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One of the main goals of Big Data research, is to find new data mining methods that are able to process
large amounts of data in acceptable times. In Big Data classification, as in traditional classification, class
imbalance is a common problem that must be addressed, in the case of Big Data also looking for a solution
that can be applied in an acceptable execution time. In this paper we present Approx-SMOTE, a parallel
implementation of the SMOTE algorithm for the Apache Spark framework. The key difference with the
original SMOTE, besides parallelism, is that it uses an approximated version of k-Nearest Neighbor which
makes it highly scalable. Although an implementation of SMOTE for Big Data already exists (SMOTE-BD),
it uses an exact Nearest Neighbor search, which does not make it entirely scalable. Approx-SMOTE on the
other hand is able to achieve up to 30 times faster run times without sacrificing the improved classifica-
tion performance offered by the original SMOTE.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the era of Big Data, frameworks like Apache Spark [1] are
growing in popularity and receiving a lot of attention. One of the
strengths of this kind of open source projects is that they allow
contributions from third party developers. Through Spark MLlib
[2], this framework provides a machine learning library that con-
tains a wide variety of algorithms for different tasks. Classification,
regression, clustering, data extraction, data transformation, and
data selection are some of them. Although powerful, its functional-
ity is still limited compared to other machine learning frameworks
like Scikit-Learn [3], and thus, many algorithms should be adapted
and included into the Spark ecosystem. This is the case of the well
known Synthetic Minority Over-sampling TEchnique (i.e., SMOTE)
[4], which is based on k-Nearest Neighbor (i.e., k-NN) algorithm.
This paper presents the Approx-SMOTE algorithm for Apache
Spark, which provides a SMOTE implementation based on an
approximated k-NN approach that uses hybrid spill trees [5] for
achieving accurate and efficient distributed nearest neighbor
search.
2. Problems and background

In datasets for classification, it is very common for the number
of instances in the different classes to be very different from one
another. This means that, for a binary classification problem, the
majority of the examples belong to one class and only a minority
to the other one. Furthermore, despite the fact that the minority
class is usually the class of interest, having so few instances makes
the classifiers to be biased in favor of the majority class, causing
the instances of the minority class to be misclassified. This is
known as imbalanced learning problem, and although it has been
widely studied in the past with normal-sized datasets [6–8], it is
still in an early research stage within Big Data scenarios [9].

One simple yet effective strategy to deal with imbalance, is to
resample the datasets to obtain others in which the number of
instances of each class are equal, or at least more similar. This elim-
inates the bias toward the majority class of the classifiers that are
constructed, and favors the correct classification of the instances
on the minority class.

Oneof themostpopular resamplingmethods is SMOTE [4],which
generates new synthetic examples in the neighborhood of small
groups of nearby instances. To find those neighborhoods, k-NN is
used.Themaindownsideofk-NNis that it is computationally intense
because for each instance in the data set, it calculates the distance
with the rest of instances in order to find the k nearest ones. Thus, it
has a complexity quadratic in the number of instances,Oðn2Þ. Hence,
when the number of instances of the dataset is huge, k-NN computa-
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tionbecomes infeasible [10]. Fortunately, thereare a fewapproaches
to efficiently approximate the nearest neighbor search by taking
advantage of parallel and distributed computing [5,11]. Specifically,
hybrid spill trees,which is the approachusedby spark-knnpackage1

implemented by Forest Fang (saurfang on GitHub2), split the space in
such a way that the instances that fall into the same leaf of the tree,
are considered neighbors.

There exists an adaptation of SMOTE for Big Data, SMOTE-BD
[12] implemented and published in the SparkPackages repository.3

Unfortunately, it uses an iterative implementation of exact k-NN
[13], which limits its applicability to solve real Big Data classification
problems, as it requires a lot of computing power. As noted in [14],
scalability is one of the issues present in large-scale parallel systems,
so special attention must be paid to scalability when developing Big
Data algorithms. The solution we are presenting, Approx-SMOTE,
greatly reduces the required computing power by using an approx-
imate nearest neighbor search approach which also offers high scal-
ability. It should be highlighted that using an approximation to the
nearest neighbors does not seem to negatively affect the final results.
3. Software framework

The Approx-SMOTE package and its documentation are publicly
available at GitHub.4 It is also published on SparkPackages reposi-
tory,5 so can be easily installed as a dependency using Maven or sbt.

3.1. Software architecture

Approx-SMOTE is built as an Apache Spark MLlib package. It has
no dependencies since Saurfang’s approximated k-NN6 is bundled.
Following the naming conventions used in other data mining frame-
works, such as Weka, this implementation is provided inside a new
package called instance in a class named ASMOTE, which inherits
the Spark ML Transformer7 class. The package knn contains Saur-
fang’s implementation of the approximated k-NN used for synthesiz-
ing new instances.

