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The paper presents a new proposal for a single overall measure, the diagonal modified confusion entropy
(DMCEN), to assess the performance of class-models jointly computed for several classes, a versatile index
regarding sensitivity and specificity, and that supports class weighting.
The characteristics of the proposed figure of merit are illustrated as against other usual performance measures
and show how the index is more sensitive to the variations in the class-models than similar published indexes.
Besides, a benchmark value representing a random modelling is also defined for DMCEN to be used as initial

level to assess the quality of the built class-models.
Furthermore, systematic comparisons have been conducted by using the degree of consistency C and the degree
of discriminancy D when comparing the proposed DMCEN to the usual total efficiency (a geometric mean between

sensitivity and specificity).

Simulations show that, for a hundred thousand sensitivity/specificity matrices with four categories, C is almost
0.7 on average, well above the needed 0.5, and there is more than 62% probability that DMCEN detects differ-
ences when the total efficiency does not.

Illustration of the application of the index is shown with an experimental data set with four categories.

1. Introduction

Supervised classification problems are at the core of research in
different fields including statistics, machine learning, pattern recognition
or data mining and application domains as diverse as medicine, finance,
quality control and chemistry. In this work we focus on supervised
classification based on qualitative patterns, as the objects to be classified
belong to a known category or class. Precisely, K classes or categories are
assumed, conceptually well-defined and intrinsically disjoint. In practice,
however, this might not be the case (e.g. areas such as metabolomics or
heritage science) because some objects cannot always be assigned with
certainty to a known category, or there can be outliers or
misclassifications.

In any case, with objects belonging to the different categories
(training set), a decision rule is needed, ultimately to assign a new object
to one of the categories. These objects are described by several proper-
ties, which constitute the input predictor variables used to construct the
mathematical or statistical model for the decision.

Basically, there are two different approaches, that traditionally are
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described in geometrical terms [1]. The first one, the purely discriminant
approach, consists of constructing a partition of the space of the input
variables, that is, a family of K disjoint subsets (with no common ele-
ments between one another) whose union is the whole input space. In
that case, each object is always unambiguously assigned to one, and only
one, of the K categories. As such, the performance criteria used for the
validation of the computed discriminant models (also called decision
rules) are related to their expected classification accuracy, namely, the
percentage of correct decisions in prediction. Examples of common
purely discriminant methods include linear or quadratic discriminant
analysis (LDA, QDA [2]), RDA (regularized discriminant analysis [3]),
PLS-DA (partial least squares discriminant analysis [4]), CART (classifi-
cation and regression trees [5]), or SVM (support vector machines [6]),
originally developed for two-class classification [7], generalized to
multiclass situation [8] and to the case of unlabeled data [9].

The second approach, the class-modelling approach, also aims at
constructing K subsets within the input space, one per class (the so-called
class-models) but they are not necessarily disjoint sets neither their union
is the whole space. Therefore, a new object can be inside one or several
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class-models or even outside all of them. Performance criteria, also called
figures of merit, relative to class-modeling techniques are related to
sensitivity and specificity of each class-model. The sensitivity of a class-
model refers to its ability for recognizing its own objects (usually esti-
mated as the rate of category objects that are correctly inside the corre-
sponding class-model), whereas the specificity refers to the ability of
rejecting foreign objects (estimated as the rate of foreign objects that are
correctly outside the class-model). Examples of class-modelling tech-
niques in chemometrics include SIMCA (soft independent models of class
analogy [10]), UNEQ (unequal class models or unequal dispersed classes
[11]), or an adaptation of SVM known as Support Vector Data Descrip-
tion (SVDD) [12]. Further developments on class-modelling via PLS
regression are also conducted in Refs. [13,14]. A review of
class-modelling can be found in Refs. [15,16].

There are also discriminant and class-modelling methods that are
described in terms of probability distribution functions. In that case, the
decision about an object x is made based on the probability that x belongs
to a given class-model. Let pj denote the probability that x belongs to the
j-th class-model (j = 1, ..., K). In the discriminant case, the sum of pj is
always one, the probability of the intersection of classes is null, and x is
assigned to the class with largest p;. On the contrary, in the class-
modelling situation, the probability of the intersection of two or more
class-models can be non-null and the sum of all probabilities p; is not
necessarily one.

Another relevant difference is that for discriminant purposes, the
training set must contain objects from at least two different categories,
whereas in the class-modelling case the focus is on individual classes so
that each class is independently modelled, and the methods can be
applied when the training set contains objects of a single class, the so-
called one-class classifiers [17,18] or compliant class-modelling
methods [19].

Whether discriminant or class-modelling methods, the assessment of
performance of classifiers has been intensively studied although con-
clusions are often drawn from empirical research and thus conditioned
on the selections made in terms of datasets, experimental procedures and
performance metrics. As pointed out in Refs. [20,21], there is no best
classifier as such (‘no free lunch’ theorem) but some classifiers might
outperform others in particular domains, for particular tasks and
requirements.

Therefore, extensive research has been conducted on performance,
mostly on performance metrics, which has resulted in comprehensive
lists of measures (continually updating). An experimental study of the
behavior of eighteen different performance metrics in several scenarios is
conducted in Ref. [22] while in Ref. [23] the invariance properties of
several measures are analyzed. Up to nineteen figures of merit are listed
in Ref. [24], most of them derived from the usual sensitivity of every
individual class-model, pair-wise specificities, efficiency, or total sensi-
tivity, total specificity, and total efficiency of all class-models, including
convex combination of individual sensitivities and specificities [25].
More recently, ref. [26] provides a systematic comparison of several
global measures of classification together with a proposal of a set of
benchmark values based on different random classification scenarios.

Like all values obtained from experimental data, the performance
criteria of a classifier are affected by uncertainty caused by both the
objects in the training set and the values of the variables. This should be
taken into account when evaluating, in practice, the figures of merit of a
classifier [20].

Hand [20] also suggests a taxonomy of performance criteria for the
binary classification problem which differentiates between
problem-based metrics and accuracy-based metrics. The former are
designed to meet important requirements of specific domains and ap-
plications, such as the speed of the classifier, the time it takes to update,
the ability to identify relevant predictor variables or handle particular
datasets (large size, incomplete, unbalanced, small-n-large-p, where
usually n refers to the number of objects and p to the number of vari-
ables). Accordingly, metrics are strongly parametrized to be able to
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include the problem knowledge. On the contrary, the latter type, widely
used and almost automatic, is focused on how well the classifier assigns
objects to their correct classes.

This plethora of metrics or figures of merit, originally intended for the
binary case and typically focused on one class, is not always directly
applicable to the multi-class problem. To extend the use of some metrics
to a framework with no single-class emphasis, different methods have
been suggested, even to consider the importance of classes in terms of
domain experts, scarcity (minority classes), misclassification costs or
multiple criteria [27,28]. Thus, performance measures for K-class clas-
sifiers are still an everlasting issue in literature, notably those with very
imbalanced class distributions and/or small datasets [29].

Performance criteria are used, not only to evaluate/validate the
constructed models but also to choose between models, to estimate pa-
rameters, or to select model components [20,30], situations, among
others, where it is useful to represent the global classification perfor-
mance with a single number [26]. In this context, the present work
proposes a modified entropy-based index, a figure of merit that encom-
passes some of the mentioned figures of merit and that is more sensitive
to the variations in the different class-models than similar published
indexes.

The following Section 2 summarizes some common figures of merit
and introduces the new index, Diagonal Modified Confusion Entropy
(DMCEN), together with the basic definitions for the comparisons,
whereas Section 3 sheds light on how DMCEN operates along with its
ability to detect differences in both sensitivity and specificity.

2. Theory and proposal

In the present work, K categories or classes are jointly modelled
(compliant class-modelling approaches with the distinction made in
Ref. [19]). Therefore, in the following, a K-class-model will refer to the set
of the K individual class-models that are jointly computed and validated
against each other. To do this, the training set contains objects belonging
to the K classes under study.

2.1. Notation

Precisely, to model K categories Cy, Cs, ..., Ck, we have a training set
with I objects, [; in each class C; (Z;(:II] = I). With the notation in
Ref. [30], the K-class-model can be summarized in the so-called confu-
sion matrix N in Eq. [1], where njy, is the number of objects belonging to
class C; which are inside the class-model built for class C,.

ny Ny Rpyoeee Mg
npp Nyp ... Moy ... Mg
N — : : . : : 'e))
nj Hp ees Hjm e ik
Nk Ng2 ... Ngp Ngg

In a discriminant situation, which is the context of the confusion
matrices, forj=1, ..., K, is Zf.:ﬂljm = I;, that is, the rows in matrix N of
Eq [1] sum up to the total number of objects in that class, and > nj, =1.

j.m

However, in the class-modelling setting, neither the rows, nor the
total sum of the elements in N necessarily meet these equalities. In
particular, the rows can add up more or less than the number ; of objects
of C; in the training set because an object can be inside more than one
class-model or outside all of them. To clearly distinguish the different
situation when using class-modelling techniques, we will call N a model
matrix. Throughout the present work, N will always denote a model
matrix.

From model matrix N, we compute the frequency matrix F = (fi,) in
equation [2] that contains the rates nj,/I;. As with Eq. [1], the sum of
rates in each row of F is not necessarily one, which would be the case for a
usual confusion matrix computed with a discriminant method.
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Irrespective of the type of class-models built, it is not infrequent to
define an ‘a posteriori’ decision rule to assign an object to one of the
classes. These decisions with K categories can also be seen as a family of
K(K—1) hypothesis tests, K—1 for each of the K classes C;. For eachj =1,
..., K, the null hypothesis Hy is the same with different alternative hy-
pothesis Hy:

Hp:object x belongs to class-model C;.

Hj:object x belongs to class-model Cp, m=1, ..., K, m #j.

