
Neurocomputing 464 (2021) 432–437
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Approx-SMOTE: Fast SMOTE for Big Data on Apache Spark
https://doi.org/10.1016/j.neucom.2021.08.086
0925-2312/� 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: mariojg@ubu.es (M. Juez-Gil), alvarag@ubu.es (Á. Arnaiz-

González), jjrodriguez@ubu.es (J.J. Rodríguez), clopezno@ubu.es (C. López-Nozal),
cgosorio@ubu.es (
Mario Juez-Gil ⇑, Álvar Arnaiz-González, Juan J. Rodríguez, Carlos López-Nozal,
César García-Osorio
Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, 09006 Burgos, Spain
a r t i c l e i n f o

Article history:
Received 2 March 2021
Revised 3 August 2021
Accepted 20 August 2021
Available online 24 August 2021
Communicated by Zidong Wang

Keywords:
SMOTE
Imbalance
Spark
Big data
Data mining
a b s t r a c t

One of the main goals of Big Data research, is to find new data mining methods that are able to process
large amounts of data in acceptable times. In Big Data classification, as in traditional classification, class
imbalance is a common problem that must be addressed, in the case of Big Data also looking for a solution
that can be applied in an acceptable execution time. In this paper we present Approx-SMOTE, a parallel
implementation of the SMOTE algorithm for the Apache Spark framework. The key difference with the
original SMOTE, besides parallelism, is that it uses an approximated version of k-Nearest Neighbor which
makes it highly scalable. Although an implementation of SMOTE for Big Data already exists (SMOTE-BD),
it uses an exact Nearest Neighbor search, which does not make it entirely scalable. Approx-SMOTE on the
other hand is able to achieve up to 30 times faster run times without sacrificing the improved classifica-
tion performance offered by the original SMOTE.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the era of Big Data, frameworks like Apache Spark [1] are
growing in popularity and receiving a lot of attention. One of the
strengths of this kind of open source projects is that they allow
contributions from third party developers. Through Spark MLlib
[2], this framework provides a machine learning library that con-
tains a wide variety of algorithms for different tasks. Classification,
regression, clustering, data extraction, data transformation, and
data selection are some of them. Although powerful, its functional-
ity is still limited compared to other machine learning frameworks
like Scikit-Learn [3], and thus, many algorithms should be adapted
and included into the Spark ecosystem. This is the case of the well
known Synthetic Minority Over-sampling TEchnique (i.e., SMOTE)
[4], which is based on k-Nearest Neighbor (i.e., k-NN) algorithm.
This paper presents the Approx-SMOTE algorithm for Apache
Spark, which provides a SMOTE implementation based on an
approximated k-NN approach that uses hybrid spill trees [5] for
achieving accurate and efficient distributed nearest neighbor
search.
2. Problems and background

In datasets for classification, it is very common for the number
of instances in the different classes to be very different from one
another. This means that, for a binary classification problem, the
majority of the examples belong to one class and only a minority
to the other one. Furthermore, despite the fact that the minority
class is usually the class of interest, having so few instances makes
the classifiers to be biased in favor of the majority class, causing
the instances of the minority class to be misclassified. This is
known as imbalanced learning problem, and although it has been
widely studied in the past with normal-sized datasets [6–8], it is
still in an early research stage within Big Data scenarios [9].

One simple yet effective strategy to deal with imbalance, is to
resample the datasets to obtain others in which the number of
instances of each class are equal, or at least more similar. This elim-
inates the bias toward the majority class of the classifiers that are
constructed, and favors the correct classification of the instances
on the minority class.

Oneof themostpopular resamplingmethods is SMOTE [4],which
generates new synthetic examples in the neighborhood of small
groups of nearby instances. To find those neighborhoods, k-NN is
used.Themaindownsideofk-NNis that it is computationally intense
because for each instance in the data set, it calculates the distance
with the rest of instances in order to find the k nearest ones. Thus, it
has a complexity quadratic in the number of instances,Oðn2Þ. Hence,
when the number of instances of the dataset is huge, k-NN computa-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.08.086&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neucom.2021.08.086
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mariojg@ubu.es
mailto:alvarag@ubu.es
mailto:jjrodriguez@ubu.es
mailto:clopezno@ubu.es
mailto:cgosorio@ubu.es
https://doi.org/10.1016/j.neucom.2021.08.086
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


M. Juez-Gil, Á. Arnaiz-González, J.J. Rodríguez et al. Neurocomputing 464 (2021) 432–437
tionbecomes infeasible [10]. Fortunately, thereare a fewapproaches
to efficiently approximate the nearest neighbor search by taking
advantage of parallel and distributed computing [5,11]. Specifically,
hybrid spill trees,which is the approachusedby spark-knnpackage1

implemented by Forest Fang (saurfang on GitHub2), split the space in
such a way that the instances that fall into the same leaf of the tree,
are considered neighbors.

