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a b s t r a c t 

Electrochemical Surface Oxidation Enhanced Raman Scattering (EC-SOERS) is a new phenomenon that 

provokes the enhancement of the Raman signal during the oxidation of a metal surface. Studies carried 

out so far indicate that carbonyl and carboxyl group are necessary to observe this phenomenon with 

a delocated charge being an important factor. In this work, the enhancement factors of EC-SOERS for 

different molecules, which present highly delocated charge and a carboxyl group, have been assessed. The 

systematic study of the enhancement factors helps to shed more light on the interaction of the molecules 

with the electrochemically generated SOERS substrates, yielding key information about the properties and 

specific features of this intriguing phenomenon. For the first time, a systematic information about the 

enhancement factors of this phenomenon is obtained. Analytical enhancement factors higher than 10 5 

are obtained. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Surface enhanced Raman Scattering (SERS) has become one of 

he most powerful tools in the field of molecular detection in re- 

ent years [1–3] . This technique not only allows the identification 

f molecules, providing information about the chemical structure, 

ut also gives some insight into the interactions that can take place 

etween the molecule and the nanostructured surface [4–8] . Ra- 

an scattering presents some disadvantages such as a weak an- 

lytical signal or a low reproducibility on the recorded signals. 

any research groups are working hard to achieve higher, more 

efined and more reproducible Raman signals to better detect dif- 

erent molecules using the SERS phenomenon or other phenomena 

inked to Raman spectroscopy [9–11] . 

It is well known that the SERS phenomenon is mainly produced 

y the combination of two mechanisms [ 3 , 12 , 13 ]: (1) the electro-

agnetic mechanism (EM), related to the amplification of the elec- 

romagnetic field due to the resonance of surface plasmons at the 

etallic nanostructured surface (SPR, surface plasmon resonance) 

nd, (2) the chemical mechanism (CM), which is mainly associated 

ith a charge transfer between the molecule and the surface of 
∗ Corresponding author at: Department of Chemistry, Universidad de Burgos, Pza. 
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he substrate. Both mechanisms contribute to enhance the Raman 

ignal. However, while EM-mechanism yields enhancement factors 

EFs) between 10 4 and 10 8 , the CM-mechanism only shows EFs be- 

ween 10-10 3 [ 3 , 12–14 ]. The huge Raman amplification achieved in 

ERS has great implications in different fields such as medicinal 

hemistry, analytical chemistry, environmental safety, etc [ 1–3 , 15 ]. 

Recently, our research group discovered a new phenomenon, 

enoted as EC-SOERS (Electrochemical Surface Oxidation Enhanced 

aman Scattering), which enhances the Raman signal during the 

xidation of a silver electrode under particular electrolytic condi- 

ions [16] . This enhancement is probably related to two main fac- 

ors: (1) the interaction between the molecule and the silver struc- 

ures formed during the experiment (Ag/AgCl or Ag + /AgCl) and (2) 

he induced adsorption due to the applied potential. These mech- 

nisms are still not clear enough and, therefore, more experiments 

hould be done to understand this new phenomenon. 

The goal of this work is to shed more light on the inter- 

ctions between molecules and silver substrates under particu- 

ar EC-SOERS conditions. With this objective, a systematic cal- 

ulation of the EFs for the EC-SOERS phenomenon is made for 

he first time, providing useful information to better understand 

his intriguing phenomenon. Assuming that both EM-mechanism 

nd CM-mechanism are involved in EC-SOERS, as described for 

ERS, it might be possible to determine if any kind of plasmonic 

pecies formed during an EC-SOERS experiment are responsible for 

he enhancement of the Raman signal due to an EM-mechanism 

https://doi.org/10.1016/j.electacta.2021.138223
http://www.ScienceDirect.com
http://www.elsevier.com/locate/electacta
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Fig. 1. Structure of the studied molecules: a) phthalic acid (PA), b) phthalamic acid (PAA), c) 2-cyanobenzoic acid (2-CN-BzA), d) isophthalic acid (IPA), e) 3- 

carboxiamidobenzoic acid (3-CABA), f) 3-cyanobenzoic acid (3-CN-BzA), g) terephthalic acid (TPA), h) terephthalic acid monoamide (TPAM), i) 4-cyanobenzoic acid (4-CN-BzA). 
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EF > 10 3 ) or, conversely, if that enhancement is only due to a CM-

echanism. It should be emphasized that EFs are strongly depen- 

ent on the molecule structure and its interaction with the nanos- 

ructured substrate [17–20] , mainly linked to the CM-mechanism 

nd the physical or chemical interactions between molecules and 

etal substrate [ 3 , 17 ] . Thus, different EFs can be obtained for iso-

ers with the same structures [ 21 , 22 ]. It should be also noted that

he EM-mechanism will uniformly enhance all the Raman band in- 

ensities with the same symmetry, namely, the relative intensities 

egistered by ordinary Raman scattering should not change in SERS 

nd EC-SOERS by this mechanism [ 3 , 7 , 20 ]. 

