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Abstract The present work continues our series on the use of MARCH-INSIDE molecular 

descriptors [parts I and II: J. Mol. Mod. (2002) 8: 237-245 and (2003) 9: 395-407]. These 
descriptors encode information regarding to the distribution of electrons in the molecule based 
on a simple stochastic approach to the idea of electronegativity equalization (Sanderson’s 
principle). Here, 3D-MARCH-INSIDE molecular descriptors for 667 organic compounds are 
used as input for a Linear Discriminant Analysis. This 2.5D-QSAR model discriminates between 
antibacterial compounds and non-antibacterial ones with a 92.9 % of accuracy in training sets. 
On the other hand, the model classifies correctly 94.0 % of the compounds in test set. 
Additionally, the present QSAR performs similar-to-better than other methods reported 
elsewhere. Finally, the discovery of a novel compound illustrates the use of the method. This 
compound, 2-bromo-3-(furan-2-yl)-3-oxo-propionamide have MIC50 of 6.25 and 12.50 µg/mL 
against Ps. Aeruginosa ATCC 27853 and E. Coli ATCC 27853 respectively while ampicillim, 
amoxicillim, clindamycin, and metronidazole have, for instance, MIC50 values higher 250 µg/mL 
against E. Coli. Consequently, the present method may becomes a useful tool for the in silico 
discovery of antibacterials. 
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Introduction 
 
Quantitative-Structure-Activity Relationships (QSAR) methods have emerged due to the 

interest in finding efficient methods for the discovery of new drug-like compounds, 
understanding biological mechanism of action, and the search for compounds with the required 
profile of activity [1]. This method is based on the representation of molecular structure by 
certain numbers, the so-called molecular descriptors which are thereafter connected with 
biological activity by regression techniques [2, 3].  

Quantum chemical calculations can be used to obtain a priori descriptors for QSAR studies. 
Given the fact that, some of these quantum properties are not observable, the way to calculate 
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them is not uniquely defined. Consequently, it is likely that there are many different schemes for 
their calculation, none of which is fundamentally more correct than other. Unfortunately, the 
computation is often also computationally too demanding for large sets of molecules [4]. In order 
to tackle this difficulty, Bultinck et al., described an implementation of a computational approach 
based on the Electronegativity Equalization Principle (EEP) to allow very fast calculation of 
atomic charges and related molecular descriptors [5]. According to EEP described by Sanderson, 
when molecules are formed, the electronegativities of the constituent atoms become equal 
coinciding with a fixed distribution for probabilities of finding the electrons in the 
neighbourhood of a specific atom in the molecule at the steady state [6-9]. Simpler and faster 
methods calculate molecular descriptors based on the idea of EEP are of interest for very large 
data bases of compounds to find drug-like leads.  

Consequently, our research group has introduced a Markov chain (MC) approach based on the 
idea of EEP [10-19]. As a consequence, we were able to derive new molecular descriptors 
encoding the distribution of electrons in the molecule. The approach termed as Markovian-
Chemicals-In silico-Design (MARCH-INSIDE) has shown to be very useful in drug design, 
toxicology, proteomics, and bioinformatics [10-19]. MARCH-INSIDE presents also interesting 
skills to codify 3D structural features such chirality and Z-E isomerism [12, 13, 19].  

This last feature encourages us to study highly 3D-structure-dependent pharmacological 
activities like antibacterial action [20]. As a result of the widespread use of antibacterials has 
been rising the emergence of antibacterials-resistant pathogens, which in turn has fuelled an 
ever-increasing need for new drugs [21]. 2.5D-MARCH-INSIDE and Linear Discriminant 
Analysis (LDA) have been used to develop a QSAR in order to classify compounds as anti-
bacterial or not, within structurally heterogeneous series, is presented in this work. The 
predictability for test set and comparison with respect to previously models validate this QSAR. 
In addition, the selection by virtual screening, synthesis, characterization, and preliminary assay 
of a novel compound illustrates how to use the model in practice. Finally, backprojection 
analysis of some compounds exemplifies the uses of the model for structure-activity 
relationships mapping.  

