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AGRICULTURAL FUTURES PRICES AND LONG  

MEMORY PROCESSES 

Abstract 

Price series that are 21.5 years long for six agricultural futures markets, corn, soybeans, wheat, 

hogs, coffee, and sugar, exhibit time-varying volatility, carry long-range dependence, and portray 

excessive skewness and kurtosis, though they are covariance stationary.  This suggests that the series 

contain nonlinear dynamics.  ARCH and long memory are the two stochastic nonlinear models that are 

able to produce these symptoms.  Though standard ARCH tests suggest that all series might contain 

ARCH effects, further diagnostics show that the series cannot be ARCH processes.  The martingale 

difference null cannot be rejected by the ARCH model.  Three long memory techniques, the classical 

R/S analysis, the modified R/S analysis, and the AFIMA model, are applied to test the martingale 

difference null against the long memory alternative.  The nonparametric method, the classical R/S 

analysis, suggests there might be long memory structures in the series.  However, two other more robust 

tests, the modified R/S analysis and the AFIMA model, confirm the case of sugar, but reject this 

proposition for the other five markets. 
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1. DEFINITIONS AND OBJECTIVES 

Long memory models are relatively new to applied economists.  Though its origin can go back 

at least to Mandelbrot’s (1969) work, it was not until the 1980’s that researchers began to apply the 

rescaled range analysis, one of the tools in long memory theory, to financial markets and 

macroeconomic prices.  In 1991 Lo modified the classical R/S method.  Also, the autoregressive 

fractally integrated moving average (AFIMA) process began to be accepted.  In just recent years have 

most applications of the AFIMA model appeared.  So far, no AFIMA modeling of agricultural prices 

exists. 

Based on Beran (1994, pp. 41-66), a stationary process with long memory has the following 

qualitative features: 

• Certain persistence exists.  In some periods the observations tend to stay at high levels, in 
some other periods, the observations tend to stay at low levels. 

• During short time periods, there seem to be periodic cycles. However, looking through the 
whole process, no apparent periodic cycles could be identified. 

• Overall, the process looks stationary. 

Quantitatively, for a stationary process, these features could be described as: 

• When adding more observations, the variance of the sample mean, var(Y ), decays to zero 
at a slower rate than n-1 which is the rate at which a white noise decays, and is 
asymptotically equal to a constant g times n-a for some 0<a<1. 

• The correlation ρj decays to zero slowly and is asymptotically equal to a constant c times j-a 
for some 0<a<1. 

More rigorously, the following definition exists (Beran 1994, p. 42): 

“Let Yt be a stationary process for which the following holds.  There exists a real 
number a∈(0,1) and a constant c>0 such that 
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lim ( ) /
j

aj cj
→∞

− =ρ 1.     (1.1) 

Then Yt is called a stationary process with long memory or long-range dependence or 
strong dependence, or a stationary process with slowly decaying or long-range 
correlation.” 

Besides its heteroscedasticity long-range dependence, long memory processes have other 

certain unique properties.  Mandelbrot and Wallis (1969) and Mandelbrot (1972) showed a long-range 

dependence process could demonstrate itself as a highly non-Gaussian time series with large skewness 

and kurtosis, and carries nonperiodic cycles.  A long memory process could allow conditional 

heteroscedasticity (Fung et al. 1994), which could be the explanation of nonperiodic cycles.  It seems a 

long memory model is more flexible than an ARCH model in terms of capturing irregular behavior. 

From the definition of a long memory process, a is the critical parameter to characterize the 

process, and also could be expressed by H (called Hurst exponent, which will be explained later) in the 

fashion: a=2-2H (Beran 1994, p. 42).  In the literature, there are three main methods existing to 

estimate a or H: the classical rescaled range (R/S) analysis, the modified R/S analysis, and the AFIMA 

model.  The first two methods are mostly concerned with whether long-range dependence exists in the 

process being examined.  An AFIMA model is the extension of an ARIMA model, and is able to 

measure the strength of long-range dependence. 

These three methods could complement each other and allow a comparison of the robustness of 

the results.  And furthermore, one method reveals unique information the others are not able to.  

Therefore, all three techniques are applied to analyze the data in this study. 

Like many financial time series, agricultural futures prices exhibit irregular behavior.  When 

conventional linear models tend to conclude that these types of price series are, or nearly are, random 
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walks, many economic and financial theories suggest that irregular behavior might be due to nonlinear 

dependence in the markets.  

For example, Tomek (1994) argued that most agricultural production has obvious seasonality, 

but consumption continues throughout the year and stocks are always nonnegative.  Thus, there exists a 

nonlinear relationship between prices and inventories.   Herner (1983) proposed a competence-

difficulty gap theory.  The gap between an economic agent’s competence to make an optimizing 

decision and the difficulty of the decision problem suggest the agent follow rule-governed behavior that 

can be smooth sometimes and erratic at other times.  Dynamically, the price movements contain 

nonperiodic regularities.  Peters (1994) proposed the fractal market hypothesis.  The large variations in 

agents’ investment horizons produce ample liquidity in trade, which maintains the stability of markets. 

Short-term investors are more sensitive to technical factors in the market, but long-term investors rely 

more on fundamental information.  When an event makes the fundamental information questionable, the 

investment horizons of various agents tend to unify in the short term, then the market becomes unstable 

and price volatile. 

However, the economic theories about nonlinear dependence suggest only plausible nonlinear 

specifications, and the structure of nonlinear dependence is not clear. It is not uncommon that 

agricultural futures prices, like many other financial series: (1) are distributed nonnormally with the fat 

tails (Taylor 1986, Yang and Brorsen 1993), (2) possess autocorrelations that decay to zero very 

slowly even for a very large time period (Taylor 1986), and (3) seem to have cycles but the cycles are 

not periodic.  As discussed above, a long memory process demonstrates good power to capture these 

symptoms. 
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Among many empirical studies of long memory, Booth et al. (1982) and Helms et al. (1984) 

accepted the hypothesis that the long memory process is the explanation of irregular cyclical patterns of 

certain financial series.  On the other hand, Lo (1991) and Cheung and Lai (1993) identified little 

evidence of long memory in certain stock prices and gold market returns.  Granger and Joyeux (1980) 

and Hosking (1981) developed an autoregressive fractally integrated (AFIMA) model and provided a 

parametric tool for long memory analysis.  Fang et al. (1994) applied this method to analyze four 

currency futures and concluded that “statistically significant evidence of fractal structure is found in three 

out of four currency futures return series considered” (p. 179).  However, Fung et al. (1994) observed 

no consistent pattern of long memory in S&P 500 index futures prices by the same method. 