Symbolically, matrix TEST in Eq. [3] summarizes the different hy-
pothesis tests, in columns the alternative hypothesis of the K-1 tests made
with the j-th class in rows as null hypothesis.

H,:C, H:C, .. H:C, .. H:C, .. H:C
H12C2 H()ZCZ H13C2 HIZCZ HIZCQ

TEST =

H:C, H:C, .. H:C, ... H:C, .. H:C,
1: 1: 0 : e N 3)

H:C H:C .. H:C .. H:C .. H:C
H :Cx H:Cx ... H:Cx ... H:Cx .. Hy: Cx

With this notation, aj; = q; is the probability of type I error and,
therefore, 1 — ¢; (probability of correctly assigning an object of C; to the
class-model of G)) is estimated by fj; the diagonal terms in matrix F of Eq.
[2]. Consequently, the sensitivity of the class-model built for C; is esti-
mated as sens(j) = fj;.

On the other hand, for m # j, specificity flaws for the class-model of
category C; are in fn,; (notice the order of subindexes). In the hypothesis
tests context, f,; is the probability of type II error when the alternative
hypothesis is the one related to Cp, that is, the probability of (wrongly)
accepting in the class-model of C;j an object of class Cy,. This probability is
thus estimated by f;; and, therefore, 1 — fi,; estimates the specificity of
the class model of C; as against the class Cy,, spec(j, m).

With this notation, matrix F is transformed into matrix S of sensitiv-
ities and specificities in Eq. [4].

St Sz e Sim e SIK fu 1 —fi L= fim
S21 S22 e S2m e S2K 1 —fu Jo 1= fom
S - . : : : : .. :
Sj[ sz Sjj S]’K 1 —f}] 1 —f}z f]j
SK1 Sk2 SKkm SKK 1 _fK] 1 _fKZ 1 _me
sens(1)  spec(2,1) spec(m, 1) spec(K, 1)
spec(1,2)  sens(2) spec(m,2) spec(K,2)
T | spec(1,j)  spec(2,) sens(j) spec(K /)
spec(1,K) spec(2,K) spec(m, K) sens(K)

Notice that, like in the remaining matrices, in s, the first subindex
refers to the real class (Cj) of an object and the second to whether it
belongs to the class-model constructed for Cy,, so the different specific-
ities for the individual class-models appear in the columns of matrix S
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according to hypothesis tests of Eq. [3].

Finally, consideration of the relative size of the classes in the per-
formance of the K-class-model is implicit when moving from N to F. If a
class consists of 10 objects and another of 100, a single wrong allocation
in the K-class-model for these classes would imply a decrease of 1/10 or
1/100 in the sensitivity of the corresponding class-model. However, once
F is estimated, the effect of the size of each class disappears.

2.2. Figures of merit in chemometrics

As mentioned in the introduction, a vast number of performance
metrics in machine learning has been found in the literature. Since the
present paper focuses on class-modelling in the field of chemometrics,
figures of merit (FoMs) based on sensitivity and specificity have been
chosen.

To summarize, we have I objects from K categories of interest, I =
I + I + ... + I, that are used to compute a K-class-model, i.e., a set of K
individual class-models. In the following, some of the definitions are
repeated to make it easier to refer to them. Thus, forj =1, ..., K:

The sensitivity of the class-model built for C; in the K-class-model, the
diagonal terms in matrix S, Eq. [4], named CSNS(j) in Ref. [30], is
commonly defined by

=1L = 1 —a; = CSNS(j) )
j
The specificity of the class-model of Cj to class C,,(m =1, 2, ..., K, m #
j) is:

N
sm_,:l—Tnle—/;mj (6)
In ref. [30], in the context of one-class classifiers, from a confusion
matrix like N, the class specificity, CSPS, is defined globally as against all
other classes as “the rate of objects from other classes (not C;), which are
correctly attributed as inconsistent with the target class C; “, namely:

1 —fix
1 —fox
1 — fix
fux @
K
CSPS(j) —1- Zm:lm%jn"l/ %)

-1



O. Valencia et al.

The same authors also defined an overall quality of classification for
the class-model for C; in terms of the class efficiency, CEFF (called G-
mean in Ref. [24]):

CEFF(j) = 1/CSNS(j) x CSPS(j) ®

Finally, to characterize the entire K-class-model, the total sensitivity,
total specificity, and total efficiency are defined [30] as:

K
K
TSNS = 721;‘ - ©
K K
55w
TSPS = 1 - "’*[""*-’ (10)
TEFF — /TSNS x TSPS 1n

Notice that the definition in Eq. [10] implicitly assumes that the sum
of the off-diagonal elements njy, j # m, is at most I (the total number of
objects), which is true for purely confusion matrices but might not be the
case for every model matrix N when K > 2. Therefore, for the K-class--
model with more than two classes, equations [10,11] should be modified
to account for the possibility that an object of class C; belongs to any (or
to all in the worst case) of the K — 1 remaining class-models constructed
for class C,, (m # j). Then, a modified total specificity, MTSPS, that ap-
plies for K > 2, is defined in Eq. [12], and the new overall, modified, total
efficiency is in Eq. [13].

K K
Z} ;%jljm
MTSPS = | ———"2 12
5P K-1)1 (12
MTEFF = /TSNS x MTSPS (13)

Due to the greater denominator, MTSPS > TSPS and, contrary to TSPS
for model matrices, 0 < MTSPS <1.

The same observation and correction have been recently published,
independently, in Ref. [31] but without modifying the name of the FoMs.
In the present work, we will maintain the different notations, MTSPS and
MTEEFF, to avoid confusion with some previous works that use TSPS and
TEFF.

In practice, the figures of merit (FoMs) in Egs. [9-13] are not sensitive
enough to changes in matrix S (or in model matrix N) resulting in a
limited usefulness when their intended use is, for example, to compare
different methods (say SIMCA and QDA) in a given problem, or to select
the metaparameters of a K-class-model, such as the confidence level of
each class when using QDA, for instance.

To illustrate the assertion, let us suppose that we model two cate-
gories from a dataset with I; = I, = 100 objects per class (I = 200). We
have computed two different 2-class-models with model matrices Ny =
(égo 180> and N, = (?8 38 ) . With the definitions in Egs. [9-11],
TSNS = 1, TSPS = 0.4 for N1, and TSNS = 0.8, TSPS = 0.5 for N whereas,
despite their clear differences, both have the same total efficiency
TEFF = 0.6325 = /1 x 0.4 = /0.8 x 0.5.

Of course, both 2-class-models with model matrices N; and N, are
useless from a practical point of view where they will be immediately
discarded. However, we are looking for performance criteria that help in
conducting a systematic (probably ‘blind’) selection of the class-models,
so the figures of merit should also be sensitive to these situations.

In any case, the insensitivity to the distribution of nj, (and conse-
quently to the one of sensitivities and specificities) illustrated in the
previous example worsens as the number of classes increases. When
inspecting Egs. [9-12] it is clear that the FoMs only depend upon some
sums and products of values nj, reason why they are the same provided
the sums are kept constant.
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Other computations of FoMs are proposed [24] for K-class-models by
considering K binary situations, namely each C; against all other (Ui C;,
that act as the alternative hypothesis of a joint hypothesis test). The
definitions of sensitivity and specificity in Ref. [24] are the same as in
Egs. [5,7] but instead of total sensitivity and specificity in Egs. [9,10], the
overall evaluation of the K-class-model is made in terms of pooled
sensitivity (p-SENS) and pooled specificity (p-SPEC), computed as a
convex combination of individual sensitivities and specificities, that is:

K
p— SENS =) " w,CSNS()) a4
=1

Jj=

K
p—SPEC= > w;CSPS(j) 15)

Jj=1

with 0 <w; <1 and ZJK: 1w = 1. In particular, w; = 1/K is used in
Ref. [25].

These indexes use the same elements as the FoMs previously dis-
cussed so a similar lack of responsiveness is expected. Hence, for the
modelling of K classes, more sensitive FoMs are needed, both for each
class-model and for the overall K-class-model.

2.3. MCEN, an entropy-based figure of merit

In classification contexts, some entropy-based performance criteria
(figures of merit) are also used, that can be adapted to the situation here.
They are based on the idea that a K-class-model, when applied to a set of
objects, reduces their disorganization by including them in the model of
each class. In this broad sense, the K-class-model decreases the entropy of
the set of objects. The development of this idea is found in Refs. [32,33].
The first one proposes, for the first time, a measure of the uncertainty
generated by a K-class-model, called Confusion Entropy (CEN), inspired
by Shannon's entropy. This measure is enhanced in Ref. [33] by defining
the modified confusion entropy, MCEN, which constitutes the base of our
proposal. To introduce it, some previous definitions are needed.

Forj,m=1, ..., K, eqgs. [16,17] contain the definition, for j # m, of the
ratio of frequency fin, subject to class C; or to class Cp, respectively, and
Eq. [18] the definition when j = m.

i Sim

R.= v~ 16)
e (e o) — Sy
m -f!m

R‘m = =K /7, s~ (17)
! ZkK:] (fmk +ﬁcm) 7fmm

R;=0 )

7

In Egs. [16,17] it is understood that if f;, = 0, both ratios are set to
zero, irrespective of the corresponding denominator.

As it can be observed, Egs. [16,17] are fractions with a common
numerator, the frequency that the K-class-model (wrongly) includes ob-
jects of class C; into the class-model of Cp,. The denominator on its part is
computed as the sum of the frequencies of all possible allocations and
misallocations involving objects of C; (Eq. (16)) or of Cy, (Eq. (17)). The
underlying idea when considering both ‘ratios’ is that when weighing the
specificity of class C; in relation to class Cy, the reference should consider
all the decisions involving both classes C; and Cp, that is, the corre-
sponding sensitivity and all the involved specificities.

If =1, = ... =g, equations [16,17] are estimates of the probabil-
ities that the K-class-model includes an object of C; inside the class-model
of Cp,, but taking into account all errors with objects in classes Cj and Cp,
because including an object of C;j into the class-model of Cy, is as bad as
including an object of Cy, into the class-model constructed for C;.

