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Abstract
Background: One of the common limitations in the treatment of cancer is in the early detection of 
this disease. The customary medical practice of cancer examination is a visual examination by the 
dermatologist followed by an invasive biopsy. Nonetheless, this symptomatic approach is time‑
consuming and prone to human errors. An automated machine learning model is essential to capacitate 
fast diagnoses and early treatment. Objective: The key objective of this study is to establish a fully 
automatic model that helps Dermatologists in skin cancer handling process in a way that could improve 
skin lesion classification accuracy. Method: The work is conducted following an implementation of a 
Deep Convolutional Generative Adversarial Network (DCGAN) using the Python‑based deep learning 
library Keras. We incorporated effective image filtering and enhancement algorithms such as bilateral 
filter to enhance feature detection and extraction during training. The Deep Convolutional Generative 
Adversarial Network (DCGAN) needed slightly more fine‑tuning to ripe a better return. Hyperparameter 
optimization was utilized for selecting the best‑performed hyperparameter combinations and several 
network hyperparameters. In this work, we decreased the learning rate from the default 0.001 to 0.0002, 
and the momentum for Adam optimization algorithm from 0.9 to 0.5, in trying to reduce the instability 
issues related to GAN models and at each iteration the weights of the discriminative and generative 
network were updated to balance the loss between them. We endeavour to address a binary classification 
which predicts two classes present in our dataset, namely benign and  malignant. More so, some well‑
known metrics such as the receiver operating characteristic ‑area under the curve and confusion matrix 
were incorporated for evaluating the results and classification accuracy.  Results: The model generated 
very conceivable lesions during the early stages of the experiment and we could easily visualise a 
smooth transition in resolution along the way. Thus, we have achieved an overall test accuracy of 93.5% 
after fine‑tuning most parameters of our network. Conclusion: This classification model provides spatial 
intelligence that could be useful in the future for cancer risk prediction. Unfortunately, it is difficult to 
generate high quality images that are much like the synthetic real samples and to compare different 
classification methods given the fact that some methods use non‑public datasets for training.
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Introduction
Skin cancer is a common health challenge 
around the globe.[1] Early screening of skin 
cancer is of paramount importance to curb 
mortality and increase the possibilities 
of survival rate in patients. Skin lesion 
analysis plays an essential role in skin 
cancer prophylaxis, notably in terms 
of getting an effective early diagnosis. 
Having learned the integral concepts of 
neural networks in the previous semester, 
the researcher now ought to augment the 
practical skills out of the sphere of this 
module by replicating a research article on 

unsupervised deep learning. Even though 
an increasing amount of data is becoming 
available on the Internet, the vast majority 
of it remains unlabeled. In this context, 
we leveraged the ready unlimited number 
of unlabeled skin cancer images to learn 
proper machine learning techniques, 
which can then be utilized on number of 
unsupervised learning tasks like image 
classification.[2] Generative models are one 
of the most prevalent methodologies that 
are applied on classification problems. The 
model has to examine and understand the 
gist of the training image data before it can 
generate comparable results itself.[3]“What I 
cannot create, I do not understand”, stated 
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the renowned physicist Richard Feynman. It can be said 
that, for models to understand their input, they need to 
learn to create similar data samples to explore this quote in 
the circumstance of machine learning. The most promising 
approach is to use the generative models that learn to 
discover the essence of data and find the best distribution 
to represent it. Generative Adversarial Network (GAN)[3] 
is contemplated as a principal group of models to build 
satisfactory image depictions and generate “ realistic “ 
images. The notion of GAN is to synchronously train two 
distinct models, namely the generative model G and the 
discriminative model D. The generative model produces 
convincing images that are similar to a real‑image data 
distribution while the assignment of the discriminative 
model is to ascertain whether or not a considered image 
looks real or not. To understand a generative modeling 
technique, it may be comparable to a criminal gang of 
counterfeiters, attempting to fabricate counterfeit currency 
and make use of it without getting caught, whereas the 
discriminative model is similar to law enforcement agents, 
endeavor to uncover the counterfeit money. In this context, 
contention between the two helps them to enhancing their 
tactics up to a time where law enforcement agents would 
not be able to discern the counterfeits from real currency. 
In this study, our objective is to investigate a remarkable 
situation where a multi‑layered generative network produces 
examples that capture the distribution of our original image 
dataset and an equally multi‑layered perceptron called 
discriminator endeavor to make a distinction between fake 
and real image samples. In this instance, we will be able to 
train these models mutually employing only the enormously 
successful dropout and backpropagation algorithms[4] 
as well as an instance that could have come from the 
generative model after applying only forward propagation. 
To assist dermatologists in making their diagnostic study, 
this work seeks to propose an improved cutaneous lesions 
scrutiny and classification procedure employing DCGAN 
and assess a set of constraints as well as hyperparameters 
on this architectural topographic anatomy.

In accession toward this image segmentation approach, 
dermal lesions are processed by applying effective image 
filtering and enhancement algorithms to enhance the model 
feature detection and extraction during training. This study 
is structured in the following way. We have examined some 
related work in the realm of skin cancer classification in 
section 2. In addition, we also have discussed about the 
previous knowledge of GANs, their advancement and 
constraints in section 3. In section 4, we demonstrated our 
experimental approach. Furthermore, Section 5 describes 
the dataset incorporated and two proposed image processing 
techniques. Section 6 then combines the results from the 
training stages and further analysis. Finally, Section 6 
draws conclusions of the study and provides guidance for 
future research.