This study will conduct long memory tests on eighteen futures price series of six agricultural 

commodities, corn, soybeans, wheat, hogs, coffee, and sugar, traded at the Chicago and New York 

markets from January 1974 through June 1995.  Each commodity has three series at daily, weekly, and 

monthly frequencies. 

The primary objective of this study is to investigate if the price behavior in these agricultural 

futures markets can be characterised by long memory models.  It is not hard to find evidence to argue 

that the price series with random appearance might be nonlinear dynamic.  But, the difficulty is to tell 

what kind of nonlinear dynamics.  Another commonly used stochastic model, the autoregressive 

conditional heteroscedasticity process (ARCH model) and its variants1, shares similar symptoms with 

                                                 
1 From now on, unless illustrated specifically, “an ARCH model” usually refers to the autoregressive conditional 

heteroscedasticity process and its variants.  “ARCH” will be used in a broad sense. 
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long memory models, such as nonnormality and heteroscedasticity, but they have totally different 

generating mechanisms and implications2. 

A time series with the ARCH property typically has two components, a conditional mean and a 

conditional variance function.  The nonlinearity of the series comes from the nonlinearity of conditional 

variances.  An ARCH model that fits the data well could improve the prediction of the variances of 

prices but not the price itself (Bera and Higgins 1995)3.  A long memory model approaches nonlinearity 

by noninteger differencing.  A long memory model is a single mean equation (system) and has a flexible 

structure.  It represents short and long memory simultaneously.  This study will conduct ARCH tests 

before pursuing long memory analyses. 

Utilizing a long time price series, such as 21.5 years, is an important attribute of the present 

study.  Financial markets, especially those underlying agricultural markets, are very vulnerable and 

sensitive to exogenous shocks, such as weather changes.  Therefore, there exists a tendency that many 

unexplained price spikes are attributed to exogenous shocks and are kept out of modeling practices.  

ARCH and long memory models have proven that certain stochastic behavior previously considered 

random shocks can be generated by well-defined processes.  If the data represent a long time period, 

such generating processes have more chances to repeat themselves in one way or another, there are 

more chances for modeling practices to succeed4. 

                                                 
2 A chaotic process, a deterministic structure, also captures these symptoms.  A separate study, Wei and Leuthold 

(1998), was dedicated to chaos tests. 

3 A process could be a pure ARCH process with the conditional mean represented by a white noise. 

4 The trade-off of using long price series is that there might be structural changes during the period of study.  It has 
always been an empirical question whether a particular change can be considered a structural change and 
whether such a change has a significant impact on a particular generating mechanism.  In this study, except the 
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This paper is organized as follows.  The next section reviews the literature of long memory 

modeling.  The third section presents the data and discusses its distribution, stationarity, and structure of 

autocorrelations, and then conducts ARCH tests.  The fourth section investigates long memory theory.  

The fifth section applies long memory theory to analyze the series under study. The last section 

summarizes and concludes the study by discussing the significance and implications of the present 

research. 

2. LITERATURE REVIEW 

Admitting that no formal financial theory explains long memory, Helms et al. (1984) applied 

rescaled range (R/S) analysis to detect the existence of long memory in the futures prices of the soybean 

complex (soybeans, soybean oil, and soybean meal).  With the Hurst exponent in the range of 0.5 to 1 

indicating long memory, these authors found the Hurst exponents ranges from 0.558 to 0.711 for daily 

prices of two futures contracts of the soybean complex in 1976, and from 0.581 to 0.627 for intraday 

prices of five soybean contracts in 1977-78.  Milonas et al. (1985) endorsed Helms et al.’s (1984) 

efforts in using the new method to model nonperiodic cycles in financial series, but pointed out that 

Helms et al. (1984) did not check the stationarity of the data, which reduced the credibility of the 

findings of Hurst exponents. 

Fung and Lo’s (1993) long memory study analyzed the prices of two interest rate futures 

markets, Eurodollars and Treasury bills.  The results from the classical R/S analysis and Lo’s (1991) 

modified R/S analysis provide no evidence of the existence of long memory and support for the weak 

                                                                                                                                                             
sugar market, it is not clear that the other five markets have experienced significant structural changes that are 
able to alter the nonlinear generating processes of concern.  This issue is subject to further research. 
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form efficient market hypothesis5.  Why did Helms et al. (1984) find long memory in the commodity 

futures markets?  Fung and Lo (1993) argued, relative to interest rate futures markets, commodity 

futures markets have low liquidity and less active trade, which may lead to long memory. 

Turning their attention to the prices of intraday stock index futures, Fung et al. (1994) examined 

long memory by using variance ratios6, R/S, and autoregressive fractally integrated moving average 

(AFIMA) models7.  All three types of analyses concluded that no long term memory exists in the data.  

Interestingly, the authors tested the impact of liquidity on the existence of long memory and found no 

evidence for it.  Differing from their 1993 study, this time Fung et al. (1994) suspected the long memory 

found by Helms et al. (1984) in commodity futures prices comes from the seasonality of agricultural 

prices.  

The AFIMA model searches for a non-integer parameter, d, to difference the data to capture 

long memory.  The existence of non-zero d is an indication of long memory and its departure from zero 

measures the strength of long memory.  Long memory is also called fractal structure because of non-

integer d.  Fang et al. (1994) investigated four daily currency futures price series, each series lasting 

from January 1982 through December 1991 with 2,527 observations.  The estimates of d for three out 

of four series are significantly different from zero and fractal dynamics is concluded.  It is worthy noting 

                                                 
5 The modification will be discussed in next section. 

6 The variance ratio test investigates the ratio of the variance of q-differences of the series to the variance of its first 
differences.  The test statistic could distinguish dependence from random walks and is robust to 
heteroscedasticity, but cannot tell short memory from long memory. 

7 The AFIMA model will be discussed in next section. 
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the authors admitted “little is known about the possible effects of chaotic dynamics on the statistical 

procedure” (p. 179). 

Similar studies have been pursued on stock markets (Lo 1991, Chow et al. 1995), inflation rate 

(Scacciavillani 1994, Hassler and Wolters 1995), gold prices (Cheung and Lai 1993), foreign exchange 

rate (Booth et al. 1982), and spot and forward metals prices (Fraser and MacDonald 1992).  The 

results are mixed, but all authors agreed that identification of long memory is very significant in at least 

two senses: (1) the time span and strength of long memory will be an important input for investment 

decisions regarding investment horizons and composition of portfolios; and (2) prediction of price 

movements will be improved.  It is also noticeable that research methodologies have developed very 

fast.  In the 1980’s, the classical R/S analysis was the major tool.  Entering the 1990’s, the methods are 

being diversified with the modified R/S analysis and the AFIMA model as new techniques.  