There exists an adaptation of SMOTE for Big Data, SMOTE-BD
[12] implemented and published in the SparkPackages repository.3

Unfortunately, it uses an iterative implementation of exact k-NN
[13], which limits its applicability to solve real Big Data classification
problems, as it requires a lot of computing power. As noted in [14],
scalability is one of the issues present in large-scale parallel systems,
so special attention must be paid to scalability when developing Big
Data algorithms. The solution we are presenting, Approx-SMOTE,
greatly reduces the required computing power by using an approx-
imate nearest neighbor search approach which also offers high scal-
ability. It should be highlighted that using an approximation to the
nearest neighbors does not seem to negatively affect the final results.
3. Software framework

The Approx-SMOTE package and its documentation are publicly
available at GitHub.4 It is also published on SparkPackages reposi-
tory,5 so can be easily installed as a dependency using Maven or sbt.

3.1. Software architecture

Approx-SMOTE is built as an Apache Spark MLlib package. It has
no dependencies since Saurfang’s approximated k-NN6 is bundled.
Following the naming conventions used in other data mining frame-
works, such as Weka, this implementation is provided inside a new
package called instance in a class named ASMOTE, which inherits
the Spark ML Transformer7 class. The package knn contains Saur-
fang’s implementation of the approximated k-NN used for synthesiz-
ing new instances.

3.2. Software functionalities

The Approx-SMOTE functionality consists in synthesizing new
examples belonging to the minority class from an imbalanced bin-
ary classification dataset. New examples, along with the original
examples, result in an oversampled dataset which, a priori, should
contribute to the training of less biased classifiers towards the
majority class. Approx-SMOTE, as an oversampling method, has a
parameter (percOver) for defining the number of synthetic exam-
ples belonging to the minority class to be created. That parameter
is a percentage of the number of minority class instances, and its
default value is 100 (i.e., the number of minority instances is dou-
bled). As k-NN is used for synthesizing new examples, all the
parameters of Saurfang’s approximated k-NN can be adjusted, such
as the number of nearest neighbors (k), the maximum distance
between two neighbors (maxDistance), or the size of the top tree
(topTreeSize) among others. The parameters meaning and func-
tioning is explained in detail in [11]. The information about all the
parameters default values is available at Saurfang’s spark-knn

GitHub repository.
1 https://spark-packages.org/package/saurfang/spark-knn
2 https://github.com/saurfang
3 https://spark-packages.org/package/majobasgall/smote-bd
4 https://github.com/mjuez/approx-smote
5 https://spark-packages.org/package/mjuez/approx-smote
6 https://github.com/saurfang/spark-knn
7 https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/Transformer.

html

433
4. Implementation and empirical results

Approx-SMOTE is implemented in Scala 2.12 for Apache Spark
3.0.1 following the Apache Spark MLlib guidelines. A thorough val-
idation of the algorithmwas performed using cloud-based clusters.
The objective of the experiments was to prove that Approx-SMOTE
oversamples data equivalently as it does SMOTE-BD, but in a faster
and more scalable way. We consider two oversampled datasets to
be equivalent, if they both affect the classification performance of a
classifier equally. In our experiments, a Spark ML Random Forest
classifier with 100 trees and default parameters, was used. The
characteristics of the six datasets used for all classification perfor-
mance comparisons are described in Table 1.

4.1. Experimental framework

The experiments were launched on Google Cloud clusters com-
posed of one master node (8 vCPU and 52 GBmemory) and five dif-
ferent worker nodes configurations: 2, 4, 6, 8, and 10. Each worker
node had 2 vCPU and 7.5 GB memory. Thus, the biggest cluster (1
master and 10 workers) consisted in 28 vCPUs and 127 GB mem-
ory. For comparing execution times all cluster configurations have
been used. The classification performance comparison was exe-
cuted on the biggest cluster, using 2-fold stratified cross-
validation repeated 5 times.8

To ensure the repeatability of the experiments, a random seed
was fixed to 46. The experiments consisted in reducing the imbal-
ance ratio to 1 (i.e., balancing the dataset), thus, for each dataset, a
specific percOver parameter was calculated. The number of
neighbors (i.e., k) was fixed to 5. In the case of SMOTE-BD, the
number of partitions was set to 8, as they recommended in [12].
All other parameters were kept as default.