Related Work
Deep learning is an intuitive process whose complexity 
of learning increases with the increase in the number of 
layers. Due to its high performance, it is regarded as a 
mature application for medical diagnostics.[5] In recent times, 
deep learning has contributed significantly for skin lesion 
classification problems.[6] However, limited data set creates 
tougher environment for the potential ground‑breaking research 
in medical diagnostics with deep learning. One reason is 
dependency of the deep learning algorithm on training data size 
as it requires millions of parameters and profusion of labelled 
data to learn.[7] When deep learning model uses limited data to 
train, it uses large amount of its resources to train the model, 
creating overfitting issues. Overfitting issue refer to model’s 
incapability to generalize on unseen data. A large number of 
researches have been done to overcome challenges imposed by 
limited data on the training of deep learning models. It includes 
techniques such as augmentation,[8] transfer learning,[26] and 
ensemble of classifiers.[9] The following sections provide an 
overview of existing techniques and related works done in field 
of skin lesion classification.

In the recent times, generative algorithms have involved 
variational autoencoders and networks which are able to map 
from image space to latent space and back, or autoregressive 
models, which take actions from the previous step as input 
to deliberate on the value of the next step. However, the 
application of adversarial training into generative modelling 
occasioned a considerable step toward a more powerful 
method of synthesizing new data. Goodfellow et al., 2014[10] 
introduced GANs as a system of two neural networks, a 
generator and a discriminator, opposing one another. The 
former synthesizes images that match the data distribution 
which are then classified by the latter as either true or false. As 
the discriminator gets better at distinguishing the authenticity of 
the images, the generator is forced to enhance itself to be able 
to fool the discriminator, thus, slowly learning the structure 
of the data that passes through the network. Initially, both of 
them will show low effectiveness, the images generated will be 
essentially noise and the loss of the discriminator will be high. 
As the training advances, the results will start to resemble the 
data until the discriminator can no longer recognize real from 
fake. Given this mechanism of image generation, the set of 
available data can be further expanded, making the design and 
training of generative models for data augmentation a plausible 
choice. Moreover, in practice, increases in accuracy have been 
seen in several learning systems.[8]

We have witnessed a great deal of work published in the 
realm of skin cancer classification using deep learning 
and computer vision techniques. These approaches make 
the extensive use of diverse methods including detection, 
classification and segmentation, and image processing 
using a variety of filters for instance Karabulut et al.[10] 
created an algorithm for the classification of melanoma by 
utilizing Support Vector Machine (SVM) and k‑means 
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clustering. In Esteva et al.[11] had a breakthrough on skin 
cancer classification when he used a pre‑trained GoogleNet 
Inception v3 CNN model to classify 129,450 clinical skin 
cancer images including 3,374 dermatoscopic images[12] used 
a deep convolutional neural network to classify the clinical 
images of 12 skin diseases.[13] Developed a convolutional 
neural network with over 50 layers on ISBI 2016 challenge 
dataset for the classification of malignant melanoma. In 
2017,[11] utilized a deep convolutional neural network to 
classify a binary class problem of dermoscopy images.[14] 
designed an algorithm utilizing a deep convolutional neural 
network approach together with SVMs for the classification 
of four distinctive categories of clinical skin cancer images.

Introduced in 2016 by Alec Radford, Luke Metz, and 
Soumith Chintala,[15] DCGAN marked one of the most 
important early innovations in GANs since the technique’s 
inception two years earlier.[13] This was not the first time a 
group of researchers tried harnessing Convolutional Neural 
Networks (ConvNets) for use in GANs, but it was the first 
time they succeeded at incorporating ConvNets directly 
into a full‑scale GAN model.

The use of ConvNets exacerbates many of the difficulties 
plaguing GAN training, including instability and gradient 
saturation. Indeed, these challenges proved so daunting that 
some researchers resorted to alternative approaches, such 
as the LAPGAN, which uses a cascade of convolutional 
networks within a Laplacian pyramid, with a separate 
ConvNet being trained at each level using the GAN 
framework.[16] If none of this makes sense to you, don’t worry. 
Superseded by superior methods, LAPGAN has been largely 
relegated to the dustbin of history, so it is not important to 
understand its internals. Although inelegant, complex, and 
computationally taxing, LAPGAN yielded the highest‑quality 
images to date at the time of its publication, with fourfold 
improvement over the original GAN (40% vs. 10% of 
generated images mistaken for real by human evaluators). 
As such, LAPGAN demonstrated the enormous potential of 
marrying GANs with ConvNets. With DCGAN, Radford and 
his collaborators introduced techniques and optimizations that 
allowed ConvNets to scale up to the full GAN framework 
without the need to modify the underlying GAN architecture 
and without reducing GAN to a subroutine of a more 
complex model framework, like LAPGAN. One of the key 
techniques Radford et al. used is batch normalization, which 
helps stabilize the training process by normalizing inputs at 
each layer where it is applied. This work is based upon the 
aforementioned approaches. In this work, we have addressed 
a binary skin cancer classification approach which endeavors 
to predict two classes, namely benign and malignant. We have 
taken the advantage of common metrics such as confusion 
metric for evaluating our results. Our work seeks to achieve 
an improved accuracy, precision, recall, F1 score and receiver 
operating characteristic‑area under the curve (ROC‑AUC) of 
0.861 as compared to some previous sophisticated methods.

