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This paper studies the effects that combinations of balancing and feature selection techniques have on wide
data (many more attributes than instances) when different classifiers are used. For this, an extensive study is
done using 14 datasets, 3 balancing strategies, and 7 feature selection algorithms. The evaluation is carried
out using 5 classification algorithms, analyzing the results for different percentages of selected features, and
establishing the statistical significance using Bayesian tests.

Some general conclusions of the study are that it is better to use RUS before the feature selection, while

ROS and SMOTE offer better results when applied afterwards. Additionally, specific results are also obtained
depending on the classifier used, for example, for Gaussian SVM the best performance is obtained when the
feature selection is done with SVM-RFE before balancing the data with RUS.

1. Introduction

The term “wide data” has been used to refer to datasets char-
acterized by a high number of features and a low number of in-
stances (Kuncheva et al., 2020), which severely impairs the smooth
performance of learning algorithms. We have not been able to find in
the literature a proper definition of the term “wide data”. Although
strictly speaking a dataset could be considered wide when its number
of features (#Features) is just greater than its number of examples
(#Examples), #Features > #Examples, we believe that for a dataset to
deserve to be called wide, this difference must be substantial, #Features
> #Examples, for example, of at least one order of magnitude. For
reference, in the datasets used in the experimental part of this article,
that difference is even greater, with a #Features/#Examples ratio that
is greater than 20 for all datasets, and with at least 2000 features.

Several real-world datasets suffer from these problems, especially
biological and genomics datasets, discussed in Liu et al. (2020), where
data from electroencephalography analyses were used for epilepsy di-
agnosis, analysis in early detection of type 2 diabetes (Bernardini et al.,
2020), and the prediction of mortality among patients admitted to an
intensive care unit (Vidya et al., 2019). However, this type of data also
arises in other areas such as fault detection in engineering: for example,
the diagnosis of engine system faults from measurements taken from
the bearing assembly (Hang et al., 2019), the detection of induction
motor failures (Alshorman et al., 2020; Juez-Gil et al., 2020), and in
solar radiation estimation (Karasu & Altan, 2019), among others. It

* Corresponding author.

also appears in computer security environments, for intrusion detection
in network environments (Yang et al., 2019). The presence of a large
number of features (high dimensionality) decreases the efficiency of
learning algorithms and increases their execution time (Maldonado
et al., 2014).

As it is well known, the aim of feature selection (FS) algorithms
is to find the optimal combination of features that will help to create
models that are simpler, faster, and easier to interpret. However, this
task is not easy and is, in fact, an NP-hard problem (Guyon et al.,
2006). In addition, this type of data is known as unbalanced data
when the number of instances belonging to each class is very different
between classes (Fernandez et al., 2018). When dealing with unbal-
anced datasets, even if the classifier achieves high global accuracy,
it is often the case that the identification of the instances belonging
to the minority class is not highly precise. Classifiers work well with
instances of the majority classes, though these instances are usually
the least interesting, which means that the classifier is largely useless.
Some of the most popular algorithms that try to solve this problem
are based on oversampling techniques (Abdi & Hashemi, 2016) that
increase the number of instances of minority classes and undersampling
techniques (Ng et al.,, 2015) that decrease the number of instances
of the majority classes. And there are more recent proposals that use
ensembles to combat imbalance (Diez-Pastor et al., 2015), or deal with
this problem in the context of big data (Juez-Gil et al., 2021).
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The objective of this study is to conduct a series of experiments
to assess whether balancing techniques improve classification perfor-
mance when they are used in conjunction with feature selection on
wide data. For this purpose, we use the most common algorithms at
each of these stages. Moreover, we are not only interested in finding
the more suitable balancing algorithm, but we also seek to determine
the most appropriate moment to use it: either before or after feature
selection. There is too little literature comparing the performance of
these two strategies (Pes, 2020; Zhang et al., 2017), the main novelties
of the present paper are:

» The use of a wider variety of algorithms.

» The use of a larger number of datasets.

» The evaluation of the results for different percentages of selected
features, avoiding the bias of using a fixed percentage, and hence
providing a more complete overview of the problem.

+ The performance comparison of different combinations classifier-
balancing method.

The R code used for the feature selection and to create the figures
can be found on GitHub.!

The rest of the paper will be organized as follows. In Section 2,
the background on the different approaches of the feature selection
methods will be given. In Section 3, the same will be done for the
techniques dealing with unbalanced problems. Information will be
provided in Section 4 on the experimental setup and the results will
be presented and analyzed in Section 5. The main insights of the study
are discussed in Section 6. Finally, the conclusions and future work will
be presented in Section 7.