The long memory study on agricultural futures markets is at the beginning.  The empirical work 

of Helms et al. (1984) is the only one known to us, which analyzed the short series (about 230 

observations) of one commodity (the soybean complex) using only the classical R/S techniques.  The 

present study will take advantage of the new developments in statistical methods to analyze much longer 

time series for six agricultural commodities at three time frequencies. 

3. DATA AND DATA CHARACTERISTICS 

The procedures for collecting and transforming data affect any serious statistical modeling.  

Also, before initiating sophisticated statistical analysis, it is important to analyze the basic properties of 

the data with simple methods.  Therefore, this section first presents the data used in the study, and then 
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discusses normality, stationarity, and the structure of autocorrelations and partial autocorrelations of the 

data.  The importance of normality and stationarity is shared by many empirical studies, while the 

structure of autocorrelations has special significance in nonlinear dynamics modeling. 

3.1 DATA SOURCES AND TRANSFORMATION 

The futures prices of corn, soybeans, wheat, hogs, sugar, and coffee are selected.  Choosing 

these six commodities covers different aspects of agricultural markets.  Hogs, a livestock commodity, 

are nonstorable, while the other five are storable.  Coffee has long production/adjustment periods, the 

other five have short ones.  To the U.S. market, coffee and sugar are mainly import goods while the 

other four commodities are domestically produced and exports are important.  Government policies and 

regulations have varying effects on these six commodity markets. 

Nearby contracts are used to construct long time series8.  Table 1 reports the contracts used for 

each commodity, as well as the markets where the prices were recorded.  The prices are supplied by 

the Office for Futures and Options Research, University of Illinois at Urbana-Champaign. 

                                                 
8 Geiss (1995) discussed the biasness the various methods of constructing long future prices can create.  In the 

present study, the same empirical analysis of ARCH, long memory, and chaos have been applied to the three 
major transformations: differences, log differences, and the rate of returns.  (See Wei and Leuthold (1998) for the 
chaos study.)  In general, the results remained unchanged with respect to the three transformations.  It seems 
that the nonlinear models discussed in this study are not very sensitive to these specific data transformation 
procedures.  This nonsensitivity remains to be confirmed in a future study by adopting Geiss’s method. 
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Table 1. Sources of the Data 

Commodity Market1 Contracts Used 
Daily 
Observations 

Weekly 
Observation
s 

Monthly 
Observations 

Corn CBOT March, May, July, September, 
December 

5422 1122 258 

Wheat CBOT March, May, July, September, 
December 

5422 1122 258 

Soybeans CBOT January, March, May, July, August, 
September, November  

5422 1122 258 

Hogs CME February, April,  May, July, August, 
October,  December 

5428 1122 258 

Coffee CSCE March, May, July, September, 
December 

5383 1122 258 

Sugar CSCE March, May, July, September, October 
5383 1122 258 

1: CBOT: Chicago Board of Trade, CME, Chicago Mercantile Exchange, CSCE: Coffee, Sugar and Cocoa Exchange 
(New York). 

The time period covers from January 1, 1974 through June 31, 1995. The beginning point of the 

data was set so as to avoid the collapse of Bretton Wood System in early 1970’s.  For each 

commodity, daily, weekly, and monthly prices are all investigated.  The monthly data are the prices of 

the last day of every month, the weekly data are the Friday prices of every week, and the daily prices 

are closing prices of every trading day.  While it is well known that a market becomes more noisy as the 

time frequency gets higher, the price series of three time frequencies for a given commodity essentially 

reflect the same market.  Since chaos, long memory and ARCH models are newly-growing fields of 

investigation, there are some aspects of these processes which remain unclear, applying a method to the 

same market but at different time frequencies will help derive robust conclusions. 
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Utilizing daily prices often runs encounters one problem, the limits for daily price changes, based 

on the closing market price of the previous day9.  Therefore, the series are truncated and that might 

distort nonlinear modeling.  However, the analysis on the daily series is still necessary because of the 

following. (1) It seems that such a truncation has no significant impacts on the nonlinear dynamics of 

concern.  Wei (1997) and Yang and Brorsen (1992, 1993)10, have conducted nonlinear modeling 

procedures on both cash and futures prices of corn, soybeans and wheat with results are not 

significantly different between cash and futures prices11.  (2) The daily prices of sugar and coffee used 

for this study contain few daily limits, or are essentially untruncated, and later comparisons between 

these two markets and the other four will show little or no affect on the results due to truncation.  (3) 

Weekly and monthly series are analyzed for each market as well, and they provide the results of 

untruncated series for each market.  (4) Truncation is a fact of these markets and truncated markets 

need to be researched.  The results of daily series will be interpreted as those from truncated markets.  

(5) All other known nonlinear modeling of daily future prices did not transform the data to avoid the 

effects of daily limits.  The present study follows the same practice so comparisons can be made 

between the results of this study and those of other studies. 

Heteroscedasticity is expected when examining a lifetime price series of a single contract since 

the variance of prices typically increases as a contract gets closer to maturity.  However, if a price series 

                                                 
9  The daily price limits are 10 cents for corn, 30 cents for soybeans, 20 cents for wheat, and 150 cents for hogs 

(Leuthold et al. 1989, p. 35), 6 cents for coffee, and 0.5 cents for sugar (institutional database of Futures 
Industry Institute).  The daily limits for coffee and sugar started in 1980 and do not apply to the nearest two 
months of a particular contract. 

10 Yang and Brorsen (1992, 1993) analyzed by GARCH and chaos models the daily prices of corn, soybeans, and 
wheat, among other commodities, for both cash and futures markets for the period of 1979-1988.  

11 Cash prices are not subject to the same daily price limits. 
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is constructed by various nearby contracts and each contract contributes only the section of prices when 

it is heavily traded, over a long time period, such as 21.5 years in this study, the “maturity effect” as 

such might be avoided.  Nevertheless, the question of whether the variances of the data are time 

dependent remains for further investigation.  Also, since the constructed series used here excludes the 

time when a contract is thinly traded, the series contains more market information.  

The price series of nearby contracts has one problem, the price “jumps” when changing 

contracts.  This study adopts a specific “roll-over” procedure to avoid the jumps.  When switching 

contracts, on the last day of the old contract, the difference between the old contract price and the new 

contract price is observed12.  Then, this difference is added or subtracted to all prices of the new 

contract.  Table 2 illustrates this procedure by assuming March and May contracts switch at the end of 

February and beginning of March. 