Background
Generative adversarial network

Generative paradigms have been the most prevalent 
methodologies that are implemented for these kinds of 
situations. The model should be competent enough to 
examine and comprehend the essence attributed to training 
data before it can generate similar results.[17] GANs have 
turn out to be one of the predominant developments of 
generative deep learning methodologies since it was 
established.[18] The generator needs to understand how to 
generate data in such a way that the discriminator won’t be 
able to discern between fake and real. The discriminator 
network has the assignment of discerning produced 
images from true images. The fundamental structure of 
GANs incorporates two multi‑layered networks, that 
trained concurrently, a generative model G sublimates 
random vector z adapted from preceding distribution 
P (z) into image data, furthermore a discriminative model 
D make an attempt to draw a distinction between true 
images obtained from training images P and simulated 
samples from the generator G. An instance of a GANs 
framework notably trained upon MINST dataset[19] as 
indicated in Figure 1.[20]

Such networks are tutored conflictingly, in the form of 
two‑player minimax game, until none of them could make 
additional advancement against one another, either the 
generator turns to be pretty good that the discriminator may 
not easily distinguish between true and false. An illustration 
of the GAN objective function is depicted as follows:

( )
( )

min max , min max[ [ [log(1 ( ( )))]~ ~( )
V D G E E D G zX P z pG GD D x zdata z

= + −logD(x)]  (1)

x implies the factual training data, z signifies latent features 
aggregated upon the generator, furthermore, G (z) portrays 
the sample originating from the generator given a noise 
vector z. D (x) connotes the discriminator’s approximation 

Figure 1: An illustration of the generative adversarial network training upon 
MNIST dataset. The generator attempts to produce images equivalent to 
images in MINST dataset thus the discriminator may not tell apart genuine 
images from generated images
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of the possibility that real image data x is real, furthermore 
D (x) has to be as close as possible to 1, to perform 
better. The possibility that the discriminator determines 
if the samples obtained from the generator are true or 
false is represented by D (G (z)). Taking into account 
that the target of the generative model is to produce 
images analogous to the real images, the anticipation of 
the generator is for the value to be as big as possible. 
Pdata (x). and PZ (z) represents the probability density of 
x and z accordingly. In order to mislead Discriminator D, 
G is trained in a manner that diminishes log (1‑D (G(z))). 
Contrarily D is trained so that it can enhance the likelihood 
that the generated data is authentic, illustrated by 1, bear 
in mind 0 constitute a fake. The narrative aforementioned 
is the underlying principle of the GAN is represented in 
Figure 2.[21] The algorithm for this model can be expected 
to take the following steps:

Algorithm

Minibatch stochastic gradient descent training of generative 
adversarial net. Here k, is a hyperparameter which 
represents number of steps to be implemented on the 
discriminator. We used k = 1 because it is a less expensive 
choice, in our experiment.

In the wake of consequences due to the contest of these 
two networks, GANs is well known to have limitations. 
Initially, there is an issue of mode collapse in the 
GANs.[22] Furthermore, due to high degree of autonomy, 
these networks exhibit some issues, such as nonconvergence 
and instability during execution. On the other hand, it is 
complex to train a GAN because it does not have a loss 
function, making it difficult throughout the learning process 
to determine if it has made some positive developments or 
not. To address those issues, Radford and counterparts[15] 
suggested a group of Convolution Networks named Deep 
Convolutional Generative Adversarial Networks (DCGAN), 
that possess a set of architectural constraints to balance 
GANs.[23] It is a set of broad lines for the establishment of 

architectures for images. This method is pretty common 
and in particular, this article has already been cited by 
many publications in accordance with Google Scholar.

Deep convolutional generative adversarial network

The principal idea of DCGAN is to broaden GAN using 
Convolution Network architectures. Radford[15] managed 
to attain stable results by endorsing certain architectural 
constraints to DCGAN.

Below principles were introduced in:[17]

•	 Modification of the generator by replacing pooling 
layers with stride convolutions in discriminator and 
fractional‑strided convolutions

•	 The use LeakyReLU activation function in the 
discriminator over the entire layers

•	 Removal of fully connected layers on top of 
convolutional features and directly linking the outcome 
to the convolutional layers

•	 The use of ReLU activation function in the generator 
in all layers leaving out the output, which uses tanh 
activation function

•	 Batch normalization incorporated in either of the two, 
generator and discriminator.

The illustration of model architecture is expressed in Figure 3. 
Not entirely connected or pooling layers are implemented. 
The input z to the model is one hundred‑dimensional vector 
habitually sampled from unvarying distribution.

METHOD
Details of DCGAN architecture

Deep convolutional GAN training process is built by the 
recurrence of the following efforts:
1. A collection of image data x is exploited to train 

network D, the discriminator
2. The generative network produces satisfactory image 

depictions or “ realistic” images.

Eventually, the discriminator D is refreshed in accordance 

for number of training recurrences do
for k steps do

• sample minibatch of m noise samples {z(I),……., z(m)} from noise prior Pg(z)
• sample minibatch of m examples {x(1)…, x(m)}from data generating distribution Pdata

(x).

• Update the discriminator by ascending its stochastic gradient:

end for

• sample minibatch of m noise samples {z(I),……., z(m)}from noise prior Pg(z)
• Update the generator by descending its stochastic gradient:

end for

Figure 2: The algorithm of GAN here k is the considerable number of iterations carried out on the discriminator (hyperparameter)
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with produced images. The goal of this procedure is for 
the generator G to produce images that are gradually more 
indistinguishable from the real images by incorporating a 
backpropagation and dropout algorithms[17] after repeated 
iterations, as Illustrated by Figure 4.