2. Feature selection

In data science, it is often very important to know which features of
a dataset are the most relevant for training learning algorithms (Saeys
et al., 2007). The use of certain features may not only make no
contribution to the improvement of the learning algorithm, but their
use might even worsen its performance. This reason explains why
FS algorithms are used to find the subset of features that improves
the performance of the models obtained using machine learning algo-
rithms. Moreover, FS algorithms also prevent the learning algorithm
from overfitting and speeds up its training. In addition, knowledge of
which the selected features actually are can provide useful insight into
the datasets.

This problem is even more relevant when dealing with wide data,
where the number of features is extremely high. At the same time,
this technique is widely used for big data (Peralta et al., 2015) where
reducing both data size and execution times are paramount.

Some taxonomies (Saeys et al., 2007; Zhu et al., 2007) can be found
in the literature on the different FS algorithms, the most widely used
of which and, from our point of view also the most convenient, classify
the features by their relationship with the learning algorithm. This
taxonomy is shown in Fig. 1, in which we can find three main types:
filters, wrappers and embedded methods (or nested subset methods):

« Filters (Bommert et al., 2020) are used to calculate the rele-

vance of each feature, mainly based on its statistical properties,
providing a numerical score for each feature that depends on
its contribution to the performance of the algorithm, also called
importance.
Since the operation of these methods will not depend on the use
of any particular classifier, it means that the feature sets can be
used with any classifier. This approach will reduce overfitting,
but it cannot guarantee the best performance, unlike other FS
algorithms.

1 https://github.com/Ismael-rp/feature_selection_wide_data.
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It should be noted that since this type of algorithms cannot
determine the optimal number of features, which would provide
the best performance. That number is an additional parameter
that must be set to select the subset of relevant features.

An advantage of filter methods is that they are only executed once
before the training, avoiding having to adjust a lot of hyperparam-
eters, making the training faster and more scalable. This feature
makes them specially suitable for big-data problems.

Two kinds of filters may be identified: univariate and multi-
variate. While the univariate FS algorithms find dependencies
between each feature and the output, the multivariate ones try to
find dependencies between the features, unfortunately, this is at
the cost of more processing time, which makes them less scalable.
Wrapper methods (Kohavi & John, 1997a) search throughout the
entire space of feature subsets looking for the subset that provides
the best performance to the specific learning algorithm given as
parameter. They usually offer better performance than the filter
methods, however the risk of overfitting is higher. They are also
slower and less scalable, because the learning algorithm has to be
executed every time a subset of features needs to be evaluated.
Embedded methods (Hamed et al., 2014; Xiao et al., 2008) take
advantage of the inner properties of certain learning algorithms,
in order to discover the most relevant features in the dataset, as
is the case with Random Forest.

Unlike wrapper methods, the classifier on which the embedded
methods are based is not necessarily the same as the one used to
classify. These methods have lower risks of overfitting and are
faster than the wrapper-based methods, although they are still
slower than the filter-based methods.

The strategies of the previous methods can be combined to obtain
new algorithms, the two combination approaches are:

» Hybrid algorithms take advantage of filter and wrapper meth-
ods, sequentially combining their outputs. The output of the
filter is given as the input to the wrapper, which reduces the
wrapper computation time, by making an initial selection using
the filter method and exploiting the efficiency that the wrapper
can obtain. Although the sequence of filter-wrapper is generally
used, different combinations can also be found (Sahu et al., 2018).
Ensemble algorithms (Bolén-Canedo & Alonso-Betanzos, 2018)
combine the output of several individual methods to improve the
results that would have been obtained from using each of them
in isolation.

In the same way as ensemble classifiers, ensembles for feature
selection can be classified into homogeneous (those that use
the same FS method) and heterogeneous (that use different FS
methods). The latter are the most widely used.

For this study, we focused on the most cited FS algorithms in
the state of the art. To facilitate the comparison of methods, in the
experiments we only included those that return a ranking, among which
we can find filters (T-test, ANOVA, Information gain, Chi squared, and
ReliefF) and embedded methods (Random Forest importance and SVM
Recursive Feature Elimination):

» T-test (Peck & Devore, 2011) is a popular statistical test that
may be used for an individual evaluation of feature relevance.
It computes the ratio between the differences of two class means
and the variability between them.

ANOVA (Johnson & Synovec, 2002), an acronym that stands for
“ANalysis Of VAriance”, is a simple and well-known method that
can be used for feature selection. It works in a similar way to
the previous method, testing the differences of means between
groups.


https://github.com/Ismael-rp/feature_selection_wide_data
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Feature selection algorithms

| |

Filter Wrapper | | Embedded
C
| | | 1
Univariate | | Multivariate | | Exponential | | Sequential | | Random

Fig. 1. Taxonomy of feature selection algorithms (Saeys et al., 2007).