Table 2. Illustration of Rollover Procedures 

 Feb. 26 Feb. 27 Feb. 28 March 1 March 2 March 3 

March contract price 250 265 270    

May contract price   320 321 310 335 

Adjusted series 250 265 270 271 260 285 

For a 21.5-year series, many adjustments of this type take place and in some cases prices 

become negative.  Overall, the series of price levels is not meaningful.  However, price changes are 

accurate and without jumps, and are suitable for analysis.  For example, the prices on three consecutive 

dates are 32, 30, and 36, respectively.  Here, the two price changes are -2 and 6.  If 40 were 

subtracted from the three price records because of contract switching, they become -8,

                                                 
12 Contracts are rolled forward on the last trading day of the month preceding delivery month. 
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-10, and -4.  But the two price changes are still -2 and 6.  Hence, when analyzing price changes, 

negative prices in levels have no impact on the analysis. 

3.2 NORMALITY 

After the contract rollover adjustments just described, the price changes of all six commodities, 

each of them with three frequencies of daily, weekly, and monthly, are produced.  The term “the series” 

from now on always refers to the series of price changes. 

Table 3 reports descriptive statistics for all eighteen series under consideration.  All means are 

not statistically different from zero, if the standard deviation could be used to produce t-ratios13.  

However, such a standard t test could not be conducted because the unconditional distributions of all 

series except hogs are nonnormal--skewed and leptokurtic as discussed below. 

The coefficients of skewness g1 and excess kurtosis g2 quantify the deviation from a normal 

distribution and are defined by Smillie (1966).  g1 and g2  are standard normal distributions with the 

mean of zero.  Jarque and Bera (1980) developed an O statistic with a χ2 distribution to summarize the 

deviation from a normal distribution. 

Except for the hog series, the remaining fifteen series are far from the normal distributions.  The 

coefficients of skewness and kurtosis are strongly statistically significant and indicate that the 

                                                 
13 The series studied here are price changes, not the rate of returns.  The fact that the means of the series of price 

changes are equal to zero only implies that the price level has not changed over the period under study.  No 
reference could be derived to say whether the expected return from futures trading is zero. 
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distributions of the price change series are skewed and have fat tails14.  Jarque and Bera’s (1980) χ2 

statistics, which summarize the deviation of the third and fourth moments from the parameters of a 

normal distribution, are strongly significant as a result.  The significant deviation from normality can be a 

symptom of nonlinear dynamics (Fang et al. 1994).  

Across the time frequencies, daily data depart further from a normal distribution than weekly 

and monthly data.  Across the commodities, the deviation of coffee and sugar from a normal distribution 

are more severe than that of corn, wheat, and soybeans.  Hog data are close to normal distributions at 

all three time frequencies.  Hogs are the only nonstorable commodity here.  As discussed by Leuthold et 

al. (1989, pp. 45-60), markets of nonstorables have no storage costs to hold or link the prices of spot 

and futures together, and to hold or link prices of different futures together, which differs from the 

markets of storables.  The movements of prices of nonstorables are expected to demonstrate more 

independence than those of storables. 

3.3 STATIONARITY 

Besides normality, another important property of the data is stationarity.  As common practice, 

covariance stationarity or weak stationarity is of concern here.  The conventional augmented Dickey-

Fuller test (τ statistic) is used first.  The weakness of the augmented Dickey-Fuller test is that error 

terms of the test model are assumed a white noise process (Phillips and Perron 1988).  It has been 

observed that the price change series under study very likely contain heteroscedasticity.  Phillips and 

                                                 
14 This result differs from that of Taylor (1986).  In his study, Taylor found that the rate of return of 13 daily 

agricultural futures prices (corn, cocoa, coffee, sugar and wool) are approximately symmetric, though they have 
high kurtosis.  
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Perron (1988) proposed a semi-parametric test (Z statistic) that allows for a wide range of serial 

correlation and heteroscedasticity. The Phillips- 

 

 

Table 3. Descriptive Statistics of Price Changes 

 Mean1 St. Dev2 g1 
(t-ratio) 

g2 
(t-ratio) 

O 

Monthly      
Corn -1.58 17.95 1.31 

(8.73) 
8.22 

(27.43) 
765.9 

Soybeans -3.80 54.22 0.66 
(4.13) 

7.46 
(24.86) 

587.7 

Wheat -2.14 25.16 -0.52 
(-3.46) 

3.08 
(10.27) 

107.8 

Hogs 0.24 3.43 -0.22 
(-1.47) 

0.50 
(1.66) 

4.49 

Coffee 0.94 15.30 1.11 
(7.33) 

4.29 
(14.3) 

239.6 

Sugar -0.13 2.25 0.68 
(4.53) 

10.18 
(33.9) 

1081 

Weekly      
Corn -0.317 7.62 0.14 

(2.00) 
4.89 

(33.49) 
1108.9 

Soybeans -0.798 24.31 -0.32 
(-4.45) 

5.08 
(34.79) 

1215.3 

Wheat -0.437 11.65 0.143 
(1.96) 

4.28 
(29.31) 

837.3 

Hogs 0.062 1.46 -0.045 
(-0.62) 

0.38 
(2.53) 

6.96 

Coffee 0.21 7.06 1.13 
(17.94) 

13.82 
(94.56) 

9079 

Sugar -0.02 1.08 -0.52 
(-7.43) 

14.38 
(98.22) 

9620 

Daily      
Corn -0.070 3.378 -0.072 

(-2.18) 
3.30 

(50.06) 
2464.3 

Soybeans -0.171 10.28 -0.171 
(-5.27) 

2.89 
(43.82) 

1910.1 

Wheat -0.100 5.44 -0.002 
(-0.06) 

2.92 
(44.24) 

1920.6 

Hogs 0.011 0.68 -0.044 
(-1.33) 

-0.133 
(-2.21) 

5.83 

Coffee -0.046 3.10 1.098 21.022 99984 
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(33.27) (318.5) 
Sugar -0.005 0.49 -0.415 

(-12.57) 
11.207 
(169.8) 

28262 

Critical Value 5% sig.   1.96 1.96 3.84 
1: The units for corn, soybeans, and wheat are cents per bushel, for hogs, coffee and sugar are cents per pound. 
2: St. Dev: Standard deviation. 

 

 

Perron Z test has the same asymptotic distribution as does the Dickey-Fuller τ test, and both share the 

same critical values.  

In both cases, augmented Dickey-Fuller and Phillips-Perron tests, the length of lag of the series 

needs to be determined to ensure the serial correlation of the process can be removed. Diebold and 

Nerlove (1990) found that the integer part of T0.25 works well in determining the length of lag in 

practice15.  Since there are 5,383 to 5,427, 1,121, and 257 observations available for daily, weekly, 

and monthly data, respectively, p and l will be 8, 5, and 4 for daily, weekly, and monthly series16. 