The design of DCGAN in this work is in reference to 
the code from a publicly accessible repository. This code 
was scripted to train a DCGAN model on the CIFAR‑10 
dataset.[25] We have amended this code to accomplish much 
resemblance as possible to the DCGAN framework stated 
within the preceding paragraph.

This necessitated building the appropriate code for our 
input size and modifying the number of appropriate filters 
in convolutional layers. The design of the trained model 
is indicated in Figure 3. We have ensured that we employ 
deconvolutions in generator and stridden convolutions in 
discriminator. Notably, Batch Normalization was applied 
and ReLU/LeakyReLU activation functions were brought 
into play as suggested by guidelines.

In a similar case of the Deep Convolutional GAN article,[19] 
solely transformation process of the images was just resizing 
them to range of tanh activation function [−1, 1]. This 
design was trained using mini‑batch size 128. In addition, 
Adam optimizing algorithm was incorporated applying 
0.0002 as the learning rate and 0.2 as the momentum β1. 
The incline of the leak in the LeakyReLU was fixed to 
0.2. The entire weights were initialized by default settings. 
In the present case, the noise z was taken from a standard 
normal distribution. The realization of this undertaking is 

performed using Keras in python anaconda development 
application software. Experiments were performed on an 
IBM computer equipped with Windows 10 Home 64 Bit 
and 10th Generation Intel Core i7‑10750H 6‑Core Processor. 
In addition, NVIDIA GeForce RTX 2060 graphics with 
6 GB of dedicated GDDR6 VRAM was also utilized. More 
so with 16 GB DDR4 2933MHz Dual‑Channel Memory and 
512GB NV Me SSD. Elapsed Time for NVIDIA GeForce 
RTX 2060 took an estimate of 1 h, 35 min, 16 s.

Data
We have trained our Deep Convolutional GANs (DCGAN) 
framework on skin cancer dataset 3,597 images from 
Kaggle,[26] which contain two classes namely benign and 

Figure 3: DCGAN framework employed on LSUN scene simulation[15]

Figure 4: Illustration of backpropagation implemented on Discriminator D

Figure 5: Illustration of data distribution in dataset
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malignant. There is similar amount of skin lesion images 
in either of these classes as depicted in the Figure 5. In 
addition, before training our model, we incorporated some 
image processing techniques. The primary objective of 
processing images is usually to enhance the common image 
characteristics like picture quality and features and thereby 
suppressing undesired distortions, thereby making the result 
of our images appealing and clear for feature extraction 
and further examination.

Image processing

In this work, we have employed a bilateral filter to enhance 
our image data.[27] Commonly Gaussian Blur technique is 
exploited to reduce the amount of noise in an image and to 
get the desired texture as depicted in Figure 6. Nevertheless, 
this method presupposes pixels nearest to the middle pixel 

would have to be closest to the true value of that pixel, 
so they will sway the averaged value of the center pixel 
greater than pixels further away, which tend to blur edges. 
In this work, we want the edges for the benefit of the model 
to get the circumference of the lesion to perform better. We 
suggested the exploitation of a bilateral filter that is highly 
efficient at removing noise whilst conserving the edges.

In addition, we have employed gamma‑correction under the 
name of the power law transform[9] to transform our image 
data to the desired texture. Primarily, the intensities of our 
image pixels need to be adjusted from the pixel range of 
0‑255‑0‑1.0. Furthermore, to get the result of the corrected 
image, we implement succeeding formula:

O = I (1/G)     (2)

In this formula, I represent our input image and G denotes 
the gamma value to be adjusted. In addition to that, O 
represents our resulting image and after gamma corrections 
it is then restored to the range 0–255.

In this instance, we tried G = 1.0 first, and then later 
implemented G = 1.5 and then our image data started to 
illuminate up and we witnessed more detail, which is 
enough value to attain a decent looking corrected image as 
the following Figure 7.

Figure 6: Example of images enhanced using gamma correction and 
bilateral filter. We further cropped the images into 64 × 64 pixels.

Figure 7: Example of images from the skin cancer dataset
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Data augmentation

Considering that our dataset is not that big, data 
augmentation is quite handy to increase our dataset. Data 
augmentation is also one way to fight overfitting given the 
fact that our samples are most likely to be correlated when 
the dataset is small, which leads to overfitting. Overfitting[28] 
takes place when a model is exposed to a too‑small set of 
data and becomes incapable to generalize on unseen data 
and to produce new set of data. Our principal objective for 
fighting overfitting is the entropic capacity of our model, for 
this reason, we incorporated this method to increase the size 

of our dataset by transforming existing images into a new 
form of the dataset using some transformation methods, 
such as rotation, shear, and flip as indicated in Figure 8.