In this work, the effect of changing the functional group as well 

s its position in different structural isomers in the Raman signal 

btained was studied. With this purpose, EFs were calculated for 

enzene dicarboxylic acid isomers, cyanobenzoic acid isomers, and 

arboxyamidobenzoic acid isomers ( Fig. 1 ). We have found that all 

hese molecules exhibit a quite good EC-SOERS response, mainly 

ue to the presence of the carboxylic acid group coupled to an 

romatic ring. Therefore, a better knowledge on EC-SOERS can be 

btained from the systematic analysis of this group of molecules. 

Assessment of SERS EF is usually performed using the following 

quation: 

F = 

I SERS · N Raman 

I Raman · N SERS 

(1) 

here, I corresponds to the maximum of Raman intensity, for both, 

rdinary Raman ( I Raman ) and SERS ( I SERS ) signals, N Raman is related 

o the number of molecules contained in the volume of sampled 

olution whereas N corresponds to the number of molecules 
SERS 

2 
dsorbed on the sampled surface [23] . As EC-SOERS is a phe- 

omenon somehow linked to SERS because an enhancement of the 

aman signal is provoked, an equation similar to Eq. 1 can be pro- 

osed to evaluate the EC-SOERS EF as follow: 

F = 

I SOERS · N Raman 

I Raman · N SOERS 

(2) 

However, EC-SOERS is a dynamic phenomenon with the elec- 

rode surface continuously evolving because the silver surface is 

eing oxidized while an anodic overpotential scan is applied. Con- 

equently, it is quite difficult to calculate the number of molecules 

dsorbed on the surface of the electrogenerated structures respon- 

ible for the EC-SOERS effect. Moreover, it is still unclear what kind 

f structures induce this phenomenon. Therefore, in this work, in- 

tead of calculating the EF, we have selected the analytical en- 

ancement factor (AEF) to evaluate the effect of the molecular 

tructure on the Raman signal enhancement. AEF is also related 

o the interaction between a molecule and the surface, and it has 

roven to be a very useful tool to compare the activity of differ- 

nt molecules and the effectiveness of SERS substrates [23–27] . The 

EF can be calculated using the following equation: 

EF = 

I SOERS · C Raman 

I Raman · C SOERS 

(3) 

here, C Raman denotes the concentration of analyte in the solution 

here the Raman signal ( I Raman ) is obtained, and C SOERS is the con- 

entration of analyte in the solution where the enhanced Raman 

ignal ( I SOERS ) is obtained. 

Reader should keep in mind that AEF are usually several orders 

f magnitude lower than EF, because the number of molecules on 
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he nanostructured surface ( N SOERS ) is much lower than the num- 

er of molecules in all the volume of the solution used ( C SOERS ) 

23] . Therefore, it is expected that the EF of EC-SOERS should be 

igher than the AEF provided in this work. 

The purpose of this work is to obtain a better comprehension of 

C-SOERS effect and to understand why some molecules are very 

ensitive to this phenomenon by the calculation of AEF values. 

. Experimental section 

.1. Reagents and materials 

Benzoic acid (BzA, ≥99.5 %, Sigma-Aldrich), phthalamic acid 

PAA, 97 %, Sigma-Aldrich), 3-carboxyamidobenzoic acid (3- 

ABA, Sigma-Aldrich), terephthalic acid monoamide (TPAM, Sigma- 

ldrich), 2-cyano-benzoic acid (2-CN-BzA, 94 %, ACROS Organics), 

-cyano-benzoic acid (3-CN-BzA, 98 %, ACROS Organics), 4-cyano- 

enzoic acid (4-CN-BzA, 99 %, ACROS Organics), phthalic acid 

PA, ≥99.5 %, Sigma-Aldrich), isophthalic acid (IPA, 99 %, Sigma- 

ldrich), terephthalic acid (TPA, 99 + %, ACROS Organics), perchloric 

cid (HClO 4 , 60 %, reagent, Sigma-Aldrich), potassium chloride (KCl, 

9 + %, reagent, ACROS Organics). Aqueous solutions were freshly 

repared using ultrapure water (18.2 M � cm resistivity at 25 °C, 

illi-Q Direct 8, Millipore). 