From the ratios in Eq. [16,17], the Modified Confusion Entropy,
MCEN, related to class Cj (j = 1, ..., K) is defined by
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MCEN(j) = — Z::l,m#/‘ (R}, logyk 1 (R),,) + Rl logak 1) (R)) 19

where Rj:mlogz(Kfl)(ij) =0 when ij = 0, and R}ﬁlogz(K,l)(R{n-) =0
when R{,lj =0.
The overall MCEN for the K-class-model is:

K .
MCEN = Zl_:le MCEN(j) (20)
where the coefficients R; are defined by
R — Zf:l(ﬁk +fk/) —fi 21)
’ ZZ:Sm:lfkm - AZszlfkk
with
! if K=2
2 K=
A=<{2 (22)
1 ifK>2

A conical combination is a linear combination with non-negative
coefficients (scalar weights). If the coefficients add up to one, further
to be non-negative, then it is known as a convex combination. Clearly,
when K > 2 (. = 1) the sum of the weights R; in Eq. [21] is one and MCEN
in Eq. [20] is a convex combination of the individual MCEN(j) in Eq.
[19]. However, the weighted sum in Eq. [20] is a conical combination
when K = 2 because, despite all R; being positive, they do not add up to
one (except for f1;7 = f22 = 0 which would imply that the 2-class-model
does not include any object inside the right class-model).

MCEN varies between zero and one. MCEN = 0 corresponds to
maximum organization induced by the K-class-model, in other words,
every object is correctly inside the right class-model (meaning that
sens(j) = 1,j =1, ..., K), and only in that one, so spec(j,m) = 1, for j,
m=1,2,..,K,j#m. It is the K-class-model with minimum entropy.

On the other extreme, the K-class-model with maximum entropy (the
most disorganized) corresponds to MCEN = 1. It would be a K-class-
model with each object inside all the class-models except for its own:
sens(j) =0 (G =1, ..., K) and spec(jm) = 0,j,m=1,2, ..., K, j # m.

Table 1 shows six matrices S, sensitivity/specificity matrices ac-
cording to Eq. [4], corresponding to six different 4-class-models. The six
matrices have the same values of specificity (sj; = 1, j # m except for
sa3 = s34 = 0.85). Furthermore, the first four matrices have sensitivity 1
in all but one class-model, that changes until all four have been covered.
S5 and S6 ‘plays’ with asymmetric values of sensitivity along the four
individual class-models.

Assuming that there are the same objects in each category for
computing the efficiencies in Egs. [8,11], the corresponding columns in
Table 2 show the individual values of class efficiency CEFF(j), Eq. [8],
and modified confusion entropy MCEN()), Eq. [19], forj =1, ..., 4, and
also total efficiency, TEFF in Eq. [11], and the overall modified confusion
entropy, MCEN in Eq. [20].

With the discussion around Eq. [10], we said that for the case here,
K = 4 > 2, it is better to use MTEFF in Eq. [13] to avoid negative
inconsistent values. Nevertheless, as this was not the case with the
matrices in Table 1, we computed the original TEFF in Ref. [30] for
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1 shows the detailed computation of MCEN for matrix S1. The rest of the
values in Table 2 are similarly computed.

As we have already pointed out, TEFF is insensitive to the differences,
its value 0.9124 is the same for all six matrices, despite the different class-
models. The same behavior would be observed if MTEFF were used,
although with a slightly greater value (0.93675). The same insensitive-
ness applies with p-SENS, Eq. [14], and p-SPEC, Eq. [15], whose values
computed with w; = 1/4 are 0.9 and 0.86, respectively, for the six
matrices in Table 1.

MCEN on the other hand shows some differences: it is the same for S1,
S2, and S5 (0.1722), different from the one of S3 and S4 (0.1575), and
also different from 0.1690 for $S6. In other words, MCEN distinguishes S1
when compared to S3 (or S4) and S6, but not when compared to S2 or S5,
nor when comparing S3 and S4.

When looking at S1 and S2, or S3 and S4, we see that, in fact, they do
not represent true different class-models, only different names, that is, S1
and S2 are the same if we interchange categories 1 and 2, and S3 and S4
differ in what we call category 3 or 4. The situation is different when
comparing to S5 with rather different sensitivities despite having the
same specificities.

A similar (mis)behavior is appreciated when looking at the figures of
merit of the individual class-models, MCEN(1) = MCEN(2) = 0, the
minimum entropy for the class-models of C; and Cs in all six matrices,
which makes no sense for the class-model of C; in S1 or the class-model of
C- in S2, both with sensitivity 0.6, much less than 1, with no distinction
with S3 or S4 where the first two class-models have perfect sensitivity
and specificity. In contrast, CEFF accounts for these differences, with
CEFF(1) = 0.7746 and CEFF(2) = 1 in S1 (the opposite in S2), and
CEFF(1) = CEFF(2) = 1 for S3 and S4.

The conclusion with respect to the overall measures is that TEFF (and
MTEFF) is insensitive to some different distribution of values and the
modified confusion entropy MCEN is almost unresponsive to differences
in sensitivity, that is, to the diagonal elements of S. Given that these el-
ements are the same as in matrix F, a closer look at Eqgs. [16,17] reveals
that the diagonal values fj; only influence the ratios by slightly modifying

the denominator; in fact, Rjj = 0 by definition.

2.4. DMCEN, a new proposal for a more sensitive entropy-based figure of
merit

The previous paragraphs show the lack of sensitivity of MCEN to
variations in the K-class-model sensitivity. A new modification of MCEN
is proposed, the diagonal modified confusion entropy (DMCEN), to cor-
rect this behavior in a way that it becomes useful in class-modelling
situations, where sensitivity and specificity are both important.

To do it, the diagonal elements of F will be separately considered, but
taking into account that they are directly related to the sensitivity of the
class-model of Cj, not to misallocations like fim (j # m). Therefore, the
individual in-diagonal modified confusion entropy, DMCENjq is defined
as:

DMCENu(j)=1-f;,j = 1,2, .., K 23)

and their weighted mean defines the index for the entire K-class-model
as:

3 K

comParatlve purposes. 3 . DMCEN,, = 2-71 #,DMCEN,, ) 24)
Finally, to help the reader become familiar with the formulas, Annex =

Table 1

Different matrices of sensitivity and specificity, Eq. [4], for 4-class-models.

S1 S2 S3 S4 S5 S6

06 1 1 1 11 1 1 1 11 1 1 11 1 09 1 1 09 1 1 1
1 11 1 1 06 1 1 111 1 111 1 1 07 1 1 1 08 1 1
1 11 0.85 11 1 0.85 1 1 06 085 111 0.85 1 1 1 0.85 1 1 09 085
1 1 085 1 11 085 1 1 1 08 1 1 1 085 06 1 1 085 1 1 1 085 1
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Table 2
Values of different figures of merit for matrices S1 to S6 in Table 1. w = 0.5 is used for computing DMCEN(j) and DMCEN.
Individual class efficiency, CEFF (j), Eq. Total effic. Individual modified confusion entropy, MCEN, Individual diagonal modified confusion DMCEN,
[8] TEFF, Eq. MCEN()), Eq. [19] Eq. [20] entropy, DMCEN(j), Eq. [25] Eq. [26]
11
j=1  j-2 j-3 j-4 U1 j=1  j=2 j=3 j=4 j=1 j=2 j=3 j=4
S1 0.7746 1.0000 0.9747 0.9747 0.9124 0.0000 0.0000 0.2781 0.2781 0.1722 0.2000 0.0000 0.1391 0.1391 0.2861
S2 1.0000 0.7746 0.9747 0.9747 0.9124 0.0000 0.0000 0.2781 0.2781 0.1722 0.0000 0.2000 0.1391 0.1391 0.2861
§3  1.0000 1.0000 0.7550 09747  0.9124 0.0000  0.0000 0.3333 0.2781  0.1575 0.0000  0.0000 0.3367 0.1391  0.2788
S4 1.0000 1.0000 0.9747 0.7550 0.9124 0.0000 0.0000 0.2781 0.3333 0.1575 0.0000 0.0000 0.1391 0.3667 0.2788
S5 0.9487 0.8367 0.9747 0.9747 0.9124 0.0000 0.0000 0.2781 0.2781 0.1722 0.0500 0.1500 0.1391 0.1391 0.2111
S6  0.9487 0.8944 0.9247 09747 0.9124 0.0000  0.0000 0.2901  0.2781  0.1690 0.0500  0.1000 0.1951  0.1391  0.1595
i DMCEN,,(j) Table 3
WIth = =g~ i
7 Zj:] DMCEN,,(j) Benchmark values of DMCEN for different number
of classes, K.
K 2
. . . . . ()
Notice that with this definition, is DMCENy = ZJKI—I” However, K DMCEN benchmark
. 2 _’f” : 2 0.7028
any other definition of vector (u,...,4x) can be used in Eq. [24] to 3 0.7144
weight the sensitivity of each individual class-model as needed in a 4 0.7154
particular application. 5 0.7196
. s . 0.72
Finally, a convex combination of the two elements makes the indexes 3 0 ;222
more flexible. Therefore, for 0 <w < 1, the individual diagonal modified 8 0.7289
confusion entropy is defined forj =1, 2, ..., K by: 9 0.7309
10 0.7325
DMCEN(j) = w MCEN(j) + (1 —w)DMCEN,,(j) (25) 11 0.7340
12 0.7351
and the overall diagonal modified confusion entropy is: 3 8'?22?
_ _ _ 15 0.7378
DMCEN = w MCEN + (1 —w) DMCENy (26) 16 0.7385
Again, w in Egs. [25,26], which does not necessarily have to take the 1; 8‘?223
same value in the two equations, serves to regulate the relative weight, in 19 0.7402
a given problem, of sensitivity versus specificity (individually or 20 0.7407

globally).