Generator definition

In this work, the deconvolution neural network of our 
generator is put into operation by invoking conv2d_transpose 
method from the TensorFlow library to carry out weight 
multiplication as well as executing bias addition using 
the bias_add method. Furthermore, in order to carry out 
weight multiplication as well as executing bias addition, the 

Figure 8: Example of images from skin cancer dataset after augmentation

Figure 9: Generator, here the input is a random normal vector that passes through deconvolution stacks and outputs an image
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convolution neural network in the discriminator also invoked 
the conv2d method in the TensorFlow library to accomplish 
these two functions. We constructed our generator addressing 
the needs of the DCGAN framework, additionally, we have 
fixed our OUTPUT_SIZE to 64 since our ultimate outcome 
is expected to be 64 × 64. The step of movement of the 
deconvolution is set to 2, and among all, each output augments 
fourfold than the input, so that we can get the output size of 
each layer were 32 × 32, 16 × 16.8 × 8 and 4 × 4 accordingly.

The BATCH_SIZE and GF is set to 64, respectively, 
additionally, the number of feature maps is set to 512, 
256, 128, and 64 accordingly. Finally, the structure of the 
generator is portrayed in Figure 9.

Discriminator definition

The discriminator is a feed‑forward neural network with 
five layers, including an input and an output layer, and three 
dense layers, and in this architecture, spatial pooling layers 
are absent. We plugged the input into the convolution layer. 
More so, the moving step of the convolution kernel is set to 
2, furthermore, the output reduces to a quarter of the original 
ones after processing of convolution. With reference to that, 
the convolution layer output size becomes 32 × 32, 16 × 16, 
8 × 8, 4 × 4, respectively, and also the number of feature 
maps was 64, 128, 256, and 512, respectively, as well. The 
final structure of the discriminator is illustrated in Figure 10.

Definition of training

After data collection and image preprocessing, we pass the 
dataset into our model for training after data augmentation. 
In this work, we called up our generative neural network 
to produce data during training process and we have also 
defined our activation and optimization functions. In 
this study, we have incorporated the sigmoid activation 
function. Furthermore, we managed to compute the loss 
value by invoking the tf.nn.sigmoid_cross_entropy_with_
logits() from TensorFlow library during training. With 
regard to discriminators, the anticipation is that real input 
needs to be close to 1; moreover, the outcome preceding 
from the generative model is expected to be 0. With regard 
to the generator network, the discriminator should produce 
a prediction of 1 for its generated images. The d_loss_real 
denotes the cross‑entropy resulting from the discriminator’s 
real data input and the expected result. Furthermore, 

1. D_loss_fake represents the cross entropy arising from the 
difference between the originated data from the generator, 
the discriminator and the expected result. 0. D_loss connotes 
to the sum of d_loss_real and d_loss_fake. More so, G_loss 
refers to the cross‑entropy arising from the difference 
between the results of generated data of the generator input 
the discriminator. Furthermore, the elected optimization 
algorithm in this situation is the Adam Optimizer,[29] which 
accommodates the non‑convex optimization characteristics 
suitable for modern deep learning. With reference to that, 
there is no need to manually modify the learning rate and 
additional hyperparameters. The discriminator employs a 
cross‑entropy loss function based on number of inputs that 
were accurately classified as real and number of inputs 
precisely categorized as generated during training.

Results
Produced images

The adversarial network utilizes random noise as its input 
and outputs the ultimate prediction of the discriminator on 
the produced images. By adjusting the noise vector, we can 
get some profound knowledge of how the generator operates 
and discerns which noise vector results in our desired class. 
In this case, we discover by trying multiple noise vectors. 
The more we tried the output was getting only better at 
producing more abstract and distinct background colours 
with no white spaces. However, in some projects it was not 
certainly the case, for example, the sample produced from 
CIFAR‑10[30] produced more white spaces which affected 
the quality of the generated images. The majority of GAN 
architectures use 100 as their input shapes, so initially, we 
had used the same but when we later amended it to 128 
and it made some improvements to our results. We have 
utilized the trained generator to create authentic images 
based on the random sample noise depicted in Figure 11.

The following suggests different depictions of generations 
from the generator at different loop variations. In coming 

Figure 11: Random noise vector sample as input to the generatorFigure 10: Discriminator
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up with the results we have incorporated a great deal of 
tuning to get it running. We tried numerous and different 
setups and observing the results while tweaking different 
components such as the hyperparameters, loss calculators, 
optimizers, learning rate, and activators. It was the best way 
to enhance our understanding of the algorithm parameters 
before we got the desirable results. The examples of images 
produced after several iterations of training are exhibited in 
Figure 12. It is significant to look at plots of these generated 
images at each point to enable us to see the progression in 

our generated images. At an early stage of the training, the 
generative model images are of low quality with a great deal 
of noise, and we can see that the generator has learned to 
generate a few delicate features in brown texture in Figure 
13. The model begins to generate very conceivable lesions 
with repeated noise textures after 200 epochs. The generated 
images after 400 epochs are not significantly different, but we 
can visibly start to detect lesion edges. We observe that in 
each step there is a smooth transition in resolution, the image 
quality is enhanced in Figure 14, permitting the model to fill 

Figure 12: Generated skin cancer images after 400 epochs of training

Figure 13: Generated skin cancer images after 1000 epochs of training
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in more structure and detail to depict the lesion of our desired 
class.