.2. Instrumentation 

Time-resolved Raman spectroelectrochemistry (TR-Raman-SEC) 

nd Raman spectroscopy experiments were carried out us- 

ng a customized SPELEC-Raman (DRP-SPELECRAMAN, Metrohm- 

ropSens), which integrates a spectrophotometer, a laser source 

f 785 nm and a bipotentiostat/galvanostat. Silver screen-printed 

lectrodes (Ag-SPE, DRP-C013, Metrohm-DropSens) and a cus- 

omized Raman-SEC cell are used to ensure a good reproducibil- 

ty of the experiments. These electrodes consist of a silver working 

lectrode of 1.6 mm diameter, a counter electrode made of carbon 

nd silver paint as pseudo-reference, all of them printed in a ce- 

amic platform. The power of the laser was 80 mW (254 mW/cm 

2 ) 

nd the integration time was kept 1 s for all experiments. 

.3. Time-resolved Raman spectroelectrochemistry experiments 

The electrochemical technique selected for Raman-SEC experi- 

ents was cyclic voltammetry, and all Raman spectra were reg- 

stered simultaneously with the electrochemical response. Before 

ach experiment, a pretreatment of the electrode is made to en- 

ure the reproducibility. It consists of 2 potential cycles between 

he vertex potentials of + 0.40 V and -0.40 V, starting at -0.025 

 in anodic direction at 0.02 V s −1 , using a solution containing 

.1 M HClO 4 + 0.005 M KCl (HClO 4 /KCl medium). After this pre- 

reatment, the solution is removed, adding the test solution that 

ontains the target molecule in the same supporting electrolyte 

edium (HClO 4 /KCl medium). These Raman-SEC experiments are 

arried out using the same electrochemical protocol and recording 

aman spectra every second (integration time = 1 s). For a bet- 

er comparison, all EC-SOERS spectra shown below correspond to 

hose obtained at the maximum of Raman signal (see asterisk, in 

ig. 2 ), which is obtained between + 0.40 and + 0.27 V in the ca-

hodic direction during the second cycle of the SEC experiment. 

. Results and discussion 

.1. Analysis of the electrochemical responses 

Fig. 2 shows the cyclic voltammograms (CVs) obtained during 

C-SOERS experiments in comparison with the EC-SOERS response 
3 
or the main band of each molecule. The electrochemical responses 

how a very similar behavior regardless of the studied molecule. 

hus, the current is mainly related to the oxidation and reduction 

f the silver electrode surface in this medium [ 16 , 28 ] and it is not

ue to the electrochemical transformation of the molecules stud- 

ed. First, an anodic peak around + 0.02 V is observed related to 

xidation of Ag and the generation of AgCl due to the presence of 

hloride ions from the supporting electrolyte. This process occurs 

ntil a high anodic current evolves at potentials higher than + 0.30 

, related to massive electrogeneration of Ag + in solution. In the 

ackward scan, around + 0.30 V, free silver cations are reduced to 

g while a second cathodic peak evolves approximately at -0.10 V 

elated to the reduction of AgCl to Ag and the generation of silver 

anostructures on the electrode surface [ 16 , 28 ]. 

Despite these similarities, which can be observed in all CVs 

hown in Fig. 2 , there are some details that can be related to the

dsorption of the target molecule. The maximum current observed 

uring the massive oxidation of the silver electrode, to form Ag + 

t potentials higher than + 0.30 V, slightly changes depending on 

he strength of adsorption of the molecule. For example, for the 

hree dicarboxylic acids (PA, IPA and TPA) the lowest current is 

chieved for ortho -isomer ( Fig. 2 A) and the highest for the para -

somer ( Fig. 2 G) which can be related to a stronger adsorption for 

A than IPA and TPA. Similar results have been obtained with the 

ther two family of structural isomers shown in Fig. 2 . Therefore, 

he adsorption of molecules of the same family to the silver elec- 

rode depends on the position of the substituent, which affect the 

nhancement of the Raman signal of the isomers, as will be dis- 

ussed below. 

