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Abstract: There are a lot of research programs focusing on the development of new solvents for
carbon dioxide capture. The most important priority should be reducing the energy consumption
needed at the regeneration step, but minimizing solvent degradation and its corrosivity is also
considered as a priority. In this research, the aqueous blends of 2-amino-2-methyl-1-propanol (AMP:
1 kmol·m−3) and 1-amino-2-propanol (MIPA: 0.1–0.5 kmol·m−3) are characterized in terms of density,
viscosity, and surface tension. The carbon dioxide absorption rate and capacity, the regeneration
capacity, and the corrosivity of these solvents are also evaluated.

Keywords: carbon dioxide; absorption; 2-amino-2-methyl-1-propanol; 1-amino-2-propanol; electro-
chemical corrosion; AISI 420; density; viscosity; surface tension; regeneration capacity

1. Introduction

In recent years, avoiding CO2 emissions from industries to the atmosphere has been
of increasing interest in order to protect the environment [1–3].

On the other hand, many industries, such as synthesis gas for ammonia production,
synthetic natural gas, or hydrogen manufacture, need to eliminate acid gases, primarily
CO2 and H2S, to reduce impurities during the process [4,5]. There are different ways
to recover CO2 from industrial gas streams, but the most widely used and promising
process is the absorption using aqueous solutions of alkanolamines. Alkanolamines can be
classified into three important groups: primary (e.g., monoethanolamine, MEA), secondary
(e.g., diethanolamine, DEA), and tertiary (e.g., methyldiethanolamine MDEA) [6,7].

Many research programs aim at developing new solvents for carbon dioxide capture.
The priorities usually are minimizing both energy consumption in the regeneration step
and the solvent degradation.

The use of mixtures of alkanolamines has many advantages over the use of simple
alkanolamines. Through these mixtures, the benefits of the different types of alkanolamines
can be combined and reduce the disadvantages of others [8].

The reaction rates, enthalpies of reaction, and enthalpies of evaporation decrease
from primary to tertiary alkanolamines. These enthalpies are directly related to the energy
necessary for the regeneration of the solvent.

Gaseous stream treatment plants present corrosion problems which can cause pro-
duction losses and reduction in equipment life. Corrosion in these plants is due to the
presence of acid gases and their high temperature. Different types of corrosion occur in gas
treatment plants: general or localized, like pitting, erosion, and stress corrosion [9]. The
equipment where most of the severe corrosion problems are found in the reboiler, amine
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exchanger, regenerator, condenser, absorber, and amine cooler [6]. Primary and secondary
alkanolamines form foams and their degradation products are highly corrosive. This
produces solvent losses and increases costs since the use of corrosion-resistant materials is
necessary [10].

On the other hand, the absorption capacity of primary to tertiary alkanolamines
increases. This implies that higher concentrations are necessary with the consequent
environmental and economic effects [11].

If the advantages and disadvantages of the different types of alkanolamines are
taken into account, it can be considered that their mixtures could give rise to absorbents
with good absorption capacity, fewer corrosion problems, and more profitable from an
economic point of view. Among the most studied mixtures are those involving primary
or secondary alkanolamines with tertiary alkanolamines with the intention of combining
the high absorption capacity of tertiary alkanolamines and the higher absorption speed of
primary and secondary alkanolamines [4].

On the other hand, it should be noted that because sterically hindered alkanolamines do
not form stable carbamate [12], the amount of bicarbonate and carbonate ions present in the
solution is greater than that of carbamate. Therefore, regeneration costs, are lower than for
tertiary alkanolamines. For this reason, mixtures of primary and secondary alkanolamines
with sterically hindered alkanolamines are being increasingly studied [13–15].

Recently, studies on acid gases recovering by AMP (2-amino-2-methyl-1-propanol)
based absorbents have demonstrated that it is a good option because of their high thermal
stability, loading capacity, absorption rate, and relatively low regeneration energy [16–20].
The regeneration capacity can be controlled by the deprotonation equilibrium and this
behavior can influence reaction kinetics and carbon dioxide absorption rate.

Also, many corrosion studies have been carried out to study the new alkanolamines
behavior, like AMP and some of its blends with other amines [21–23]. Most of these studies
are focused on carbon steel and only a few of them on high alloyed steels [24,25].

