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AGRICULTURAL FUTURESPRICES AND LONG

MEMORY PROCESSES

Abstract

Price series that are 21.5 years long for six agricultural futures markets, corn, soybeans, whest,
hogs, coffee, and sugar, exhibit time-varying voldility, carry long-range dependence, and portray
excessve skewness and kurtoss, though they are covariance ationary. This suggests that the series
contain nonlinear dynamics. ARCH and long memory are the two stochastic nonlinear modds that are
able to produce these gymptoms. Though standard ARCH tests suggest that dl series might contain
ARCH effects, further diagnostics show that the series cannot be ARCH processes. The martingale
difference null cannot be rgjected by the ARCH modd. Three long memory techniques, the classica
R/S andyss, the modified R/S andyss, and the AFIMA modd, are applied to test the martingde
difference null againg the long memory dternative.  The nonparametric method, the classcd R/S
andyds, suggests there might be long memory structures in the series. However, two other more robust
tests, the modified R/S andyss and the AFIMA model, confirm the case of sugar, but rgect this

proposition for the other five markets.



1. DEFINITIONS AND OBJECTIVES

Long memory modes are reatively new to goplied economists. Though its origin can go back
a least to Manddbrot’s (1969) work, it was not until the 1980's that researchers began to gpply the
reccaded range andyds, one of the tools in long memory theory, to financid markets and
macroeconomic prices. In 1991 Lo modified the classcd R/S method. Also, the autoregressve
fractaly integrated moving average (AFIMA) process began to be accepted. In just recent years have
most gpplications of the AFIMA moded appeared. So far, no AFIMA modeling of agriculturd prices

exiss.

Based on Beran (1994, pp. 41-66), a sationary process with long memory has the following

quditative features.

Certan persstence exids. In some periods the observations tend to stay a high levds, in
some other periods, the observations tend to stay at low levels.

During short time periods, there seem to be periodic cycles. However, looking through the
whole process, no gpparent periodic cycles could be identified.

Overdll, the process looks Stationary.

Quantitatively, for a stationary process, these features could be described as.

When adding more observations, the variance of the sample mean, var(?), decays to zero
a a dower rate than n* which is the rate a which a white noise decays, and is
asymptoticaly equa to acongtant g timesn® for some O<a<1.

The correlation r; decaysto zero dowly and is asymptoticaly equa to aconstant c timesj™
for someO<a<1.

More rigoroudy, the following definition exists (Beran 1994, p. 42):

“Let Y; be a sationary process for which the following holds. There exigs a red
number al (0,1) and a congtant ¢>0 such that



Iji@r)rlr(J)/q‘ =1 (1.1
Then Y, is cdled a dationary process with long memory or long-range dependence or

srong dependence, or a dationary process with dowly decaying or long-range
correlation.”

Beddes its heteroscedadticity long-range dependence, long memory processes have other
certain unique properties. Mandelbrot and Wallis (1969) and Mandelbrot (1972) showed a long-range
dependence process could demongtrate itsdlf as a highly non-Gaussian time series with large skewness
and kurtoss, and carries nonperiodic cycles. A long memory process could dlow conditiond
heteroscedadticity (Fung et d. 1994), which could be the explanation of nonperiodic cycles. It seemsa

long memory modd is more flexible than an ARCH modd in terms of capturing irregular behavior.

From the definition of a long memory process, a is the criticd parameter to characterize the
process, and aso could be expressed by H (caled Hurst exponent, which will be explained later) in the
fashion: a=2-2H (Beran 1994, p. 42). In the literature, there are three main methods existing to
edimate a or H: the classicd rescaled range (R/S) andlysis, the modified R/S analyss, and the AFIMA
mode. The first two methods are mostly concerned with whether long-range dependence exigtsin the
process being examined. An AFIMA modd is the extenson of an ARIMA modd, and is able to

mesasure the strength of long-range dependence.

These three methods could complement each other and alow a comparison of the robustness of
the results.  And furthermore, one method reveds unique information the others are not able to.

Therefore, dl three techniques are gpplied to andyze the detaiin this study.

Like many financid time saries, agriculturd futures prices exhibit irregular behavior. When

conventiond linear modes tend to conclude that these types of price series are, or nearly are, random



waks, many economic and financia theories suggest thet irregular behavior might be due to nonlinear

dependence in the markets.

For example, Tomek (1994) argued that most agricultura production has obvious seasondity,
but consumption continues throughout the year and stocks are dways nonnegative. Thus, there exigsa
nonlinear relationship between prices and inventories.  Herner (1983) proposed a competence-
difficulty gap theory. The gap between an economic agent’s competence to make an optimizing
decison and the difficulty of the decison problem suggest the agent follow rule-governed behavior that
can be smooth sometimes and eratic & other times. Dynamicdly, the price movements contain
nonperiodic regularities. Peters (1994) proposed the fractd market hypothess. The large variaionsin
agents  investment horizons produce ample liquidity in trade, which maintains the stability of markets.
Short-term investors are more sendtive to technicd factors in the market, but long-term investors rely
more on fundamentd information. When an event makes the fundamenta information questionable, the
investment horizons of various agents tend to unify in the short term, then the market becomes ungtable

and price voldtile.

However, the economic theories about nonlinear dependence suggest only plausible nonlinear
specifications, and the dructure of nonlinear dependence is not clear. It is not uncommon that
agricultura futures prices, like many other financid series (1) are digtributed nonnormdly with the fat
talls (Taylor 1986, Yang and Brorsen 1993), (2) possess autocorrelations that decay to zero very
dowly even for a very large time period (Taylor 1986), and (3) seem to have cycles but the cycles are
not periodic. As discussed above, along memory process demonstrates good power to capture these

symptoms.



Among many empirical studies of long memory, Booth et d. (1982) and Helms et d. (1984)
accepted the hypothesis that the long memory process is the explanation of irregular cyclica patterns of
certain financid series. On te other hand, Lo (1991) and Cheung and La (1993) identified little
evidence of long memory in certain stock prices and gold market returns. Granger and Joyeux (1980)
and Hosking (1981) developed an autoregressive fractaly integrated (AFIMA) model and provided a
parametric tool for long memory andyss. Fang et d. (1994) goplied this method to analyze four
currency futures and concluded that “ gatisticaly significant evidence of fractd structure is found in three
out of four currency futures return sries consdered” (p. 179). However, Fung et a. (1994) observed

no congstent pattern of long memory in S& P 500 index futures prices by the same method.

This study will conduct long memory tests on eighteen futures price series of Sx agriculturd
commodities, corn, soybeans, whesat, hogs, coffee, and sugar, traded at the Chicago and New York
markets from January 1974 through June 1995. Each commodity has three series a daily, weekly, and

monthly frequencies

The primary objective of this study is to investigate if the price behavior in these agriculturd
futures markets can be characterised by long memory models. It is not hard to find evidence to argue
that the price series with random appearance might be nonlinear dynamic. But, the difficulty is to tl
wha kind of nonlinear dynamics. Another commonly used stochastic model, the autoregressve

conditional heteroscedagticity process (ARCH moddl) and its variants', shares similar symptoms with

! From now on, unlessillustrated specificaly, “an ARCH model” usually refers to the autoregressive conditional
heteroscedasticity process and its variants. “ARCH” will be used in abroad sense.



long memory modes, such as nonnormality and heteroscedadticity, but they have totdly different

generating mechanisms and implications™.

A time series with the ARCH property typicaly has two components, a conditiond mean and a
conditiona variance function. The nonlinearity of the series comes from the nonlinearity of conditiona
variances. An ARCH modd that fits the data well could improve the prediction of the variances of
prices but not the price itsdf (Bera and Higgins 1995)°. A long memory mode approaches nonlineearity
by noninteger differencing. A long memory modd is a Single mean equation (system) and has aflexible
dructure. It represents short and long memory smultaneoudy. This study will conduct ARCH tests

before pursuing long memory andyses.

Utilizing a long time price series, such as 21.5 years, is an important attribute of the present
sudy. Financid markets, especidly those underlying agriculturd markets, are very vulnerable and
sengitive to exogenous shocks, such as weether changes. Therefore, there exists a tendency that many
unexplained price spikes are attributed to exogenous shocks and are kept out of modeling practices.
ARCH and long memory models have proven that certain stochastic behavior previoudy considered
random shocks can be generated by well-defined processes. If the data represent a long time period,
such generating processes have more chances to repesat themselves in one way or another, there are

more chances for modeling practices to succeed”.

2 A chaotic process, adeterministic structure, also captures these symptoms. A separate study, Wei and Leuthold
(1998), was dedicated to chaos tests.

3A process could be a pure ARCH process with the conditional mean represented by awhite noise.

* The trade-off of usi ng long price seriesisthat there might be structural changes during the period of study. It has
always been an empirical question whether a particular change can be considered a structural change and
whether such a change has a significant impact on a particular generating mechanism. In this study, except the



This paper is organized as follows. The next section reviews the literature of long memory
modeling. The third section presents the data and discusses its distribution, stationarity, and structure of
autocorreations, and then conducts ARCH tests. The fourth section investigates long memory theory.
The fifth section gpplies long memory theory to andyze the series under study. The lagt section
summarizes and concdludes the study by discussng the significance and implications of the present
research.