Like the rest of detailed FoMs, DMCEN varies between zero and one.
However, contrary to sensitivity, specificity, or the remaining FoMs
defined up to Eq. [15], the best possible configuration (a matrix S of ones)
has DMCEN = 0 whereas the maximum value one is for a matrix S of
zeros, which is the worst situation. Moreover, even if for compatibility
we used 1 — DMCEN, the values would not be comparable with the
remaining FoMs, reason why we use their original meaning, related to
reducing the entropy.

By using w = 0.5 in Egs. [25,26], the final columns of Table 2 show
that DMCEN(1) is different from DMCEN(2), except for S3 and S4 (where
the class-models for C; and C5 are identical). As we have already said, S1
and S2 has the same overall DMCEN because class C; and Cy are just
interchangeable resulting in the same global structure, though the indi-
vidual behavior is detected by DMCEN(1) and DMCEN(2). The same
happens with S3 and S4, where the interchangeable classes are C3 and
Cy.

However, the differences in the entire 4-class-models are seen by
DMCEN: in S3 and S4 the ‘fails’ that reduce sensitivity and specificity are
all in two of the constructed class-models (those for C3 and C4) whereas in
S1 and S2 the same fails are distributed in three class-models; thus, they
have a smaller value of DMCEN (less disorganized).

Similarly, with the same specificities, the different sensitivities in the
4-class-models in matrices S5 and S6 are also detected by both the in-
dividual DMCEN()), j = 1, ..., 4, and the overall DMCEN. Consequently,
with this criterion, the best 4-class-model would be the one summarized
in S6, where the values of sensitivity less than one are more spread
among the class-models, similarly to S5, but they are the greatest (0.9
and 0.8 as against 0.9, 0.7, or 0.6).

According to the ‘organization’ introduced by the 4-class-model as
measured by DMCEN, the (decreasing) order in sensitivities in the last
four matrices is (0.9, 0.8, 0.9, 1), (0.9,0.7, 1, 1), and both (1, 1, 1, 0.6) or
(1, 1, 0.6, 1) for S6, S5, and S4 or S3, respectively, with DMCEN equal to

0.1595, 0.2111, and 0.2788, respectively. It is noticeable that this order
is not the same as if only sensitivity values were considered. For example,
the disorganization of the sensitivities measured directly by Shanon's
entropy would be 0.5311, 0.4970, and 0.4422, for S4, S5, and S6,
respectively, or 0.2000, 0.1414, and 0.086, respectively, if it was
measured by the standard deviation. That means that DMCEN is jointly
qualifying the discrepancy in sensitivities and specificities.

2.5. DMCEN benchmark value for random classification

Ballabio et al. [26] introduced the concept of benchmark threshold as
the initial criterion to accept or reject a K-class-model on the basis of its
performance. It is based on the idea that a K-class-model can be
considered informative if it performs better than a random one. To es-
timate it, the results of a given K-class-model are compared with those
obtained by a random K-class-model, which will be the one whose matrix
F (and S) has all the elements equal to 0.5, because DMCEN is computed
from frequencies. The benchmark threshold value would then be the
DMCEN that corresponds to this random class-modelling.

Table 3 shows some benchmark values of DMCEN for several values
of K (from 2 to 20) and section 3.3 shows some additional analyses with
K = 4 that will help in understanding and clarifying the usefulness of such
a benchmark value to assess the K-class-model quality.

2.6. Comparison between DMECEN and MTEFF

The last paragraphs of section 2.4 show some examples where
DMCEN is more sensitive than MTEFF. To systematically analyze the
behavior of the two performance criteria, we will follow the definitions
of consistency and discriminancy in Ref. [34] to compare two arbitrary
single-number evaluation measures.
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The adaptation of these definitions to compare DMCEN in Eq. [26]
and MTEFF in Eq. [13] for a K-class model is described in the following.

Let ¥ denote a set of sensitivity/specificity matrices S, Eq. [4],
computed with different K-class-models built with the same dataset. For
any two matrices S; and S, of ¥, we can compute both FoMs and count
the number of times they agree or disagree when evaluating the perfor-
mance of the two K-class-models related to S; and S,. Formally, we define
the sets R and T in ¥ x ¥ (the Cartesian product) by

R={(S,S,) € ¥ x ¥| DMCEN(S;) > DMCEN(S,), @7
1 — MTEFF(S,) > 1 — MTEFE(S,)}
T ={(S,S,) € ¥ x ¥| DMCEN(S,) > DMCEN(S,)

1 — MTEFE(S,) < 1 — MTEFE(S,)} 7 (28)

Remember that both DMCEN and MTEFF vary in [0, 1] but they have
opposite interpretation: low values of DMCEN indicates better perfor-
mance (the closer to zero, the better), whereas the best performance with
MTEFF corresponds to values closer to one. Therefore, the set R in Eq.
[27] contains the pairs of matrices for which both FoMs agree in quali-
fying S, as better than S;, whereas T in Eq. [28] contains the pairs of
matrices where the FoMs do not agree: Sy is better than §; with DMCEN
while S is better than S, with MTEFF.

The degree of consistency, C, of DMCEN and MTEFF is

_ card(R) (29)
card(R) + card(T)

where card denotes the cardinal number, that is, the number of elements

of the corresponding set, R or T.

Analogously, the following equations [30,31] define subsets P and Q
in ¥ x ¥ that contain the pairs of matrices indistinguishable with MTEFF
but not with DMCEN, and those equal with DMCEN and different with
MTEFF, respectively.

P=1{(S.,8,) | S1,S; € ¥, DMCEN(S,) > DMCEN(S,), 0)
1 — MTEFF(S,) = 1 — MTEFE(S, )}
0={(51,5,) | $1,S, € ¥, DMCEN(S,) = DMCEN(S,),

1 — MTEFE(S,) > 1 — MTEFF(S,)} D)

The degree of discriminancy, D, for DMCEN over MTEFF is the quo-
tient of the number of elements in P and the number of elements in Q:

__card(P)
b= card(Q)

For two matrices S; and Sp, with S; better than Sy according to
DMCEN, a value C for the degree of consistency between the FoMs can be
seen as the probability that S; is better than S, also with MTEFF, or vice
versa.

On the other hand, if D is the degree of discriminancy of DMCEN over
MTEFF, the interpretation is that it is D times more probable that DMCEN
detects a difference between S; and S, when MTEFF does not.

Clearly, both C > 0.5 and D > 1 are required to conclude that DMCEN
is a better performance criterion than MTEFF. It is worth mentioning that
the comparison is made in terms of consistency and discriminancy by
‘counting’ the decisions made with both FoMs and not by comparing the
closeness of their values to any given target value (for instance, MTEFF

(32)

Table 4
Three different schemas with symmetric sensitivity/specificity matrices for 4-
class-models, 0< s < 1.

SA SB SC
s s s s s 111 1 s s s
s s s s 1 s 11 s 1 s s
s s s s 11 s 1 s s 1 s
s s s s 111 s s s s 1
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close to one or DMCEN close to zero), which makes no sense in this case
because the values of both FoMs are not comparable, despite varying in
the same range.

3. Analysis of the performance of DMCEN

Once the proposed figure of merit has been defined, an analysis of its
performance is required. With this goal, several different situations are
posed and analyzed. All the cases will be with K = 4 categories, which is
more than the usual binary situation but with matrices that still can be
reasonably handled to illustrate its properties.

3.1. Symmetric matrices with equal values of sensitivity and specificity

With this goal, DMCEN is firstly computed over a series of symmetric
sensitivity/specificity matrices detailed in Table 4, all for 4-class-models,
that is, for simultaneously handling four different categories.

Different values of sensitivities and specificities s, 0< s < 1, are used
with different structure for three types of matrices. The first type of
matrix, SA, has identical elements, that is, all sensitivities and specific-
ities are set to s, with the purpose of relating the value of DMCEN to s, the
magnitude of sensitivities/specificities of the 4-class-model.

In the second type, matrices SB, pair-wise specificities are set to 1,
aiming at observing the value of DMCEN as sensitivity s of all class-
models increases in a scenario of maximum pair-wise specificity.

The third type of matrices SC is intended to observe the effect on
DMCEN of increasing pair-wise specificities s in a framework of class-
models with perfect sensitivity.

For s = 1, the three matrices coincide in the ideal performance of the
K-class-model (hence DMCEN = 0). Finally, DMCEN is computed with
w = 0.5 in all cases and for both Egs. [25,26].

The computation of DMCEN starts in Eq. [19], whose addends
computed with Eq. [16] are the same for all matrices of the same type,
but with different values in each type. For example, for SA, the fre-

quencies outside the main diagonal are all 1 - s, so
thatR}, = gry s =R,y and thus MCEN() = - 3x

261:555 In <61:555> m, which is also MCEN in Eq. [20] because all the

weights R; in Eq. [21] with A = 1 are 4. Adding the effect of the main
diagonal with Egs. [23,24] is adding (1—s). Thus, with w = %, the value

o9r T~ e type SB|

0.7 1

0.5 pru,, ]

DMCEN

_— o

0.2t T

S

Fig. 1. DMCEN values of the matrices in Table 4 as a function of s. Blue line is
for SA, dotted red line for SB, and dash-dotted black line for SC. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)



O. Valencia et al.

0.8 ~

0.6 -

DMCEN

0.4

0.2 ~

= 02
=06 24
0.8 = 0.8

w 1 1 5

Fig. 2. DMCEN values of matrices SA of Table 4 as a function of s and w.

of DMCEN for matrices SA as a function of s is

-3 1-s 1—3s 1—s
I 33
In(6) 6 — 55 n<6—55> L) (33)

DMCEN(s) =

which is depicted in Fig. 1, blue line. Because DMCEN decreases with the
increasing organization of the elements inside the matrix (towards the
matrix of ones), the curve follows the expected decreasing behavior: the
index steadily decreases when increasing s, that is, when all the sensi-
tivities and specificities increase in the same way. From roughly s = 0.8
the decreasing is much more pronounced, reflecting the increasing
goodness of the class-models.