 
Materials and Methods 
 
The basis of the 3D-MARCH-INSIDE approach  
 
The basis of the present approach has been explained in detail elsewhere [11]. Briefly, the 

model constitutes a stochastic approach to EEP. Consider a hypothetical situation in which a 
series of atoms interact to form a molecule at an arbitrary initial time (t0) [10-13, 18, 19]. 
Assume that after this initial situation, electrons start to distribute around atom cores in discrete 
intervals of time tk. As depicted in Figure 1, this model describes the probabilities (kpij) with 
which electrons move from any arbitrary atom ai at time t0 (in black) to other aj atoms (in white) 
throughout discrete time periods tk (k=1, 2, 3, ...) and throughout the chemical bonds.  
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Figure 1.  Diagrammatic representation a Markov model for electrons distribution. The symbol 
tstationary represent the stationary time, electronegativity equalization. 

 
The present procedure considers the external electron layers of any atom core in the molecule 

(valence shell) as states of the MC. The method uses the matrix 1Π, which has the elements 1pij. 
This matrix is called the 1-step electron-transition stochastic matrix. 1Π is built as a square table 
of order n, where n represents the number of atoms in the molecule. The elements (1pij) of the 1-
step electron-transition stochastic matrix are the transition probabilities with which electrons 
move from atom i to j in the interval t1 = 1 (considering t0 = 0) [10-13, 18, 19]:  
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Where, χj is Pauling's electronegativity [22] for the atom aj, which bounds to the atom ai. In this 
equation δ is the number of atoms which compete with ai by its own electrons (atoms bound to 
ai) the number 1 account for the atom ai per se. We will only use 1Π afterwards. The spatial 
configuration of every atom has been codified throughout the dummy variable ωj. This variable 
(ωj) takes the value ωj = 1 if the atom aj is R, E or axial and the values ωj = 0, -1 whether the 
atom aj have not specific spatial configuration or present S, Z or equatorial configuration. The 
symbols R, S refers to the chirality of the atom. Alternatively, Z-E regards to the 3D 
characteristic for atoms involved in double bonds [12, 13, 19, 20]. The first step on calculating 
1Π may be deriving an electronegativity matrix χ which elements are isomer-indicator 
exponential functions coinciding with the numerators of expression like (1) [12, 13, 19]. In the 
short-term scale of time (t1 = 1) the movement of electrons is described here by 1Π, whilst the 
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probabilities of long-term movements are the elements of kΠ, (tk = k > 0) described herein by the 
Chapman–Kolgomorov equations [10-13, 23]: 

( ) ( )          2        kk Π=Π 1  

The method uses the sum of the self-return probabilities of the natural power of this matrix 
(SRπk) as molecular descriptors. In classical Markov theory, these numbers are the probabilities 
with which the system returns to the initial state. In the present context, they are the probabilities 
with which electrons return to the original atoms at different times. That is to say, these numbers 
encode the distribution of electrons after the formation of the molecule as governed by EEP [10-
13]. The calculation of SRπk for any organic or inorganic molecule was carried out using the 
MARCH-INSIDE software, being Tr the trace operator [24]: 
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Statistical Analysis 
 
 In order to discriminate the antibacterial activity of drugs we will use a simple linear QSAR 

using 3D-MARCH-INSIDE with the general form: 
 
A = b + b0 x SRπ0(ω) + b1 x SRπ1(ω) + b2 x SRπ2(ω) +.......+bk x SRπk(ω)   (4) 
 
Here, bk are the discriminant function coefficients fitted by Linear Discriminant Analysis. The 

model deals with the discrimination of antibacterial chemicals from non-active ones.  
Examination of Fisher ratio (F) and the p-level (p) determines the quality of the model. We 

also inspect the percentage of good classification and the proportion between the cases and 
variables in the equation or variables to be explored in order to avoid over-fitting or chance 
correlation. Finally, predictability in an external prediction set validates the model; those 
compounds were never used to develop the classification function [25-27]. The ROC curves, and 
the area under these curves, were additionally used to validate the model [28]. 

Each compound was scored in terms of posterior probability by means of the posteriror 
probability with which the compounds is classified as anticancer (P). This value constitutes a 
direct output of the model. This is a rigorous statistical index, which permits us to quote for the 
error. It possible to classify as antibacterial those compounds with P% > 5, as a consequence that 
the model p-level threshold limit is 0.05. Conversely, those chemicals with P% < -5 must be 
classified as inactive ones. Whereas, chemicals in the range 5 > P% > 0 must be considered as 
unclassified by the model at this p-level [10, 11]. 

 
Biological activity data used to seek the QSAR 
 
Here we considered a general data set composed by structurally diverse organic chemicals. 