The objective of this work is the characterization of aqueous blends of alkanolamines
that are beneficial for the environment and save costs. For this, the sterically hindered
AMP and the primary MIPA have been chosen. These mixtures will be analyzed in terms
of CO2 absorption, corrosion, and regeneration capacity.

2. Materials and Methods
2.1. Materials

For the absorption and corrosion experiments, solutions with different composi-
tions were used. Aqueous 2-amino-2-methyl-1-propanol (AMP, 95.0% Panreac) solutions,
1.0 kmol·m−3, and aqueous 1-amino-2-propanol (MIPA, ≥98% purity, Merck) solutions,
in the range of 0.1–0.5 kmol·m−3, were prepared using Milli-Q ultrapure water. Then, the
different AMP and MIPA solutions were mixed with a concentration of 1:1 (v/v) to obtain
the final solutions used in the experiments. CO2 was N-38, 99.98% SEO.

2.2. Properties Measurements

Experimental data of density corresponding to the different blends employed in
the present work have been determined using an Anton Paar DSA 5000 vibrating tube
densimeter and sound analyzer.

Kinematic viscosity was determined using a Schott-Geräte AVS 350 Ubbelohde viscosime-
ter using different capillaries (I, Ic, II, and III), supplied by Schott and using Equation (1).

v = K · (t − θ) (1)

where K is the constant of each capillary, t is the efflux time, and θ is a correction parameter.
An electronic stopwatch was employed to determine the efflux times. Dynamic viscosity
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(η) was calculated using Equation (2) on the basis of experimental values of kinematic
viscosity (ν) and density (ρ), previously determined.

n = v · ρ (2)

The surface tension of amino-based blends was obtained using a Krüss K-11 tensiome-
ter employing the Wilhelmy plate experimental procedure. The plate used for this type of
measurement was a commercial platinum plate supplied by Krüss. This plate was cleaned
and flame dried after and before each measurement in order to guarantee the quality of
the experimental value. The samples were thermostated before each measurement in a
closed vessel.

All measurements were measured at different temperatures (303.15, 313.15, and
323.15 K) in agreement with the other studies included in the present work.

2.3. Absorption Studies in Stirred Cell

Absorption experiments were carried out in a planar stirred tank contactor, using a
constant stirring rate of 80 ± 1 rpm, working on batch with respect to all phases involved
in the experimental procedure. The gas-liquid interface was a flat and known interface area
(A = 35.26 cm2). The device employed to develop the absorption experiments is described
in previous research work [26].

The carbon dioxide flow densities (NA) were determined using Equation (3).

NA =
n′

A
=

PQ′

RTA
(3)

The representation of the carbon dioxide absorbed volume versus time allows us to
calculate the value of the volumetric flow (Q′) under different experimental conditions
using linear fits.

2.4. Absorption Studies in Bubble Column Reactor

Several experiments were carried out using a bubble column with a square geometry
(side = 4 cm and height = 65 cm). The chemical solvent volume employed in the contactor
was 0.9 L. The gas sparger consisted of a five-hole disk made in Teflon®. In order to
evaluate the mass transfer rate of carbon dioxide from a gaseous to a liquid phase. A mass
flow controller (Alicat Scientific MC-5SLMP-D) was used to maintain a constant feed. A
second mass flow-meter (Alicat Scientific M-5SLMP-D) was used to determine the change
in the outlet flow rate. These flowmeters were calibrated by the supplier. Flow Vision SC
software supplied by Alicat Scientific was employed to obtain the information about the
inlet and outlet flow rates during the absorption experiments. The bubble column reactor
works in a batch regime regarding the liquid phase, but in a steady state in relation to the
gaseous phase [27].

2.5. Corrosion Experiments

AISI 420 stainless steel was used to prepare the corrosion test specimens. The chemical
composition in percentage of the steel was determined by CHNS–O elemental analysis and
inductively coupled plasm-mass spectrometry (ICP-MS): Fe-11.51% Cr; 0.712% Mn; 0.324%
Ni; 0.1718% C; 0.1121% Cu; 0.1% Si; 0.064% V; 0.027% Co; 0.0261% Mo; 0.0204% N; 0.0122%
S; 0.0055% Ca; 0.0017% H; 0.001% Al; 0.0008% K; 0.0005% Zn; 0.0002% Ti; 0.0001% Mg.