Our proposed model was knowledgeable to produce images 
that are closely similar to synthetic pigmented lesions. The 
samples produced after several iterations of training are 
exhibited in Figure 15. Moreover, it is interesting to note 
the model was able to give a fairly reasonable deconvolution 
performance that is even better than those of models trained 
with labels such as in MNIST.[19] Figures 12 and 13 show 
example images produced by the generator over the course 
of training iterations, from earliest to latest. In Figures 12 

and 13 we can view that our generator started producing 
little more than random noise. Throughout the training 
iterations, it improved more and more at emulating the 
features of our training data. The generator improved a little, 
each time our Discriminator rejected a false‑generated image. 
We demonstrated that an unsupervised DCGAN trained on a 
large image dataset can also learn a considerable number of 
features that are interesting. We have employed a bilateral 
filter to enhance our image data and it retained more details 
to improve the quality of rendered images to achievable 
classification accuracies. However, after examining closely 
into the results of the resolution of our images, we observe 

Figure 14: Generated skin cancer images after 3000 epochs of training

[Downloaded free from http://www.jmssjournal.net on Monday, November 29, 2021, IP: 10.232.74.22]



Mutepfe, et al.: Generative adversarial network image synthesis method for skin lesion generation and classification

Journal of Medical Signals & Sensors | Volume 11 | Issue 4 | October-December 2021 247

that the completed images are not highly accurate compared 
with the original images. This is maybe due to the fact 
that the initial images have very few pixels in the initial 
phase. This suggests that if we were to train our model on 
higher resolution images it would have achieved a better 
performance. Data augmentation contributes to classification 
optimizations mostly; however, not in a coherent manner. 
Furthermore, if a model can perform reliably on augmented 
data, it can be a sign of efficiency, if we are to compare with 
the training images of MNIST, for example, digit ‘9’ after 
augmentation may yield to a different classification result.

Loss in training

Below Figure 16 is the plot of the training losses for the 
generator G and discriminator D put on record after each 
iteration. Preferably, the generator should receive enormous 
random noise as its input sooner in the training because 
it needs to learn how to generate authentic data. The 
discriminator on the contrary does not always acquire large 
samples early on, because it may easily distinguish real 
and fake images. In addition, during training, the generator 
and discriminator also may face the risk of overpowering 
each other. It has been observed in Figure 12 that if the 

Figure 15: Generated skin cancer images after 3000 epochs of training
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generator becomes too accurate, it will tenaciously harness 
shortcomings in the discriminator which then leads to 
undesirable results, whereas if the discriminator becomes 
too accurate, it will return values that are close to 0 or 1.

To train correctly, we had to make sure that the generator 
and discriminator are on a similar level throughout the 
training process. During the experiments, it can be noticed 
from the Figure 12, that while the discriminator continues to 
have a lower loss, the generator managed to overwhelm the 
discriminator and produced a fair result. Our generator was 
proficient enough to trick the discriminator thus proving that 
the discriminator was not able to extract the finer detail features 
in the skin lesion image data during the training process. 
This can entail the need to increase our dataset to allow our 
discriminator to learn more during the training process.

Accuracy

Accuracy is defined as the ratio of correctly classified 
samples out of all samples:

Numberof CorrectlyClassifiedSamplesAccuracy
NumberofAllSamples

=  (3)

We have used Classification Accuracy method to find 
the accuracy of our model. Classification accuracy is 
the ratio of number of correct predictions over the total 
number of all examples. In order to check the correct 
prediction, we incorporated the confusion matrix which 
adds the predicted results diagonally which will be the 
number of correct predictions and then divide them by 
total number of predictions as shown in Figure 17. In this 
binary classification, our accuracy value was calculated 
with respect to negatives and positives given in Table 1, 
as FP = false positives, FN = false negatives, TP = true 
positives and TN = true negatives.

Confusion matrix

To get a better understanding on confusion matrix shown 
in Figure 17, we can say the matrix gives us information 
about how our model has managed to classify malignant 
or benign lesion correctly. In this case if the image which 
has a malignant lesion is correctly classified as malignant 
it is deemed to be true positive and an image harboring a 
malignant lesion but diagnosed with benign lesion is deemed 
to be a false negative. Similarly, the image harboring benign 
lesion and is correctly diagnosed as benign is referred to 
as false positive and an image which has a benign lesion 
but diagnosed as malignant is qualified as false negative. 
Confusion matrix was particularly useful for measuring our 
AUC‑ROC curve, specificity, accuracy, recall, and precision. 
The Discriminator’s confusion matrix is expressed in the 
form of a tabular representation of all the possible outcomes, 
as given in Figure 17.

Receiver operating characteristic‑area under the curve

Moreover, we have utilized also ROC curves to assess the 
performance of our classifier over its complete operating 

range. A ROC curve shown in Figure 18 is a plot which we 
have used to summarize and to understand the performance 
of our binary classification model particularly on the 
positive class.

Figure 16: Training loss

Figure 18: Receiver operating characteristic‑area under the curve

Figure 17: Confusion matrix
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Table 6: Fréchet inception distance comparison of 
related work

Model DCGAN (ours) GAN[21] LAPGAN[16]

FID 44.41±1.28 50.93±1.18 41.88±1.08
FID – Fréchet inception distance; GAN – Generative Adversarial 
Network; DCGAN – Deep Convolution GAN; LAPGAN – Laplacian 
GAN

Table 4: Comparison of Adam versus stochastic gradient 
descent as optimizer

Optimizer Accuracy Precision Recall F1 score ROC‑AUC
Adam 0.935 0.94 0.84 0.87 0.861
SGD 0.903 0.92 0.71 0.80 0.830
SGD – Stochastic gradient descent; ROC‑AUC – Receiver 
operating characteristic‑area under the curve