3.2. Software functionalities

The Approx-SMOTE functionality consists in synthesizing new
examples belonging to the minority class from an imbalanced bin-
ary classification dataset. New examples, along with the original
examples, result in an oversampled dataset which, a priori, should
contribute to the training of less biased classifiers towards the
majority class. Approx-SMOTE, as an oversampling method, has a
parameter (percOver) for defining the number of synthetic exam-
ples belonging to the minority class to be created. That parameter
is a percentage of the number of minority class instances, and its
default value is 100 (i.e., the number of minority instances is dou-
bled). As k-NN is used for synthesizing new examples, all the
parameters of Saurfang’s approximated k-NN can be adjusted, such
as the number of nearest neighbors (k), the maximum distance
between two neighbors (maxDistance), or the size of the top tree
(topTreeSize) among others. The parameters meaning and func-
tioning is explained in detail in [11]. The information about all the
parameters default values is available at Saurfang’s spark-knn

GitHub repository.
1 https://spark-packages.org/package/saurfang/spark-knn
2 https://github.com/saurfang
3 https://spark-packages.org/package/majobasgall/smote-bd
4 https://github.com/mjuez/approx-smote
5 https://spark-packages.org/package/mjuez/approx-smote
6 https://github.com/saurfang/spark-knn
7 https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/Transformer.

html
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4. Implementation and empirical results

Approx-SMOTE is implemented in Scala 2.12 for Apache Spark
3.0.1 following the Apache Spark MLlib guidelines. A thorough val-
idation of the algorithmwas performed using cloud-based clusters.
The objective of the experiments was to prove that Approx-SMOTE
oversamples data equivalently as it does SMOTE-BD, but in a faster
and more scalable way. We consider two oversampled datasets to
be equivalent, if they both affect the classification performance of a
classifier equally. In our experiments, a Spark ML Random Forest
classifier with 100 trees and default parameters, was used. The
characteristics of the six datasets used for all classification perfor-
mance comparisons are described in Table 1.

4.1. Experimental framework

The experiments were launched on Google Cloud clusters com-
posed of one master node (8 vCPU and 52 GBmemory) and five dif-
ferent worker nodes configurations: 2, 4, 6, 8, and 10. Each worker
node had 2 vCPU and 7.5 GB memory. Thus, the biggest cluster (1
master and 10 workers) consisted in 28 vCPUs and 127 GB mem-
ory. For comparing execution times all cluster configurations have
been used. The classification performance comparison was exe-
cuted on the biggest cluster, using 2-fold stratified cross-
validation repeated 5 times.8

To ensure the repeatability of the experiments, a random seed
was fixed to 46. The experiments consisted in reducing the imbal-
ance ratio to 1 (i.e., balancing the dataset), thus, for each dataset, a
specific percOver parameter was calculated. The number of
neighbors (i.e., k) was fixed to 5. In the case of SMOTE-BD, the
number of partitions was set to 8, as they recommended in [12].
All other parameters were kept as default.

To evaluate and compare statistical differences in performance,
a Bayesian analysis was conducted using Bayesian hierarchical sign
tests [17] (baycomp9 library was used). The number of samples for
all Bayesian comparisons was set to 50000. The graphical represen-
tation for this type of analysis, is a ternary plot [18] where the region
of practical equivalence (i.e., ROPE) appears on the top corner, and on
the right and left corners are the regions of the methods under com-
parison. The ROPE was set to 0.01, which means that two algorithms
with a difference in performance of less than 0.01 will be considered
equivalent.

The performance metrics chosen were AUC and F1-score, which
are widely used in imbalanced learning [19].

4.2. Results and discussion

The comparative results about classification performance is
shown in Table 2. The ‘‘No resampling” column shows how the Ran-
dom Forest classifier performs trainedwith the original imbalanced
dataset without any change (i.e., without applying any kind of
resampling). The blueness intensity of the cells depicts the results
as a heatmap, the darker the blue, the better the result. The best
result for each dataset and metric, is highlighted within a black
box. According to the results, Approx-SMOTE achieves the best clas-
sification performance overall. However, as was to be expected,
SMOTE-BD results were almost the same. The use of SMOTE, partic-
ularly for HIGGS IR4 andHIGGS IR16 datasets, benefited the classifi-
cation performance. To check if Approx-SMOTE indeed performs
better, bayesian statistical tests were performed and are shown in
Fig. 1. The equivalence between SMOTE-BD and Approx-SMOTE is
8 This cross-validation strategy is commonly used for imbalanced learning
scenarios [16].

9 The baycomp library is publicly available at https://baycomp.readthedocs.io/en/
latest/.
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Table 1
Main characteristics of the datasets used in the experiments: number of instances, number of features, number of classes of the minority and majority classes, imbalance ratio,
and dataset size in libsvm [15] format.