There are also some differences in the spectroscopic response. 

s can be seen in the voltaRamangrams in Fig. 2 , the maximum 

f the Raman signal is not obtained at the same potential. For 

rtho -isomers, this maximum is reached at a lower anodic poten- 

ial value, which also could indicate a stronger interaction with 

he substrate, whereas for meta - and para - isomers the maximum 

f Raman signal is found at higher anodic potentials (near + 0.40 

), and the signal decays before than the one for ortho - isomers. 

t is noteworthy that other Raman bands of these molecules have 

he same behavior than the Raman band selected and shown in 

ig. 2 . The Raman spectra registered at this maximum, labeled with 

n asterisk ( ∗) in Fig. 2 , are shown in Fig. 3 . These spectra will

hen be used to make a comparison within the group of molecules 

ested in this work and will serve to calculate the corresponding 

EF. 

.2. Comparison between the Raman and EC-SOERS spectra 

The spectrum of a molecule in solution obtained in a sim- 

le Raman experiment presents some important differences with 

he corresponding EC-SOERS spectrum. The shape of the spec- 

rum as well as the relative intensities of the bands provide key 

nformation about the interaction between the substrate and a 

pecific molecule [ 3 , 20 ]. For that reason, a rational comparison 

etween the Raman spectra in solution and the corresponding 

C-SOERS spectra obtained in a TR-Raman-SEC experiment was 

erformed for all molecules. It is worth noting that a high con- 

entration of the target molecule in solution is needed to obtain 

easurable bands in the Raman spectra (0.20 M PA, 0.15 M IPA, 

.20 M TPA, 0.90 M PAA, 0.80 M 3-CABA, 0.80 M TPAM, 0.76 M 

-CN-BzA, 0.76 M 3-CN-BzA and 0.75 M 4-CN-BzA). These spec- 

ra were obtained in a solution without performing any SEC ex- 

eriment and with an integration time of 1 s. On the other hand, 

C-SOERS spectra were taken during the corresponding TR-Raman- 

EC experiment. To properly compare the signals, representative 

ands were selected, and the ratio between these bands was calcu- 

ated to study the relative change of the heights of different bands. 
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Fig. 2. Comparison between CVs (orange curves) and the evolution of the EC-SOERS response for the main band of each molecule with the potential applied (VoltaRaman- 

gram, blue curves), for the different studied molecules: A) 0.1 mM phthalic acid (PA), B) 1 mM phthalamic acid (PAA), C) 0.2 mM 2-cyano-benoic acid (2-CN-BzA), D) 0.1 

mM isophthalic acid (IPA), E) 0.1 mM 3-carboxyamidobenzoic acid (3-CABA), F) 0.2 mM 3-cyano-benzoic acid (3-CN-BzA), G) 0.1 mM terephthalic acid (TPA), H) 0.1 mM 

terephthalic acid monoamide (TPAM), I) 0.02 mM 4-cyano-benzoic acid (4-CN-BzA). All of them were prepared in HClO 4 /KCl medium. The CVs were performed at 0.02 V s −1 

between -0.40 V and + 0.40 V, starting at -0.025 V in the anodic direction. The asterisk ( ∗) marks for each molecule the potential corresponding to the Raman spectra shown 

in Fig. 3 , which are used to calculate the AEFs. 
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ands assignment are shown in Tables S1, S2 and S3 in the sup- 

lementary materials document (SM). In order to calculate the ra- 

io, the spectra were normalized to the main band of the stud- 

ed molecule. Thus, for ortho- isomers, the band related with ν18a 

C-C vibrations) peaking at 1043 cm 

−1 was selected [ 5 , 29 , 30 ]; for

eta -isomers, band peaking at 1005 cm 

−1 , which is related to ν12 

ibration mode (C-C-C trigonal bending) [ 31 , 32 ]; and, finally, for 

ara -isomers the band peaking around 1610 cm 

−1 was chosen as- 

ociated with ν8a (C-C stretching) [31–33] . Values corresponding to 

he ratio of Raman/EC-SOERS intensity are shown in the Table S4 

n the SM. 