This original set was split at random in order to design two different sets of antibacterial 
chemicals and two additional sets of non-antibacterial ones. Both antibacterial activity and 
chemical structure of each compound were verified in different references [29, 30]. For training, 
and predicting sets were considered as active those compounds recognized as antibacterials in 
the referred databases without taking into consideration the strain or the concentration of drug 



 5

required. Conversely such compounds having no effect against any strain were considered as 
non-active, as usual practice in all the QSARs reviewed below in Table 3. 

 
Synthesis and Characterization 
 
Reagents were used as purchased without further purification. Solvents (CHCl3) were dried and 

freshly distilled before use according to literature procedures. Chromatographic TLC was 
performed on pre-coated silica gel polyester plates (0.25 mm thickness) with fluorescent 
indicator UV 254 (Polychrom SI F254). Melting point was determined on a Buchi 510 apparatus 
and is uncorrected. The IR spectrum was recorded on a Perkin-Elmer 1640FT spectrometer (KBr 
disk, υ in cm-1). The 1H-NMR and 13C-NMR spectra were recorded on a Bruker WP 200-SY 
spectrometer at 200 MHz or on a Bruker SY spectrometer (400 MHz), the chemical shifts (σ) are 
given in ppm downfield from tetramethylsilane. For EIMS analysis, a VG-TS250 apparatus (70 
eV) was used. Elemental analysis was performed on a Perkin-Elmer 240B microanalyser and the 
values were within ± 0.4 % of calculated ones in all cases. 

 
2-Bromo-3-(furan-2-yl)-3-oxo-propionamide:  
To a solution of 2-furoylacetonitrile (2.7 g, 0.02 mol) in chloroform (20 mL), was added under 

strong stirring anhydrous benzoyl peroxide (4.84 g, 0.02 mol). Thereafter, bromine (3.2 g, 0.02 
mol) was added and the mixture was stirred for 2 h. at r. t. The solution was washed with water 
and NaHCO3 5%, dried over Na2SO4 and the solvent was evaporated under vacuum. The solid 
residue was recrystallized from ethanol to give pure the desired compound (3.6 g, 77 % yield).  

- Mp (dec.) = 155.8-156.7 oC.  
- 1H-NMR (acetone-d6), δ: furanic protons [7.94 (m, lH, H-5), 7.55 (m, lH, H-3), 6.75 

(m, lH, H-4)], 7.0-7.75 (m, 2H exch., NH2), 5.73 (s, lH, CH). 
- 13C-NMR (acetone- d6), δ: furanic carbons [150.82 (C-2), 149.25 (C-5), 120.92 (C-3), 

113.7 (C-4)], 178.83 (C=O), 184.5 (C=O), 47.51 (CH). 
- EIMS (70 eV) m/z (%): 231 (M+), 233 ([M+2]+), 152 (41), 95 (98), 31 (100). 
- IR υ: 3423, 3301, 1666, 1656. 
- Anal. C7H6BrNO3: C, H, N. 

 
Biological Assay of a new compound  
 

 This study was carried out with a new compound do not contained in the training or predicting 
series but predicted afterwards. In vitro Minimal inhibitory concentration (MIC50) assays were 
carrying out throughout the Mueller-Hinton serial dilution method according to 
recommendations of the National   Committee for Clinical Laboratory Standards [31, 32]. The 
MIC50 value was determined for two ATCC reference bacterial strains: Ps. aeruginosa ATCC 
27853 and E. coli ATCC 27853 were carried out.  

 
Results and Discussion 

 
QSAR Modelling  

 
Once we split at random the original data in representative training and test set, the training set 

may be used to seek the discriminant function using LDA. The model selection was subjected to 
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the principle of parsimony or Occam’s Razor [27]. As a result; we chose a function with higher 
statistical signification but with few parameters (bk) as possible: 
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Where, Astand is a dummy variable (1 for antibacterial compounds and -1 for non-active ones). 
Prior to fitting all molecular descriptors were mean centred and normalized avoiding certain 
descriptors dominating the model. Fisher test allow us to test the hypothesis of separation of 
groups with a probability of error (p-level) p < 0.05. All the parameters have the same values for 
equations, 5 and 6 [10, 11, 27, 33]. 

The model correctly classifies 92.9 % of the compounds in the training set. Specifically, the 
model correctly classifies 252 out of 274 (91.9 %) antibacterial compounds and 205 out of 218 
(93.9 %) inactive compounds in training set. In both stets, albeit the model is not strictly 3D the 
use of ω allowed taking into consideration compounds with specific 3D structure. The names of 
all compounds used to derive the QSAR as well as their predicted activity appear in Table 1 (see 
supplementary material). Compounds were ordered according to different intervals of predicted 
activity.  