2. LITERATURE REVIEW

Admitting that no forma financd theory explains long memory, Helms et d. (1984) agpplied
rescaded range (R/S) andlyssto detect the existence of long memory in the futures prices of the soybean
complex (soybeans, soybean oil, and soybean med). With the Hurst exponent in the range of 0.5to 1
indicating long memory, these authors found the Hurst exponents ranges from 0.558 to 0.711 for daily
prices of two futures contracts of the soybean complex in 1976, and from 0.581 to 0.627 for intraday
prices of five soybean contracts in 1977-78. Milonas et d. (1985) endorsed Helms et a.’s (1984)
efforts in usng the new method to mode nonperiodic cycles in financid series, but pointed out that
Hems et d. (1984) did not check the Sationarity of the data, which reduced the credibility of the

findings of Hurst exponents.

Fung and Lo's (1993) long memory study analyzed the prices of two interest rate futures
markets, Eurodollars and Treasury bills. The results from the classcd R/S andyss and Lo's (1991)

modified R/S andysis provide no evidence of the existence of long memory and support for the wesk

sugar market, it isnot clear that the other five markets have experienced significant structural changesthat are
ableto alter the nonlinear generating processes of concern. Thisissueis subject to further research.



form efficient market hypothesis®. Why did Hems et d. (1984) find long memory in the commodiity
futures markets? Fung and Lo (1993) argued, relative to interest rate futures markets, commodity

futures markets have low liquidity and less active trade, which may lead to long memory.

Turning their attention to the prices of intraday stock index futures, Fung et d. (1994) examined
long memory by using variance ratios®, R/S, and autoregressive fractaly integrated moving average
(AFIMA) modds’. All three types of analyses concluded that no long term memory exists in the data.
Interestingly, the authors tested the impact of liquidity on the existence of long memory and found no
evidence for it. Differing from their 1993 study, thistime Fung et d. (1994) suspected the long memory
found by Hems et d. (1984) in commodity futures prices comes from the seasondity of agricultura

prices.

The AFIMA modd searches for a norntinteger parameter, d, to difference the data to capture
long memory. The existence of non-zero d is an indication of long memory and its departure from zero
measures the strength of long memory. Long memory is dso cdled fractd structure because of non
integer d. Fang et d. (1994) investigated four daily currency futures price series, each series lasting
from January 1982 through December 1991 with 2,527 observations. The estimates of d for three out

of four series are ggnificantly different from zero and fractal dynamicsis concluded. It is worthy noting

5 The modification will be discussed in next section.

® The variance ratio test investi gatesthe ratio of the variance of g-differences of the seriesto the variance of itsfirst
differences. Thetest statistic could distinguish dependence from random walks and is robust to
heteroscedasticity, but cannot tell short memory from long memory.

" The AFIMA model will be discussed in next section.



the authors admitted “little is known about the possible effects of chaotic dynamics on the datistical

procedure’ (p. 179).

Similar sudies have been pursued on stock markets (Lo 1991, Chow et a. 1995), inflation rate
(Scacciavillani 1994, Hasder and Wolters 1995), gold prices (Cheung and La 1993), foreign exchange
rate (Booth et d. 1982), and spot and forward metals prices (Fraser and MacDonad 1992). The
results are mixed, but dl authors agreed that identification of long memory is very sgnificant in & lesst
two senses (1) the time span and strength of long memory will be an important input for investment
decisons regarding investment horizons and composition of portfolios; and (2) prediction of price
movements will be improved. It is dso noticeable that research methodologies have developed very
fast. Inthe 1980's, the classicd R/S analysis was the mgor tool. Entering the 1990's, the methods are

being diversfied with the modified R/S andyss and the AFIMA modd as new techniques.

The long memory study on agricultura futures markets is a the beginning. The empirica work
of Hdms et d. (1984) is the only one known to us, which analyzed the short series (about 230
observations) of one commodity (the soybean complex) using only the classcd R/S techniques. The
present study will take advantage of the new developments in Satistical methods to andyze much longer

time series for 9x agriculturd commodities at three time frequencies.

3. DATA AND DATA CHARACTERISTICS

The procedures for collecting and transforming data affect any serious datisicd modding.
Also, before initiating sophidticated Satistical andysdis, it is important to andyze the basic properties of

the data with ample methods. Therefore, this section firgt presents the data used in the study, and then

10



discusses normdity, stationarity, and the structure of autocorrelations and partial autocorrelations of the
data The importance of normality and dationarity is shared by many empirical studies, while the

structure of autocorrdations has specid significance in nonlinear dynamics modeing.

3.1 DATA SOURCESAND TRANSFORMATION

The futures prices of corn, soybeans, wheat, hogs, sugar, and coffee are selected. Choosing
these sx commodities covers different aspects of agricultural markets. Hogs, a livestock commodity,
are nongtorable, while the other five are storable. Coffee has long production/adjustment periods, the
other five have short ones. To the U.S. market, coffee and sugar are mainly import goods while the
other four commodities are domestically produced and exports are important. Government policies and

regulations have varying effects on these Sx commodity markets.

Nearby contracts are used to construct long time series”. Table 1 reports the contracts used for
each commodity, as well as the markets where the prices were recorded. The prices are supplied by

the Office for Futures and Options Research, University of Illinois a Urbana-Champaign.

8 Geiss (1995) discussed the biasness the various methods of constructing long future prices can create. Inthe
present study, the same empirical analysis of ARCH, long memory, and chaos have been applied to the three
major transformations: differences, log differences, and the rate of returns. (See Wei and Leuthold (1998) for the
chaos study.) Ingeneral, the results remained unchanged with respect to the three transformations. It seems
that the nonlinear models discussed in this study are not very sensitive to these specific data transformation
procedures. This nonsensitivity remainsto be confirmed in afuture study by adopting Geiss's method.

11



Table 1. Sour ces of the Data

: 1
Commaodity Market Contracts Used Daily Weekly Monthly
Observations | Observation | Observations
S

Corn CBOT March, May, July, September, 540 1122 58
December

Wheat CBOT March, May, July, September, 540 1122 58
December

Soybeans CBOT January, March, May, July, August, 5120 112 58
September, November

Hogs CME February, April, May, July, August, 5108 112 58
October, December

Coffee CSCE March, May, July, September, 5383 1122 58
December

Sugar CSCE March, May, July, September, October 5383 112 58

1: CBOT: Chicago Board of Trade, CME, Chicago Mercantile Exchange, CSCE: Coffee, Sugar and Cocoa Exchange

(New York).

The time period covers from January 1, 1974 through June 31, 1995. The beginning point of the

data was set 0 as to avoid the collapse of Bretton Wood System in early 1970's.  For each

commodity, daily, weekly, and monthly prices are dl investigated. The monthly data are the prices of

the last day of every month, the weekly data are the Friday prices of every week, and the daily prices

are closing prices of every trading day. Whileit iswell known that a market becomes more noisy as the

time frequency gets higher, the price series of three time frequencies for a given commodity essentialy

reflect the same market. Since chaos, lbng memory and ARCH modds are newly-growing fieds of

investigation, there are some aspects of these processes which remain unclear, applying a method to the

same market but at different time frequencies will help derive robust conclusons.
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Utilizing dally prices often runs encounters one problem, the limits for daily price changes, based
on the closing market price of the previous day’. Therefore, the series are truncated and that might
digort nonlinear modeling. However, the anadyss on the dally seriesis still necessary because of the
following. (1) It seems that such a truncation has no sgnificant impacts on the nonlinear dynamics of
concern. Wei (1997) and Yang and Brorsen (1992, 1993)™, have conducted nonlinear modeling
procedures on both cash and futures prices of corn, soybeans and wheat with results are not
sgnificantly different between cash and futures prices™. (2) The daily prices of sugar and coffee used
for this sudy contain few daily limits, or are essentialy untruncated, and later comparisons between
these two markets and the other four will show little or no affect on the results due to truncation. (3)
Weekly and monthly series are andyzed for each market as well, and they provide the results of
untruncated series for each market. (4) Truncation is a fact of these markets and truncated markets
need to be researched. The results of daily series will be interpreted as those from truncated markets.
(5) All other known nonlinear modeling of daily future prices did not transform the data to avoid the
effects of daly limits. The present sudy follows the same practice so comparisons can be made

between the results of this study and those of other studies.

Heteroscedadticity is expected when examining a lifetime price series of a Sngle contract sSince

the variance of pricestypicaly increases as a contract gets closer to maturity. However, if aprice series

® The dai ly price limitsare 10 centsfor corn, 30 cents for soybeans, 20 cents for wheat, and 150 cents for hogs
(Leuthold et al. 1989, p. 35), 6 centsfor coffee, and 0.5 cents for sugar (institutional database of Futures
Industry Institute). Thedaily limitsfor coffee and sugar started in 1980 and do not apply to the nearest two
months of a particular contract.

10 Y ang and Brorsen (1992, 1993) analyzed by GARCH and chaos models the daily prices of corn, soybeans, and
wheat, among other commaodities, for both cash and futures markets for the period of 1979-1988.

1 Cash prices are not subject to the same daily price limits.
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is congtructed by various nearby contracts and each contract contributes only the section of prices when
it is heavily traded, over along time period, such as 21.5 years in this study, the “maturity effect” as
such might be avoided. Nevertheless, the question of whether the variances of the data are time
dependent remains for further investigation. Also, since the congtructed series used here excludes the

time when a contract is thinly traded, the series contains more market informetion.