Table 5: Comparison of related work
Accuracy (%) ROC‑AUC

Haenssle et al.[31] ‑ 0.86
XG et al.[2] 81.33 ‑
JB et al.[29] 0.9150
This work 93.5 0.861
ROC‑AUC – Receiver operating characteristic‑area under the curve

Table 3: Effect of learning rate on results
Learning 
rate

Accuracy Precision Recall F1 
score

ROC‑AUC

0.001 0.903 0.94 0.84 0.87 0.861
0.0002 0.915 0.88 0.72 0.79 0.813
ROC‑AUC – Receiver operating characteristic‑area under the 
curve

Table 1: Accuracy variables
Predicted 
values

Actual values
Positive (1) Negative (0)

Positive (1) TP FP
Negative (0) FN TN

In this plot, y‑axis implies the true positive rate (TPR) and 
the x‑axis indicates the true false‑positive rate (FPR). The 
dotted red line in our plot indicates the ROC curve of a 
random classifier. In Figure 14, our ROC curve depicts the 
trade‑off between TPR, which is the sensitivity and (1– FPR) 
representing the specificity. In addition, usually a good 
classifier depicts a curve that is closer to the top‑left corner 
which entails a better performance. More so, a less accurate 
test is depicted by a curve which is close to the 45° diagonal 

of the ROC space. As depicted by Figure 14, the classifier 
gave us a fair classification considering that the distance 
between the top left corner and our curve is small and also 
that our ROC curve deviated from the diagonal. Based on 
positives and negatives in our confusion matrix, our binary 
classification accuracy can be calculated as follows:

395 338
395 338 42 76

0.861 

+ +
= =

+ + + + + +
=

TP TNAccuracy
TP TN FP FN

 (4)
395 395 0.903 

395 42 437
TPPrecision

TP FP
= = = =

+ +
 (5)

395 395 0.839 
395 76 471

TPRecall
TP FN

= = = =
+ +

 (6)

0.839 0.9032 2
0.839 0.903

0.7582 0.87
1.742

× ×
− = × = × =

+

× =

Recall PrecisonF score
Recall +Precision

 (7)

The threshold utilized for classification varies between 0 
and 1, and the sensitivity and specificity are determined for 
each selected threshold as depicted in Table 1. The accuracy 
calculated gave us 0.861, which 86% correct prediction out 
of total samples. This means that our lesion classifier did 
fairly good in distinguishing malignant lesions from benign 
lesions. Furthermore, our model produced a precision of 0.9 
as stated in Table 2, which entails that each time it predicts 
that the image is comprised of malignant lesion, it is 90% 
correct most of the time. In addition, our model produced 
a recall of 0.83 which also entails that it has correctly 
identified 83% of all malignant lesions. To fully evaluate 
the effectiveness of our model, it is essential to scrutinize 
precision and recall at the same time but regrettably, there 
is always tension between the two, which arises from 
improving one of them. That is, improving recall typically 
diminishes precision and conversely. F‑score is usually used 
to measure accuracy of our test basing on the precision and 
recall tests. Below are some changes made during training 
and their corresponding accuracy precision and recall values.

In Table 2 we can see that a batch size of 128 is giving 
us better results when compared to that of 100.Here we 
can see that our accuracy is fair enough considering the 
number of images on which our model is trained on. Bi 
et al. produced much better ROC‑AUC. Besides that our 
work archives good results on skin cancer classification.

Batch size is an essential hyperparameter to tune in modern 
deep learning paradigms. In most cases smaller batch sizes 
tend to permit the model to learn the pattern in the data 
without having to train on a big dataset. However, in this 
study we started with a small batch size, and we started 
reaping some benefits steadily as we increased our batch 
size as depicted in Table 2.

From our results we can tell that the batch size has a 
significant impact on the corresponding accuracy precision 

Table 2: Effect of batch size on results
Batch 
size

Accuracy Precision Recall F1 
score

ROC‑AUC

100 0.903 0.91 0.84 0.87 0.844
128 0.935 0.94 0.77 0.91 0.861
ROC‑AUC – Receiver operating characteristic‑area under the curve
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and our performance in general. More so our learning rate 
may determine how we are going to converge. To travel 
slowly on the downward slope, we used a low learning rate 
just as depicted in Table 3, we made the value low to try to 
converge to an optimal point.

We can also conclude that the learning rate is correlated to 
batch size because when we increased the batch size and 
lowered our learning rate the performance was enhanced. In 
Table 4 ,Adam Optimiser seem to be working better than the 
Stochastic Gradient Descent (SGD) because the SGM goes 
through a lot of iterations before it can reach the optimal 
point and its randomness during its descent affects its 
performance when converging. In Table 5. Here we can see 
that our accuracy is fair enough considering the number of 
images on which our model is trained on. Bi et al produced 
much better ROC‑AUC.In addition, we measured our FID 
score based on same number of real samples and fake and 
our work achieved good results on skin cancer classification 
as depicted in Table 6. Our model achieved lower FID score 
which depicts a better performance. FID score is mostly 
used to measure the diversity and quality of images.

Fréchet inception distance

In 2017 Heusel[33] al introduced Fréchet inception 
distance (FID), which was used to estimate realism by 
measuring the distance between the distribution of the 
generated images and the true distribution. FID is used to 
measure the quality and diversity of images and it needs a 
more decent sample size to produce good results. Too few 
samples will cause an over‑estimating of the actual FID 
and consequently the estimates will depict a large variance.