+ Chi squared (Chi-S) is a feature selection algorithm proposed
by Liu and Setiono (1995) that uses the y? statistic and works in
two phases. The first phase uses the ChiMerge of Kerber (1992),
automatically increasing the y? threshold. The second phase at-
tempts to merge the features, by using the values computed in the
previous phase; if two features can be merged, it means that one
of them is irrelevant and can be discarded.

Information gain (Info-Gain) is a measure commonly used in the
construction of decision trees for finding the most informative
feature to use for splitting each node. The use of information gain
for feature selection involves an evaluation of the information
gain of each feature with respect to the target feature. More
specifically, information gain measures the expected reduction in
entropy (Mitchell, 1997).

Random Forest importance (RF-Imp) determines the usefulness
of each feature by measuring the performance difference of the
out-of-bag data when noise is added, as proposed by Breiman
(2001).

ReliefF (Kononenko, 1994) is an extended version of the orig-
inal Relief feature selector of Kira and Rendell (1992). Based
on instance-based learning (kNN is used for searching similar
instances), it estimates the importance of a feature in relation to
other features, and it is non-parametric, that is, no assumption of
any distribution is made (Urbanowicz et al., 2018).

SVM Recursive Feature Elimination (SVM-RFE) (Guyon et al.,
2002) is an iterative process that recursively removes features
according to the feature weights in a support vector machine
classifier (SVM). It is an example of backward feature elimina-
tion (Kohavi & John, 1997b) where the elimination is recursive
and the classifier used is the popular SVM.

3. Unbalanced data

A dataset is said to be unbalanced when it has a very different
number of instances for each class, which affects negatively the clas-
sifiers performance, is commonly measured using the imbalance ratio
(IR) (Luque et al., 2019), it is even more common in wide data due to
the low number of instances.

A straightforward solution for dealing with unbalanced data is
to resample the original data set by adjusting the balance ratio as
desired. On the one hand, undersampling methods eliminate instances
corresponding to the majority class (Ng et al., 2015); on the other
hand, oversampling methods create artificial instances for the minority
class (Abdi & Hashemi, 2016), and hybrid methods combine both
approaches.

The resampling methods used in this study are described below:

* Random undersampling (RUS) (Japkowicz, 2000) algorithm ran-
domly selects instances from the majority class (i.e., it removes
instances of the majority class).

* Random oversampling (ROS) (Japkowicz, 2000) algorithm dupli-
cates instances from the minority class.

« Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al.,
2002) algorithm creates new instances, interpolating two in-
stances of the original data set, the first one chosen randomly
and the second one chosen randomly from among its k closest
neighbors where k is a predefined parameter.

4. Experimental setup

Evaluating the performance of an FS algorithm is not as simple as
with a common classifier, where the evaluation is simply based on the
number and the type of correctly classified instances.

We aim to evaluate how good an FS algorithm is at selecting
the features. These algorithms will attach greater weight to the more
relevant features and less weight to the less relevant ones. Using an
artificial dataset, we would be able to compare the real weight of each
feature with the one provided by the FS. However, as with the case pre-
sented here where real datasets are used, it is common to evaluate the
selected features according to the classifier performance (Bol6n-Canedo
& Alonso-Betanzos, 2018). In this section, the steps followed during
the experiments are explained, in order to evaluate the performance
of the combination of feature selection and balancing on imbalanced
wide data.

4.1. Datasets

The 14 high dimensional unbalanced datasets used in this study are
summarized in Table 1. For each dataset, the number of examples, the
number of features, the relation between the number of examples and
features, the class names, the percentage of examples for each class,
the class imbalance ratio (IR), and the reference are shown. All the
dataset features were numeric and the original multi-class labels were
grouped into a new one, in order to obtain new two-class unbalanced
datasets. The dataset name indicates which classes were used (where
rem represents the combination of the remaining classes).

4.2. Cross validation

The experiments were performed using 5 x 2-fold cross validation.
Having been randomly divided into 2 parts, both parts were used for
training and testing and the same step was repeated 5 times. This kind
of cross validation is very useful when processing datasets with classes
that have a very low number of instances, since using 10-fold cross
validation will leave a very low number (or even no one) of instances
belonging to the minority class in the test (Dietterich, 1998).