The price series of nearby contracts has one problem, the price “jumps’ when changing
contracts. This study adopts a specific “roll-over” procedure to avoid the jumps. When switching
contracts, on the last day of the old contract, the difference between the old contract price and the new
contract price is observed™. Then, this difference is added or subtracted to &l prices of the new
contract. Table 2 illustrates this procedure by assuming March and May contracts switch at the end of

February and beginning of March.

Table 2. lllustration of Rollover Procedures

Feb.26 | Feb.27 | Feb.28 | Marchl | March2 | March 3
March contract price 250 265 270
May contract price 320 321 310 335
Adjusted series 250 265 270 271 260 285

For a 21.5-year series, many adjustments of this type take place and in some cases prices
become negetive. Overdl, the series of price leves is not meaningful. However, price changes are
accurate and without jumps, and are suitable for analyss. For example, the prices on three consecutive
If 40 were

dates are 32, 30, and 36, respectively. Here, the two price changes are -2 and 6.

subtracted from the three price records because of contract switching, they become -8,

12 Contracts are rolled forward on the last trading day of the month preceding delivery month.

14



-10, and -4. But the two price changes are dill -2 and 6. Hence, when anayzing price changes,

negdtive pricesin levels have no impact on the andyss.

3.2 NORMALITY

After the contract rollover adjustments just described, the price changes of al sx commodities,
each of them with three frequencies of daily, weekly, and monthly, are produced. The term “the series’

from now on dways refers to the series of price changes.

Table 3 reports descriptive satistics for dl eighteen series under consderation. All means are
not statisticaly different from zero, if the standard deviation could be used to produce tratios™.
However, such a standard t test could not be conducted because the unconditiona digtributions of dl

series except hogs are nonnormal- - skewed and leptokurtic as discussed below.

The coefficients of skewness g; and excess kurtosis g, quantify the deviation from a normd
digribution and are defined by Smillie (1966). g; and g, are standard normd digtributions with the
mean of zero. Jarque and Bera (1980) developed an O datistic with a ¢ distribution to summarize the

deviation from anorma distribution.

Except for the hog series, the remaining fifteen series are far from the normad distributions. The

coefficients of skewness and kurtoss are drongly didicdly significant and indicate that the

13 The series studied here are price changes, not the rate of returns. The fact that the means of the series of price
changes are equal to zero only implies that the price level has not changed over the period under study. No
reference could be derived to say whether the expected return from futures trading is zero.

15



distributions of the price change series are skewed and have fat tails*. Jarque and Bera's (1980) c?
datigtics, which summarize the deviaion of the third and fourth moments from the parameters of a
normal distribution, are srongly significant as aresult. The sgnificant deviation from normality can be a

symptom of nonlinear dynamics (Fang et d. 1994).

Across the time frequencies, daly data depart further from a normd distribution than weekly
and monthly data. Across the commodities, the deviation of coffee and sugar from anorma distribution
are more severe than that of corn, wheat, and soybeans. Hog data are close to normd distributions a
al three time frequencies. Hogs are the only nonstorable commodity here. Asdiscussed by Leuthold et
al. (1989, pp. 45-60), markets of nongtorables have no storage costs to hold or link the prices of spot
and futures together, and to hold or link prices of different futures together, which differs from the
markets of storables. The movements of prices of nonstorables are expected to demongtrate more

independence than those of storables.

3.3 STATIONARITY

Besides normdity, another important property of the data is stationarity. As common practice,
covariance dationarity or week dationarity is of concern here. The conventional augmented Dickey-
Fuller test (t datistic) is used firs. The weakness of the augmented Dickey-Fuller test is that error
terms of the test model are assumed a white noise process (Phillips and Perron 1988). It has been

observed that the price change series under sudy very likely contain heteroscedadticity.  Phillips and

14 Thisresult differs from that of Taylor (1986). In hisstudy, Taylor found that the rate of return of 13 daily
agricultural futures prices (corn, cocoa, coffee, sugar and wool) are approximately symmetric, though they have
high kurtosis.

16



Perron (1988) proposed a sami-parametric test ( statistic) that dlows for a wide range of serid

correaion and heteroscedadticity. The Phillips-

Table 3. Descriptive Statistics of Price Changes

Mean" | St.Dev* | g, 02 o
(t-ratio) (t-ratio)
Monthly
Corn -1.58 17.95 131 822 7659
(8.73) (2743
Soybeans -3.80 54.22 0.66 7.46 587.7
(4.13) (24.86)
Wheat -214 25.16 -0.52 3.08 107.8
(-3.46) (10.27)
Hogs 0.24 343 -0.22 0.50 4.49
(-1.47) (1.66)
Coffee 0.4 15.30 111 4.29 2396
(7.33) (14.3)
Sugar -013 225 0.68 10.18 1081
(453 (339
Weekly
Corn | -0.317 7.62 0.14 4.89 1108.9
(2.00) (3349
Soybeans | -0.798 24.31 -0.32 5.08 12153
(-4.45) (34.79)
Wheat | -0437 11.65 0.143 4.28 837.3
(1.96) (29.31)
Hogs 0.062 146 -0.045 0.38 6.96
(-0.62) (2.53)
Coffee 021 7.06 113 1382 9079
(17.99) (94.56)
Sugar -0.02 108 -0.52 14.38 9620
(-7.43) (98.22)
Dally
Corn | -0.070 3.378 -0.072 330 2464.3
(-2.18) (50.06)
Soybeans | -0.171 10.28 -0171 2.89 1910.1
(-5.27) (43.82)
Wheat | -0.100 544 -0.002 292 1920.6
(-0.06) (44.24)
Hogs 0.011 0.68 -0.044 -0.133 5.83
(-1.33) (-2.21)
Coffee | -0.046 3.10 1.098 21.022 99984
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(33.27) (3185)
Sugar | -0.005 049 -0415 11.207 28262
(-1257) (169.8)
Critical Value5% sig. 1.96 1.96 3.84

1: The units for com, soybeans, and wheat are cents per bushel, for hogs, coffee and sugar are cents per pound.

2: St. Dev: Standard deviation.

Perron Z test has the same asymptotic distribution as does the Dickey-Fuller t test, and both share the

same criticd vaues.

In both cases, augmented Dickey-Fuller and Phillips-Perron tests, the length of lag of the series

needs to be determined to ensure the seria correlation of the process can be removed. Diebold and

Nerlove (1990) found that the integer part of T°% works well in determining the length of lag in

practice’. Since there are 5,383 to 5,427, 1,121, and 257 observations available for daily, weekly,

and monthly data, respectively, p and | will be 8, 5, and 4 for daily, weekly, and monthly series'™.

Table 4. Augmented Dickey-Fuller (t) and Phillips-Perron (Z) Tests*

Corn Soybeans Wheat Hogs Coffee Sugar

t z t z t z t V4 t z t
Monthly -7.58 -163| -838| -167| -656| -139| -794| -162| -698| -149| -712| -113
Weekly -13.3 -31.9| -133| -335( -124| -339| -135| -302| -136| -342| -118| -30.3
Daily -234 -608| -237| -698| -234| -737| -221| -735| -216| -695| -239| -694

The critical vaue a 5% dgnificance is 2.86.

* t and Z aret-type calculated statistics (see Wei 1997).

15 Actually AIC’ sand SC’'s are very flat when varyingp and | in the experimental estimation.
16 The experimental estimations had been conducted, where p and | were specified from 3 to 12, but the results

reported in Table 4 remained unchanged, i.e., the null hypotheses of the existence of unit roots could be
rejected at 5% significance level.
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The results from Table 4indicate dl the series are Sationary and do not contain unit roots.
Phillips-Perron Z satistics, which relaxes the assumption that error terms have to be white noise, are

usualy more than twice as large as the Dickey-Fuller t dtatistics.

The magnitudes and t‘'sand Z's are Smilar for adl commodities for a given time frequency. The
hog series, which looks more stationary than others, do not carry larger caculated satistics than others.

For agiven commodity, high time frequency series are more “ stationary” than low time frequency series.

3.4 STRUCTURE OF AUTOCORRELATIONS

For a lineer time series modd, typicaly an autoregressve integrated moving average
(ARIMA(p,d,q)) process, the patterns of autocorrelations and partial autocorrelations could indicate the
plausible structure of the modd. At the same time, this kind of information is dso very important for
modeling nonlinear dynamics. In Taylor's (1986) study, the long lasting autocorrelations of the data
suggest that the processes are nonlinear with time-varying variances. The basic property of a long

memory process is that the dependence between the two distant observationsis dill visble,

For sx series of daily price changes, 200 autocorreations and partid autocorrelaions were
edimated, i.e, j=1,..,200. For 6 series of weekly price changes, 100 autocorrelations and partia
autocorrdations were estimated, i.e, j=1,..,100. For 6 series of monthly price changes, 48

autocorrelaions and partid autocorrelations were estimated, i.e., j=1,..., 48.

Four features of the structures of autocorrdations and partia autocorrelaions emerge for al
eighteen series. Fird, the magnitude of autocorrelations and partia autocorrdations is very smal. In

terms of absolute values, the largest autocorrelations and partid autocorrelations are about 0.06 for
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dally series, 0.10 for weekly series, and 0.20 for monthly series. For conventiona linear modds, this

means the dependence among the dements is wesk.