For SB, the term MCEN is null (all the specificities are perfect) so that
DMCEN is only '4(1—s) which linearly decreases from 0.5 with slope
—0.5, as can be seen in the red dotted line in Fig. 1. Finally, for SC the
term null is DMCENyq (perfect sensitivity) and, consequently,

DMCEN = /: MCEN = /; MCEN(j) = % 1% In <ﬁ> which is the black

dash-dotted line in Fig. 1. It starts in a better value, reflecting the
goodness of sensitivity, but then decreases very slowly until approxi-
mately s = 0.8, from where it sharply decreases.

The effect of weighting, w, in DMCEN (Eq. (26)) is shown in Fig. 2 on
matrices of type SA. As s increases, DMCEN decreases. The way of falling
depends on the weighting used. When sensitivities are discarded (w = 1),
DMCEN decreases at a constant rate (as seen in SB). On the contrary, with
w = 0 (specificities are discarded), the rate of decrease is not constant and
rises for high s values, as in SC.

3.2. Asymmetric K-class-model matrices

In this section, the performance of the proposed FoM, DMCEN, is
tested through sensitivity/specificity matrices with varying diagonal el-
ements, and sparse frequency matrices for the off-diagonal elements.

Table 5

Minimum, maximum, and total number of values of the diagonal modified
confusion entropy (DMCEN) computed for four different types of sensitivity/
specificity matrices in 4-class models (M1 to M4) with the given individual
sensitivities.

Sensitivities of the class-model DMCEN

For C; For Cy For C3 For C4 Min Max Count
M1 0.90 0.90 0.90 0.90 0.1607 0.1734 11
M2 1.00 1.00 0.80 0.80 0.2097 0.2275 60
M3 1.00 1.00 1.00 0.60 0.3090 0.3281 40
M4 0.60 1.00 1.00 1.00 0.2583 0.2684 2
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Four different types of matrices for 4-class-models are defined (M1 to
M4) in such a way that the sensitivity of the 4-class-model is kept con-
stant in each type. The kept values are written in Table 5, where it is seen
that their sum is always the same but the sensitivities of the individual
class-models are not.

Furthermore, for matrices of types M1 to M3, all specificities are one
except for three values (0.95, 0.80, and 0.65), which are the same but
placed in different off-diagonal elements. In fact, in every type, matrices
are generated by allocating these three values to all possible locations
within the off-diagonal twelve cells (220 distinct matrices). Additionally,
permutations of the three non-unitary specificity values among the three
selected allocations must be considered. This results in 1320 (6 x 220)
sensitivity/specificity matrices for each of the three types of matrices
(M1 to M3) in Table 5.

The case of M4 is slightly different because the only non-unitary
specificity is 04 in (1, 1, 0.4), which is still
0.95 + 0.80+0.65 = 1 + 1+0.4. However, only one sensitivity and one
specificity are less than one, 0.6 and 0.4, respectively. Consequently,
there are only 12 different matrices of type M4.

In every matrix from type M1 to M4, both the sum of diagonal ele-
ments (trace of the matrix) and the sum of off-diagonal elements are
constant, which would be the only information used in the corresponding
matrix N to compute (assuming the same number of objects per class)
total sensitivity (TSNS), total specificity (TSPS), total efficiency (TEFF),
modified total efficiency (MTEFF) and also p-SENS and p-SPEC. Conse-
quently, these six FoMs are the same for the (3 x 1320) + 12 = 3972
matrices considered. On the contrary, Table 5 shows the count of the
different values of DMCEN obtained in each type of matrices (M1 to M4)
along with their maximum and minimum. Indeed, the distinct DMCEN
values are in turn obtained, sometimes, in hundreds of matrices.

In any case, the different values of DMCEN when the other FoMs are
the same indicate an improvement of the ability of the proposed metric,
DMCEN, to distinguish between matrices that the other FoMs do not
differentiate.

In the case of matrices of type M1, with the same sensitivity in every
class-model, the proposed FoM takes 11 different values, which detect
the different allocation of the specificity flaws.

Regarding matrices of type M2, as differences of specificity between
class-models are added to those of sensitivity (only two class-models,
those for C3 and C4, concentrate the sensitivity flaws), the number of
distinct values of DMCEN rises to 60.

For matrices of type M3, with a single class-model with sensitivity less
than one, DMCEN takes 40 different values, depending on the location of
the specificity flaws with respect to the sensitivity value 0.6.

Finally, with the same sensitivity, and a single non-unitary specificity,
DMCEN only takes 2 values with matrices of type M4. One of them, the
maximum 0.2684, occurs in all the matrices where specificity 0.4 and
sensitivity 0.6 are in different rows and columns, for example, matrix
SM4max in Table 6. In contrast, the minimum DMCEN is 0.2583
whenever specificity 0.4 and sensitivity 0.6 are located in the same row
or column, as in SM4min in Table 6.

Some more examples are shown in Table 6, the already mentioned
SM4min and SM4max that are representative of the minimum and
maximum values of DMCEN when using M4-type matrices, and SM1min,
SM1max which takes the minimum and maximum values, 0.1607 and
0.1734, respectively, for matrices of type M1.

The worst situation for the matrices of type M1 is illustrated with
SM1max, whose overall DMCEN is the maximum value of type M1
matrices. It is observed how the three non-unitary specificities are
located in the same row and column, the first row and first column in the
matrix shown. Indeed, class-model of C; might accept objects from class
Co, s21 = 0.65, but also there are objects of C; inside the class-models of
both Cy, s12 = 0.80, and Cs, s13 = 0.95. So specificity problems gather in
relation to Cj;, related primarily to its own class-model with
DMCEN(1) = 0.2514, the largest value among the four class-models,
whereas the class-model of C5 has DMCEN(2) = 0.2220, with 0.20
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Table 6
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Values of the individual Diagonal Modified Confusion Entropy, DMCEN(j) computed with w = 0.5 for four matrices of sensitivities and specificities selected from those in
Table 5: SM1max: matrix of type M1 with maximum DMCEN. SM1min matrix of type M1 with minimum DMCEN. SM4max matrix of type M4 with maximum DMCEN.

SM4min: matrix of type M4 with minimum DMCEN.

Matrix

DMCEN (j)

j=1

j=2 j=3 j=4

SM1max 0.90
0.65
1.00
1.00
0.90
1.00
1.00
1.00
0.60
1.00

0.80
0.90
1.00
1.00
0.65
0.90
1.00
1.00
1.00
1.00

0.95
1.00
0.90
1.00
1.00
1.00
0.90
0.95
1.00
0.40

1.00
1.00
1.00
0.90
1.00
1.00
0.80
0.90
1.00
1.00

SM1min

SM4max

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
0.60
1.00
1.00
0.40

SM4min

0.2514

0.1495

0.2000

0.2967

0.2220 0.0932 0.0500

0.1495 0.1729 0.1729

0.1026 0.1026 0.0000

0.0000 0.0000 0.1026

probability of accepting objects from class C; (s;2 = 0.80) together with
0.35 probability that its own objects are inside the class-model of C;
(s21 = 0.65). To a lesser extent, the class-model of Cs, with
DMCEN(3) = 0.0932, is just affected by a probability 0.05 of accepting
objects from class C; (s13 = 0.95). The smallest value, DMCEN(4) = 0.05,
is for the class-model of C4 that just shows a slight sensitivity failure.

Regarding SM1min, one of type M1 matrices with minimum overall
DMCEN, specificity flaws are located in different rows and columns, thus
affecting three of the class-models. As DMCEN(j)#0 for all j reveals, all
class-models have sensitivity and/or specificity problems. However, they
are related with non-empty intersections with only one class. The spec-
ificity of the class-models of Cy is affected only because it contains objects
of C1 (35% as s13 = 0.65), the one of the class-model of C3 by accepting
objects from only C4 (s43 = 0.95) and the class-model of C4 accepts ob-
jects only from Cs (s34 = 0.80). The denominators in Eq. [16] are the
same for j = 1,2 (and for j = 3,4) and thus DMCEN(1) equals DMCEN(2).
Likewise, DMCEN(3) equals DMCEN(4) though they are slightly greater
than DMCEN(j), j = 1,2 because the specificity of class-models for C; and
Co suffers for just one failure against another class whereas the
class-models for C3 and C4 have two failures against another class.

Matrix SM4max in Table 6, one of type M4 matrices with maximum
overall DMCEN, has the sensitivity failure in the class-model of Cj,
s11 = 0.60, and thus a non-null DMCEN(1). The single non-unitary
specificity in this case is sy3 = 0.40, which corresponds to the class-
model of C3 to class C, and thus DMCEN(2) = DMCEN(3) = 0.1026
(both non-null despite the fact that the model of C; is perfectly defined),
which is a little less than DMCEN(1). The class-model for C4 is perfectly
defined and no objects of C4 are in any other class-model so
DMCEN(4) = 0.

In contrast to SM4max, matrix SM4min (which is a particular case of
the best possible allocation with the M4 configuration according to
DMCEN) has the single non-unitary specificity in s4; = 0.40, affecting the
same class-model with sensitivity 0.6 = s;;. Consequently, DMCEN(1) is
the greatest, then 0.1026 for DMCEN(4) because C4 has objects in the
class-model of C;, and the remaining two class-models, for C, and Cs,
perfectly defined, thus, with null DMCEN()), j = 2,3.