Table 4. Augmented Dickey-Fuller (ττ ) and Phillips-Perron (Z) Tests* 

 Corn Soybeans Wheat Hogs Coffee Sugar 
 τ Z τ Z τ Z τ Z τ Z τ Z 
Monthly -7.58 -16.3 -8.38 -16.7 -6.56 -13.9 -7.94 -16.2 -6.98 -14.9 -7.12 -11.3 
Weekly  -13.3 -31.9 -13.3 -33.5 -12.4 -33.9 -13.5 -30.2 -13.6 -34.2 -11.8 -30.3 
Daily -23.4 -69.8 -23.7 -69.8 -23.4 -73.7 -22.1 -73.5 -21.6 -69.5 -23.9 -69.4 

The critical value at 5% significance is 2.86. 
* τ and Z are t-type calculated statistics (see Wei 1997). 

                                                 
15 Actually AIC’s and SC’s are very flat when varying p and l in the experimental estimation. 

16 The experimental estimations had been conducted, where  p and l were specified from 3 to 12, but the results 
reported in Table 4 remained unchanged, i.e., the null hypotheses of the existence of unit roots could be 
rejected at 5% significance level. 
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The results from Table 4 indicate all the series are stationary and do not contain unit roots.  

Phillips-Perron Z statistics, which relaxes the assumption that error terms have to be white noise, are 

usually more than twice as large as the Dickey-Fuller τ statistics. 

The magnitudes and τ‘s and Z’s are similar for all commodities for a given time frequency. The 

hog series, which looks more stationary than others, do not carry larger calculated statistics than others.  

For a given commodity, high time frequency series are more “stationary” than low time frequency series. 

3.4 STRUCTURE OF AUTOCORRELATIONS 

For a linear time series model, typically an autoregressive integrated moving average 

(ARIMA(p,d,q)) process, the patterns of autocorrelations and partial autocorrelations could indicate the 

plausible structure of the model.  At the same time, this kind of information is also very important for 

modeling nonlinear dynamics.  In Taylor’s (1986) study, the long lasting autocorrelations of the data 

suggest that the processes are nonlinear with time-varying variances.  The basic property of a long 

memory process is that the dependence between the two distant observations is still visible. 

For six series of daily price changes, 200 autocorrelations and partial autocorrelations were 

estimated, i.e., j=1,...,200.  For 6 series of weekly price changes, 100 autocorrelations and partial 

autocorrelations were estimated, i.e., j=1,...,100.  For 6 series of monthly price changes, 48 

autocorrelations and partial autocorrelations were estimated, i.e., j=1,..., 48. 

Four features of the structures of autocorrelations and partial autocorrelations emerge for all 

eighteen series.  First, the magnitude of autocorrelations and partial autocorrelations is very small.  In 

terms of absolute values, the largest autocorrelations and partial autocorrelations are about 0.06 for 
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daily series, 0.10 for weekly series, and 0.20 for monthly series.  For conventional linear models, this 

means the dependence among the elements is weak. 

Second, the first autocorrelations and partial autocorrelations for all eighteen series are not 

significantly larger than the remaining coefficients, and in most cases, they are not even the largest.  The 

first several, usually the second, autocorrelations and partial autocorrelations slightly exceed the 

significant boundary defined as 1/T0.5.  There are some coefficients at much later time lags that exceed 

the significant boundary to the same extent.  This indicates the dependence between nearby 

observations is not necessarily stronger than that between distant observations, or the most recent 

market information is not necessarily more useful than the information from a while ago. 

Third, there is no evidence that the magnitude of autocorrelations and partial autocorrelations 

become small as the time lag, j, becomes large.  200 days, 100 weeks, and 48 months are significant 

time lags for daily, weekly and monthly series, respectively.  Even so, the magnitude of autocorrelations 

and partial autocorrelations at the end of the above time lag sequences are almost as large as those at 

the beginning.  Roughly it can be argued that the importance of market information does not decay as 

the time the information was collected spans. 

Fourth, there are no clear patterns describing the fluctuation of autocorrelations and partial 

autocorrelations.  No seasonal and other periodic cycles were observed. 

To demonstrate the above features, Tables 5 through 7 report the 10 largest (in terms of 

absolute values for negative estimates) autocorrelations of each series and their time lags.  The tables 

demonstrate the irregular patterns of autocorrelations of the data as discussed above, i.e., their 

magnitudes are small and relatively independent of the length of time spans, they do not decay 
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exponentially over time span, and they show no clear periodic patterns.  The partial autocorrelations 

have the same characteristics as just described, and the results are not shown.  
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Table 5. The Largest 10 Autocorrelations of Daily Series 

Lag Corn Lag Soybeans Lag Wheat Lag Hogs Lag Coffee Lag Sugar 

Largest 5    145 -0.050 147 -0.045 2 -0.051 2 -0.053 29 -0.051 143 -0.078
negative 2 -0.044 89 -0.043 52 -0.039 129 -0.040 55 -0.049 68 -0.070
values1 128 -0.036 116 -0.042 143 -0.038 68 -0.032 104 -0.044 17 -0.068
 60 -0.035 63 -0.042 60 -0.035 167 -0.030 37 -0.041 37 -0.063
 39 -0.033 60 -0.038 120 -0.032 92 -0.030 62 -0.038 88 -0.056

Largest 5    155 0.035 141 0.031 187 0.033 43 0.038 8 0.052 12 0.050
positive 61 0.035 61 0.032 180 0.034 38 0.041 26 0.052 24 0.052
values 12 0.036 18 0.036 29 0.035 14 0.042 1 0.054 61 0.056
 1 0.053 43 0.038 62 0.036 191 0.049 44 0.054 1 0.059
 7 0.063 1 0.054 84 0.048 4 0.051 9 0.074 8 0.061

1: In terms of absolute values. 
 

Table 6. The Largest 10 Autocorrelations of Weekly Series 

Lag Corn Lag Soybeans Lag Wheat Lag Hogs Lag Coffee Lag Sugar 

Largest 5    30 -0.072 15 -0.076 14 -0.080 63 -0.078 13 -0.076 31 -0.120
negative 49 -0.061 68 -0.070 30 -0.080 66 -0.074 51 -0.063 9 -0.112
values1 67 -0.059 30 -0.067 35 -0.075 68 -0.074 4 -0.060 46 -0.108
 79 -0.052 18 -0.066 67 -0.073 14 -0.070 20 -0.052 43 -0.106
 31 -0.050 14 -0.063 62 -0.072 54 -0.069 68 -0.051 30 -0.080

Largest 5    82 0.048 89 0.045 38 0.069 11 0.074 44 0.055 15 0.090
positive 1 0.053 42 0.046 42 0.073 41 0.078 9 0.074 37 0.091
values 32 0.053 32 0.049 55 0.073 48 0.083 7 0.085 39 0.102

46 0.057 9 0.059 2 0.089 1 0.104 59 0.093 1 0.109
3 0.089 3 0.081 5 0.091 50 0.109 2 0.161 2 0.111

1: In terms of absolute values. 
 