Second, the first autocorreations and partid autocorrdations for al eighteen series are not
ggnificantly larger than the remaining coefficients, and in most cases, they are not even the largest. The
fird severd, usudly the second, autocorrdations and partia autocorrdations dightly exceed the
sgnificant boundary defined as 1/T°°. There are some coefficients at much later time lags thet exceed
the dgnificant boundary to the same extent. This indicates the dependence between nearby
observations is not necessarily stronger than that between distant observations, or the most recent

market information is not necessarily more useful than the information from awhile ago.

Third, there is no evidence that the magnitude of autocorreations and partid autocorreations
become smdll as the timelag, |, becomes large. 200 days, 100 weeks, and 48 months are significant
time lags for daily, weekly and monthly series, respectively. Even o, the magnitude of autocorrelations
and partid autocorrelations at the end of the above time lag sequences are dmost as large as those at
the beginning. Roughly it can be argued that the importance of market information does not decay as

the time the information was collected spans.

Fourth, there are no clear patterns describing the fluctuation of autocorrelaions and partia

autocorrelations. No seasonad and other periodic cycles were observed.

To demondtrate the above features, Tables 5 through 7 report the 10 largest (in terms of
absolute values for negative estimates) autocorrelations of each series and thar time lags. The tables
demondtrate the irregular patterns of autocorrdations of the data as discussed above, i.e, ther

magnitudes are smal and rdatively independent of the length of time spans, they do not decay

20



exponentidly over time span, ad they show no clear periodic patterns. The partid autocorrelations

have the same characterigtics as just described, and the results are not shown.

21



Table5. The Largest 10 Autocor relations of Daily Series

Lag Corn Lag Soybeans |Lag |Wheat |Lag |Hogs |[Lag [|Coffee |Lag |Sugar
Largest 5 145 -0.050 147 -0.045 2l -0051 2| -0.053 29 -0051 143 -0.078
negative 2 -0.044 89 -0.043 52| -0.039 129 -0.040 55 -0.049 68 -0.070
values' 128 -0.036 116 -0.042 143 -0.038 68 -0032 104 -0.044 17| -0.06§
60 -0.035 63 -0.042 60 -0.035 167 -0.030 371 -0.041 371 -0.063
39 -0.033 60 -0038 120, -0.032 92| -0.030 62| -0.038 83 -0.056
Largest 5 155 0.035 141 0031 1871 0.033 43 0.038 8 0052 12 0.050
positive 61 0.035 61 0032 180 0.034 38 0041 26| 0.052 24 0.052
values 12 0.036 18 0.036 29| 0035 141 0042 1 0054 61 0.056
1 0.053 43 0.038 62| 0036 191 0.049 44 0.054 1 0059
7 0.063 1 0.04 84 0048 4  0.05] 9 0.074 g 006
1: In terms of absolute values.
Table 6. The Largest 10 Autocorrelations of Weekly Series
Lag |Corn |[Lag |[Soybeans |Lag Wheat |Lag |Hogs |Lag |Coffee |Lag |Sugar
Largest 5 30 -0.072 15 -0.076 141 -0.080 63 -0.078 13 -0.076 31 -0.120
negative 49| -0.061, 68 -0.070 30 -0.080 66| -0.074 51 -0.063 9 -0.112
values' 67] -0.059 30 -0.067 35 -0.075 68 -0.074 4 -0.060] 46 -0.108
79 -0.052 18 -0.066 67 -0.073 141 -0.070 200 -0.052 43 -0.106
31 -0.050 14 -0.063 62 -0.072 541 -0.069 68 -0.051 30 -0.080
Largest 5 82 0.048 89 0.045 38 0.069 11 0074 44 0055 15 0.090
positive 1 0.053 42 0.046 42| 0.073 41f 0.078 9 0074 37 0.091
values 32 0.053 32 0.049 55 0.073 48/ 0.083 71 0085 39 0.102
46| 0.057, 9 0.059 21 0.089 1 0104 59 0.093 1 0.109
3 0.089 3 0.081 5 0091 50, 0.109 2 0.161] 2 0.111
1: Interms of absolute values.
Table7. TheLargest 10 Autocorrelations of Monthly Series
Lag |[Corn |Lag |Soybeans [Lag |Wheat |Lag |[Hogs |Lag [Coffee |[Lag [Sugar
Largest 5 7| -0.118 3 -0.140 6| -0124 15 -0.160 43 -0.146 6 -0.196
negative 16/ -0.096 36 -0.133 39 -0.120 13 -0.153 15 -0.128 23 -0.107
values' 15( -0.078 7 -0.125 7] -0.118 25 -0125 12 -0.108 7 -0.101
35 -0.073 24 -0.107| 34 -0101 24 -0122 26/ -0.078 5 -0.089
39 -0.072 35 -0.0%4 48 -0.084 16/ -0.118 21 -0.075 10 -0.085
Largest 5 43  0.049 21 0.056 5 0093 190 0102 8 0.086) 3 0.059
positive 44 0.060, 43 0.058 1 o011 9 0120 200 0101 36 0.064
values 2l 0.069 2 0.063 200 0129 41 0120 9 0.102 20 0.075
29 0085 32 0.072 9 0133 11 0.136 2 0125 4 0.127
31 0101 29 0121 100 0.209 21 0479 28 0152 1 0.330

1: Interms of absolute values.
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35 SUMMARY OF BASIC DATA CHARACTERISTICS

The data used in this study are 21.5 years of futures prices of six agricultural commodities (corn,
soybeans, whest, hogs, coffee, and sugar) a monthly, weekly, and daly frequencies. For each
commodity, various nearby contracts are used to condruct a long series and a specid rollover
procedure is followed to remove jumps when switching contracts. The series of price differences are

the modeling targets of the study.

All series for sx commodity markets demondrate uneven volatility over the whole sample
period. In some time periods the series vary more dramatically than in other periods. Thisimpliestime-
dependent conditiond variances. Most series are found non-normdly didtributed with excessve
skewness and kurtoss. Even o, the unit root tests suggest unconditional mean and variance of the data
are finite and congant. The autocorreation and partid autocorrdation analyss shows that the short-
term dependence is obvioudy wesk, but the autocorrdations, though they are very smal, are very

persstent. All of these symptoms potentially suggest nonlinear dynamics, as Taylor (1986) argued.

The conclusion of gtationarity in the above is subject to one rik, i.e., the series contain the roots
that are, though not exactly units, close to units, and the unit root tests conducted here are not powerful

enough to differentiate. However, long memory andysis to be conducted disproves this possibility.

3.6 ARCH TEsTS

ARCH theory admits nonnormality of the unconditiond digtribution of the data With the
assumption of normality of the conditiond digtribution, an ARCH-type structure could be built to

capture the time-dependent variances. Using such a variance function as an input, the naximum
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likdihood estimates of mean become condstent and efficient. Financia series are typicdly found non
normdly didributed with the time-varying volatility. Therefore, ARCH models have become very

popular in financid time series modding.

Volatility clustering and nonnormality were uncovered from the data, which may lead to the
ARCH dgructures. Further, screening the plots of al eighteen series of price changes for Sx commodity
futures, it is obvious that the volatility is not stable. In certain time periods, large price changes are
followed by large price changes, irrespective of sgn, and form of spikes. In some other time periods
the markets are rather quiet, i.e, smdl price changes are followed by smdl price changes. This

phenomenon seems well represented by an ARCH process as defined below.

Suppose a stochastic process Y; is generated by an AR(p) process.

P
Y.=a,+aay, +e. (32)

j=1

Thereexigsan information st, Y, ;, ={Y_;,Y_,,.....} , such that:

&lY..~N(Oh), (3.2
where
k
h =q, + é ;€ (3:3)
i=1
with
>0, g 30,i=1,.k, (34

to ensure the conditiona varianceis podtive. The process Y;is cdled AR(p) with ARCH(k) errors.

The conditiona variance function might be complicated for along series lagting for 21.5 years,

which means k in equation (3.3), the lag of the conditiona variance €, islarge. If S0, the computation
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becomes burdensome and interpretation becomes difficult.

ARCH (GARCH):

k
h=a,+a g€+

i=1

g
adh_,
j=1

where h; are lagged unconditional variances, and
a>0,9230,i=1,.k,d 30, j=1,..g,

Bollerdev (1986) proposed generdized

(359

(36)

to ensure positive variances. Actualy, GARCH(k,g) is an infinite order ARCH process with a rationd

lag structure imposed on the coefficients. The equation (3.5) is readily interpreted as an ARMA model

for €. In practice, identification of k and g follows Box-Jenkins procedure to specify p and g in

ARMA(p,0).

The standard Lagrange Multiplier (LM) test is applied to al eighteen series to test whether there

are ARCH(2) effects in the processes. Since ARCH(2) is the smplest structure of ARCH and its

vaiants, if ARCH(1) exigs, further investigation of more suitable ARCH structures is encouraged. In

the case of the stationarity test, AR(4), AR(5), and AR(8) are specified to capture autocorrelations for

monthly, weekly, and daily series, respectively. The LM test is conducted on the resduas of those AR

mode s for ARCH(1) effects. Table 8 reports the results.