The experiments for determining the corrosion behavior of the stainless steel sam-
ples were carried out using a potentiostat (Voltalab 21, PGP201 & VoltaMaster 4, Ra-
diometer Analytical) and a three-electrode cell. The accuracy of potential and current
readings by the potentiostat is about 0.2%. The electrodes used for the experiments
were: the working electrode WE (sample) made of AISI 420, a calomel reference electrode
(RE) (XR110, Radiometer Analytical), and an auxiliary electrode of platinum (AE) (Ra-
diometer Analytical, EAC). The samples were cylindrical in shape (diameter = 11.95 mm,
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length = 14.90 mm). A solution volume of 400 mL was used for each experiment and
a CO2 (SEO, N-38, 99.98 %) flow of 0.5 L·min−1 was introduced into the corrosion cell.
The measurements were carried out within the interval of 303.15-323.15 K. A schematic
diagram and a more detailed description of the system used for these experiments were
reported previously [25].

Before starting the corrosion measurement, an N2 stream was passed through the cell
for 1 h to eliminate the dissolved oxygen in the solution. Then, a carbon dioxide flow is
introduced for 1 h to obtain a solution saturated in CO2. The stream of CO2 continued
throughout the experiment. Then, the potential of the WE versus the RE was measured
and recorded until it reached a constant value. Once the system was in equilibrium, the
corrosion experiment started, varying the potential applied to the system and recording the
current density value for each voltage. The measurements were carried out by applying a
potential between −1000 mV and 1000 mV (vs. SCE) with a scan rate of 0.17·mV·s−1. Each
experiment was replicated to ensure its reproducibility.

The polarization curves were analyzed according to ASTM standards G1-03 (2017) [28]
and G5-14e1 [29]. Tafel extrapolation and the Faraday equation were used to determine
both the corrosion density current, icorr (µA·cm−2) and the corrosion rate, CR (mm·year−1),
for each system:

CR =
icorrStM

nFρ
(4)

where t is the time for which the mass loss is calculated (years), S is the sample surface
exposed to the corrosive ambient (cm2), M is the material molecular mass (g·mol−1), F is
the Faraday constant (96,500·C·mol−1), n is the number of electrons lost in the corrosion
process, and ρ is the material density (kg·L−1).

In order to investigate the susceptibility to pitting corrosion of AISI 420 subjected to the
studied corrosive environments, experiments based on conducting cyclic potentiodynamic
polarization were carried out, according to the ASTM standard G-61-86 (2018) [30].

2.6. Solvent Regeneration Studies

For the regeneration studies, based on the stripping procedure, heat was supplied to
the solvent rich in carbon dioxide using a heating Selecta Fibroman mantle and a device
with a temperature sensor (Selecta Sensoterm). The temperature was monitored during
the experimental procedure and two condensers were used to prevent evaporation of the
solvent. In order to reduce the decrease in amine concentration, the optimized regeneration
time was minimized [31].

3. Results
3.1. Absorption Experiments

MIPA is a primary alkanolamine and, in its reaction with carbon dioxide, has similar
behavior to MEA [32,33]. Camacho et al., 1997 [34], indicated that the carbonation relation-
ship (η moles of carbon dioxide·moles of amine−1) in the experiments carried out with
MIPA aqueous solutions within the range 0.1–2.0 kmol·m−3, was less than 0.5, which, in
agreement with Astarita et al. (1964) [32], indicates that the carbamate was the product of
the reaction, and the mechanism would be analogous to that described by Danckwerts,
1979 [35]:

RNH2 + CO2 � RNH2COO− (zwitterion) (5)

RNH2 + NH2COO− � R−NH+
3 + RNHCOO− (6)

Only when η > 0.5 and alkanolamine concentration is minor than 0.05 kmol·m−3, in
addition to Equations (5) and (6), the following reaction would occur:
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RNHCOO− + CO2 + 2H2O→ R−NH+
3 + 2HCO−3 (7)