Dataset # Instances # Attributes # maj/min IR Size (GB)

SUSY IR4 3389320 18 2712173/677147 4.00 1.23
SUSY IR16 2881796 18 2712173/169623 15.99 1.04
HIGGS IR4 7284166 28 5829123/1455043 4.00 3.94
HIGGS IR16 6194093 28 5829123/364970 15.97 3.26
HEPMASS IR4 6561364 28 5250124/1311240 4.00 3.77
HEPMASS IR16 5578586 28 5250124/328462 15.98 3.20

Table 2
Classification performance on Random Forest with 100 trees. The best results appear within black boxes. The higher the blueness intensity, the better the performance. The value
at the right of the � sign, refers to the standard deviation between cross-validation folds.

Fig. 1. Bayesian hierarchical sign tests comparing No resampling vs. SMOTE-BD (left column), No resampling vs. Approx-SMOTE (central column), and SMOTE-BD vs. Approx-
SMOTE (right column). According to AUC (a) and F1-score (b) metrics.
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demonstrated because both approaches obtained almost the same
supremacy compared to no resampling, and the direct comparison
between them, resulted in an extremely high ROPE probability.
Therefore, although at a first glance Approx-SMOTE seemed to be
better than SMOTE-BD according to the Table 2, actually, the perfor-
mance of both algorithms is not statistically different.
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Finally, regarding execution times for SUSY IR16 dataset,
Approx-SMOTE demonstrated to be between 7.52 (on the smallest
cluster) and 28.15 (on the biggest cluster) times faster than
SMOTE-BD. Table 3 shows the execution times in seconds of both
approaches on clusters with 2, 4, 6, 8, and 10 workers. Speedup,
which was calculated using the smallest cluster configuration as



Table 3
Execution times (in seconds) of SMOTE-BD and Approx-SMOTE on balancing SUSY IR16 task. Different cluster configurations (2, 4, 6, 8, and 10 workers) were tested. The number
of times that Approx-SMOTE was faster than SMOTE-BD is shown in parentheses.

Approach 2w 4w 6w 8w 10w

SMOTE-BD 1321.39 2218.60 2103.68 1587.29 2172.05
Approx-SMOTE 175.70 (7.52�) 123.70 (17.94�) 113.89 (18.47�) 91.30 (17.39�) 77.15 (28.15�)

Fig. 2. Execution time (left) and speedup (right) of SMOTE-BD (purple) vs. Approx-SMOTE (orange) on balancing SUSY IR16 dataset task. Different cluster configurations (2, 4,
6, 8, and 10 workers) were tested.
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baseline, revealed good scalability for Approx-SMOTE, and scalabil-
ity issues for SMOTE-BD. Fig. 2 shows a graphical representation of
the execution times and speedup comparisons where SMOTE-BD
approach is depicted in purple, and Approx-SMOTE, in orange.
5. Illustrative examples

As Approx-SMOTE follows Spark-ML design guidelines, its use is
similar to any other Transformer in the Spark API. Code 1 shows a
basic example where a dataset is loaded and then oversampled
doubling the minority class. The number of nearest neighbors for
synthesizing new examples is fixed to 5.
Code 1:
A basic example, written in Scala, showing how to use Approx-SMOTE
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6. Conclusions and future lines

In this paper, Approx-SMOTE, a novel approximated SMOTE
adaptation for Big Data, is presented. It is implemented as an algo-
rithm for Apache Spark framework, and as the original SMOTE
does, it synthesizes new minority-class belonging examples for
contributing to alleviate problems related to imbalanced learning
in Big Data scenarios. Although there is currently available an
implementation of SMOTE for Big Data (SMOTE-BD), it suffers from
important deficiencies in terms of efficiency and scalability, as a
consequence of the use of an exact search for nearest neighbors.
In Approx-SMOTE, an approximated nearest neighbor search
approach is used instead, resulting in an algorithm faster than
SMOTE-BD. In particular, the new proposal is around 7 times faster
for oversampling a dataset.



Table 4
Code metadata (mandatory).

Nr. Code metadata description Please fill in this column

C1 Current code version v1.1.0
C2 Permanent link to code/repository used of

this code version
https://github.com/mjuez/
approx-smote

C3 Legal Code License Apache-2.0
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
scala

C6 Compilation requirements, operating
environments & dependencies

sbt 1.4.2, scala 2.12.10,
Apache Spark 3.0.1

C8 Support email for questions mariojg@ubu.es
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when executed in a small cluster of 2 worker nodes, and almost 30
times faster when the number of workers is increased to 10. There-
fore, the new proposal achieves great scalability. Regarding to clas-
sifiers performance trained with resampled datasets using SMOTE,
it has been demonstrated that using approximated nearest neigh-
bors within Big Data environments, is equivalent to use exact near-
est neighbors. Approximating the neighbors does not affect the
performance negatively because the aim of SMOTE is to generate
synthetic instances in the minority class space. For this reason,
the use of instances close to the neighborhood seems to be as good
as using the exact neighbors.

As there exist other algorithms for fast approximate nearest
neighbor search, by means of using hashing for example [20,21],
an interesting future research line could be to use that approach
within SMOTE and prove whether it also is equivalent to the clas-
sical non-approximated version of SMOTE.
Required metadata

Current code version

See Table 4.
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