Table8. LM Testsof ARCH(1) Effects

Monthly Weekly Daly

Corn 10.7 1455 952.6
Soybeans 201 116.1 9419
Wheat 1.7 87.3 5318
Hogs 49 7.7 60.8
Coffee 125 158 134.1
Sugar 77 54.2 857.9

3.84 3.84 3.84

Critical values (5%)

The null hypothesisis, Y; carriesno ARCH. Thealternativeis, Y, carries ARCH.
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The criticd vaueis the ¢ distribution with 1 degree of freedom. All calculated LM dtatistics are
larger than the critical value. The null hypothes's has been rgected in dl eighteen cases. And, the higher
the time frequency, the more the cdculated LM datistics exceeds the critical vdue. Among the six
commodities, hogs are noticegbly much less “ARCH” than others. Therefore, GARCH modeling
proceeds.

The andyss of autocorrelaion and partid autocorrdation of al eighteen series ndicates that
short memory of the data is very weak and does not have clear patterns. As a preiminary effort,
ARMA(1,1) is estimated for &l eighteen series”, i.e.

Y =aY,, +e +be ;. (3.7)
e ~N(0,s).

Since this sudy employs price differences, i.e, Y; is the series of price differences, the above
ARMA(1,1) is equivaent to ARIMA(1,1,2).

The estimation of (3.7) isshown in Table 9.

Y Similar practice was aso done by Fang et a. (1994), though in their case, no significant short-term dependenceis
found in 2,527 daily currency futures prices, so AR(3) is still used as afilter.
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Table 9. Estimates of ARMA(1,1)

a b R Likelihood
Coefficient t-value [Coefficient t-value
Monthly
Corn] -0.52 -0.38 -0.49 -0.35 0.00 -1102
Soybeans -0.92 -21.39 -0.93 -2.14 0.06 -1378,
Wheat] -0.52 -2.10 -0.66 -3.04 0.05 -1183
Hogq 0.5] 0.0 0.50, 0.0 0.0 -676
Coffed 0.4 125 0.45 0.98 0.044 -1061
Sugat -0.04 -0.09 -0.41] -2.89 0.13 -553
Weekly
Cornf 0.69 3.37 0.64 2.88 0.044 -3860,
Soybeans -0.09 0.00 -0.09 0.00 0.00 -5163,
Wheat] -0.57 -0.89 -0.55 -0.83 0.014 -4336)
Hogq 054 2.72 0.44 2.09 0.00 -2011
Coffed -0.57 -2.01 -0.51] -1.72 0.00 -3776)
Sugat 0.73 7.72 0.68 6.71 0.08 -3739
Daily
Cornf -0.68 -6.89 -0.73 -7.97 0.00 -14276)
Soybeans -0.24 -1.06 -0.29 -1.32 0.00 -20315)
Wheat] -0.51 -0.94 -0.52 -0.98 0.00 -16872
Hogq -0.59 -1.6 -0.61] -1.74 -0.04 -5627|
Coffed -0.14 -0.58 -0.19 -0.81 0.00 -13718
Sugat -0.24 -1.06 -0.29 -1.32 0.00 -20315)

Not surprisngly, mode (3.7) performs very poorly. Either across three time frequencies or
across six commodities, the model has little explanatory power as indicated by the R’s, which are dl
around zero though the estimates of a and b are Statigticaly sgnificant for some series. Other more
complicated ARMA(p,q) structures have been experimented with, and the results remain smilar. It
seems that the mean function of the series is white noise. Further examination is pursued to determine
the autocorrelations and partiad autocorrelations of € in equation (3.7) in order to specify k and g of
GARCH(k,g). Following Box-Jenkins procedures, the autocorrelations of € are estimated to 24 lags

and partial autocorrelations are estimated up to 12 lags. Table 10 displays the results.

Table 10. The Structures of Autocorreations and Partial Autocorreationsof € Series

| No. of significant AC | Largest AC (lag) | No. of significant PAC | Largest PAC (lag) ||
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Monthly

Corn 1 0.14(1) 1 0.14(1)
Soybeans 2 0.28(1) 1 0.28(1)
Wheat unclear 0.21(3) unclear 0.20(3)
Hogs unclear 0.17(14) unclear 0.16(1)
Coffee unclear 0.22(1) unclear 0.22(1)
Sugar unclear 0.42(3) unclear 0.38(3)

Weekly
Corn 7 0.40(2) 5 0.40(1)
Soybeans 11 0.31(1) 7 0.31(1)
Wheat unclear 0.29(1) unclear 0.29(1)
Hogs unclear 0.11(2) unclear 0.10(2)
Coffee unclear 0412 unclear 0.41(1)
Sugar unclear 0.41(6) unclear 0.27(6)

Daily

Corn Unclear 0.43(1) unclear 0.34(1)
Soybeans Unclear 0.42(1) unclear 0.42(1)
Wheat Unclear 0.32(3) unclear 0.32(3)
Hogs Unclear 0.17(14) unclear 0.16(1)
Coffee Unclear 0.34(9) unclear 0.29(9)
Sugar Unclear 0.43(2, 3) unclear 0.40(1)

AC and PAC are autocorrelation and partial autocorrelation, respectively.

Firg of dl, for dl eighteen series the magnitudes of autocorrelations and partid autocorrelaions
are noticesble, the maximum is 0.43. However, except for monthly corn and soybean data, € for the
other 16 series decay to zero very dowly. The autocorrdlations and partia autocorrelations of many €
series are till Significant even at 24 or 12 time lags, especialy for weekly and daily series. And, most €
series do not have clear decay patterns, the values of autocorrelaions and partiad autocorrelations
exceed the dgnificant-level boundary randomly. As a reflection of this, for many € series, the largest
autocorreations and partiad autocorrelaions are not necessarily located at lag 1. Table 10 summarizes
these observations, in which “unclear” refers to either of two or both Stuations: within 24 or 12 time
lags autocorrelations or partia autocorrelations do not decay to zero, or/and autocorreations and partial

autocorreations break sgnificance boundaries randomly, and no judgment can be made about whether

autocorrelations and partia autocorrdations have statisticaly decayed to zero.
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This proposes sgnificant difficulty for specifying the structure of ARCH(K) or GARCH(k, g).
For monthly corn and soybean data, GARCH(1,1) might be sufficient, but for remaining sixteen series,
no structures are suggested. French et d. (1987) modeled 57 years (1928-84) daily S& P stock index
data with 15,369 observations, and GARCH(2,2) was found proper. For most financial data,
GARCH(1,1) has proved to be sufficient (Bollerdev et d. 1992, Beraand Higgins 1995). The Stuation

of the present data causes suspicion about whether either ARCH or GARCH is a proper dterndive.

It might be argued that wrongly-specified ARMA(1,1) is responsible for the unclear structure of
the autocorrelations and partial autocorrelations of the € series, snce ARMA(1,1) haslittle explanatory
power in dl cases. The series might be pure ARCH or GARCH processes where the conditional mean
isamply Yi=&. Accepting this reasoning, the structure of autocorrdation and partial autocorreation of

Y2 has been andlyzed.®® However, the pictures described in Table 10 remain the same.

The present study is not done with the frustration of ARCH/GARCH models in andyzing long
agricultural price series. Yang and Brorsen (1992) andyzed daily cash prices of corn, pork belies,
soybeans, sugar and whest, plus gold and silver from January 1979 through December 1988. Though
they concluded that the GARCH moded is a better explanation of the observed nonlinear dynamics, they
admitted “though GARCH models reduced serid dependence and leptokurtoss, they are not a well-
caibrated modd of the process that generated the sample observations in spot commodity markets’ (p.
714). Smilarly, Yang and Brorsen (1993) applied GARCH and other ronlinear models to 15 daily

future prices including corn, soybeans, whest, coffee and oats. The data period is from January 1979

18 These results are avail able from the authors upon request, or in Wei (1997).
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through December 1988. The conclusion is Smilar to their study about cash markets. They found
GARCH(1,1) was rgjected by Kolmogorov-Smirnov test of fit for al cases, and they felt a higher order

GARCH process may be appropriate for some prices.

This study’ s data period doubles the length of Y ang and Brorsen’s sample, which may introduce
many new features into the data. One of them might be that the autocorrdations of the @ process of
the series decay so dowly that a GARCH modd findly becomes totdly inadequate to the data

generating processes.

Also, as Bera and Higgins (1995, p. 224) discussed, the third moment for aregular ARCH
process is zero, therefore unconditiona distributions of the series must be symmetric. The conventiond

ARCH or GARCH modd is able to capture the excessive kurtos's, but not asymmetry.

The series under study demondrate obvious asymmetry. The asymmetric digtribution was
conddered related to “leverage effects’ in financid markets, i.e, the return of a financid asst is
negaively associated with its volatility. Volatlity tends to rise in response to lower returns than
expected, and tends to fdl in response to higher returns than expected (Black 1976, Christie 1982).

The conventiond ARCH/GARCH process is not able to capture such an asymmetric phenomenon.

Nelson (1990) developed an exponentid GARCH modé to dlow asymmetry. Kang and
Brorsen (1995) applied the exponentidd GARCH method to daily futures prices of wheet for the period
of January 1980 through September 1990, and found the modd fit the data to certain degrees. But,
with the “strange” €% process as described in Table 10, the exponentid GARCH haslittle role to play.