On the other hand, prediction series shows a 94.0 % of global predictability. In this study the 
discriminant function has given rise for a good classification of 85 out of 92 (95.9 %) and 79 out 
of 83 (92.2 %) of non-active drugs respectively. The names of all compounds used to validate the 
QSAR as well as their predicted activities appear in Table 2, see supplementary information. 
Both, training and predicting sets percentages of good classification validates the model for the 
use in virtual screening taking into consideration that 85.0 % is considered as an acceptance 
threshold limit for this kind of analysis [34].  

In any case, a more serious validation was carry out by calculating the areas under the receiver 
operating characteristic (ROC) curve to show how well the model classifies. The Figure 2 
depicts by separate the ROC curves obtained for compounds on training and predicting sets with 
area under curve of 0.98 and 0.97 respectively, a ROC area of 1.0 indicates perfect classification. 
It can be visually detected a clear difference between both ROC curves and the line in the main 
diagonal which represent a random classifier area under curve equal to 0.5 [28].  
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Figure 2. Operating Receive Characteristic curve (ROC-curve) for training and predicting 
series of antibacterial and non-active compounds. 

 
Comparison with other models 

 
The present QSAR performs better-to-similar with respect to other eleven models based on 

large heterogeneous series of antibacterial/non-antibacterial compounds too, see Table 3 on 
supplementary information material [35-41]. In addition to those ten models in the Table 3 
another interesting work on antibacterial activity was developed by Mishra et al. [42]. However, 
the largest data studied by Mishra and co-workers incorporated only 463 compounds (242 
antibacterials) with about 84% of overall predictability and do not involve 3D or 2.5D indices. 
Briefly, the present model has some interesting characteristics (see Table 3, salient points in 
boldface fonts): 

1. Use the largest up-to-date reported data set of experimentally corroborated 
antibacterial compounds (363) for a QSAR study.  

2. A broad range of applicability for this model can be stressed considering the larger 
number of families of different organic compounds used. 

3. It must also be noted that on seeking the present model we explored only 10 
molecular descriptors.  

4. This model makes use by the first time of chiral topologic indices [43] for the search 
of antibacterial compounds.  

5. The quality of the predictions of this model have been assessed using a more rigorous 
test set method namely, re-substitution. Some of the other models assessed 
predictability using cross validation methods (e.g. leave-one-out or jacknife).   
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Table 3. Comparison with other approaches. 
 

Models’ features Antibacterial activity classification models 

to be compared a 1 2 3 4 5 6 7 8 9 10 11 

N total 667 661 661 661 352 111 111 - 972 458 433 
N antibacterials 363 249 249 249 174 60 60 - 241 229 217 

Technique b LDA LDA BLR ANN LDA LDA ANN LDA LDA LDA LDA
U-statistics (Wilk’s λ) 0.38 - - - 0.45 0.28 - 0.57 0.58 0.56 - 

F 139.3 - - - 48.2 20.9 - 116.6 98 98 - 
D2 5.33 - - - 4.9 - - - - - - 

p-level 0.00 - - - 0.00 0.00 - 0.00 0.00 0.00 0.00
3D-topologic indices c yes no no no no no no no no no no 

Explored variables 10 167 167 62 10 16 16 - - - 62 
Vars. in model 7 6 6 62 7 7 7 8 8 2 6 

Back-projection d yes no no no yes no no no no no no 
Training series 

N total 492 661 661 661 289 64 64 294 698 355 433 
N antibacterials 274 249 249 249 174 34 34 - 169 161 217 
Accuracy (%) 92.85 92.6 94.7 - 91 94.0 89.0 > 90 86.8 ~ 85 ~ 85

Families of drugs e 11 8 8 8 9 3 3 - > 5 - > 8 
Validation 

Validation method f i ii ii iii i i i i i i i 
N total 175 - - 63 63 47 47 70 274 103 128 

N antibacterials 89 - - 45 45 26 26 - 72 68 64 
Predictability (%) 94 93.6 94.3 ~ 94 89 92 97.9 > 90 86.9 ~ 85 ~ 85
Families of drugs b 11 - - 8 9 3 3 - > 5 - > 8 

a Model 1 is reported in this work, models 2 and 3 were reported by Cronin et al. in reference [35], model 4 
appears in reference [36] after Tomás-Vert et al., model 5 was very recently reported by Molina E. et al. 
(reference [37]), models 6 and 7 were published in 1998 (reference [38]), model 8 was developed by Mut-
Ronda et al., [39], two LDA models were recently introduced by Murcia-Soler et al.; model 9 in [39] and 10 in 
reference [41]. The last model here depicted was published by Gregorio-Alapont et al. [42]. 