A similar study but for 4-class-model matrices with equal sensitivities
(0.90 in every class-model) has been conducted. The results and discus-
sion are in the supplementary material: Table Al contains the five types
of matrices obtained by varying three non-unitary specificities, along
with the count and bounds of the different values obtained for DMCEN.
Analogous to Table 6, some particular cases in Table A2 have been
analyzed in this situation. Also, a detailed explanation on how to
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Fig. 3. Histogram of DMCEN values of 10,000 4-class-model matrices of sen-
sitivities and specificities picked uniformly at random from (A) {0, 0.1, 0.2, ...,
0.9, 1.0}, (B) {0.5, 0.6, 0.7, 0.8, 0.9, 1}.
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interpret the computation and behavior of the individual DMCEN(j) is in
Tables A3 and A4 of the supplementary material.

As conclusion, when varying specificities with constant sensitivities,
Table Al reveals that, when the difference between the two most extreme
specificities increases, overall DMCEN values tend to decrease (notice the
decreasing numbers when looking at Table Al from the first to the last
row). On the contrary, when specificities remain constant (in different
positions) and sensitivities are changed (Table 5), both the range of
DMCEN and its magnitude increase.

3.3. Benchmark value for DMCEN

According to the definitions in section 2.5, a random K-class-model
has all sensitivities and specificities equal to 0.5. For the particular case of
a 4-class-model, that we are using for illustration, that means that,
applying Eq. [33] for s = 0.5 we have DMCEN = 0.7154, Table 3.
Accordingly, any 4-class-model with a value of DMCEN greater than
0.7154 should be directly discarded.

To explore the meaning of this benchmark (threshold) value, we can
estimate the distribution of the values of DMCEN, distribution that allows
the evaluation of the significance of a particular value of DMCEN ob-
tained for a given 4-class-model.

To illustrate how this works, Fig. 3 depicts histograms of the absolute
frequency of 10,000 values of DMCEN obtained in two simulations. The
first one is made with 10,000 sensitivity/specificity matrices, whose
sixteen elements were randomly picked (with uniform probability) from
{0, 0.1, 0.2, ..., 0.9, 1}. This covers 4-class-models with very different
performance, from very poor to potentially very good. The corresponding
histogram is in Fig. 3A), where it is apparent that the distribution of the
obtained values of DMCEN is highly asymmetric, the mean is 0.7406, the
median 0.7518, and the lower and upper quartiles equal 0.6887 and
0.8031, respectively.

In fact, it seems that there are very few values less than the bench-
mark 0.7154, which is marked with a green line in Fig. 3A). Precisely, by
using the frequencies below this value, we can estimate the probability
that DMCEN is less than the benchmark, 0.3454 in this case. Analogously,
if we stated, say a 1% significance limit, we can compute the percentile 1
(black line in Fig. 3A)) which is 0.5022. In other words, a 4-class-model
with DMCEN less than 0.5022 corresponds to a non-random 4-class-
model with 99% confidence level.

To analyze the distribution of the ‘suitable’ 4-class-models, the his-
togram in Fig. 3B) corresponds to another 10,000 sensitivity/specificity
matrices but whose elements are above the random 4-class-model, that is,
randomly picked with uniform probability from the reduced set {0.5, 0.6,
0.7, 0.8, 0.9, 1}. As all the sensitivities and specificities are greater than
0.5, the index approaches zero, and the histogram of the values of
DMCEN in Fig. 3B) is closer to zero. It is still an asymmetric distribution
with mean 0.5282, median of 0.5335, and lower and upper quartiles of
0.4938 and 0.5689, respectively. As expected, all the DMCEN values are
less than the benchmark, with a maximum of 0.6733.

Comparatively, the probability of obtaining a DMCEN less than
0.5022 (the previously computed percentile 1 with the histogram in
Fig. 3A)) is now 0.30, that is, the percentile 30, marked with a black line
in Fig. 3B), that reproduces the idea that in the second case we have
discarded all the ‘meaningless’ 4-class-models, qualified as such ac-
cording to the benchmark value.

Similar computations can be made for each dataset with K classes. It
will suffice to re-compute the histogram analogous to the one in Fig. 3B)
for the corresponding K in Table 3 and, thus, to obtain the probability of
having a classifier with a value of DMCEN less than the computed
DMCEN.

3.4. Comparison between DMECEN and MTEFF

The previous sections 3.1 and 3.2 describe the behavior of DMCEN
throughout some particular cases with four classes, where MTEFF was
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Fig. 4. Box and whisker plot of: (A) the degree of consistency, (B) the degree of
discriminancy of DMCEN over MTEFF.

deliberately kept constant to see the variation of DMCEN. The first
conclusion is that DMCEN varies when MTEFF does not so the former
performs better than the latter in evaluating K-class-models of the illus-
trated type.

This section is devoted to study the degrees of consistency C and
discriminancy D between both performance measures, according to the
definitions in Egs. [29,32]. With this aim, the set ¥ will be the set con-
taining 100,000 matrices (sensitivity/specificity matrices S, Eq [4]),
again for four classes. Those S matrices are generated by randomly
picking the sixteen elements from {0, 0.1, 0.2, ..., 0.9,1.0}, with uniform
probability.

With the pair-wise comparisons among these 100,000 matrices, C and
D are computed. The procedure is repeated a hundred times. Fig. 4
contains box and whisker plots of the degree of consistency, Fig. 4A), and
the degree of discriminancy, Fig. 4B).

Fig. 4A) shows that the 100 values of C have a very small dispersion
(standard deviation equal to 1.3 1073) with a high mean and median
values, 0.6763 and 0.67653, respectively. That is, for the 4-class-models
in ¥, when DMCEN evaluates one of them better than another, there is
67.6% probability that MTEFF gives the same evaluation.

As for the degree of discriminancy D, Fig. 4B) shows that their values
vary between 61.41 and 63.42, with almost equal mean and median,
63.31 and 62.29, respectively, and a standard deviation of 0.43. There-
fore, it is 62.3 times more probable that DMCEN detects a difference
between two 4-class-models in ¥ for which MTEFF does not.
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Fig. 5. Box and whisker plot of the number of different values obtained by (A)
DMCEN, (B) MTEFF.

Consequently, one can say that DMCEN is a more adequate FoM than
MTEFF for the 4-class-models in P.

Besides, the reason of introducing DMCEN is to reduce the insensi-
tivity of MTEFF to some changes in a matrix S. To show the improvement,
for every 100 sets ¥, we count the number of different values obtained for
both DMCEN (Fig. 5A) and of MTEFF (Fig. 5B). As a result, on average,
there are 1,288 different values of MTEFF as against an average of 33,055
of DMCEN, that is, DMCEN is 25.7 times more ‘sensitive’ than MTEFF
when comparing the 100,000 matrices of 4-class-models.

3.5. Illustration of the use of DMCEN with an experimental data set

Unlike the previous sections, the purpose of this section is to show the
behavior of DMCEN with experimental data, when varying meta-
parameters of a classifier (class-modelling in this case).

To do it, the “allrep” data set from the Thyroid Disease Data Set [35]
is considered. It consists of data of 2800 patients distributed in four
classes: Cj, replacement therapy; Cs, underreplacement; Cs3, over-
replacement; and Cs, negative. The five continuous variables have been
selected as predictor variables: TSH, thyroid stimulating hormone; T3,
triiodothyronine; TT4, total i-thyroxine; T4U, thyroxine uptake; and FTI,
free thyroxine index. Objects with some missing value in at least one
variable have been removed. In summary, the studied data set has 2,632
patients distributed in 17, 33, 25, and 2,567 patients in each of the four
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Fig. 6. Values of MTEFF and DMCEN for several different 4-class-models with
thyroid data set. A) MTEFF, B) DMCEN with w = 0.50. Filled red circles mark
the same 4-class-models. The filled black circle, and square are the maximum
value of MTEFF, and minimum of DMCEN, respectively. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Table 7
Sensitivity/specificity matrices of the 4-class-models selected with minimum
DMCEN and maximum MTEFF, in bold.

Confidence level for ~ MTEFF DMCEN Sensitivity/specificity matrices
the class-models of (w = 0.50) for C1, Cs, C3, and C4
C1, Ca, C3, and C4
Model 13 (0.80, 0.5975  0.4776 0.71 1.00 0.28 0.78
0.80, 0.95, 0.80) 0.47 0.85 0.68 0.22
0.47 1.00 0.96 0.87
041 0.15 0.60 0091
Model 222 (0.95, 0.5739  0.4285 0.88 1.00 0.04 0.66
0.85, 0.95, 0.85) 0.41 0.88 064 0.17
0.47 1.00 096 0.87
041 0.12 052 0.92

mentioned classes, respectively.
UNEQ has been used as a class-modelling method. It consists of
building individual hyperellipsoids, at a given confidence level. In that
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sense, each class is independently modelled (one-class classifier) but they
are jointly evaluated in the form of a sensitivity/specificity matrix of a 4-
class-model. Therefore, the metaparameter to be modified is the confi-
dence level at which each hyperellipsoid is built, that is, four confidence
levels should be defined.

For each class, confidence levels 0.80, 0.85, 0.90, and 0.95 have been
considered, so that 256 different 4-class-models were built. In each of
them, MTEFF and DMCEN with w = 0.5 in Eq. [26] are evaluated.

In Fig. 6A) the values obtained from MTEF are shown, 4 groups are
observed. As the greater MTEFF the better, the group formed by the
highest values, marked in red, consists of 64 models whose MTEFF varies
from 0.5947 to 0.5975. The maximum (0.5975) is reached in model
number 13, the black solid circle in the graph. The characteristics of this
model, that is, MTEFF, DMCEN, and the matrix of sensitivities/specific-
ities, are recorded in row 1 of Table 7.

For the same 256 models, the DMCEN values with w = 0.5 are shown
in Fig. 6B). Clearly, there are much more different values than in Fig. 6A)
so that DMCEN discriminates between models better than MTEFF. Be-
sides, the FoM distinguishes between models with different meta-
parameters, reflecting their structure. For example, models 1 to 4 have
confidence level of the first three classes equal to 0.80 and that of the
fourth class increasing from 0.80 to 0.95, with the observed corre-
sponding slight increase of DMCEN. Moreover, the red filled circles in
Fig. 6B), always at the bottom of the 4-point groups, correspond to the
value of DMCEN for the “best” 64 models in Fig. 6A), also in red. The
minimum (best value for DMCEN) is obtained on model 222 marked with
a solid black square, also in the MTEFF values in Fig. 6A), and its char-
acteristics are in row 2 of Table 7.