In the CO2 absorption by AMP solutions, the carbamate formation is inhibited in
the reaction between AMP and CO2. This is due to AMP, where its sterically hindered
structure and its basic behavior are enough small to guarantee that the carbonate ion is
always displaced to the bicarbonate formation. In this case, the mean reaction is [36]:

RNH2 + CO2 + H2O � RNH+
3 + HCO−3 (8)

The dissociation of protonated alkanolamine ion and the carbonate ion formation [37],

RNH+
3 � RNH2 + H+ (9)

HCO−3 � CO2−
3 + H+ (10)

Table 1 shows the values of absorbed CO2 per surface unit of AMP [18], MIPA [34],
and AMP+MIPA mixtures for the different temperatures and MIPA concentrations.

Table 1. Flow density of the AMP+MIPA mixtures, AMP [18] and MIPA [34].

AMP
Concentration

(kmol·m−3)

MIPA
Concentration

(kmol·m−3)

NA·106

(kmol·m−2·s−1)
T (K) = 303.15

NA·106

(kmol·m−2·s−1)
T (K) = 313.15

NA·106

(kmol·m−2·s−1)
T (K) = 323.15

1.0 0.00 3.876 6.859 7.36
0.10 5.147 7.815 8.769
0.25 5.193 7.945 8.792
0.50 4.204 5.868 6.962

0.0 0.10 1.010 2.954 4.532
0.25 1.878 3.430 4.860
0.50 3.197 4.222 5.325

An increase of the carbon dioxide absorption with the amine mixture is observed,
compared to the absorption only by AMP [18] and MIPA [34]. Moreover, the absorp-
tion increase is bigger for higher MIPA concentrations up to 0.25 kmol·m−3, then, a
decrease is observed. These results are similar to those obtained for other mixtures of
primary with sterically hindered alkanolamines [15]. The increase in the MIPA concentra-
tion causes a higher value of the total amine concentration in the solution and therefore
in the carbon dioxide reaction velocity. On the other hand, after reaching a maximum
(MIPA = 0.25 kmol·m−3), a significant decrease in the reaction velocity is observed. This
can be attributed to the influence of the viscosity of the aqueous solution (Table 2), as
the presence of MIPA makes this physical property increase considerably [38]. This has a
negative effect on the mass transfer velocity.

Therefore, the increase observed for the mixtures of AMP+MIPA cannot be explained
using these properties but for an improvement of the hydrodynamic process near the
interface. As can be seen in Table 2, the addition of MIPA causes a decrease in the surface
tension, inversely proportional to the increase in the carbon dioxide absorption velocity.
MIPA aqueous solutions properties have been reported by several authors [38,39].

Concerning the effect of the temperature, it is clearly observed that an increase in the
solvent temperature tends to originate positive effects, significantly increasing the carbon
dioxide transfer velocity from the gaseous to the liquid phase. This behavior is supported
by the fact that the increase in this system parameter causes an increase in the reaction rate
and a decrease in the viscosity.
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Table 2. Density ρ (g·cm−3), viscosity η (mPa·s), speed of sound c (m·s−1) and surface tension σ (mN·m−1) of AMP+MIPA
from T (K) = 303.15 to 323.15 K.

AMP Concentration
(kmol·m−3)

MIPA Concentration
(kmol·m−3) T (K) = 303.15 T (K) = 313.15 T (K) = 323.15

ρ (g·cm−3) ρ (g·cm−3) ρ (g·cm−3)

1.0 0.00 0.994111 0.98869 0.981359
0.10 0.994254 0.989225 0.98231
0.25 0.994411 0.989863 0.982751
0.50 0.994661 0.990185 0.983855

η (mPa·s) η (mPa·s) η (mPa·s)

1.0 0.00 1.08935270 0.81854676 0.62634402
0.10 1.13021224 0.85803828 0.65123491
0.25 1.18065910 0.89676943 0.68355647
0.50 1.26791521 0.96210583 0.73541749

c (m·s−1) c (m·s−1) c (m·s−1)

1.0 0.00 1572.66 1583.08 1588.03
0.10 1576.92 1587.00 1591.90
0.25 1583.23 1591.57 1596.12
0.50 1594.65 1601.33 1603.34

σ (mN·m−1) σ (mN·m−1) σ (mN·m−1)

1.0 0.00 52.11 43.92 40.09
0.10 47.19 41.00 39.00
0.25 45.48 39.81 39.12
0.50 47.28 44.18 43.29

3.2. Corrosion Studies

Alkanolamines are not corrosive substances [9,40], but there is an increase in the
corrosion rate when they absorb carbon dioxide.