Table 7. The Largest 10 Autocorrelations of Monthly Series 

Lag Corn Lag Soybeans Lag Wheat Lag Hogs Lag Coffee Lag Sugar 

Largest 5    7 -0.118 3 -0.140 6 -0.124 15 -0.160 43 -0.146 6 -0.196
negative 16 -0.096 36 -0.133 39 -0.120 13 -0.153 15 -0.128 23 -0.107
values1 15 -0.078 7 -0.125 7 -0.118 25 -0.125 12 -0.108 7 -0.101
 35 -0.073 24 -0.107 34 -0.101 24 -0.122 26 -0.078 5 -0.089
 39 -0.072 35 -0.094 48 -0.084 16 -0.118 21 -0.075 10 -0.085

Largest 5   43 0.049 21 0.056 5 0.093 19 0.102 8 0.086 3 0.059
positive 44 0.060 43 0.058 1 0.111 9 0.120 20 0.101 36 0.064
values 2 0.069 2 0.063 20 0.129 41 0.120 9 0.102 20 0.075

29 0.085 32 0.072 9 0.133 11 0.136 2 0.125 4 0.127
31 0.101 29 0.121 10 0.209 21 0.179 28 0.152 1 0.330

1: In terms of absolute values. 
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3.5 SUMMARY OF BASIC DATA CHARACTERISTICS  

The data used in this study are 21.5 years of futures prices of six agricultural commodities (corn, 

soybeans, wheat, hogs, coffee, and sugar) at monthly, weekly, and daily frequencies.  For each 

commodity, various nearby contracts are used to construct a long series and a special rollover 

procedure is followed to remove jumps when switching contracts.  The series of price differences are 

the modeling targets of the study. 

All series for six commodity markets demonstrate uneven volatility over the whole sample 

period.  In some time periods the series vary more dramatically than in other periods.  This implies time-

dependent conditional variances.  Most series are found non-normally distributed with excessive 

skewness and kurtosis.  Even so, the unit root tests suggest unconditional mean and variance of the data 

are finite and constant.  The autocorrelation and partial autocorrelation analysis shows that the short-

term dependence is obviously weak, but the autocorrelations, though they are very small, are very 

persistent.  All of these symptoms potentially suggest nonlinear dynamics, as Taylor (1986) argued. 

The conclusion of stationarity in the above is subject to one risk, i.e., the series contain the roots 

that are, though not exactly units, close to units, and the unit root tests conducted here are not powerful 

enough to differentiate.  However, long memory analysis to be conducted disproves this possibility. 

3.6   ARCH TESTS 

ARCH theory admits nonnormality of the unconditional distribution of the data.  With the 

assumption of normality of the conditional distribution, an ARCH-type structure could be built to 

capture the time-dependent variances.  Using such a variance function as an input, the maximum 
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likelihood estimates of mean become consistent and efficient.  Financial series are typically found non-

normally distributed with the time-varying volatility.  Therefore, ARCH models have become very 

popular in financial time series modeling.   

Volatility clustering and nonnormality were uncovered from the data, which may lead to the 

ARCH structures.  Further, screening the plots of all eighteen series of price changes for six commodity 

futures, it is obvious that the volatility is not stable.  In certain time periods, large price changes are 

followed by large price changes, irrespective of sign, and form of spikes.  In some other time periods 

the markets are rather quiet, i.e., small price changes are followed by small price changes.  This 

phenomenon seems well represented by an ARCH process as defined below. 

Suppose a stochastic process Yt is generated by an AR(p) process: 

Y Yt j t j t
j

P

= + +−
=

∑α α ε0
1

. (3.1) 

There exists an information set, Ψt t tY Y− − −=1 1 2{ , ,.....}, such that: 

εt t N h| ~ ( , )Ψ −1 0 , (3.2) 

where 

ht i t i

i

k

= + −

=
∑θ θ ε0

2

1

 (3.3) 

with  

θ0>0, θi ≥0, i=1,..k,  (3.4) 

to ensure the conditional variance is positive.  The process Yt is called AR(p) with ARCH(k) errors. 

The conditional variance function might be complicated for a long series lasting for 21.5 years, 

which means k in equation (3.3), the lag of the conditional variance ε2, is large.  If so, the computation 
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becomes burdensome and interpretation becomes difficult.  Bollerslev (1986) proposed generalized 

ARCH (GARCH):  

h ht i t i j
j

g

i

k

t j= + +−
==

−∑∑θ θ ε δ0
2

11

 (3.5) 

where ht-j are lagged unconditional variances, and  

θ0>0, θi ≥0, i=1,..k, δi ≥0, j=1,..g, (3.6) 

to ensure positive variances.  Actually, GARCH(k,g) is an infinite order ARCH process with a rational 

lag structure imposed on the coefficients.  The equation (3.5) is readily interpreted as an ARMA model 

for ε2.  In practice, identification of k and g follows Box-Jenkins procedure to specify p and q in 

ARMA(p,q).  

The standard Lagrange Multiplier (LM) test is applied to all eighteen series to test whether there 

are ARCH(1) effects in the processes.  Since ARCH(1) is the simplest structure of ARCH and its 

variants, if ARCH(1) exists, further investigation of more suitable ARCH structures is encouraged.  In 

the case of the stationarity test, AR(4), AR(5), and AR(8) are specified to capture autocorrelations for 

monthly, weekly, and daily series, respectively.  The LM test is conducted on the residuals of those AR 

models for ARCH(1) effects.  Table 8 reports the results.  

Table 8.  LM Tests of ARCH(1) Effects 

 Monthly Weekly Daily 
Corn 10.7 145.5 952.6 

Soybeans 20.1 116.1 941.9 

Wheat 11.7 87.3 531.8 

Hogs 4.9 7.7 60.8 

Coffee 12.5 15.8 134.1 

Sugar 7.7 54.2 857.9 

Critical values (5%) 3.84 3.84 3.84 

The null hypothesis is, Yt carries no ARCH.  The alternative is, Yt carries ARCH. 
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The critical value is the χ2 distribution with 1 degree of freedom.  All calculated LM statistics are 

larger than the critical value.  The null hypothesis has been rejected in all eighteen cases.  And, the higher 

the time frequency, the more the calculated LM statistics exceeds the critical value.  Among the six 

commodities, hogs are noticeably much less “ARCH” than others.  Therefore, GARCH modeling 

proceeds. 