Moreover, all the datasets were normalized for transforming all the
features: the mean to 0 and the standard deviation to 1.
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Table 1
Datasets used in the experimental study. Datasets 1-9 were previously used in Zhu et al. (2007). Datasets 10-14 were used in Li et al. (2018).
Dataset #EX. #Feat. % Class (min.; max.) %min.; %max. IR
1 Colon? 62 2000 32.26 (Normal; Tumor) 0.35; 0.65 1.82
2 MLL_ALL? 72 12582 174.75 (ALL; rem) 0.33; 0.67 2.00
3 MLL_AML?* 72 12582 174.75 (AML; rem) 0.39; 0.61 1.56
4 MLL_MLL? 72 12582 174.75 (MLL; rem) 0.28; 0.72 2.60
5 SRBCT_1? 83 2308 27.81 (1; rem) 0.35; 0.65 1.86
6 SRBCT_4* 83 2308 27.81 (4; rem) 0.30; 0.70 2.32
7 Lung_1? 203 12600 62.07 (rem; 1) 0.32; 0.68 2.17
8 Lung_4° 203 12600 62.07 (rem; 4) 0.10; 0.90 8.67
9 Lung_5° 203 12600 62.07 (rem; 5) 0.10; 0.90 9.15
10 Leukemia_BM" 72 7130 99.03 (BM; rem) 0.29; 0.71 2.43
11 TOX_171_1° 171 5748 33.61 (1; rem) 0.26; 0.74 2.80
12 TOX_1712° 171 5748 33.61 (2; rem) 0.26; 0.74 2.80
13 TOX_171_3" 171 5748 33.61 (3; rem) 0.23; 0.77 3.38
14 TOX_171 4" 171 5748 33.61 (4; rem) 0.25; 0.75 3.07

2https://jundongl.github.io/scikit-feature/datasets.html.
bhttp://csse.szu.edu.cn/staff/zhuzx/Datasets.html.

Table 2

Resampling algorithms used in this study with their parameters and the R packages used: class (https://
cran.r-project.org/web/packages/class/index.html), e1071 (https://cran.r-project.org/web/packages/e1071/
index.html), RWeka (https://cran.r-project.org/web/packages/RWeka/index.html), randomForest (https://
cran.r-project.org/web/packages/randomForest/randomForest.pdf), naivebayes (https://cran.r-project.org/
web/packages/naivebayes/index.html), sigFeature (https://www.bioconductor.org/packages/release/bioc/
html/sigFeature.html), mlr3filters (https://cran.r-project.org/web/packages/mlr3filters/index.html), FSelec-
tor (https://cran.r-project.org/web/packages/FSelector/index.html), and unbalanced (https://cran.r-project.

org/web/packages/unbalanced/index.html).

Algorithms Parameters Package
Classifier

KNN K=1 class
SVM-G c=1e+09, g=1e—-07 el071

C4.5 Default RWeka
Random forest Default randomForest
Naive Bayes Default naivebayes
Feature selection

T-test - sigFeature
ANOVA - mlr3filters
Chi-Squared - FSelector
Info Gain - FSelector
RF-Imp - FSelector
ReliefF Neighbors = 1 FSelector
SVM-RFE - sigFeature
Balancing

ROS Ratio 1:1 Own impl.
RUS Ratio 1:1 Own impl.
SMOTE Ratio 1:1, k=5 Unbalanced

4.3. Feature selection and balancing

Since our goal is to assess how data balancing affects feature se-
lection, we will combine the 7 FS algorithms with the 4 balancing
strategies explained in Sections 2 and 3 (all the methods are listed in
Table 2).

There are two possible ways to combine these algorithms: either to
perform feature selection first and then to balance the dataset (FS+bal),
or in reverse, to balance the dataset first and then to perform feature
selection (bal+FS).

All of these combinations (7 FS algorithms, 4 balancing strategies,
and 2 ways to combine them) added up to a total of 56 configurations
that were all tested.

Since all the FS algorithms used were rankers, they only offered
a list of features sorted by importance, without ever indicating the
optimal number of features for any algorithm. In other studies (Pes,
2020), the authors selected a specific number of features what could
induce a bias in the results. Here, we wished to conduct a broader and
more in-depth study of the process, so as to offer a better overview of
the behavior of the interactions between the two preprocessing steps,
which is why up to 20 different scenarios were considered, each using

a different percentage of selected features, with a separation of 5 points
between them.

4.4. Classifiers

Some of the most popular classifiers were used for testing fea-
ture selection: k-nearest neighbors (KNN), SVM-Gaussian, C4.5 trees,
Random Forest, and Naive Bayes (Bolén-Canedo & Alonso-Betanzos,
2018).

4.5. Parameters

All the algorithms together with the parameters used and the li-
braries that were applied are shown in Table 2. For the SVM-G classifier
we performed a grid parameter search and we found that using ¢ =
le + 09 and g = le — 07, we obtained an optimum performance in
all datasets. Regarding ReliefF, as it needs a long time to rank the
features, we set the parameter n to 1 in order to reduce its execution
time. For SMOTE, we tested a range of values from 1 to 20 for the
parameter k, we observed that the performance is very similar for all
of them and the recommended parameter 5 gives usually slightly better


https://jundongl.github.io/scikit-feature/datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/naivebayes/index.html
https://cran.r-project.org/web/packages/naivebayes/index.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://cran.r-project.org/web/packages/mlr3filters/index.html
https://cran.r-project.org/web/packages/FSelector/index.html
https://cran.r-project.org/web/packages/unbalanced/index.html
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Table 3
Confusion matrix.