There are several iron corrosion mechanisms in aqueous solutions in presence of
CO2, even if the amount of this compound is low. An example is the one proposed by
Davies et al. (1980) [41], where the iron disintegration occurs in a bicarbonate solution,
according to the reactions, shown in Equations (11)–(14):

Fe + 2H2O→ Fe(OH)2 + 2H+ + 2e− (11)

Fe + HCO−3 → FeCO3 + H+ + 2e− (12)

Fe + HCO−3 → FeCO3 + H+ + 2e− (13)

FeCO3 + HCO−3 → Fe(CO3)
2−
2 + H+ (14)

On the other hand, the dissolved oxygen can increase the system corrosiveness [42],
oxidizing the metallic surface originating an oxide layer according to the reactions shown
in Equations (15) and (16):

2Fe + 2H2O + O2 → 2Fe(OH)2 (15)

2Fe(OH)2 + 2H2O +
1
2

O2 → 2Fe(OH)3 (16)

Due to the corrosion problems originated by the use of alkanolamines, corrosion
experiments were performed and the polarization curves were plotted for the different
alkanolamine mixtures in order to study the influence of the temperature and the composi-
tion of the solution on the corrosion rate. The electrochemical parameters and the corrosion
rate (Table 3) were obtained for AISI 420 steel in AMP+MIPA aqueous solutions by means
of the Tafel method [43].



Sustainability 2021, 13, 4011 7 of 15

Table 3. AISI 420 electrochemical parameters of aqueous AMP+MIPA solutions in presence of CO2.

AMP
Concentration

(kmol·m−3)

MIPA
Concentration

(kmol·m−3)
T (K) Ecorr (mV) βa

(mV·Decade−1)
βc

(mV·Decade−1)
icorr

(µA·cm−2)
CR

(mm·Year−1)

1.0 0.10 303 −391.65 150.66 −161.25 2.783 0.216
313 −691.83 171.97 −72.80 4.313 0.335
323 −713.90 162.02 −81.39 7.523 0.584

0.25 303 −700.70 211.44 −87.97 1.185 0.092
313 −605.21 173.22 −180.66 1.469 0.114
323 −599.02 113.98 −153.02 2.963 0.230

0.50 303 −447.20 151.81 −155.00 0.464 0.036
313 −696.27 215.03 −53.64 0.609 0.047
323 −737.20 64.58 −43.37 2.053 0.159

The influence of the solution temperature is observed in the Tafel curves shown in
Figure 1. In this figure, we observe a displacement of the curves to the right with the
increase in the temperature, which implies a higher value of current density. The effect of
the temperature on the corrosion rate is shown in Figure 2.
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It is known that the temperature is an important parameter for the reaction kinetics,
producing an increase in its speed. In the CO2 absorption by AMP and MIPA, the reac-
tions shown in Equations (5) and (8) are accelerated by the increase in the temperature,
originating an increase of RNH3

+ and HCO3
−. The increase of these products makes

reactions change to keep the balance and, therefore, higher amounts of H+ are generated in
the system.

The metal dissolution reaction, shown in Equation (17), is an anodic reaction of the
electrochemical process, while the oxidizer reduction reaction, shown in Equation (18),
is cathodic.

Fe→ Fe2+ + 2e− (17)

2H+ + 2e− → H2 (18)

When the amount of H+ increases with the temperature, the balance between the
reactions, shown in Equations (17) and (18), is broken. To keep the equilibrium, more metal



Sustainability 2021, 13, 4011 8 of 15

is dissolved, originating a higher electron generation for the oxidizer reduction. In response
to the balance breakdown, the effect of the increase in the temperature is to speed up the
reactions, shown in Equations (17) and (18), and, therefore, increase the corrosion rate.
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3.3. Effect of the Absorbent Composition on Corrosion Rate

Figure 2 shows the influence of the solution composition on the corrosion rate. An
increase in the MIPA concentration causes an increase in the corrosion rate, reaching a
maximum for a MIPA concentration of 0.1 kmol·m−3. For these cases, in the carbon dioxide
absorption by MIPA, apart from the reactions shown in Equations (5) and (6), the reaction
shown in Equation (7) takes place, as the carbonation relationship is >0.5 [34], so the
amount of bicarbonate in the system increases, being this compound the major cause of the
steel corrosion.