4. THEORY OF THE LONG MEMORY MODEL
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The plots of dl eghteen saries of price changes of the agriculturd futures markets exhibit
digtinct, but nonperiodic cycles. In along memory modd, nonperiodic cycles are consdered the effects
of long-range dependence in the data, i.e., the autocorrelations of a given series decay to zero very
dowly as the time lag increases, and the dependence is Hill vigble even &fter a very large time span,
though individudly dl measurements of dependence are quite smdl. After examining generd properties

of the data and rgecting the ARCH hypothesis, now the long memory hypothesis will be tested:

Ho: E[DY; | Yy, j 2 1]=0, where DY; = Y; - Yiu
Ha: Y = fo(I)+ @&, where, f, isalong memory structure defined by equations (1.1). I, isthe
information set at t and for a univariate seriesistypically Y, @4, T3 j3 0.

4.1 THE CLASSICAL AND M ODIFIED RESCALED RANGE ANALYSS

H, a Hurst exponent, is produced by the rescaled range andysis, or R/S, analyss which was
established by hydrologist H. E. Hurst in 1951, further developed by B. Mandelbrot in the 1960's and
1970's, and applied to economic price andyss by Booth et d. (1982), Hems et al. (1984), Peters
(1989), and others in the 1980's. For a given time series, the Hurst exponent measures the long-term

nonperiodic dependence, and indicates the average duration the dependence may last.

For atime series with tota observations of T, there isainteger n, nET. The R/S andyss, firg

estimates the range Rfor agiven n:

R =(Maxa (Y- V- Mind « - V). @)

EjEn  j=1 EjEn  j=1

where R(n) is the range of accumulated deviation of Y(t) over the period of n. Let §n) be the standard

deviation of Y; over theperiod of n, i.e:
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S0 =(=4 (¥, - V)

For agiven n, there exigs a satistic

Q(n) = R(n)/Sn) . (4.2)
It is clear that n is the time scale to olit tota observetions T into int[ T/n] segments where int[.]

denotes the integer part of [.]. Therewill be int[ T/n] estimates of R(n)/Yn) for agiven n. Thefind

R(n)/Sn) isthe average of int[ T/n]’ s R(n)/S(n). Asn increases, the following holds.
R(n) /S(n) =an" or,
log(R(n)/S(n) =loga + H log(n). (4.3

It is clear that H is a parameter that relates mean R/S vaues for subsamples of equd length of
the series to the number of observations within each equd length subsample. H is dways greater than O.
When 0.5<H<1, the long memory structure exists. If H 1, the process has infinite variance and is

nongationary. If O<H<O0.5, anti-persstence structure exigts. 1f H=0.5, the process is white noise.
While esimating H, equation (4.3) also generates the average length of nonperiodic cycles by
vaying theszeof n.

Equation (4.2) is firs estimated for the smal sample in which n goes from an initid vaueto a
amdl number, then a H is recorded. The second round estimation is conducted with a larger sample,
i.e,, n goes from an initid vaue to a larger number, and anew H isrecorded. This process continues

until H reaches a peak and beginsto decline. When H reaches the pesk, the ending point of sample size,
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that particular n would be an indication of the average length of nonperiodic cycles, let'ssay G, and the

saturated H isthe find estimation of the Hurst exponent.

Further, Peters (1994) proposed another method, still based on the R/S andysis, to identify the
average length of nonperiodic cycles. For various vaues of n, there is a corresponding series of V,

which is defined as
V(n)=(R(n)/n))/n°>, (4.4)

For a long memory process, to plot V(n) againg log(n) will find a turning point in the V curve from
where the dope of V becomes zero or even negative. Here only visud screening is gpplied.  Peters
(1994) showed V ddtigtics are more noise-resstant than the procedure of H esimation in performing

this function.

The greatest advantage of the R/S andysisis that the measure is independent of the digtribution
assumption for a given series.  The robustness of results remains unaffected regardiess whether the
distribution is norma or nonnormal. The dependence the Hurst exponent captures is the nonlinear

relaionships inherent in the structure of the series (Peters 1991).

Lo (1991) and Chueng and La (1993) found that Hurst and Mandelbrot’s R/S andysis (cdled
the classcd R/S andysis heregfter) will generate a biased Hurst exponent when any combination of the
following happens (1) the series contains short-term memory; (2) the series is characterized with
heterogendities, and (3) the series is nondtationary. Lo (1991) modified the above R/S method and

produced a new datigtic that is robust to (1) and (2), and with awell-defined digtribution.
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Lo's (1991) modification was made to §n) in equation (4.2), i.e,, Q(n) = R(n)/Yn). InLO's

dgorithm, S(n) is replaced by S(n),

(S(M,)? = (SN +(2& w (Y A% V0%, V), (45)
where w. () =1- '— g<n.
q+1
Modified Satigtic is::
Z(n)=R(n)/ S(n)q (46)

Both §(n) and §(n), measure the standard deviation of the partial sum, but in §n),'s regime, the
vaiance of the partid sum is not smply the sum of the variance of individua observetions, but dso
includes the weighted autocovariances up to lag 9. Weight w. (q) is suggested by Newey and West
(1987) to ensure positive Sn)q. q is the optima lag of autocovariances and is typically determined by

Andrew’s (1991) data dependent rule:
q=int[(3T/2)"3{2d/ (1- F)}?*?], 4.7

where int[.] denotes the integer part of [.] and d is the firs-order autocorrelation coefficient of the

data.

Therefore, comparing with the classcal R/S gatigic Q(n), the modified gatistic Z(n) is able to
isolate short-range dependence when detecting a long-range one. Also Z(n) hasthe wdl defined F(v)

digtribution, which could lead to atistica inference (Lo 1991, pp. 1291-93).



However, in Z(n)'s esdimation, n=T, and the H exponent as well as the average length of
nonperiodic cycle, G, could not be derived. The classcd R/S andysis contains more information than

Lo's new method.

42  THEAFIMA M ODEL

The AFIMA moded approaches the long memory process from different perspectives. In an

ARIMA(p,d,q) process,
F(B)(1- B)'Y, =Y (B)s, (4.8)

d is an integer, and typicdly either O or 1. When Y; isintegrated of the order 1, i.e. d=1, the processis
sad to be nongtationary and its autocorrelation decays to zero linearly. When Y; isintegrated of the
order 0O, i.e, d=0, the process is sad to be dationary and its autocorrelation decays to zero

exponentialy. Hence, observations separated by long-time spans are independent.

Eighteen series of price differences in this sudy satisfy the assumption of stationarity according
to the unit root tests, as shown earlier. However, dl eighteen series exhibit dependence between distant
observations that, dthough smadl, is by no means negligible. There are two possibilities here. Fird, the
series do not contain exact unit roots, but the roots they have are very close to a unit. Unit root tests
have been fooled. Second, the results of unit root tests are correct in that the series contain no unit
roots, but the series carry long-range dependence, which can hardly be represented by regular ARMA

processes. If one differences the series again, the series will be over-differenced.
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An AFIMA modd is able to distinguish these two posshilities. In this case, Granger and Joyeux

(1980) and Hosking (1981) suggested d in equation (4.8) to be extended to a non-integer.

F (B)(1- B)!Y, =Y (B)e, where d is noninteger, and

(1- B)® =1- dB-

dd-d) o, d@-d)(2-d) o (4.9)
2!

3
For 0<d<0.5, it can be shown that the autocorrelations of the process decay to zero
hyperbolicdly, i.e., a a much dower rate than the exponential decay of an ARMA (d=0) process. Then,

AFIMA(p,d,q) is able to represent existing long-memory structure without over-differencing.

If d®0.5, the process has infinite variance and is nondationary. The nongationarity missed by
conventional unit root tests is captured by the AFIMA modd. If -0.5<d<0, an anti-persistence

dructure exigs. If d=0, the processis white noise.

Lo (1991, p. 1285) used the following Table 11 to illustrate the property of the long memory
process, in which AR(1) is compared with two AFIMA processes. For AFIMA(0,d=1/3,0), the
dependence, indicated by autocorrelation r (j), lasts for very long; for AFIMA(0,d=-1/3,0), r (j) decays
to zero very fast like aregular AR process. For example, at lag 10, r (j) of AFIMA(0,d=1/3,0) isas
high as 0.235, r(j) of AFIMA(0,d=-1/3,0) and AR(1) are -0.005 and 0.001, respectively. At
lag 100, r(j) of AFIMA(0,d=1/3,0) is ill as high as 0.109, but r(j) of AFIMA(0,d=-1/3,0) and

AR(1) are not different from O.
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Table11. The Comparison Between AR(1) and Two AFIMA Processes

Lag r () r () r ()
j AFIMA(0,d=1/3,0) | AFIMA(0,d=1/3,00 | AR1)r=05
1 0.500 -0.250 0500
2 0.400 -0.071 0.250
3 0.350 -0.036 0.125
4 0.318 -0.022 0.063
5 0.295 -0.015 0.031
10 0.235 -0.005 0.001
25 0173 -0.001 2.98x10°®
50 0.137 -3.24x10* 8.88x10*°
100 0.109 -1.02x10* 7.89x10%

Source: Lo (1991, p.1285, Table 4.1)

Many esimators have been suggested to estimate d (see Beran (1994) for a comprehensive
review). The most robust estimator is the maximum likelihood estimator suggested by Hadett and
Raftery (1989). Suppose an AFIMA(p,d,q) is defined by (4.9) with innovations e, being independent

Gaussan random variables. Let
etz ECYIY e Yo Fo o dj e )

denote the conditiona mean one-step-ahead prediction of Y, Let

s*fo=var (Y|, Y f e Foadyj e o)
denote the conditional variance of Y'*, where s? is the variance of . Maximizing the following
concentrated likelihood function by choosing the certain vauesof f,,....f ,d,j ;,....j

T T
log L(Y,,...,Y,) = constant - %(é logf, +& (Y, - ¥)2).

t=1 t-1

Practicdly, having a long series it is not affordable for CPU time to numericdly maximize the above

likelihood function (for example, a angle evauation of the likeihood takes about three hours of CPU
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time on a VAX 11/780). Hadett and Raftery (1989) proposed an excellent approximation method in

which (see Hadett and Raftery 1989, pp. 12-14 for details):

1. the conditiond mean and variance could be accurately gpproximated by using the partia
autocorrelations for the AFIMA(0,d,0) process,

2. f; could be gpproximated andyticdly, and concentrated likdihood is a function only of
fl,---,fp,d,j 1!"'1j q;

3. thesmplified likdihood function is maximized.