b LDA refers to Linear discriminant analysis, ANN to artificial neural network, and BLR to binary logistic 
regression. 

 c Considers the capability of the method to encode together chirality, Z-E, and axial-equatorial isomerism. 
 d Considers the possibility of deriving a map with the calculated contribution of any atom in the molecule to the 

biological activity. 
e Only largely represented families were considered, e. g, methods 1 and 2 used 3 in training quinolones, 

sulphonamides, and cephalosporins but add only diaminopyridine (1 compound), cephamicins (2), oxacephems 
(1) and sulfones (1) to predicting series. 

f Validation methods are: i) external predicting series, ii) leave-30%-out crossvalidation, and iii) 100-times-averaged 
re-substitution technique. Furthermore, note that methods ii and iii are cross-validation methods. 
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The previous topologic models do not consider 3D structure, although the present model does 
not consider geometric 3D information may discriminate drugs with different 3D structure due to 
the use of ω, including optic and Z-E isomers. Consequently, predictions using the former 
models are expected to fail in such very commonly occurring cases in which stereochemistry 
determines the biological activity [12, 18, 19, 20, 44].The discrimination of different kinds of 
stereo-isomers has been fully exemplified before for 3D-MARCH-INSIDE [12, 13, 19] and, 
Figure 3 illustrates this aspect for a simple example. It is straightforward to realise that, the more 
different the matrices are for a pair of isomers the larger the differences for its calculated 
molecular descriptors. We would like highlighting that the present comparison does not involve 
the skills of different indices as molecular descriptors. In fact, recent results report the 
generalization of classic connectivity indices for chirality codification [43-46]. The present 
comparison refers only to the range of applicability of the reported QSARs with respect to the 
present one.  

 
[R]-CHClBrF [S]-CHClBrF 

χij H F C Br Cl χij H F C Br Cl 
H 2.1 0 6.8 0 0 H 2.1 0 0.92 0 0 
F 0 4 6.8 0 0 F 0 4 0.92 0 0 
C 2.1 4 6.8 2.8 3 C 2.1 4 0.92 2.8 3 
Br 0 0 6.8 2.8 0 Br 0 0 0.92 2.8 0 
Cl 0 0 6.8 0 3 Cl 0 0 0.92 0 3 

1Π(R) 1Π(S) 
 H F C Br Cl  H F C Br Cl 

H 0.24 0 0.76 0 0 H 0.7 0 0.3 0 0 
F 0 0.4 0.63 0 0 F 0 0.8 0.19 0 0 
C 0.11 0.2 0.36 0.15 0.16 C 0.16 0.3 0.07 0.22 0.23 
Br 0 0 0.71 0.29 0 Br 0 0 0.25 0.75 0 
Cl 0 0 0.69 0 0.31 Cl 0 0 0.23 0 0.77 

2Π(R) 2Π(S) 
 H F C Br Cl  H F C Br Cl 

H 0.14 0.2 0.46 0.11 0.12 H 0.53 0.1 0.23 0.07 0.07 
F 0.09 0.4 0.25 0.12 0.13 F 0.03 0.6 0.35 0.04 0.04 
C 0.1 0.2 0.35 0.15 0.16 C 0.09 0.2 0.43 0.13 0.14 
Br 0.1 0.2 0.26 0.29 0.15 Br 0.04 0.1 0.4 0.45 0.05 
Cl 0.1 0.2 0.26 0.13 0.31 Cl 0.03 0.1 0.39 0.05 0.47 

Figure 3. Depicts the different electronegativity matrix χ (which elements are equal to χj ⋅ 
exp(ωj)) if atom ai bounds to atom aj or equal to 0 otherwise, the normalized stochastic or 
Markov  matrix 1Π derived from χ and its first power 2Π for a pair of mirror isomers. 
 