Fig. 3 shows the normalized Raman and EC-SOERS spectra for 

he different target molecules. Relative intensities of the bands 

rovide interesting information about the behavior of the spectra 

or these molecules, which can be summarized as follow: 

1) For ortho -isomers ( Fig. 3 A, 3 B and 3 C) some differences be-

tween Raman and EC-SOERS spectra can be observed. The most 

significant difference between the spectra is appreciated for the 

vibration modes corresponding to the carboxyl groups, δ(COO 

−) 

and ν(COO 

−). On the one hand, δ(COO 

−) yields a much higher 

value (in terms of I Raman /I Raman at 1043 cm-1 ) in EC-SOERS than in 

Raman. On the other hand, ν(COO 

−) is more intense in Raman 

than in EC-SOERS. From this result, we conclude that the ori- 
4 
entation of the molecule and the orientation of the functional 

groups interacting with the substrate is a fundamental aspect 

to consider, as is usually observed in SERS [ 5 , 8 , 20 ]. A higher ra-

tio for δ(COO 

−) in EC-SOERS suggests that the interaction of the 

molecule with the EC-SOERS substrate is taking place by one of 

the oxygen atoms in the carbonyl group [34] . 

Other interesting bands are those corresponding to C-C stretch- 

ing ( ν8a and ν8b ), at 1580 cm 

−1 and 1602 cm 

−1 , respectively. 

These bands present different relative intensities depending on 

the experiment. EC-SOERS shows a higher enhancement of the 

band at 1585 cm 

−1 . On the contrary, the Raman spectrum 

presents a higher signal of the band at 1600 cm 

−1 . These modes 

of vibration are highly related to the symmetry of the molecule. 

Therefore, the difference in the response demonstrates a change 

in the symmetry of the molecule as a result of the interac- 

tions with the EC-SOERS substrate. Assuming a chemical inter- 

action of the molecules with the substrate, a charge transfer 

mechanism could be expected, which explains the higher AEF 

of the δ(COO 

−) vibration mode (see Table 1 ) for ortho -isomers. 

It should be noted that, as has been stated above from the CVs 

( Fig. 2 ), ortho -isomers shows a higher adsorption to the silver 

electrode than the other isomers in the family, yielding a higher 

Raman signal. 
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Fig. 3. Normalized Raman spectrum (grey dotted line) and normalized EC-SOERS spectrum (blue solid line) for: A) phthalic acid (PA), B) phthalamic acid (PTA), C) 2-cyano- 

benzoic acid (2-CN-BzA), D) isophthalic acid (IPA), E) 3-carboxyamidobenzoic acid (3-CABA), F) 3-cyano-benzoic acid (3-CN-BzA), G) terephthalic acid (TPA), H) terephthalic 

acid monoamide (TPAM), I) 4-cyano-benzoic acid (4-CN-BzA). Raman spectra were registered in 0.1 M NaOH medium and EC-SOERS spectra were registered at the maximum 

Raman intensity, marked with an asterisk ( ∗) in Fig. 2 , during a TR-Raman-SEC experiment. The experimental conditions are the same described in Fig 2 . 

 
2) In the case of the meta -isomers ( Fig. 3 D, 3 E and 3 F) changes

for the vibration modes corresponding to the carboxyl groups 

( δ(COO 

−) at 778-822 cm 

−1 and νS (COO 

−) around 1385 cm 

−1 ) 

are less noticeable. Therefore, a weaker interaction of these 

molecules with the substrate, as well as a weaker interaction 

through the oxygen atom of the carboxyl group must be as- 

sumed. Additionally, the inversion in the relative intensities of 

δ(COO 

−) and νS (COO 

−) between Raman and EC-SOERS spec- 

tra can be also observed for the three molecules. For instance, 

δ(COO 

−) is more intense in EC-SOERS spectra while νS (COO 

−) 

vibration mode is higher in Raman spectra. In this group of 

molecules, the inversion is more pronounced in IPA, proba- 

bly due to the presence of two carboxyl groups which would 

confirm that these groups are those that interact with the 

EC-SOERS substrate. Therefore, the interaction of the carboxyl 

groups with the EC-SOERS substrate is an important factor to 

explain the enhancement of the Raman signal, as will be shown 

in the following section. In this case, the two functional groups 

in the molecules are electron acceptors and a competition be- 

tween them can be expected because of their position in the 

molecules. Electron acceptor groups in ortho - and para - have a 

different influence on the polarizability of the molecule and the 

vibration of the ring than meta -isomers. 