5. EMPIRICAL RESULTSOF LONG MEMORY TESTS

The cdasscd R/S andyss is adle to capture long memory and reved the average length of
nonperiodicd cycles But it is vulnerable to digortion from the existence of short memory and
heteroscedadticity, and not subject to statistica inference. The modified R/S method is robust to the
possible digtortion from short memory and heteroscedadticity, and provides awell-defined Satigtica test
for the exigence of long memory. However, it is not adle to tell the average length of nonperiodical
cydes, and it presents only long memory. While the AFHIMA moded is gill not able to indicate the
average length of nonperiodica cycles, it parametricaly models short and long memory smultaneoudy.

Therefore, the results of three long memory modes complement each other.

51 THE CLASSICAL AND M ODIFIED R/S ANALYSIS

In this study, when equation (4.1) is estimated for daly, weekly, and monthly price differences,
suppose w is a series of naturd integers, such as 1,2,3, and T istota observations. For monthly prices,

nserieswasset as 3, 6,..., w3£ integer of T/2; for weekly series, nisthe seriesof 4,8,...,WwA£ integer
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of T/2; and for daily series, n isthe series of 5, 10, ..., wo£ integer of T/2. 3, 4, and 5 are chosen for
the factors of constructing subsamples because 3 months form a quarter, 4 weeks amonth, and 5 days
aworking week, which are convenient assumptions. Experiments showed that the estimates of the H

exponent are not sengtive to the factors differing from 3, 4, and 5.

While (4.1) was applied to estimate H exponents, the average length of nonperiodic cycleswas
identified, labeled as L in Table 12. At the same time, the estimation of L was supplemented by V

datistics as suggested by equation (4.4). Theresultsarein Table 12.

Table 12. The Hurst Exponent (H) and Average L engths of Non-periodic Cycles I dentified by
Model (4.1) (L) and by V statistics (V)

Markets Daily Weekly Monthly
H L \Y H L \Y H L V
Corn 0.62 265 215 0.68 52 4 0.73 11 11
Soybeans 0.59 235 260 0.62 60 0.66 10 9
Wheat 0.58 235 255 0.65 56 56 0.68 13 12
Hogs 0.61 265 235 0.67 48 0.70 13 13
Coffee 0.62 100 125 0.65 28 28 0.68 8 7
Sugar 0.60 250 210 0.66 52 44 0.78 12 13

All H estimates are above 0.5, which indicates the existience of long memory in the series snce
H=0.5 implies an independent process. From daily to weekly and to monthly time frequencies, the
estimated H increases for each of commodities, especidly in the case of sugar. As time frequencies
increase, the series become more noisy, which will reduce H. Roughly, for daily series, estimates are

around 0.60, for weekly around 0.65, for monthly around 0.70.

Among the six commodities, corn seems to have the highest H estimates except in the case of
monthly frequency where it is the second largest after sugar. The variation among the Sx commoditiesin

H estimates increases as the time frequency decreases. The ranges between the maximum and minimum
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are 0.04, 0.06, and 0.10 for daily, weekly and monthly series, respectively. This implies that as noise

decreases, the different commodity markets begin to demonstrate their own characteristics.

The average length of nonperiodic cycleswas investigated by the process of H estimations and
V gatigtics, as reported by the columns with headings L and V in Table 12, respectively. It is noticeable

that the average length of nonperiodic cyclesindicated by L and V datigtics are roughly the same.

Except coffee, the other five markets have roughly 1 year astheir average length of nonperiodic
cycles. It isabout hdf year for coffee. This time length stands for dl three time frequencies. Though

certain differences in time length exists among three time frequencies, the differences are not subgtantial.

The above results from the classcd R/S analyss remain to be cdlaified further snce the classca
R/S andlysis is sendtive to the heterogeneties, which have been found in dl eighteen series. Also, the

digribution of H exponentsis not well defined and no statistical inference could be pursued.

Lo's (1991) modifications to the classcd R/S andyss attack these shortcomings, which
includes the weighted sum of autocovariance into the denominator of R/Sratio. Lo (1991) andyticdly
proved that the modification provides robustness to short memory. Further, Cheung and La (1993)
showed by Monte Carlo smulations that the modified R/S analyss is robust to ARCH effects and the

shiftsin variances.

Table 13 reports the estimates of Z(n) datistics ad the order of autocovariance, g, that has

been identified by Andrew’s (1991) rule, i.e., equation (4.7).
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Table13. Z(n) of Lo'sModified R/S Analysisand L ag of Autocovariances Included (q)

Commaodity Dally Weekly Monthly
Z(n) q Z(n) q Z(n) q

Corn 1.109 4 1032 2 0.907 0
Soybeans 0.919 4 0.861 0 0.719 1
Wheat 1.398 0 1.386 0 1.166 2
Hogs 1.365 0 1.266 4 1.202 0
Coffee 1565 4 1509 1 1351 1
Sugar 1.994** 4 1.790** 4 1.324 5

Thenull hypothessis, Y; carriesno long memory. The dterndiveis, Y; carries long memory.
Critical values (Lo 1991, p. 1288): 10%: 1.620, 5%: 1.747
** Sgnificant a 5% leve.

In generd, the results are opposite of Table 12 where the evidence of long memory was found.
All Z(n) edtimates except two (daily and weekly sugar series) are below the critical vaue of 10%
sgnificance. For those series, the existence of long memory is not confirmed though suggested by the

cdasscd R/ISandyss.

The specid feature of the Z(n) atidticisitsincluson of the weighted sum of autocovariances of
the data, which is to correct the biasness caused by the existence of short memory as wel as
heteroscedadticity. The vaues of g tell roughly to what extent this correction effort is needed. The

question could be asked whether the results reported by Table 13 are sendtive to different g's.

The various vaues of g, differing from those identified by Andrew’s (1991) rule and reported in
Table 13, were assumed and Z(n) dtatistics were re-estimated to examine the stability of the results. It
was found that changing q influence the estimates of Z(n), but not substantidly. For example, when q is
equa to 3 or 5 the Z(n) for dally sugar is 2.055 or 1.943, when q is equd to 4 or 5, the Z(n) for
monthly sugar is 1.345 or 1.357, and when g isequd to 1 or 2, the Z(n) for daily hogsis 1.345 or

1.357. Thisindicatesthat the resultsin Table 13 are robugt to the variation of g.
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The Z(n) estimates are quite Smilar for a given commodity among three time frequencies except
sugar. The Z(n) estimates for dally seriestend to be highest while for monthly tend to be the lowest, but
the differences are not very big. The Z(n) estimates for corn, soybeans, wheat and hogs are smilar in
terms of magnitude, but the estimates for coffee, though not sgnificant, are more close to those for

sugar.

Sugar daily and weekly series contain long memory structure, as suggested by Z(n) estimates,
but sugar monthly data do not™®. The sugar market is the only one here containing long-range memory.
Though the classcd R/S andyss tends to suggest that dl eighteen series are long memory processes,
the modified R/S analyd's confirmed only two of eighteen cases, i.e. dally and weekly sugar prices. The
remaning Sxteen series, after taking account of short memory and heterogeneities and subjected to
datigticd inferences, are not long memory processes. This concluson can be verified further by the

AFIMA modd, which follows.

5.2 THEAFIMA M ODEL

For the AFIMA (p,d,q) mode!:
F(B)(1- B)'Y, =Y (B)g,
where 0<d<1 and typicdly 0<d<0.5, F(B) and Y (B) are the polynomials of the order p and q,

respectively. The specification of p and q will affect the maximum likelihood estimates (MLE) of F (B)

and Y (B). By examining the structure of autocorrelations and partia autocorreations given earlier, it

19t will be discussed in the last section why long memory has been found in daily and weekly, but not monthly
series, of the same sugar market.
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was found for al eighteen series that short memory was very wesk, which suggests that both p and g
should be specified as 0. The estimation is then based on the specification of AFIMA(0,d,0).
Edtimates of d and standard deviations, as well as the vaues of likelihood of the specifications, are in

Table 14.