Comparing the two rows of Table 7, the class-models differ in the
confidence level of all but the third class-model. The consequence is that,
in the second row, the sensitivity of all the class-models is improved at
the cost of specificity. If, with the problem under study, the researcher
wishes to prioritize, say specificity versus sensitivity, then a different w
should be defined for computing DMCEN (or even each individual class-
model via DMCEN(j)), whereas the values of MTEFF will still be the same.

4. Conclusions

The proposed diagonal modified confusion entropy (DMCEN) as a
single overall figure of merit for class-modelling situations with several
classes has shown to be more sensitive to the different allocations of
sensitivity and specificity of the individual class-models than other usual
performance measures for these situations. In particular, the different
values of DMCEN, when other usual figures of merit remain constant,
indicate an improvement of the ability of the proposed index, DMCEN, to
distinguish among class-models that other figures of merit do not

Appendix A. Supplementary data
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differentiate.

A systematic comparison by using the degree of consistency C and the
degree of discriminancy D when comparing the proposed DMCEN and
the modified total efficiency MTEFF shows that, for a hundred thousand
sensitivity/specificity matrices for 4-class-models, C is almost 0.7 on
average, well above the needed 0.5, and there is more than 62% prob-
ability that DMCEN detects differences when MTEFF does not.

Furthermore, a benchmark threshold value for DMCEN can be
computed that allows discarding poor K-class-models that behave worse
than a random K-class-model.

The studies conducted show promising behavior of DMCEN to be used
as a sole criterion, for example, in a systematic selection of class-models
in a given problem, as a response for an experimental design depending
on the metaparameters of e.g. SIMCA, or as a fitness function to guide an
evolutionary algorithm.

In any case, more studies are probably required for situations where
some values of sensitivity and/or specificity are not well estimated, due
to class-imbalance or because the class of interest is the least frequent
(detection of diseases, bank fraud, etc.).
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Annex 1. Computation of MCEN for matrix S1 of Table 1

What follows is the detailed numerical computation of MCEN to better understand why it is equal to zero (perfect classification) when sensitivities
are equal to 0.6 in matrix S1 of Table 1. To make reading easier, the procedure is divided into several steps:

Step 1. To obtain the frequency matrix F1 from the sensitivity/specificity matrix S1 by using Egs. [2,4].
06 1 1 1 06 0 O 0
1 1 1 1 0 10 0

S1= 1 1 1 0.85 F1= 0 0 1 0.15
1 1 085 1 0 0 0.15 1
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Step 2. Use the formulas in section 2.3 for each class. In most of the cases, since fj,; = 0, the denominator does not need to be computed. Nevertheless,
we show the whole development to make it easier the understanding of the equations.

Class 1: j = 1, m = 2,3,4 in Egs. [16,17]

R%z _ fiz R%a _ fis R%4 _ fia
Zf::l (fik + fia) —fu1 Z:Zl(flk +fir) —fu 213:1 (fik + fia) — fun
0 0 0
1= — = 1 = — = 1 = —— =
Rip = 1.2-06 0 Rua 1.2-06 0 R 1.2-06 0
R}, = _ fa Rl = e R}, = _ fa
oo ik + fia) — fun Sy (Fik + fia) — fin S ik + fia) — fin
0 0 0
1l = — = 1l = — — = 1 = - =
Ra = 12-06 0 Ra 1.2-06 0 Ra 12-06 0

From Eq. [19], MCEN(1) = — >4, 41 (Ripnlog 6(Rl,,) + Ryylog 6 (R, ))where R, log ¢(Ri,,) = 0 when R, =0, and
Rl log¢(R};) =0 when R, =0.
Therefore, MCEN(1) =0

Class 2:j = 2, m = 1,3,4 in Egs. [16,17].

R2 — fa RZ. — fa3 RZ — foa
A T tfe) — fa BT (ki) — fo * T tfe) — fa
0 0 0
Ry= 4510 Ry =510 Ry= 5170
R%, = fiz R2, — fa R, = faz
Sk (fok + fie) — foo Sk (fok + fia) — fo Sk ok + fia) — foo
0 0 0

R = 5790 R = 5770 Rp= 570
From eq. [19], MCEN(2) = — Z4m:1.m741 (R3,,log 6(R%,,) + R2,log ¢(R%,))where R%_ log ¢(R3,) = 0 when R3, = 0 and
R2,log 6(R%,) = 0 when R%, =0
MCEN(2) = 0

Class 3:j = 3, m =1,2,4 in Egs. [16,17].
R = fa RY, = fa2 R, = fza
Sty (Fak + fra) — fas S (o + fis) — fas S (o + fia) — fos
0 0 0.1

Rh= 5310 R = 3310 Rl = 531 - 01154

R fu - fm - e
B S fk+ fra) —fas S (Fak + fis) — fs S (Fak +fis) — fs
3 0 - 3 0 - s 015

Ry3 231 =0 R3; 23°1 =0 Ri; = 231 =0.1154
MCEN(3) = — Ziil_mﬂ(Rgmlog 6(R3,) + R3;log6(R3;)) = — (0.1154log 6(0.1154) + 0.1154log 6(0.1154)) =
0.2781
Because the remaining RS, or RS,; are zero.

MCEN(3) = 0.2781
Class 4:j =4, m = 1,2,3 in Egs. [16,17].
N E— Rl = —d2 Rly— ——J°
S Pk + fea) — faa S (Fak + fa) — faa S Pk + fea) — faa
0 0 0.15
Ry = 55— =0 Rl = 55— =0 Ry = 5= = 0.1154
RY, = _ hs Ry, = o fe RY, = e
Sty (Fare + fra) — faa S (ke + fea) — faa Sk Pk + fea) — faa
0 0 0.15
4 — L — — 4 —

Rie= 53170 R = 53170 Ro = 531 = 01154
MCEN(4) = — Y4 11 (Rilog 6(RY,) + Riylog 6(R%,)) = — (0.1154log 6(0.1154) + 0.1154log 6(0.1154)) =
0.2781
Because the remaining R}, or R}, are null.

MCEN(4) = 0.2781

13
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Step 3. Compute the coefficients R; in Eq. [21] of the linear (convex) combination in Eq. [20].

Overall MCEN, Egs. [20-22]

4 —
R — Zk‘:l (fix + fia) : fu 06 _ 1409
ZZk.mflfkm - Zkflfkk 4.2
4 —
R, = Zk;l (fok + fr2) - fo 1 _(oae;
ZZk.mflfkm - Zkflfkk 4.2
4
— 1.
Ry — ijl (f3k + fxs) - S _13 _o00s
ZZk.mflfkm - Zkflfkk 4.2
4
— 1.
Ry = ijl (Farc + fia) - fu 13 (o0
ZZk.mzlfkm - Zk:lfkk 4.2

MCEN(1) =0

MCEN(2) =0

MCEN(3) = 0.2781

MCEN(4) = 0.2781

MCEN = Y} | R; MCEN(j) = 0.1722

Notice that 0.1429 + 0.2381 + 0.3095 + 0.3095 = 1 and MCEN is, indeed, a

convex combination.

Abbreviations

Cc degree of Consistency

CART Classification And Regression Trees
CEFF Class Efficiency

CEN Confusion Entropy

CSNS Class-model Sensitivity

CSPS Class-model Specificity

D degree of Discriminancy

DMCEN Diagonal Modified Confusion Entropy
DMCENjq in-diagonal modified confusion entropy

F Frequency matrix
FoM Figure of Merit
LDA Linear Discriminant Analysis
MCEN  Modified Confusion Entropy
MTEF Modified Total Efficiency
MTSPS Modified Total Specificity
N Model matrix
PLS-DA  Partial Least Squares Discriminant Analysis
p-SENS  pooled Sensitivity
p-SPEC  pooled Specificity
QDA Quadratic Discriminant Analysis
RDA Regularized Discriminant Analysis
S Matrix of sensitivities and specificities
SIMCA  Soft Independent Models of Class Analogy
SVDD Support Vector Data Description
SVM Support Vector Machines
TEFF Total Efficiency
TSNS Total Sensitivity
TSPS Total Specificity
UNEQ  Unequal Dispersed Class Models
References
[1] P. Oliveri, C. Malegori, E. Mustorgi, M. Casale, Qualitative pattern recognition in
chemistry: theoretical background and practical guidelines, Microchem. J. 162
(2021) 105725, https://doi.org/10.1016/j.microc.2020.105725.
[2] D.F. Morrison, in: Multivariate Statistical Methods, third ed., McGraw-Hill, New
York, 1990.
[3] J.H. Friedman, Regularized discriminant analysis, J. Am. Stat. Assoc. 84 (1989)
165-175, https://doi.org/10.1080/01621459.1989.10478752.
[4] M. Barker, W. Rayens, Partial least squares for discrimination, J. Chemometr. 17
(2003) 166-173, https://doi.org/10.1002/cem.785.
[5] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, CRC Press, 1984.
[6] R.G. Brereton, G.R. Lloyd, Support vector machines for classification and regression,
Analyst 135 (2010) 230-267, https://doi.org/10.1039/b918972f.
[7] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

14

[8]

[91

[10]

[11]

[12]

[13]

M. Sun, A multi-class support vector machine: theory and model, Int. J. Inf. Technol.
Decis. Making 12 (2013) 1175-1199, https://doi.org/10.1142/
S$0219622013500338.