Actual positive Actual negative

Predicted true
Predicted false

True positive (TP)
False negative (FN)

False positive (FP)
True negative (TN)

performance than the others. Finally, with the balancing algorithms, we
left the balancing ratio to 1 for all the datasets (i.e., the same number
of instances for both the majority and the minority classes).

4.6. Metrics

Testing an algorithm with unbalanced data can be problematic. If,
for example, the unbalance ratio were 1:10, with 100% majority-class
accuracy and 0% minority-class accuracy, the accuracy rate can be set
at 90%, however these results are of no use, as the trained classifier
cannot distinguish between the two classes.

We selected some of the most accepted metrics in feature selection
and data balancing, to evaluate the performance of each configuration:
the Area Under the ROC Curve (AUC), Geometric Mean (G-Mean), and
F,-Score.

These metrics are based on the confusion matrix (see Table 3) where
the following values can be found:

« True Positive (T P): positive instances correctly classified (minority
class in our data).

 True Negative (T N): negative instances correctly classified.

« False Positive (F P): positive instances incorrectly classified.

« False Negative (F N): negative instances incorrectly classified.

Our objective was to maximize the balance between TP and TN
values in the diagonal. Using these values, the three basic ratios can be
calculated before computing our three main metrics:

» Recall is the probability of considering a positive instance as
positive.

recall = _TP (@D)]
TP+ FN

« Specificity, as opposed to recall, is the probability of classifying
a negative instance as negative.
TN

speci ficity = TN+ FP 2)

+ Precision is the probability of an instance classified as positive.

L. TP
precision = 3
TP+TN+FP+FN

From these ratios, the measures used to evaluate the results of the
experiments can be defined.

» Area Under the ROC Curve (AUC) the mean between recall
and specificity. Note that, although it is often used to evaluate
multiple possible classifiers, here we just use it with a single point,
which is the mean between recall and specificity. This measure
has been used in earlier studies (Galar et al., 2012).

recall + speci ficity

AUC = 4
2 €]

+ F;-Score is the harmonic mean between precision and recall.
F,-Score = 2% precision X recall )

precision + recall

G-Mean, widely used in unbalanced problems, is the geometric
mean between sensitivity and specificity.

G-Mean = y/recall X speci ficity 6)
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5. Results

This section summarizes the results of the 6860 experiments that
were performed: the performance of 5 classifiers on 14 wide datasets
(Table 1) using all possible combinations of 7 strategies for FS algo-
rithms and 7 balancing strategies.”

For the sake of readability and simplicity, only the results of the
AUC metric are shown, since the conclusions drawn from the F,-Score
and G-Mean metrics were very similar. Nevertheless, the figures of all
the metrics are compiled in the additional material.

Fig. 2 shows all combinations of FS algorithms and classifiers in
a matrix of stacked graphs. In the stacked graphs, the ordinate axis
is the percentage of victories, and the abscissa axis is the percentage
of selected features (20 different percentages with separation steps of
5 percent; the minimum percentage of features used is 5 percent and
the maximum is 100 percent). The different shades of blue correspond
to different balancing strategies (as shown in the top legend). The rows
of the matrix of graphs correspond to different classifiers (shown on the
right side), the columns to the selectors (specified on the top of each
column).

Moreover, Fig. 3 is included where the area plots are replaced by
line plots: the y axis represents the average ranks obtained for each
balancing strategy and the x axis represents the percentage of the
features selected by the corresponding FS algorithm (sorted from best
to worst).

In Figs. 2 and 3, it can be seen that the results depend more on the
classifier than on the other parameters. Broadly speaking, we can see
the following insights for each classifier:

+ KNN: The best performance was achieved when resampling is
performed before the FS algorithm, more specifically, SMOTE+FS
and ROS+FS were on the top.

SVM-G: Although it may not be so clear in the rankings, it can
be seen in the area graphs that FS+RUS usually provided the best
results. Specially when SVM-RFE was the feature selector in use.
C4.5: While not using any balancing strategies showed better
results in the area graphs and ROS+FS in the average ranks,
both RUS balancing strategies were the lowest in the performance
rankings.

RF: The balancing configuration FS+ROS in the area plots, and
FS+RUS in the average ranks, showed better performance than
the others. Unlike C4.5, the rankings showed that no use of
balancing was by far the worst combination, a behavior also
supported by the results of a previous study (Pes, 2020).
NBayes: The use of RUS appeared to provide the biggest area,
especially FS+RUS which can also be seen in the average ranks.
According to the rankings, SMOTE was the worst, regardless of
when the feature selection was implemented, either before or
after its application.