3) Two different behaviours are observed in the case of the para - 

isomers. The first one is related to the cyano- and amide- ben- 
5 
zoic derivatives, yielding small differences between Raman and 

EC-SOERS spectra. Therefore, for these two molecules the ef- 

fect of an EM-mechanism could be more important than that of 

the CM-mechanism [20] . Without a clear understanding of the 

structures responsible of the EC-SOERS, it is very difficult to es- 

timate how much the substrate structure-molecule interaction 

might affect the enhancement of the Raman signal. However, 

the magnitude of the AEF for these isomers should be useful 

to explain the role of CM-mechanism and EM-mechanism in 

the enhancement. Thus, AEF higher than 10 5 should be related 

to an important effect of an EM-mechanism [13] . On the other 

side, the spectral behaviour observed in TPA that contains two 

carboxyl groups is markedly different from the other two para - 

isomers. In this case, the two-carboxyl groups are far enough 

away in the structure of the molecule to allow both to inter- 

act with the substrate. For this molecule, the relative intensi- 

ties related to the two vibration modes ascribed to carboxyl 

groups are sharply different in a normal Raman measurement 

and during an EC-SOERS experiment. Namely, δ(COO 

−) band 

has a relative intensity of 0.7 for EC-SOERS vs. 0.4 for Raman, 

and ν(COO 

−) band has a relative intensity of 0.9 for Raman vs. 

0.2 for EC-SOERS (see table S4). Once again, the relative inten- 

sities suggest that TPA is mostly interacting with the EC-SOERS 

substrate through one of the oxygen atoms of their carboxy- 

lates. 



S. Hernandez, J.V. Perales-Rondon, A. Heras et al. Electrochimica Acta 380 (2021) 138223 

Table 1 

AEFs for molecules in Fig. 1 and for all vibration modes of each molecule. EC-SOERS measurements were taken at the asterisk ( ∗) marked in Fig. 2 

correspondig to the spectra shown in Fig. 3 , which are used to calculate the AEF. All AEFs are calculated using Eq. 3 . 

PA PTA 2-CN-BzA 

Raman shift / cm 

−1 AEF Raman shift / cm 

−1 AEF Raman shift / cm 

−1 AEF 

655 4.1 ·10 4 655 6.9 ·10 3 655 1.8 ·10 4 

832 1.7 ·10 5 832 6.9 ·10 4 832 2.5 ·10 5 

1043 7.0 ·10 4 1043 1.1 ·10 4 1043 4.1 ·10 4 

1165 1.2 ·10 5 1165 1.8 ·10 4 1165 6.4 ·10 4 

1370 1.8 ·10 4 1370 3.1 ·10 3 1370 1.1 ·10 4 

1580 1.8 ·10 5 1580 1.7 ·10 4 1580 9.0 ·10 4 

1602 2.5 ·10 4 1602 3.4 ·10 3 1602 9.2 ·10 3 

IPA 3-CABA 3-CN-BzA 

Raman shift / cm 

−1 AEF Raman shift / cm 

−1 AEF Raman shift / cm 

−1 AEF 

822 5.2 ·10 4 782 1.8 ·10 4 778 1.2 ·10 5 

1005 2.7 ·10 4 1005 9.4 ·10 3 1005 5.6 ·10 4 

1175 6.1 ·10 4 1178 1.7 ·10 4 1211 3.7 ·10 4 

1385 4.7 ·10 3 1388 4.8 ·10 3 1385 2.2 ·10 4 

1440 5.4 ·10 3 1449 2.8 ·10 3 1429 3.3 ·10 4 

1594 2.3 ·10 4 1585 9.1 ·10 3 1585 9.3 ·10 4 

- - 1610 7.2 ·10 3 1605 3.2 ·10 4 

2244 2.0 ·10 4 

TPA TPAM 4-CN-BzA 

Raman shift / cm 

−1 AEF Raman shift / cm 

−1 AEF Raman shift / cm 

−1 AEF 

862 1.3 ·10 5 855 1.2 ·10 4 852 1.0 ·10 5 

1134 8.5 ·10 4 1131 1.2 ·10 4 1138 1.2 ·10 5 

1184 1.9 ·10 4 1184 1.2 ·10 5 

1411 1.5 ·10 4 1405 7.1 ·10 3 1388 7.1 ·10 4 

1611 8.3 ·10 4 1613 1.1 ·10 4 1607 1.3 ·10 5 

2241 8.5 ·10 4 
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EC-SOERS substrate. 
As can be observed in the spectra of the molecules ( Fig. 3 ) Ra-

an and EC-SOERS spectra show big differences with respect to 

he relative intensities of the bands. However, the differences in 

he Raman shift of these bands are small. It should be noted that 

aman spectra were taken in 0.1 M NaOH solutions (due to the 

ow solubility of these molecules, which is highly improved in this 

edium), and therefore, molecules were deprotonated. The coinci- 

ence of the bands for Raman and EC-SOERS spectra, although the 

H is so different (pH = 1 for EC-SOERS experiments and pH = 13 for

aman measurements), suggests that a deprotonation of the acid 

orms of these molecules occurs during their interaction with the 

C-SOERS substrate as a result of the applied potential [35] . 