To evaluate and compare statistical differences in performance,
a Bayesian analysis was conducted using Bayesian hierarchical sign
tests [17] (baycomp9 library was used). The number of samples for
all Bayesian comparisons was set to 50000. The graphical represen-
tation for this type of analysis, is a ternary plot [18] where the region
of practical equivalence (i.e., ROPE) appears on the top corner, and on
the right and left corners are the regions of the methods under com-
parison. The ROPE was set to 0.01, which means that two algorithms
with a difference in performance of less than 0.01 will be considered
equivalent.

The performance metrics chosen were AUC and F1-score, which
are widely used in imbalanced learning [19].

4.2. Results and discussion

The comparative results about classification performance is
shown in Table 2. The ‘‘No resampling” column shows how the Ran-
dom Forest classifier performs trainedwith the original imbalanced
dataset without any change (i.e., without applying any kind of
resampling). The blueness intensity of the cells depicts the results
as a heatmap, the darker the blue, the better the result. The best
result for each dataset and metric, is highlighted within a black
box. According to the results, Approx-SMOTE achieves the best clas-
sification performance overall. However, as was to be expected,
SMOTE-BD results were almost the same. The use of SMOTE, partic-
ularly for HIGGS IR4 andHIGGS IR16 datasets, benefited the classifi-
cation performance. To check if Approx-SMOTE indeed performs
better, bayesian statistical tests were performed and are shown in
Fig. 1. The equivalence between SMOTE-BD and Approx-SMOTE is
8 This cross-validation strategy is commonly used for imbalanced learning
scenarios [16].

9 The baycomp library is publicly available at https://baycomp.readthedocs.io/en/
latest/.

https://spark-packages.org/package/saurfang/spark-knn
https://github.com/saurfang
https://spark-packages.org/package/majobasgall/smote-bd
https://github.com/mjuez/approx-smote
https://spark-packages.org/package/mjuez/approx-smote
https://github.com/saurfang/spark-knn
https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/Transformer.html
https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/Transformer.html
https://baycomp.readthedocs.io/en/latest/
https://baycomp.readthedocs.io/en/latest/


Table 1
Main characteristics of the datasets used in the experiments: number of instances, number of features, number of classes of the minority and majority classes, imbalance ratio,
and dataset size in libsvm [15] format.

Dataset # Instances # Attributes # maj/min IR Size (GB)

SUSY IR4 3389320 18 2712173/677147 4.00 1.23
SUSY IR16 2881796 18 2712173/169623 15.99 1.04
HIGGS IR4 7284166 28 5829123/1455043 4.00 3.94
HIGGS IR16 6194093 28 5829123/364970 15.97 3.26
HEPMASS IR4 6561364 28 5250124/1311240 4.00 3.77
HEPMASS IR16 5578586 28 5250124/328462 15.98 3.20

Table 2
Classification performance on Random Forest with 100 trees. The best results appear within black boxes. The higher the blueness intensity, the better the performance. The value
at the right of the � sign, refers to the standard deviation between cross-validation folds.

Fig. 1. Bayesian hierarchical sign tests comparing No resampling vs. SMOTE-BD (left column), No resampling vs. Approx-SMOTE (central column), and SMOTE-BD vs. Approx-
SMOTE (right column). According to AUC (a) and F1-score (b) metrics.

M. Juez-Gil, Á. Arnaiz-González, J.J. Rodríguez et al. Neurocomputing 464 (2021) 432–437
demonstrated because both approaches obtained almost the same
supremacy compared to no resampling, and the direct comparison
between them, resulted in an extremely high ROPE probability.
Therefore, although at a first glance Approx-SMOTE seemed to be
better than SMOTE-BD according to the Table 2, actually, the perfor-
mance of both algorithms is not statistically different.
434
Finally, regarding execution times for SUSY IR16 dataset,
Approx-SMOTE demonstrated to be between 7.52 (on the smallest
cluster) and 28.15 (on the biggest cluster) times faster than
SMOTE-BD. Table 3 shows the execution times in seconds of both
approaches on clusters with 2, 4, 6, 8, and 10 workers. Speedup,
which was calculated using the smallest cluster configuration as



Table 3
Execution times (in seconds) of SMOTE-BD and Approx-SMOTE on balancing SUSY IR16 task. Different cluster configurations (2, 4, 6, 8, and 10 workers) were tested. The number
of times that Approx-SMOTE was faster than SMOTE-BD is shown in parentheses.