Table14. AFIMA Estimates of d

AFIMA Daly Weekly Monthly
d  |likdihood |[d  |likdihood [d  [likdihood
Comn |(0d0) |0029 -14286] 0051  -3864| 0.000 -1106
Soybeans|(0,0,00 | 0.036]  -20321] 0.005  -5167] 0.000 -1390
Wheat |(0,d,0) | 0000 -16874] 0.020]  -4342] 0.052 -1192
Hogs |(0d0) |o0004  -5629[ 0.084  -2012| 0.000 -681
Coffee  [(0d,0) | 0055 -13719] 0.030]  -3780| 0.070 -1064)
Sugar (04,00 |0050] -3738] 0.104]  -1664| 0.231 -566

In the AFIMA(0,d,0) specification, in dl but the sugar cases, estimates of d are very close to
zero. The magnitude of d estimates for weekly and monthly sugar series are noticeable compared with
the series of other markets, 0.104 and 0.231, respectively, but the result of the daily sugar seriesis not

different from daily series results of the other commodities, whered iscloseto 0.

When d=0, AFIMA(0,d,0) becomes

Y. =e,

i.e, the series is white noise. The AFIMA moded tells that except for the sugar market the other five

markets contain no long memory. This confirms the finding of the modified R/S andyds.

Lo (1991) conducted Monte Carlo smulations to evauate the size and power of the Z(n)
datidtic of the modified R/S andyss. Z(n) is sengtive to the sample sze. When the sample size gets

amdler, Z(n) has lower power to rgect a wrongly specified null hypothesis againg the long memory
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dternative. This is especidly true for a sample sze below 250. The monthly series in this sudy have
251 observations. Consdering the noise the data contains, it is anticipated that the modified R/S
andyss on monthly data might not identify long memory even if it actudly exigts, such as the case of
sugar. For the daly sugar series that have more than 5,000 observations, the modified R/S andysis

uncovered long memory.

As a parametric datistical modd, it is understandable that the AFIMA model might be more
sengtive to the noise in the data than to its sample Sze if the sample Sze has exceeded certain
thresholds. In Table 14 for sugar series, the value of d decreases as time frequency increases. That no
long memory was found in the daily seriesis very likely due to the fact that daily series have much more

noise than do weekly and monthly series.

Though the evidence of long memory produced by the classca R/S anadyssis not reliadle, the
average length of nonperiodica cydes identified by the dasscd R/S andysis is gill meaningful. Since
nonperiodicad cycles are not unique to long memory processes, they are aso observed in chaotic
sysems. Peters (1994) conducted many smulations on the robustness of the classcd R/S andysisin

uncovering the average length of nonperiodicd cycles, and the results are very positive.

It has been troublesome to conventiona unit root tests for a long time that a series contains a
root that is very close to a unit but not exactly a unit. Now the AFIMA modd is able to avoid this trap

by usng noninteger “d” to indicate the sationarity. A d that islarger than 0.5 implies nongtationary.



6. CONCLUSIONS

Many economic and financid theories suggest the existence of nonlinear dependence in financia
markets. Chartists accumulate nonlinear price patterns and advise traders for profit opportunities.
Smple datigica screening on financid series often finds long-lasting autocorrelations and time-
dependent variances, which are the symptoms of nonlinear dependence. The question is what type of

nonlinear relationshipsthey are, if they redly exig.

Price series that are twenty-one and hdf years long for sx agriculturd futures markets, corn,
soybeans, whest, hogs, coffee, and sugar, exhibit time-varying voldility, carry long-range dependence,
and portray excessive skewness and kurtoss, though they are covariance stationary™. This suggests
that the series contain nonlinear dynamics. ARCH and long memory are the two stochastic nonlinear
models that are able to produce these symptoms.  Though standard ARCH tests suggest that al series
might contain ARCH effects, further diagnostics show that the series are not ARCH processes, since it
has been found that the autocorrelaions of the variances of the data decay to zero very dowly as the
time span increases, and this is not a property of ARCH processes. In addition, dl series exhibit
obvious asymmetry that is out of the reach of regular ARCH processes. The martingae difference null

can not be rgjected by the ARCH modd.

Three long memory techniques, i.e, the dasscd R/S andyss, the modified R/S andys's, and
the AFIMA modd, are applied to test the martingde difference null againg the long memory dterndive.

The nonparametric method, the classcal R/S analys's, suggests there might be long memory structuresin
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the series. However, the other two more robust tests, the modified R/S andyss and the AFIMA

mode, confirm thisin the case of sugar, but rgect this proposition for the other five markets.

Why are sugar series long memory processes while the other five markets are not? A long
memory mode can only imply that there is long-range dependence in markets, today’ s price is affected,
or partidly affected, by the previous long price records. This long memory could ether be the

interactions of determinigtic forces in the market or the effects of speculation, or both.

In world markets, sugar trade differs from the trade of the other five commaodities in one maor
way. Sugar trade is participated in by more countries, which are divergfied in terms of geographical
locations and economic development levels, and is more competitive and less likely to be dominated by

one or afew superpowers?.

Live hogs are codtly for internationa trade. Futures prices of live hogs, compared with the other
five commodities, are much more dependent on US domestic supply and demand, and dso heavily
influenced by corn prices. For the time period 1974 to 1995, the US has been a dominating market
power in the international corn and soybean trade by having about 70% of the world exports (Lin et d.
1996, Ash et a. 1996). In the international wheat market the US is Hill the biggest exporter in the
world with about 30-40% of the world exports since 1970 (other big players are Canada, Argentina,

Augtrdia, and EU for exports, USSR and Chinafor imports). This share is much less than those in corn

20 A process with heteroscedasticity can be stationary with finite and constant mean and variance (Bera and Higgins
1995).

L This argument and related discussion benefited from conversations with Mr. Ron Lord, an economist of Economic
Research Service, United State Department of Agriculture. According to Mr. Lord, the US' s sharein the world
sugar market has been around 5-7%. The sugar futures market isinternational in nature, the US domestic sugar
policy has impacts on the market, but the impacts are not substantial in most time periods.
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and soybean trade, but is Sgnificant enough to lead price fluctuations in internationad markets (Hoffman

et dl. 1996).

The dominating force in the internationa coffee market is Brazil, which had about 40% world
exports in 1970's and about 25% in 1990's. (Other important exporters are Columbia, Indonesia and
Cote d'Ivoire. US and EU are the most important importers.) And more interesting and important, the
internationa coffee trade from 1962 to 1989 (which includes a mgjor portion of the series examined in
this study) was structured by the Internationd Coffee Organization (ICO). 1CO successfully controlled
the flow of coffee from exporting member countries and consequently stabilized and elevated the level of

prices (Farmer 1994).

International Sugar Agreements have never been a single success since the 1960's in terms of
imposing quotas to restrict supply and urging the release of stocks to increase supply. While sugar
imports are relatively equdly distributed among numerous countries, sugar exports are led by agroup of
countries (EU, Audrdia, Brazil, Cuba, Dominican Republic, Thailand, Philippines, etc.). The number of
countries in this group and the share of each country have changed over time (Abbott 1990, Lord
1996). In the late 1970's, and especidly since 1980, there has been an emergence of a sgnificant
degree of potentid world sugar production, which can swiftly be converted into actud production, and
the increasing proportion of world sugar consumption has been accounted for by developing countries.
Price eadticities of supply and demand in the sugar market seem larger than a least those for coffee

(Harris 1987).
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With the above market structures, for the time period as long as 21.5 years, the future prices of
corn, soybeans, wheet, hogs, and coffee are more likely to be subject to severd deterministic eements,
such as US agricultural and trade policies and regulations, supply and demand of US economy, as well
as ICO's regulations and the Brazilian coffee economy. In contrast, too many factors are acting within
the sugar markets, such that sugar futures prices are more likely to be stochastic in nature than the other

future prices.

The internationa sugar market has many more players and less dominating forces than the corn,
soybean, wheat, hog, and coffee markets. This appears to suggest that the prediction of the sugar
market might be more difficult than that of the other five markets. The present study has concluded that
the sugar market contains a long memory sructure, and the other five markets do not. A few
determinants in these five markets react to each other in such away that the produced price movements
are very voldile. In the end, the prices in these five markets are not very predictable. In the sugar
market, economic and poalitical factors affecting prices are many and each of them is not sgnificant
enough, hence price movements are more likely to be smooth and continuous, and thus esser to

predict.

A long memory modd does not attribute irregular behavior of price changes to the time
dependent variances. Rather, long-range dependence in the price seriesis responsible for the observed
nonlinear dynamics. In atypica long memory model, the observed time-varying volaility of the market
is the product of long-range dependence. Here, the time-dependent market risk isaresult, not a cause.
Investors should focus on the elements that determine long memory of the prices. For example, traders

with long invesment horizons are more likdy © wait for a trend in a given market before taking a
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decison. If the share of long-run investors increases in a given market, the price movements are more

likely to have perdastent patterns.

Long memory modds, especidly the modified R/S and AFIMA analyses, have not been widdly
used in agriculturd market sudies. This study has reviewed three mgor tools in long memory theory,
and discussed the weaknesses and strengths of each one. Among the three modds, the AFIMA model
is endowed with a flexible structure to capture short and long memory, regular and irregular behavior at

the sametime.
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