Considering all the percentages of features and the different selec-
tors used, we summarize the most remarkable balancing strategies for
each classifier in Table 4.

Additionally, it is interesting to note that the number of selected
features appeared not to have much impact on the final rankings of the
balancing strategies.

So far, the balancing strategies have been compared to show which
one worked best for each classifier. In what follows, similar graphs will
be used to compare and to determine which the best combinations of
classifiers and FS algorithms.

Fig. 4 compares the FS algorithms which are differentiated by
colors. The columns represent each different balancing strategy used,

2 Each balancing strategy applied in two orders, before or after the feature

selection, and the case of not balancing.
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ROS+FS . SMOTE+FS
RUS+FS
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Percentage of features

Fig. 2. Comparison of balancing methods: each row corresponds to a classifier, each column to an FS algorithm. At the intersection, a stacked graph shows the results of the
different balancing methods for the corresponding combination of FS and classifier in shades of blue (the abscissa axis is the percentage of selected characteristics; the ordinate

axis is the percentage of victories).

Table 4

The best balancing configurations (rows) for each classifier (columns).
KNN SVM-G C4.5 RF NBayes

FS v

FS+ROS v

FS+RUS v v 4

FS+SMOTE

ROS+FS 4 v

RUS+FS 4

SMOTE+FS v

and the rows represent each classifier. It can be seen that among those
that provide the best performance are SVM-RFE alongside most of the
classifiers, specially with NBayes, KNN, and T-test. It also achieves
good results with the KNN, making some appearances with the smallest
number of features in SVM-G, C4.5, and RF.

Finally, looking at Fig. 5, where each graph shows the percentage
of times that a method has been the best for different sizes of feature
subsets, the classifier that shows the best overall performance was
SVM-G, with KNN in second place. However, the behavior of NBayes
was also noteworthy, which yielded good results for some combinations

of selectors and balancing strategies, when the percentage of selected
characteristics was low.

After the general overview provided by the previous figures, we
used average rankings to compare the configurations of the best clas-
sifiers (KNN and SVM-G). In Table 5 can be seen the most promising
combinations of classifiers, FS algorithms and balancing methods from
the previous figures. It shows some interesting patterns. Combinations
that use SVM-G as a classifier appear to perform better than those that
use KNN. Regarding the FS algorithm, the dominance of the combina-
tions that use SVM-RFE appears clear, as these combinations occupy
the top positions. Finally, it appears that the balancing strategies have
little influence on the positions that the combinations occupy; not only
there is no clear pattern, but both the best and worst combinations use
the same balancing strategy FS+RUS.

In an attempt to assess the effect of balancing the data and to
complete the analyses performed so far, in what follows, we use the
Bayesian test (Benavoli et al., 2014) to compare the FS configurations,
which are the ones that do not balance the data, with the other
configurations, which use different balancing strategies.

The Bayesian hypothesis testing is a relatively recent approach to
the analysis of experimental results that tries to overcome the limits and
problems which characterize null-hypothesis significance tests. It can
be used to compare two different methods, obtaining the probabilities
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Fig. 3. Comparison of balancing methods by means of the average ranks, each row corresponds to a classifier, each column to an FS algorithm. At the intersection, a line graph
shows the average rank for the different balancing methods for the corresponding combination of FS and classifier (the abscissa axis is the percentage of selected characteristics;

the ordinate axis is the average rank).

that one is better than the other, or that both have a performance that
is practically equivalent. In Bayesian tests, this “practical equivalence”
is given by the value of a parameter called the Region Of Practical
Equivalence (ROPE), which was set at 0.001 for this work. In addition,
only the performance values for the best balancing strategies in pre-
vious experiments were used, applying only the best 10% of selected
characteristics, to reduce the number of results and to facilitate the
analysis.

A Bayesian test constructs a probability distribution whose param-
eters are obtained from the differences in the experimental results
observed when comparing two methods, using certain weights that are
assumed to follow a Dirichlet distribution (Ongaro & Migliorati, 2013).
Given specific weights, the distribution can be used to calculate three
probabilities: (i) the probability that the first method is better than the
second; (ii) the probability that the second is better than the first; (iii)
the probability that both methods are practically equivalent. Through a
Monte Carlo process (Kroese et al., 2014), the weights can be sampled,
obtaining different probability triplets. The three values of these triplets
can be considered as barycentric coordinates that can be drawn as
points in a simplex of coordinates {(1,0,0),(0,1,0),(0,0,1)} (Benavoli
et al., 2017).