Approach 2w 4w 6w 8w 10w

SMOTE-BD 1321.39 2218.60 2103.68 1587.29 2172.05
Approx-SMOTE 175.70 (7.52�) 123.70 (17.94�) 113.89 (18.47�) 91.30 (17.39�) 77.15 (28.15�)

Fig. 2. Execution time (left) and speedup (right) of SMOTE-BD (purple) vs. Approx-SMOTE (orange) on balancing SUSY IR16 dataset task. Different cluster configurations (2, 4,
6, 8, and 10 workers) were tested.

M. Juez-Gil, Á. Arnaiz-González, J.J. Rodríguez et al. Neurocomputing 464 (2021) 432–437
baseline, revealed good scalability for Approx-SMOTE, and scalabil-
ity issues for SMOTE-BD. Fig. 2 shows a graphical representation of
the execution times and speedup comparisons where SMOTE-BD
approach is depicted in purple, and Approx-SMOTE, in orange.
5. Illustrative examples

As Approx-SMOTE follows Spark-ML design guidelines, its use is
similar to any other Transformer in the Spark API. Code 1 shows a
basic example where a dataset is loaded and then oversampled
doubling the minority class. The number of nearest neighbors for
synthesizing new examples is fixed to 5.
Code 1:
A basic example, written in Scala, showing how to use Approx-SMOTE

435
6. Conclusions and future lines

In this paper, Approx-SMOTE, a novel approximated SMOTE
adaptation for Big Data, is presented. It is implemented as an algo-
rithm for Apache Spark framework, and as the original SMOTE
does, it synthesizes new minority-class belonging examples for
contributing to alleviate problems related to imbalanced learning
in Big Data scenarios. Although there is currently available an
implementation of SMOTE for Big Data (SMOTE-BD), it suffers from
important deficiencies in terms of efficiency and scalability, as a
consequence of the use of an exact search for nearest neighbors.
In Approx-SMOTE, an approximated nearest neighbor search
approach is used instead, resulting in an algorithm faster than
SMOTE-BD. In particular, the new proposal is around 7 times faster
for oversampling a dataset.



Table 4
Code metadata (mandatory).

Nr. Code metadata description Please fill in this column

C1 Current code version v1.1.0
C2 Permanent link to code/repository used of

this code version
https://github.com/mjuez/
approx-smote

C3 Legal Code License Apache-2.0
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
scala

C6 Compilation requirements, operating
environments & dependencies

sbt 1.4.2, scala 2.12.10,
Apache Spark 3.0.1

C8 Support email for questions mariojg@ubu.es

M. Juez-Gil, Á. Arnaiz-González, J.J. Rodríguez et al. Neurocomputing 464 (2021) 432–437
when executed in a small cluster of 2 worker nodes, and almost 30
times faster when the number of workers is increased to 10. There-
fore, the new proposal achieves great scalability. Regarding to clas-
sifiers performance trained with resampled datasets using SMOTE,
it has been demonstrated that using approximated nearest neigh-
bors within Big Data environments, is equivalent to use exact near-
est neighbors. Approximating the neighbors does not affect the
performance negatively because the aim of SMOTE is to generate
synthetic instances in the minority class space. For this reason,
the use of instances close to the neighborhood seems to be as good
as using the exact neighbors.

As there exist other algorithms for fast approximate nearest
neighbor search, by means of using hashing for example [20,21],
an interesting future research line could be to use that approach
within SMOTE and prove whether it also is equivalent to the clas-
sical non-approximated version of SMOTE.
Required metadata

Current code version

See Table 4.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgement

The project leading to these results has received funding from
‘‘la Caixa” Foundation, under agreement LCF/PR/PR18/51130007.
This work was supported by the Junta de Castilla y León under pro-
ject BU055P20 and by theMinistry of Science and Innovation of Spain
under project PID2020-119894 GB-I00, co-financed through Euro-
pean Union FEDER funds. It also was supported through Consejería
de Educación of the Junta de Castilla y León and the European Social
Fund through a pre-doctoral grant (EDU/1100/2017). This material
is based upon work supported by Google Cloud.
References

[1] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica,
Apache spark: A unified engine for big data processing, Commun. ACM 59 (11)
436
(2016) 56–65, https://doi.org/10.1145/2934664. url:https://doi.org/10.1145/
2934664.