B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt, Support vector
method for novelty detection, in: S.A. Solla, T.K. Leen, K.-R. Miiller (Eds.), Advances
in Neural Information Processing Systems 12, Proceedings of the 1999 Conference,
582-588, MIT Press, 2000.

S. Wold, Pattern recognition by means of disjoint principal components models,
Pattern Recogn. 8 (1976) 127-139, https://doi.org/10.1016/0031-3203(76)
90014-5.

M.P. Derde, D.L. Massart, UNEQ: a disjoint modelling technique for pattern
recognition based on normal distribution, Anal. Chim. Acta 184 (1986) 33-51,
https://doi.org/10.1016/S0003-2670(00)86468-5.

D.M. Tax, R.P. Duin, Support vector data description, Mach. Learn. 54 (2004)
45-66, https://doi.org/10.1023/B:MACH.0000008084.60811.49.

M.C. Ortiz, L.A. Sarabia, R. Garcia-Rey, M.D. Luque de Castro, Sensitivity and
specificity of PLS-class modelling for five sensory characteristics of dry-cured ham


https://doi.org/10.1016/j.microc.2020.105725
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref2
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref2
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1002/cem.785
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref5
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref5
https://doi.org/10.1039/b918972f
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref7
https://doi.org/10.1142/S0219622013500338
https://doi.org/10.1142/S0219622013500338
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref9
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref9
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref9
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref9
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref9
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref9
https://doi.org/10.1016/0031-3203(76)90014-5
https://doi.org/10.1016/0031-3203(76)90014-5
https://doi.org/10.1016/S0003-2670(00)86468-5
https://doi.org/10.1023/B:MACH.0000008084.60811.49

O. Valencia et al.

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

using visible and near infrared spectroscopy, Anal. Chim. Acta 558 (2006) 125-131,
https://doi.org/10.1016/j.aca.2005.11.038.

M.S. Sanchez, M.C. Ortiz, L.A. Sarabia, V. Busto, Class-modelling techniques that
optimize the probabilities of false noncompliance and false compliance,
Chemometr. Intell. Lab. Syst. 103 (2010) 25-42, https://doi.org/10.1016/
j.chemolab.2010.05.007.

M. Forina, P. Oliveri, S. Lanteri, M. Casale, Class-modeling techniques, classic and
new, for old and new problems, Chemometr. Intell. Lab. Syst. 93 (2008) 132-148,
https://doi.org/10.1016/j.chemolab.2008.05.003.

P. Oliveri, Class-modelling in food analytical chemistry: development, sampling,
optimisation and validation issues - a tutorial, Anal. Chim. Acta 982 (2017) 9-19,
https://doi.org/10.1016/j.aca.2017.05.013.

R.G. Brereton, One-class classifiers, J. Chemometr. 25 (2011) 225-246, https://
doi.org/10.1002/cem.1397.

R.G. Brereton, Pattern recognition in chemometrics, Chemometr. Intell. Lab. Syst.
149 (2015) 90-96, https://doi.org/10.1016/j.chemolab.2015.06.012.

0.Y. Rodionova, P. Oliveri, A.L. Pomerantsev, Rigorous and compliant approaches
to one-class classification, Chemometr. Intell. Lab. Syst. 159 (2016) 89-96, https://
doi.org/10.1016/j.chemolab.2016.10.002.

D.J. Hand, Evaluating statistical and machine learning supervised classification
methods (chapter 3), in: Niall Adams, Edward Cohen (Eds.), Statistical Data
Science, World Scientific, 2018, pp. 37-53.

K. Stapor, P. Ksieniewicz, S. Garcia, M. Wozniak, How to design the fair
experimental classifier evaluation, Appl. Soft Comput. 104 (2021) 107219, https://
doi.org/10.1016/j.as0c.2021.107219.

C. Ferri, J. Hernandez-Orallo, R. Modroiu, An experimental comparison of
performance measures for classification, Pattern Recogn. Lett. 30 (2009) 27-38,
https://doi.org/10.1016/j.patrec.2008.08.010.

M. Sokolova, G. Lapalme, A systematic analysis of performance measures for
classification tasks, Inf. Process. Manag. 45 (2009) 427-437, https://doi.org/
10.1016/j.ipm.2009.03.002.

L. Cuadros-Rodriguez, E. Pérez-Castano, C. Ruiz-Samblés, Quality performance
metrics in multivariate classification methods for qualitative analysis, Trends Anal.
Chem. 80 (2016) 612-624, https://doi.org/10.1016/j.trac.2016.04.021.

15

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Chemometrics and Intelligent Laboratory Systems 217 (2021) 104423

M. Felkin, Comparing classification results between N-array and binary problems,
in: F. Guillet, H.J. Hamilton (Eds.), Quality Measures in Data Mining, Springer-
Verlag, Berlin, Heidelberg, 2007.

D. Ballabio, F. Grisoni, R. Todeschini, Multivariate comparison of classification
performance measures, Chemometr. Intell. Lab. Syst. 174 (2018) 33-44, https://
doi.org/10.1016/j.chemolab.2017.12.004.

P. Branco, L. Torgo, R. Ribeiro, Relevance-based evaluation metrics for multi-class
imbalanced domains, in: J. Kim, K. Shim, L. Cao, J. Lee, X. Lin, Y. Moon (Eds.),
PAKDD 2017, Part I, LNAI 10234, 698-710, 2017, Springer International
Publishing AG, 2017, https://doi.org/10.1007/978-3-319-57454-7.

A. Gupta, N. Tatbul, R. Marcus, S. Zhou, L. Lee, J. Gottschlich, Class-weighted
evaluation metrics for imbalanced data classification [Preprint 2020], https://arxiv
.org/abs/2010.05995.

A. Fernandez, S. Garcia, M. Galar, R.C. Prati, B. Krawczyk, F. Herrera, Performance
measures, in: Learning from Imbalanced Data Sets, Springer, Cham, 2018, https://
doi.org/10.1007/978-3-319-98074-4_3.

A.L. Pomerantsev, O.Y. Rodionova, Multiclass partial least squares discriminant
analysis: taking the right way-A critical tutorial, J. Chemometr. 32 (2018), €3030,
https://doi.org/10.1002/cem.3030.

A.L. Pomerantsev, O.Y. Rodionova, New trends in qualitative analysis: performance,
optimization, and validation of multi-class and soft models, Trends Anal. Chem. 143
(2021) 116372, https://doi.org/10.1016/j.trac.2021.116372.

J.M. Wei, X.Y. Yuan, Q.H. Hu, S.Q. Wang, A novel measure for evaluating
classifiers, Expert Syst. Appl. 37 (2010) 3799-3809, https://doi.org/10.1016/
j-eswa.2009.11.040.

R. Delgado, J.D. Nuinez-Gonzdlez, Enhancing Confusion Entropy (CEN) for binary
and multiclass classification, PloS One 14 (2019), 0210264, https://doi.org/
10.1371/journal.pone.0210264.

J. Huang, C.X. Ling, Using AUC and accuracy in evaluating learning algorithms,
IEEE Trans. Knowl. Data Eng. 17 (2005) 299-310, https://doi.org/10.1109/
TKDE.2005.50.

D. Dua, C. Graff, UCI Machine Learning Repository in, University of California,
School of Information and Computer Science, Irvine, CA, 2019. Last visit: 04-09-
2021, http://archive.ics.uci.edu/ml.


https://doi.org/10.1016/j.aca.2005.11.038
https://doi.org/10.1016/j.chemolab.2010.05.007
https://doi.org/10.1016/j.chemolab.2010.05.007
https://doi.org/10.1016/j.chemolab.2008.05.003
https://doi.org/10.1016/j.aca.2017.05.013
https://doi.org/10.1002/cem.1397
https://doi.org/10.1002/cem.1397
https://doi.org/10.1016/j.chemolab.2015.06.012
https://doi.org/10.1016/j.chemolab.2016.10.002
https://doi.org/10.1016/j.chemolab.2016.10.002
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref20
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref20
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref20
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref20
https://doi.org/10.1016/j.asoc.2021.107219
https://doi.org/10.1016/j.asoc.2021.107219
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.trac.2016.04.021
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref25
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref25
http://refhub.elsevier.com/S0169-7439(21)00191-X/sref25
https://doi.org/10.1016/j.chemolab.2017.12.004
https://doi.org/10.1016/j.chemolab.2017.12.004
https://doi.org/10.1007/978-3-319-57454-7
https://arxiv.org/abs/2010.05995
https://arxiv.org/abs/2010.05995
https://doi.org/10.1007/978-3-319-98074-4_3
https://doi.org/10.1007/978-3-319-98074-4_3
https://doi.org/10.1002/cem.3030
https://doi.org/10.1016/j.trac.2021.116372
https://doi.org/10.1016/j.eswa.2009.11.040
https://doi.org/10.1016/j.eswa.2009.11.040
https://doi.org/10.1371/journal.pone.0210264
https://doi.org/10.1371/journal.pone.0210264
https://doi.org/10.1109/TKDE.2005.50
https://doi.org/10.1109/TKDE.2005.50
http://archive.ics.uci.edu/ml

	A modified entropy-based performance criterion for class-modelling with multiple classes
	1. Introduction
	2. Theory and proposal
	2.1. Notation
	2.2. Figures of merit in chemometrics
	2.3. MCEN, an entropy-based figure of merit
	2.4. DMCEN, a new proposal for a more sensitive entropy-based figure of merit
	2.5. DMCEN benchmark value for random classification
	2.6. Comparison between DMECEN and MTEFF

	3. Analysis of the performance of DMCEN
	3.1. Symmetric matrices with equal values of sensitivity and specificity
	3.2. Asymmetric K-class-model matrices
	3.3. Benchmark value for DMCEN
	3.4. Comparison between DMECEN and MTEFF
	3.5. Illustration of the use of DMCEN with an experimental data set

	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	Annex 1. Computation of MCEN for matrix S1 of Table 1
	Abbreviations
	References