With increasing MIPA concentration, the carbonation relationship is <0.5, and the
reaction, shown in Equation (7), does not occur, so the corrosion rate decreases. Moreover,
with increasing the total amine concentration in the mixture, the amount of water in the
solution decreases, and the number of bicarbonate ions obtained from the carbamate
hydrolysis is also lower, so added to the higher solution viscosity (Table 2) which makes
the diffusion difficult and produces a decrease in the corrosion rate.

In addition, these mixtures present a lower corrosiveness than the solutions with only
one alkanolamine.

The susceptibility to pitting corrosion was investigated using the cyclic potentiody-
namic polarization technique (Figure 3). Since the reverse curve is on the left of the forward
curve, it was not likely to have pitting corrosion in the system.

From the results of the corrosion studies, the blend of AMP (1 kmol·m−3) and MIPA
(0.25 kmol·m−3) is less corrosive.
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3.4. Bubble Column Studies

Once the studies related to the carbon dioxide absorption and the corrosion behavior of
the MIPA and AMP blends were carried out, it becomes interesting to carry out additional
studies using the ratio of the mixture of amines with better results. Specifically, the total
amine concentration of 1.25 kmol·m−3 (1 kmol·m−3 for AMP and 0.25 kmol·m−3 for MIPA),
has been used in other types of contact equipment, such as a bubble column.

An example of the studies in relation to the carbon dioxide absorption curves using
individual amines and blend is shown in Figure 4. It can be clearly seen that the shape of
the absorption curves of the different solvents show quite different behaviors.

When only AMP in the solvent is used, a practically linear decrease is observed as the
amine present in the liquid phase is consumed. This behavior is very different from that
shown in the experiments in which only MIPA was used in the solvent. In the latter case, a
decrease in the absorption rate is observed after 1000 s of the experiment had elapsed. The
solvent based on MIPA does not reach carbon dioxide absorption rates higher than those
shown by the solvent based only on AMP.

This different behavior is due to the characteristics of the molecules used to carry
out the chemical absorption of carbon dioxide. Specifically, in the case of AMP there is a
significant degree of steric hindrance [6] that makes the chemical reaction process have a
different mechanism.

For non-sterically hindered amines, and specifically in the case of the use of aqueous
solutions of MIPA, the main reaction that occurs during the chemical absorption of carbon
dioxide is that carbamate is generated as a reaction product [34]. That reaction mechanism
causes two amine molecules to be consumed for each molecule of carbon dioxide, as
previously indicated in reactions shown in Equations (5) and (6). This fact causes the amine
to be consumed very quickly and therefore a decrease of the reaction rate and therefore
the rate of absorption of carbon dioxide occurs. When AMP is used in the solvent, the
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behavior of the absorption curve does not show a drop in the absorption rate. As in the
case of MIPA, the initial reaction is the formation of carbamate, but due to the high degree
of steric hindrance, hydrolysis of this compound occurs forming bicarbonate [34]. This
reaction mechanism causes the global stoichiometry to be one mole of amine per mole of
carbon dioxide. This behavior helps to maintain a higher reaction rate, as the data from the
absorption curves reveal.