[2] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.
Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia, A.
Talwalkar, Mllib: Machine learning in apache spark, J. Mach. Learn. Res. 17 (1)
(2016) 1235–1241.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[4] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic
minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[5] T. Liu, A.W. Moore, A. Gray, K. Yang, An investigation of practical approximate
nearest neighbor algorithms, in: Proceedings of the 17th International
Conference on Neural Information Processing Systems, MIT Press,
Cambridge, MA, USA, 2004, pp. 825–832.

[6] N.V. Chawla, N. Japkowicz, A. Kotcz, Editorial: Special issue on learning from
imbalanced data sets, SIGKDD Explor. Newsl. 6 (1) (2004) 1–6, https://doi.org/
10.1145/1007730.1007733.

[7] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng.
21 (9) (2009) 1263–1284.

[8] J.F. Díez-Pastor, J.J. Rodríguez, C.I. García-Osorio, L.I. Kuncheva, Diversity
techniques improve the performance of the best imbalance learning
ensembles, Inf. Sci. 325 (2015) 98–117, https://doi.org/10.1016/j.
ins.2015.07.025.

[9] W.C. Sleeman IV, B. Krawczyk, Multi-class imbalanced big data classification
on spark, Knowl.-Based Syst. 212 (2021), https://doi.org/10.1016/
j.knosys.2020.106598, url:http://www.sciencedirect.com/science/article/pii/
S0950705120307279 106598.

[10] H. Neeb, C. Kurrus, Distributed k-nearest neighbors, 2016..
[11] T. Liu, C. Rosenberg, H.A. Rowley, Clustering billions of images with large scale

nearest neighbor search, in: 2007 IEEE Workshop on Applications of Computer
Vision (WACV ’07), 2007, pp. 28–28. doi:10.1109/WACV.2007.18..

[12] M.J. Basgall, W. Hasperué, M. Naiouf, A. Fernández, F. Herrera, SMOTE-BD: An
exact and scalable oversampling method for imbalanced classification in big
data, J. Comput. Sci. Technol. 18 (03) (2018) 203–209, https://doi.org/
10.24215/16666038.18.e23, url:https://journal.info.unlp.edu.ar/JCST/article/
view/1122.

[13] J. Maillo, S. Ramírez, I. Triguero, F. Herrera, knn-is: An iterative spark-based
design of the k-nearest neighbors classifier for big data, Knowl.-Based Syst.
117 (2017) 3 – 15, volume, Variety and Velocity in Data Science. doi:
https://doi.org/10.1016/j.knosys.2016.06.012. url:http://
www.sciencedirect.com/science/article/pii/S0950705116301757.

[14] H. Hu, Y. Wen, T.-S. Chua, X. Li, Toward scalable systems for big data analytics:
A technology tutorial, IEEE Access 2 (2014) 652–687.

[15] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM
Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 1–27, https://doi.org/10.1145/
1961189.1961199.

[16] J.F. Díez-Pastor, J.J. Rodríguez, C. García-Osorio, L.I. Kuncheva, Random
balance: Ensembles of variable priors classifiers for imbalanced data,
Knowl.-Based Syst. 85 (2015) 96–111, https://doi.org/10.1016/
j.knosys.2015.04.022, url:http://www.sciencedirect.com/science/article/pii/
S0950705115001720.

[17] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a tutorial for
comparing multiple classifiers through bayesian analysis, J. Mach. Learn. Res.
18 (77) (2017) 1–36. url:http://jmlr.org/papers/v18/16-305.html..

[18] M. Juez-Gil, mjuez/baycomp_plotting (Nov. 2020). doi:10.5281/
zenodo.4244542. url:https://doi.org/10.5281/zenodo.4244542..

[19] Y. Sun, A.K. Wong, M.S. Kamel, Classification of imbalanced data: A review, Int.
J. Pattern Recognit. Artif. Intell. 23 (4) (2009) 687–719, https://doi.org/
10.1142/S0218001409007326.