The analysis of autocorrelation and partial autocorrelation of all eighteen series indicates that 

short memory of the data is very weak and does not have clear patterns.  As a preliminary effort, 

ARMA(1,1) is estimated for all eighteen series17, i.e. 

Y Yt t t t= + +− −α ε βε1 1 . (3.7) 
ε σt N~ ( , )0 . 

Since this study employs price differences, i.e., Yt is the series of price differences, the above 

ARMA(1,1) is equivalent to ARIMA(1,1,1). 

The estimation of (3.7) is shown in Table 9. 

                                                 
17 Similar practice was also done by Fang et al. (1994), though in their case, no significant short-term dependence is 

found in 2,527 daily currency futures prices, so AR(3) is still used as a filter. 
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Table 9.  Estimates of ARMA(1,1) 

α β R2 Likelihood 
Coefficient t-value Coefficient t-value  

Monthly   
Corn -0.52 -0.38 -0.49 -0.35 0.00 -1102 

Soybeans -0.92 -21.39 -0.93 -2.14 0.06 -1378 
Wheat -0.52 -2.10 -0.66 -3.04 0.05 -1183 

Hogs 0.51 0.06 0.50 0.06 0.02 -676 
Coffee 0.54 1.25 0.45 0.98 0.01 -1061 
Sugar -0.01 -0.09 -0.41 -2.85 0.13 -553 

Weekly   
Corn 0.69 3.37 0.64 2.88 0.01 -3860 

Soybeans -0.09 0.00 -0.09 0.00 0.00 -5163 
Wheat -0.57 -0.89 -0.55 -0.83 0.01 -4336 

Hogs 0.54 2.72 0.44 2.09 0.00 -2011 
Coffee -0.57 -2.01 -0.51 -1.72 0.00 -3776 
Sugar 0.73 7.72 0.68 6.71 0.08 -3739 

Daily   
Corn -0.68 -6.89 -0.73 -7.97 0.00 -14276 

Soybeans -0.24 -1.06 -0.29 -1.32 0.00 -20315 
Wheat -0.51 -0.94 -0.52 -0.98 0.00 -16872 

Hogs -0.59 -1.65 -0.61 -1.74 -0.01 -5627 
Coffee -0.14 -0.58 -0.19 -0.81 0.00 -13718 
Sugar -0.24 -1.06 -0.29 -1.32 0.00 -20315 

Not surprisingly, model (3.7) performs very poorly.  Either across three time frequencies or 

across six commodities, the model has little explanatory power as indicated by the R2’s, which are all 

around zero though the estimates of α and β are statistically significant for some series.  Other more 

complicated ARMA(p,q) structures have been experimented with, and the results remain similar.  It 

seems that the mean function of the series is white noise.  Further examination is pursued to determine 

the autocorrelations and partial autocorrelations of ε2 in equation (3.7) in order to specify k and g of 

GARCH(k,g).  Following Box-Jenkins procedures, the autocorrelations of ε2 are estimated to 24 lags 

and partial autocorrelations are estimated up to 12 lags.  Table 10 displays the results. 

Table 10.  The Structures of Autocorrelations and Partial Autocorrelations of εε2   Series 

 No. of significant AC  Largest AC (lag) No. of significant PAC  Largest PAC (lag) 
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Monthly     
Corn 1 0.14(1) 1 0.14(1) 

Soybeans 2 0.28(1) 1 0.28(1) 
Wheat unclear 0.21(3) unclear 0.20(3) 

Hogs unclear 0.17(14) unclear 0.16(1) 
Coffee unclear 0.22(1) unclear 0.22(1) 
Sugar unclear 0.42(3) unclear 0.38(3) 

Weekly     
Corn 7 0.40(1) 5 0.40(1) 

Soybeans 11 0.31(1) 7 0.31(1) 
Wheat unclear 0.29(1) unclear 0.29(1) 

Hogs unclear 0.11(2) unclear 0.10(2) 
Coffee unclear 0.41(2) unclear 0.41(1) 
Sugar unclear 0.41(6) unclear 0.27(6) 

Daily     
Corn Unclear 0.43(1) unclear 0.34(1) 

Soybeans Unclear 0.42(1) unclear 0.42(1) 
Wheat Unclear 0.32(3) unclear 0.32(3) 

Hogs Unclear 0.17(14) unclear 0.16(1) 
Coffee Unclear 0.34(9) unclear 0.29(9) 
Sugar Unclear 0.43(2, 3) unclear 0.40(1) 

AC and PAC are autocorrelation and partial autocorrelation, respectively. 

First of all, for all eighteen series the magnitudes of autocorrelations and partial autocorrelations 

are noticeable, the maximum is 0.43.  However, except for monthly corn and soybean data, ε2 for the 

other 16 series decay to zero very slowly.  The autocorrelations and partial autocorrelations of many ε2 

series are still significant even at 24 or 12 time lags, especially for weekly and daily series. And, most ε2 

series do not have clear decay patterns, the values of autocorrelations and partial autocorrelations 

exceed the significant-level boundary randomly.  As a reflection of this, for many ε2 series, the largest 

autocorrelations and partial autocorrelations are not necessarily located at lag 1.  Table 10 summarizes 

these observations, in which “unclear” refers to either of two or both situations: within 24 or 12 time 

lags autocorrelations or partial autocorrelations do not decay to zero, or/and autocorrelations and partial 

autocorrelations break significance boundaries randomly, and no judgment can be made about whether 

autocorrelations and partial autocorrelations have statistically decayed to zero. 
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This proposes significant difficulty for specifying the structure of ARCH(k) or GARCH(k, g).  

For monthly corn and soybean data, GARCH(1,1) might be sufficient, but for remaining sixteen series, 

no structures are suggested.  French et al. (1987) modeled 57 years (1928-84) daily S&P stock index 

data with 15,369 observations, and GARCH(2,2) was found proper.  For most financial data, 

GARCH(1,1) has proved to be sufficient (Bollerslev et al. 1992, Bera and Higgins 1995). The situation 

of the present data causes suspicion about whether either ARCH or GARCH is a proper alternative. 

It might be argued that wrongly-specified ARMA(1,1) is responsible for the unclear structure of 

the autocorrelations and partial autocorrelations of the ε2  series, since ARMA(1,1) has little explanatory 

power in all cases.  The series might be pure ARCH or GARCH processes where the conditional mean 

is simply Yt=εt.  Accepting this reasoning, the structure of autocorrelation and partial autocorrelation of 

Y2 has been analyzed.18  However, the pictures described in Table 10 remain the same. 