It must be noted with concern, that it was difficult to 
determine the diversity of our output images based 
several training images we implemented.[34] However, we 
managed to conduct a quantitative experiment making use 
of renowned FID. The FID score is commonly used to 
measure the diversity and quality of images. The Equation 
to calculate FID score is calculated as below:

1
2

2
2( )

2
µ µx y

x y x y

FID Tr
 

= − + + − 
 
∑ ∑ ∑∑   (8)

Where 𝑥 and 𝑦 represents the sets of images. In this 
experiment, 𝑥 and 𝑦 comprises of real and fake images, 
respectively. In this representation, mean (𝜇) and variance (Σ) 
is used to portray the visual quality and diversity of our 
images. A low FID score denotes that these two sets of 
images have a similar probability distribution. Therefore, 
a lower FID score represents a better performance which 
can be used to compare with other comparable models. 
We measured our FID score based on same number of real 
samples and fake and the result is summarized in Table 1.

We can see here that our model produces a fair result as 
compared to other models given in the above table. It could 
have performed more better given more computational 
power.[35‑38]

Difficulties and shortcomings

The constraints with this study was mainly to build a 
proper Deep Convolutional Generative Adversarial Network 
(DCGAN) and make it generate high quality images that are 
much like the synthetic real samples. Generally, deep learning 
models have great deal of model parameters as well as a 
plenty of hyper‑parameters to be adjusted and we had to be 
very careful in tuning these hyper‑parameters. This made the 
fine tuning of our model very time consuming due to the many 
tests that needed to be performed. Speaking of time, the time 
required for each training session was the foremost limitation 
to this study.[39‑41] One training session for skin lesion dataset 
could require 1 h and 30 min, the time could rise up to 3 h 
per session. The extremely time‑consuming training sessions 
took up most of the time dedicated for this study. This further 
complicated the fine‑tuning of the DCGAN on the dataset. 
Another challenge was constraints in GPU power, we were 
unable to generate a perfect sample based on the previous 
original image data. We would have wished to have train our 
model on a more robust RTX 2080 Ti GPU because it offers 
an excellent performance in deep learning.[42,43]

Conclusions and Future Work

Conclusions
In this endeavor, we focused on investigating the ability of 
deep convolutional neural networks to discriminate between 
malignant and benign cancer and at the same time trying to 
overcome the limitations of GAN models. The main purpose of 
this work was to improve the overall accuracy level by using 
the refined set of skin cancer images obtained after applying 
some common image preprocessing algorithms such as gamma 
correction and bilateral filter. The experiments were conducted 
using the Keras python framework and the proposed method 
was applied to the Kaggle Skin Cancer Dataset which had the 
same number of samples for both classes.

We demonstrated that a typical deep neural networks‑GAN 
method can attain competitive classification performance 
and produces some better diagnostic accuracy that can 
outperform contemporary methods, expert physicians and 
clinicians in skin lesion classification other. In this work, 
the experimental results are very promising, especially 
after some noise removal algorithms were incorporated. We 
have seen some substantial improvement in training after 
applying image enhancement and pre‑processing operation. 
Thus, we have achieved an overall test accuracy of 93.5% 
after fine‑tuning most parameters of our network.

Future work

In the future work, firstly, we consider that models carry 
out enormous amounts of computations during the training 
process. DCGAN contains two models which means 
that even more computations are performed so large 
computational power is required to reduce the instability 
issues related to GAN models. The principal contribution 
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of the suggested course of work is hypothetical, and it 
can be implemented to other kinds of images as well. 
Consequently, it clarifies the generalization of the model for 
different more cases than the original model. Probably using 
a larger training set or training the model a little longer may 
attain the desired results. While many different adaptions, 
tests and experiments have been performed, there is still 
room for changes in the future. Especially the fine‑tuning 
of the DCGAN on medical photos or other similar but less 
noisy datasets is interesting since there were no time left 
for the researcher to continue. Also finding other ML tasks 
than classification where the accuracy is very dependent to 
the number of examples available in order to investigate 
how synthetic examples generated by a GAN affects the 
accuracy. The author suggests that before a dataset or a task 
is selected, one should examine if the accuracy is highly 
dependent on the number of training examples. Another 
proposal is to investigate whether a DCGAN can be trained 
to generate noisy samples in order to prevent overfitting.

Furthermore, additional investigations into the internal 
structure of the network to manipulate the generator 
representation might be the next steps in this study. 
In addition to that, widening this work would be very 
interesting by exploring images in their grey level and 
binary state to extract the desired lesion or separating them 
from the background of the image upon inspection.

Irregular shapes of skin lesions, different types of colors on 
each skin, and determining the region of interest on each 
dermoscopy image are just a few challenges in skin cancer 
detection. Detecting minute changes on the skin requires 
expertise in this field. However, the human eye may not 
always catch these tiny changes. Helping doctors with the 
computer vision and deep learning techniques can save many 
lives. With this motivation, we studied skin cancer malignancy 
detection to classify skin lesions and identify malignant 
cases. Pretraining settings and posttraining measurements 
of all experiments showed that the skin cancer malignancy 
detection is a difficult task and generalizing a model for 
all cases requires some image preprocessing techniques to 
apply before feeding into any deep learning algorithm. We 
did many experiments and tried various techniques to solve 
the complexity of skin lesions classes. This result is a good 
indicator for the potential of such a technology to reduce 
false‑negative and false‑positive predictions and eventually 
help physicians increase their diagnostic prediction power.
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