Focusing the attention onto EC-SOERS spectra, two bands re- 

ated to protonated/deprotonated species can be analyzed, namely, 

he δ(COO 

−) at 832 cm 

−1 and the ν(C-COOH) at 800 cm 

−1 . These

ands are the best indicative of the protonation state of carboxyl 

roup. Ma and Harris [35] demonstrated that when positive poten- 

ials are applied, the pKa changes and the deprotonated form can 

e the predominant even at pH as acid as 1. In our case, an oxida-

ive deprotonation can be expected from the bands in the spectra, 

ith the carboxylate being attracted by the EC-SOERS substrate. 

.3. Analysis of the analytical enhancement factors 

The intrinsic dynamic character of the electrochemistry experi- 

ents, together with the oxidation of the silver surface, makes ex- 

remely difficult to calculate the surface coverage of a molecule at 

 specific time, because both the whole surface and the molecules 

nteracting with the new substrate are constantly changing with 

he applied potential. Therefore, as was stated above, EC-SOERS en- 

ancement factor cannot be assessed as indicated in Eq. 2 . Nev- 

rtheless, EC-SOERS analytical enhancement factor , which is very 

seful to compare the different responses from the analytes, as 

ong as the rest of the conditions remain the same, is much eas- 

er to calculate according to Eq. 3 . With the aim of calculating the
6 
EF, the Raman signal was registered in a concentrated alkaline 

olution of the specific molecule (between 0.20-0.90 M, exact con- 

entrations indicated above) and it is compared with the EC-SOERS 

esponse of a diluted solution in HClO 4 /KCl medium at a potential 

here the Raman signal is enhanced. Table 1 shows the AEFs for 

ll molecules in Fig. 1 and for different vibration modes of each 

olecule. It is noteworthy that AEFs were obtained from results 

hat present high reproducibility with %RSD lower than 10 % in 

ost of cases and lower than 20 % for all of them, which ensure 

hat the conclusions extracted from these results are reliable. Ad- 

itionally, this low dispersion makes EC-SOERS a good candidate to 

erform analytical measurements, as has been previously demon- 

trated [ 36 , 37 ]. 

The EC-SOERS spectra corresponding to PA, PTA and 2-CN-BzA 

 Fig. 4 ) are very similar, which would indicate that the interac- 

ion with the substrate is also similar. According to these spec- 

ra and the results discussed in the previous sections, it can be 

oncluded that the carboxyl group and the aromatic ring are those 

hat mainly interact with the EC-SOERS substrate. The absence of 

he characteristic bands at 2244 cm 

−1 of -CN group in 2-CN-BzA, 

hich is present in solution in ordinary Raman ( Fig. 3 C), and of

ny characteristic bands of -CONH 2 in PAA can be related to two 

ifferent facts. The first one is a steric hindrance, due to the prox- 

mity of two functional groups. The second one is that the position 

f the molecules on the EC-SOERS surface provokes this vibration 

o be forbidden by the surface selections rules [ 38 , 39 ]. 

It should be noted that AEFs help to understand the interac- 

ion of the molecules with the substrate. The highest AEFs of PA, 

TA and 2-CNBzA were calculated for the band assigned to the 

ymmetric scissoring of COO 

− around 832 cm 

−1 , Table 1 , indicat- 

ng that the carboxyl group is interacting with EC-SOERS substrate. 

aman signals corresponding to vibrations of the aromatic ring 

breathing, CH bending and CC bending) are also enhanced. These 

esults confirm the proposed interaction of the molecules with the 
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Fig. 4. EC-SOERS spectra of 0.1 mM phthalic acid (PA, yellow line), 1 mM phthala- 

mic acid (PAA, orange line) and 0.2 mM 2-cyanobenzoic acid (2-CN-BzA, blue line) 

in 0.1 M HClO 4 and 0.005 M KCl as electrolytic medium. Spectra selected were col- 

lected during TR-Raman-SEC experiments, choosing the spectra where the maxi- 

mum Raman intensity is reached (points marked as ∗ , in Fig. 2 ). Integration time 

was 1 s. 