As shown in Fig. 6, where the classifier KNN and the feature
selector ReliefF (with the 10% of the best features) without balancing is
compared to the strategies FS+ROS, FS+RUS, and FS+SMOTE. Each
triangle represents one test where the left corner shows the probability
of not using any balancing, the right corner represents one of the
different resampling techniques (ROS, RUS, and SMOTE), and the top
corner represents the probability of no significant differences between
them.

Rather than using triangles, we substituted each triangle for colored
tiles in the heatmaps of Fig. 7, due to the high number of tests that were
performed, to facilitate the presentation of the results. Two probability
numbers are displayed in each tile: the top one is the probability that
the best option is to use the balancing strategy shown at the bottom
of each column, the lower one is the probability that no balancing is
the best option. The color of the tile is obtained from the difference
between these two values, with a scale that goes from green, when
the difference is more in favor of using the balancing strategy, to red,
when the difference is more in favor of not balancing. The white color
represents the cases in which there is no clear winner between the two
approaches. Each row is for a different combination of classifier and FS
algorithm (shown on the left).
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Fig. 4. Comparison of feature selector methods using the percentage of victories. The results are organized by balancing methods (columns) and classifiers (rows), while showing

the percentage of features selected on the x axis.

There are two heatmaps on the figure, the left one shows the results
when the AUC metric is used, and the right side when the F,-Score is
used (we also computed the results for the G-Mean, but they have been
left as additional material, since they are similar to those obtained with
AUC). Note that the first three tiles on the top left of the right matrix
(F,-Score) display the values corresponding to the triangles explained
in Fig. 6.

Finally, we also applied Bayesian analysis to answer the question of
whether it is better to balance before or after FS. The results of this
comparison were very interesting (see Fig. 8). The figure is divided
into three blocks according to the balancing method used (RUS, ROS,
and SMOTE). The results for the different combinations of classifier
and selector are grouped by rows (only those combinations that gave
the best results in previous experiments have been considered). The
results obtained for the different performance measures are grouped
in each column. In each tile, the upper number is the probability
that resampling before the FS stage is better, and the lower number
the probability that resampling after the FS stage is better. The color of
the tile is given by the difference between both values; if the difference
is in favor of resampling before FS, the greener its color will be; if the
difference is in favor of resampling after the FS stage, the color will be
redder. When both strategies give similar results, the color will be close
to white.

6. Discussion

As can be seen in Fig. 7, in most cases the balancing strategies (top
probability) are the ones that offered the best results, especially for
KNN+ANOVA and KNN+SVM-RFE. The exception is when considering
the RUS+FS balancing strategy, which seems to be clearly counter-
productive for most combinations of classifiers and FS algorithms. The
results of the combination FS+RUS are equally discouraging.

Also of interest is the behavior of the KNN+T-test combination,
which only seems to benefit from the balance obtained with the
SMOTE+FS strategy, if considering the AUC, or with the SMOTE+FS
and ROS+FS strategies, if considering the F,-Score.

When analyzing the order in which the balancing and feature se-
lection methods should be applied, Fig. 8 clearly shows that, in the
case of RUS, it is better to apply balancing before feature selection.
This result is confirmed by all the performance measures considered.
The only exception to this general trend seems to be when using the
KNN+T-test, where applying the balancing before the FS does not seem
to offer many advantages, being in fact worse, if we look at the F;
measurement. Interestingly, for KNN+T-test, this deviation from the
general trend also appears for the other two balancing methods.

On the contrary, the results suggest that, in general, SMOTE and
ROS perform better if applied after feature selection. This order of
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Fig. 5. Comparison of classifier performance using the percentage of victories. The results are divided by balancing methods (columns) and feature selector used (rows), while
showing the percentage of features selected on the x axis.

ROPE ROPE ROPE
(0.0118) (0.0018) (0.0000)
FS+ROS FS+RUS FS+SMOTE
0.2935 (0.6947) 0.7330 (0.2647) 0.0962 (0.9038)
(a) FS+ROS (b) FS+RUS (c) FS+SMOTE

Fig. 6. Example of three Bayesian tests for the classifier KNN and the feature selection ReliefF, where no balancing strategy is compared against using ROS, RUS, and SMOTE.

application is especially beneficial when the balancing method is ROS It is also interesting to note that the results with SMOTE appear to
and the classifier is KNN. Although KNN+T-test is again an exception be halfway between using RUS and ROS.

if we look at the values of the AUC and G-Mean measurements. The These results extend the findings of previous studies (Pes, 2020;
results observed with the combination of SMOTE with KNN+T-test are Zhang et al., 2017), which only gave as a general rule that to improve
also very remarkable, suggesting that with this combination, balancing the final results balancing had to be done before the feature selection
necessarily has to be done after feature selection to obtain the best stage. According to our results, to choose the most appropriate order,
results. one must also take into account the particular balancing method that
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Fig. 7. Bayesian test results comparing each resampling strategy with not use any resampling.
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Fig. 8. Summary of the Bayesian tests to compare at which point it is better to apply the balancing techniques (top value corresponds to the application of balancing before FS,

the lower value to the application afterwards).

will be used and, in some cases, even the classifier and the feature
selection technique.