Finally, Figure 4 also shows the comparison between the absorption curves of the
individual amines and the corresponding to the mixture of amines that have previously
shown better results related to corrosion processes. The behavior shown by the mixture
of amines is very similar to that previously described for the solvent based on AMP. Only
a slight decrease in absorption rate was observed due to the presence of MIPA. The use
of the mixture of amines maintains the absorption rate in times greater than 2000 s. It
should be taken into account that in the industrial absorbers during the carbon dioxide
absorption stage, only a carbon dioxide charge between 0.4–0.6 mol of CO2 per mol of
amine is reached.
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Taking into account the importance of the carbon dioxide charge that can be achieved
in the chemical solvent, Figure 5 shows the behavior of this parameter for the different
solvents analyzed in this section. The results are consistent with the conclusions previously
reached by analyzing the carbon dioxide absorption curves. Due to the behavior shown by
the solvent based on MIPA, the area under the curve that is related to the carbon dioxide
charge is smaller than in the case of the other chemical solvents (AMP and AMP+MIPA).
The behavior is promising because the absorption drop with respect to fresh solvent
is relatively low in comparison with other commonly used solvents [11], but the most
important thing is that the degree of regeneration is subsequently maintained. When the
amines mixture for the separation of carbon dioxide is used, a decrease is also observed
in comparison with the use of AMP only. However, the most relevant aspect is that the
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rate at which carbon dioxide is captured is the same for both solvents during most of
the experiment.
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3.5. Solvent Regeneration Studies

When a chemical solvent is being evaluated for carbon dioxide separation we must
evaluate the regeneration capacity. It should be taken into account that during the regen-
eration process, solvent degradation processes can also occur. The experimental data of
the solvent carbon dioxide absorption curve based on the mixture of fresh AMP and MIPA
(1:0.25) and after different cycles of absorption and regeneration are shown in Figure 6. A
fall in the capture capacity of carbon dioxide is observed after the first regeneration (around
15%), although different absorption/regeneration cycles are carried out where no further
decreases occur.

This behavior is typically observed [44] since during the first regeneration all the
reaction products cannot be returned to reagents due to the equilibrium counter of the
protonated amine/amine process.

The behavior is promising because the absorption drop with respect to fresh sol-
vent is relatively low, but the most important thing is that the degree of regeneration is
subsequently maintained.

Figure 7 shows a comparison between the individual amines behavior and the blend.
A similar decrease to that observed for the use of AMP is observed, while the use of
MIPA shows a very important decrease. In addition, in the case of the use of MIPA, the
carbon dioxide load is lower than for AMP or AMP+MIPA (Figure 6) so the behavior is
even worse.
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4. Conclusions

AMP+MIPA aqueous solutions have been analyzed during the carbon dioxide absorp-
tion process considering its corrosivity. The carbon dioxide absorption of the mixtures
is higher compared to individual AMP or MIPA. An improvement of the hydrodynamic
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process in the vicinity of the interface caused by a decrease in the surface tension occurs,
inversely proportional to the increase in the carbon dioxide absorption velocity. The in-
crement of the total amine concentration initially, the lower chemical reaction velocity of
MIPA, and its high viscosity justify the behavior. The corrosivity of the mixtures increases
with MIPA concentration, reaching a maximum and then decrease. This behavior could be
explained by the carbonation relationship values during the carbon dioxide absorption. In
this kind of system, no pitting corrosion has been observed.

Of the mixtures studied, the blend of AMP (1 kmol·m−3) and MIPA (0.25 kmol·m−3)
which has high CO2 absorption and less corrosive, is studied deeply. It has also shown
good results regarding regeneration degree, absorption rate, and carbon dioxide loading in
the bubble column reactor with similar results to an AMP-solvent.
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Abbreviations

Symbols used
A [m2] Reactor area
c [m·s−1] Speed of sound
CBO [kmol·m−3] Concentration
CR [mm·year−1] Corrosion rate
Ecorr [mV] Electrochemical potential
F [C ·mol−1] Faraday constant
icorr [µA·cm−2] Corrosion density
M [g·mol−1] Material molecular mass
n Number of electrons
NA [kmol·m−2·s-1] Flow density
P [kPa] Total pressure
Q′ [m3 ·s−1] Volumetric gas flow rate
R [kPa·m3 ·K−1·kmol−1] Gas constant
S [cm2] Surface exposed to the corrosive ambient
T [K] Temperature
t [s] Time

Greek symbols
α [moles of carbon dioxide·moles of amine−1] CO2 loading
η [moles of carbon dioxide·moles of amine−1] Carbonation relationship
ρ [g·cm−3] Density
η [mPa·s] Viscosity
σ [mN·m−1] Surface tension
βa [mV·decade−1] Anodic slope
βC [mV·decade−1] Cathodic slope
K [-] Constant of the used capillaries
θ [-] Correction value
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