Fig. 5. EC-SOERS spectra of 0.2 mM 2-cyanobenzoic acid (blue line), 0.2 mM 3- 

cyanobenzoic acid (orange line) and 0.2 mM 4-cyanobenzoic acid (yellow line). All 

of them were collected during a TR-Raman-SEC experiment (at the maximum of 

Raman signal, see asterisks ( ∗) in Fig. 2 , and at an integration time of 1s. The elec- 

trolytic medium was 0.1 M HClO 4 and 0.005 M KCl. 
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Another interesting comparison is the one corresponding to the 

hree cyano -isomers, which provides information about the effect 

f the substituent’s position ( Fig. 5 ). At first glance, it could be de-

uced that 4-CN-BzA is the isomer with the best interaction with 

he substrate; however, the highest response for 4-CN-BzA can 

e related to the intrinsic Raman cross section of this molecule, 

ince the same trend can be observed in Raman spectra (data not 

hown). When the comparison is made in terms of AEF values, 

he best response is not straightforward because different bands 

hould be compared. For example, in the case of the δ(COO 

−) vi- 

ration, the best AEF value is found for 2-CN-BzA (2.5 ·10 5 ). How- 

ver, if the asymmetric stretching of COO 

− is selected for the com- 

arison, the highest AEF value is found for 4-CN-BzA (7.1 ·10 4 ). Fur- 

hermore, meta - and para -isomers show similar AEF for δ(COO-) 

nd ν(CN), indicating that these molecules are parallel to the sur- 

ace, which amplifies the two vibration modes in the same way. 

.4. Influence of the substituent group 

The comparison of EC-SOERS spectra can be also made in terms 

f the functional groups in the studied molecules. In this case, 

icarboxylic and cyano-benzoic acid isomers present higher AEF 

alues than carboxamide benzoic acid isomers, and all of them 

resent higher AEF values than benzoic acid (BzA) (see Table S5). 
7 
he behavior of BzA in EC-SOERS is also shown in the SM (Fig. S1), 

here can be seen the CV in comparison with the voltaRaman- 

ram at 1005 cm 

−1 (Fig. S1A) and the comparison between the Ra- 

an and EC-SOERS spectrum for this molecule (Fig. S1B). The three 

ubstituent groups (-COOH, -CN and -CONH 2 ) are electron acceptor 

y resonance effect, making the aromatic ring poorer in electrons 

han benzoic acid. The electron acceptor effect follows the trend - 

N group > -COOH group > -CONH 2 group, which agrees with the 

EF values obtained for the studied molecules. 

Clearly, in all cases, cyano-isomers present higher AEF values, 

hich can be explained in terms of resonance in aromatic rings, 

here -CN is a strong electron acceptor and withdraw charge eas- 

ly compared to -CONH 2 or -COOH groups. 

Finally, further investigations should be made to shed more 

ight on this phenomenon, which has not been yet fully explained; 

owever, the results presented here provide high-quality informa- 

ion to understand deeply the phenomenon. 

. Conclusions 

For the first time, a systematic analysis of the analytical en- 

ancement factors for EC-SOERS is reported. For all the studied 

olecules, EC-SOERS spectra are in a good agreement with ordi- 

ary Raman spectra. 

There is a significant influence of the substituent group, show- 

ng higher AEF values for molecules with higher electron accep- 

or character groups, such as -CN and -COOH groups, whereas - 

ONH 2 group yields lower AEF values. The position of the func- 

ional group also presents an important influence, with the ortho - 

nd para - positions presenting the higher AEF. The interaction of 

he molecules with the silver substrate seems to be a key factor 

n EC-SOERS AEFs, as is observed in SERS, suggesting that a CM- 

echanism could present a higher influence in the enhancement 

f the ortho -isomers whereas an EM-mechanism could be more 

mportant for para -isomers. 

AEF values are usually lower than EF values, therefore, EF in 

C-SOERS should be greater than those reported in this work. 

evertheless, AEF values higher than 10 5 have been observed, 

hich suggests that both mechanism (EM-mechanism and CM- 

echanism) are implied in this phenomenon, as it happens in 

ERS. The presence of the EM-mechanism indicates that some kind 

f plasmonic structure is being generated during the oxidation of 

he silver substrate. 

More experiments and theoretical studies should be done to 

larify several aspects related to the EC-SOERS phenomenon. Even 

o, this work is a first step that suggests that silver structures with 

lasmonic properties could be generated at an oxidation process, 

eing related to this phenomenon. 
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