based PO is not very equilibrated presenting high 
similarity in NCTR samples ordering (0.82) but low similarity in CTR samples ordering (0.55). A more extensive 
characterization of these alternative POs is reported in Table 6. 

Table 6. Other important statistics for different PO schemes. 

Parametersa Cases for Tanimoto’s analysis 

 PCA vs. CN LDA vs.  CN LDA vs.  PCA 

T(All) 0.77 0.47 0.70 

χ2 2.81 -0.11 3.70 

P(IB) 0.53 0.21 0.47 

d(N) 0.1 0.07 0.09 

t(N) 0.39 0.53 0.32 

NL 23 31 23 

NEL 6 4 7 

V(N) 3269 5339 3618 

U(N) 6908 2802 6116 

K(N) 336 370 242 

NEC 59 59 73 

C Yes No Yes 
a  T(all): Overall Tanimoto’s coefficient, χ2: Chi-square statistic, P(IB): Stability of ranking, d(N): Diversity, t(N): 
Selectivity, NL: Number of Levels, NEL: Number of Elements in the Largest Level, V(N): Comparability, U(N): Contradictions, K(N): 
Level of degeneracy, NEC: Number of equivalent classes, and C: Complexity. 

 
Inspection of Table 6 not only confirms that PCA-CN and LDA-PCA based POs orderings are the more 

coherent with the higher Chi-square coefficients (2.81 and 3.7) but shows similar trends for both POs in many 
other statistic parameters.  In our opinion, we recommend to use as the first alternative LDA-PCA based PO 
considering also that LDA probabilities give more direct prediction of CTR vs. NCTR classification. The Figure 
11 illustrates the interface of the WHASSE software depicting a HASSE diagram with the PO of blood proteome 
samples. 
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Figure 11. View of the PO analysis performed with WHASSE software 
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4. Conclusions 
The node-overlapping parameters (nopk) derived from a Cartesian spectrum graph for the SP-MS are 

numerical indices very useful to derive QPTR models with LDA technique. These QPTR models can be employed 
for the proteome based early detection of drug-induced cardiac toxicities, which we called Pro-EDICToRs. The 
nopk values can be also used as inputs on other studies including PCA data reduction and Complex Network 
construction for Pro-EDICToRs data. The outputs of these studies (LDA, PCA, and Complex networks) can be 
used as order ranking attributes in PO analysis. It allows ordering and comparison of blood proteome data. The 
present result opens a new door to the application of SP-MS graph parameters to toxicoproteomics in the near 
future. After this work one may conclude that in general graph-based QPTRs will help to unravel proteome-
disease relationships hidden in the SP-MS, which cannot be explained by a single biomarker. 
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