[20] A. Gionis, P. Indyk, R. Motwani, et al., Similarity search in high dimensions via
hashing, in: Vldb, vol. 99, 1999, pp. 518–529..

[21] J. Tchaye-Kondi, Y. Zhai, L. Zhu, A new hashing based nearest neighbors
selection technique for big datasets (2021). arXiv:2004.02290..

Mario Juez-Gil received his BS, MS and Ph.D. degrees in
Computer Science from Universidad de Burgos (Spain)
in 2015, 2017 and 2021, respectively. His research
interests are focused in parallelization, big data, data
mining, and machine learning. As a researcher, he is a
former member of the CIG research group at Universi-
dad Politécnica de Madrid in 2017. Since 2018, he is part
of the ADMIRABLE research group at Universidad de
Burgos, where he is currently in a postdoctoral position.

https://doi.org/10.1145/2934664.url:https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664.url:https://doi.org/10.1145/2934664
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0010
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0010
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0010
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0010
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0020
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0020
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0025
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0025
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0025
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0025
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0025
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1145/1007730.1007733
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0035
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0035
https://doi.org/10.1016/j.ins.2015.07.025
https://doi.org/10.1016/j.ins.2015.07.025
https://doi.org/10.1016/j.knosys.2020.106598
https://doi.org/10.1016/j.knosys.2020.106598
https://doi.org/10.24215/16666038.18.e23
https://doi.org/10.24215/16666038.18.e23
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0070
http://refhub.elsevier.com/S0925-2312(21)01283-2/h0070
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.knosys.2015.04.022
https://doi.org/10.1016/j.knosys.2015.04.022
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1142/S0218001409007326
https://github.com/mjuez/approx-smote
https://github.com/mjuez/approx-smote


M. Juez-Gil, Á. Arnaiz-González, J.J. Rodríguez et al. Neurocomputing 464 (2021) 432–437
Álvar Arnaiz-González received his BS and ME degrees
in Computer Science from the University of Burgos and
a PhD, from the same university, in 2018. His research
interests are focused on data mining and artificial
intelligence, with a special interest in pre-processing
techniques such as instance and prototype selection. He
is a member of the ADMIRABLE research group
(Advanced Data MIning Research And Business intelli-
gence / Big data / Bioinformatics LEarning).
Juan J. Rodríguez received the BS, MS and Ph.D. degrees in
Computer Science from the University of Valladolid, Spain,
in 1994, 1998 and 2004, respectively. He worked with the
Department of Computer Science, University of Valladolid
from 1995 to 2000. Currently, he is working with the
Department of Computer Science at Universidad de Bur-
gos, Spain, where he is a Professor. His interests include
data science, machine learning and pattern recognition. He
has worked on methods for classifier and regression
ensembles, time series, feature selection, instance selec-
tion, multi-output and big data; with industrial, health,
bioinformatics and educational applications.
437
Carlos Lopez-Nozal received his BS and ME in Com-
puter Science and his PhD from the University of Val-
ladolid. He has been working since 1999 at the
University of Burgos, teaching programming and con-
ducting research in software maintenance and learning
analytics. He is a member of the ADMIRABLE research
group (Advanced Data MIning Research And Business
intelligence / Big data / Bioinformatics LEarning).
César García-Osorio received his BS and ME degrees in
Computing from Universidad de Valladolid (Spain) in
1994 and 1996, respectively, and his PhD from University
of Paisley (now University of the West of Scotland) in
2005. His research interests include data mining, instance
selection and big data. He is the coordinator of the
ADMIRABLE research group and has been the principal
investigator in several regional and national projects on
fundamental and applied research in machine learning.
Currently he is an associate professor at the University of
Burgos (Spain) where he teaches ‘‘Intelligent Systems”,
‘‘Languages Processors” and ‘‘Unsupervised Learning”.


	Approx-SMOTE: Fast SMOTE for Big Data on Apache Spark
	1 Introduction
	2 Problems and background
	3 Software framework
	3.1 Software architecture
	3.2 Software functionalities

	4 Implementation and empirical results
	4.1 Experimental framework
	4.2 Results and discussion

	5 Illustrative examples
	6 Conclusions and future lines
	Required metadata
	Current code version

	Declaration of Competing Interest
	Acknowledgement
	References