7. Conclusions

The objective of our study has been to test whether balancing
improves the classification performance when used alongside a FS on
unbalanced wide data.

The main novelty of this study is its much broader view than other
previous studies, both in terms of the number of methods that were
tested, and the number of datasets. Furthermore, when evaluating the
methods, another notable novelty is that we have considered the results
of various sizes of selected features, rather than restricting ourselves to
a single size as in previous studies.

The conclusions we have reached, following thorough experimenta-
tion, have confirmed some of the results of previous studies. According
to the Bayesian test using the 10% best features selected, we can state
that using a strategy that includes balancing generally outperforms the
use of no balancing.

However, not all balancing strategies work in the same way and
their performance is highly dependent on the classifier and the FS that
is used. In so far as one balancing can improve the classifier or can be
counterproductive. The same happens at the time of resampling (before
or after), since resampling before the FS stage is generally better with
RUS while resampling after the FS stage generally works better with
ROS and SMOTE.

We can conclude that the best classifiers (among those used in
this study) for wide data were KNN and SVM-G, while ReliefF, T-
test, and SVM-RFE were the best FS algorithms. Furthermore, the
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Table 5

Average ranks of the most promising configurations previously identified.
Classifier FS Balancing Avg. rank
SVM-G SVM-RFE FS+RUS 9.43
KNN SVM-RFE SMOTE+FS 12.93
KNN SVM-RFE FS+SMOTE 13.79
SVM-G SVM-RFE ROS+FS 14.00
SVM-G SVM-RFE SMOTE+FS 17.57
KNN SVM-RFE ROS+FS 20.21
SVM-G SVM-RFE FS+ROS 20.93
SVM-G SVM-RFE FS 22.00
SVM-G SVM-RFE FS+SMOTE 22.00
KNN SVM-RFE FS+RUS 22.86
SVM-G SVM-RFE RUS+FS 23.36
KNN T-test SMOTE+FS 25.14
KNN ANOVA SMOTE+FS 26.43
KNN ANOVA FS+SMOTE 27.64
SVM-G ANOVA ROS+FS 28.00
SVM-G ANOVA FS+RUS 28.57
SVM-G T-test FS 29.07
SVM-G T-test FS+RUS 29.14
SVM-G T-test ROS+FS 29.36
KNN SVM-RFE RUS+FS 29.64
KNN T-test FS 30.43
SVM-G T-test FS+ROS 30.64
KNN T-test FS+ROS 30.79
SVM-G T-test FS+SMOTE 31.00
KNN SVM-RFE FS+ROS 32.00
SVM-G ANOVA SMOTE+FS 32.21
KNN ANOVA ROS+FS 32.64
KNN T-test ROS+FS 32.93
SVM-G T-test SMOTE+FS 34.93
SVM-G ANOVA FS+ROS 35.07
SVM-G ANOVA FS+SMOTE 35.64
KNN SVM-RFE FS 35.93
KNN T-test FS+SMOTE 35.93
SVM-G ANOVA RUS+FS 35.93
SVM-G ANOVA FS 36.21
SVM-G T-test RUS+FS 36.64
KNN ANOVA FS+RUS 39.29
KNN ANOVA RUS+FS 42.57
KNN ANOVA FS+ROS 43.71
KNN T-test RUS+FS 45.00
KNN ANOVA FS 45.50
KNN T-test FS+RUS 46.21

best configuration was the SVM-RFE feature selector used before RUS
for the SVM-G classifier.The percentage of chosen features among the
best selected slightly affected the results, but not as much as using
a balance method more suitable for the classifier. Finally, the best
results are obtained using RUS as the balancing method, SVM-RFE as
the feature selector (applied before RUS) and SVM-G as the classifier.
So this is a good combination with which to initially process wide
data. If it is necessary to use any of the other classifiers included in
our study, Table 4 summarizes the best balancing and feature selector
combinations for each of them.

Based on the results of this study, we plan to use more advanced
algorithms for this type of problem in future works, such as ensembles
and hybrid algorithms for feature selection and other balancing algo-
rithms. Given that the final performance of the combination of selector
and balancing method (and the moment at which they are applied) may
also depend on the characteristics of the dataset to which it is applied,
in the future we will consider using meta-learning to analyze whether
relationships can be established between the characteristics of the data
and the best combination.
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Appendix A. Supplementary data

In the supplementary material® the results corresponding to the
metrics F,-Score and G-Mean can be found, these figures have not been
included due to their similarity with the already showed AUC.
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