Virtual Screening 

 
Finally, the discovery of 2-bromo-3-(furan-2-yl)-3-oxo-propionamide as a novel antibacterial 

compound illustrates the use of the model in practice. First, the SRπk(ω) values were calculated 
for a large data set of organic compounds. Unfortunately, the whole data it is not available for 
the moment due to ongoing patenting process. Anyhow, this data it is not necessary to reproduce 
the present work taking into consideration that only training and validation sets have to be used 
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in doing so. Secondly, the posterior probabilities of antibacterial activity are predicted with the 
3D-QSAR. Last, the compound with the highest probabilities was synthesized starting from the 
2-furoylacetonitrile, with yield of 77.0 % (Figure 4). 

 
 

O NH2

OO

Br

O
CN

O

a) (PhCO)2O2 / CHCl3
b) Br2

 
Figure 4. Synthesis of 2-bromo-3-(fur-2-yl)-3-oxo-propionamide. 

 
After biological assay this amide showed MIC50 values of 6.25 and 12.50 µg/mL against Ps. 

Aeruginosa ATCC 27853 and E. Coli ATCC 27853 respectively, which constitute strains of 
bacterial species with a high clinical incidence. With these MIC50 the compound may be 
considered useful as a lead compared for instance with MIC50 for ceftriaxone, a comercial drug, 
which present a MIC50 of 0.06 against µg/mL E. Coli but 64.0 µg/mL against Ps. Aeruginosa 
[47]. However, E. Coli has developed resistance against several broad spectrum antibacterial 
drugs such as ampicillim, amoxicillim, clindamycin, and metronidazole with MIC50 values 
higher 250.0 µg/mL in all cases [48]. In the present case both enantiomers were predicted with 
similar high probabilities, so we decided do not separate them in this preliminary study. More 
rigorous studies aimed on the synthesis, characterization, stability, biological testing, and the 
mechanism of action (now unknown) of both enantiomers and their derivatives are in any case 
beyond of the scope of the present paper. 

 
Backprojection analysis  
 

Finally, to gain further insight into the role played by the different molecular features a back-
projection approach was applied. Specifically, the use of back-projectable approaches enables 
the variables on the QSAR to be projected back into the molecular space, providing for 
biological and chemically significant conclusions. The MARCH-INSIDE descriptors introduced 
by our research group constitutes another example of novel back-projectable molecular 
descriptors. Specifically, the model introduced in the present work may be used to draw visual 
structure-activity maps for drugs in training and test set, as well as for the novel compound 
herein reported by the first time. This analysis makes it possible to calculate the contribution of 
the different groups of atoms in the molecule to the pharmacological activity. First, the k

SRπ  
values for each atom in the molecule are calculated and afterwards they are evaluated in the 
QSAR equation. All values are normalized within 0 to 100 scales [49].  

Figure 5 depicts these maps for Nitrofurantoin, Cefuroxime, Nifuroxime, and 2-bromo-3-(fur-
2-yl)-3-oxo-propionamide. Interestingly, one can note that the furan ring presented high positive 
contributions to the activity in Nitrofurantoin, and Nifuroxime, which are 5-nitro-furans with a 
double bond (C=N) attached to position 2 of the furan ring. These classes of compounds are 
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expected to bind the target by nucleophilic substitution at the double bond activated by the 
electron-withdrawing Nitro group. In this sense, our maps coincide with previous knowledge. 
Conversely, in Cefuroxime the highest contribution was calculated for the β-lactamic framework 
with not significant contribution of the furan ring. This fact coincides with the structure-activity 
relationships for cephalosporin. In the case of 2-bromo-3-(fur-2-yl)-3-oxo-propionamide a high 
contribution for the furan ring it is predicted too, it indicates that this compounds is more likely 
to nitro-furans [21]. 

 

 
Figure 5. Colour scaled backprojection analysis of some compounds in training and predicting 
sets: Nitrofurantoin (left top), Cefuroxime (right top), Nifuroxime (left bottom) and 2-bromo-3-
(fur-2-yl)-3-oxo-propionamide (right bottom). Colour code is as follows: Blue: structural 
framework with high (more than 50 %) contribution to the property, Light blue: group with 
significant contribution (20-50 %), Grey: group with low (< 10 %) or not contribution to the 
property. 
 
The explosion in the use of novel topologic molecular descriptors will continue in the future. 

The fusion of High Throughput Screening with QSAR techniques is a new promising field [50]. 
In conclusion, the aforementioned modelling results introduce a timely way for the discovery of 
antibacterial lead like compounds taking into consideration 3D structural features.  

 
Supplementary material 
 
Enclosed supplementary material depicts the names and posterior probabilities of all 

compounds in train (Table 1) and prediction sets (Table 2).  
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