The present study is not alone with the frustration of ARCH/GARCH models in analyzing long 

agricultural price series.  Yang and Brorsen (1992) analyzed daily cash prices of corn, pork bellies, 

soybeans, sugar and wheat, plus gold and silver from January 1979 through December 1988.  Though 

they concluded that the GARCH model is a better explanation of the observed nonlinear dynamics, they 

admitted “though GARCH models reduced serial dependence and leptokurtosis, they are not a well-

calibrated model of the process that generated the sample observations in spot commodity markets” (p. 

714).  Similarly, Yang and Brorsen (1993) applied GARCH and other nonlinear models to 15 daily 

future prices including corn, soybeans, wheat, coffee and oats.  The data period is from January 1979 

                                                 
18 These results are available from the authors upon request, or in Wei (1997). 
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through December 1988.  The conclusion is similar to their study about cash markets.  They found 

GARCH(1,1) was rejected by Kolmogorov-Smirnov test of fit for all cases, and they felt a higher order 

GARCH process may be appropriate for some prices.  

This study’s data period doubles the length of Yang and Brorsen’s sample, which may introduce 

many new features into the data.  One of them might be that the autocorrelations of the εt
2
  process of 

the series decay so slowly that a GARCH model finally becomes totally inadequate to the data 

generating processes.  

Also, as Bera and Higgins (1995, p. 224) discussed, the third moment for a regular ARCH 

process is zero, therefore unconditional distributions of the series must be symmetric.  The conventional 

ARCH or GARCH model is able to capture the excessive kurtosis, but not asymmetry.   

The series under study demonstrate obvious asymmetry. The asymmetric distribution was 

considered related to “leverage effects” in financial markets, i.e., the return of a financial asset is 

negatively associated with its volatility.  Volatility tends to rise in response to lower returns than 

expected, and tends to fall in response to higher returns than expected (Black 1976, Christie 1982).  

The conventional ARCH/GARCH process is not able to capture such an asymmetric phenomenon.   

Nelson (1990) developed an exponential GARCH model to allow asymmetry.  Kang and 

Brorsen (1995) applied the exponential GARCH method to daily futures prices of wheat for the period 

of January 1980 through September 1990, and found the model fit the data to certain degrees.  But, 

with the “strange” ε2
t process as described in Table 10, the exponential GARCH has little role to play. 

4. THEORY OF THE LONG MEMORY MODEL 
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The plots of all eighteen series of price changes of the agricultural futures markets exhibit 

distinct, but nonperiodic cycles.  In a long memory model, nonperiodic cycles are considered the effects 

of long-range dependence in the data, i.e., the autocorrelations of a given series decay to zero very 

slowly as the time lag increases, and the dependence is still visible even after a very large time span, 

though individually all measurements of dependence are quite small.  After examining general properties 

of the data and rejecting the ARCH hypothesis, now the long memory hypothesis will be tested: 

Ho: E[∆Yt | Yt-j, j ≥ 1 ]=0, where ∆Yt = Yt  - Yt-1 

Ha: Yt = f2(It)+εt, where, f2 is a long memory structure defined by equations (1.1).  It is the 
information set at t and for a univariate series is typically Yt-j, εt-j,  T ≥ j ≥ 0. 

4.1   THE CLASSICAL AND MODIFIED RESCALED RANGE ANALYSIS  

H, a Hurst exponent, is produced by the rescaled range analysis, or R/S, analysis which was 

established by hydrologist H. E. Hurst in 1951, further developed by B. Mandelbrot in the 1960's and 

1970's, and applied to economic price analysis by Booth et al. (1982), Helms et al. (1984), Peters 

(1989), and others in the 1980's.  For a given time series, the Hurst exponent measures the long-term 

nonperiodic dependence, and indicates the average duration the dependence may last.  

For a time series with total observations of T, there is a integer n, n≤T.  The R/S analysis, first 

estimates the range R for a given n: 

R n Y Y Y Y
j n

j
j

n

j n
j

j

n

Max Min( ) ( ( ) ( ))= − − −
≤ ≤ = ≤ ≤ =

∑ ∑
1 1 1 1

, (4.1) 

where R(n) is the range of accumulated deviation of Y(t) over the period of n.  Let S(n) be the standard 

deviation of Yt   over the period of n, i.e.: 
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S n
n
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0 5 . 

For a given n, there exists a statistic 

Q(n) = R(n)/S(n) . (4.2) 

It is clear that n is the time scale to split total observations T into int[T/n] segments where int[.] 

denotes the integer part of [.].  There will be int[T/n] estimates of R(n)/S(n) for a given n.  The final 

R(n)/S(n) is the average of int[T/n]’s R(n)/S(n).  As n increases, the following holds: 

R n S n nH( ) / ( ) = α  or, 

log( ( ) / ( ) log log( )R n S n H n= +α . (4.3) 

It is clear that H is a parameter that relates mean R/S values for subsamples of equal length of 

the series to the number of observations within each equal length subsample.  H is always greater than 0.  

When 0.5<H<1, the long memory structure exists.  If H≥1, the process has infinite variance and is 

nonstationary.  If 0<H<0.5, anti-persistence structure exists.  If H=0.5, the process is white noise. 

While estimating H, equation (4.3) also generates the average length of nonperiodic cycles by 

varying the size of n. 

Equation (4.2) is first estimated for the small sample in which n goes from an initial value to a 

small number, then a H is recorded.  The second round estimation is conducted with a larger sample, 

i.e., n goes from an initial value to a larger number, and a new H is recorded.  This process continues 

until H reaches a peak and begins to decline. When H reaches the peak, the ending point of sample size, 
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that particular n would be an indication of the average length of nonperiodic cycles, let’s say G, and the 

saturated H is the final estimation of the Hurst exponent.  

Further, Peters (1994) proposed another method, still based on the R/S analysis, to identify the 

average length of nonperiodic cycles.  For various values of n, there is a corresponding series of V, 

which is defined as 

V(n)=(R(n)/S(n))/n0.5.  (4.4) 

For a long memory process, to plot V(n) against log(n) will find a turning point in the V curve from 

where the slope of V becomes zero or even negative.  Here only visual screening is applied.  Peters 

(1994) showed V statistics are more noise-resistant than the procedure of H estimation in performing 

this function. 

The greatest advantage of the R/S analysis is that the measure is independent of the distribution 

assumption for a given series.  The robustness of results remains unaffected regardless whether the 

distribution is normal or nonnormal.  The dependence the Hurst exponent captures is the nonlinear 

relationships inherent in the structure of the series (Peters 1991). 

Lo (1991) and Chueng and Lai (1993) found that Hurst and Mandelbrot’s R/S analysis (called 

the classical R/S analysis hereafter) will generate a biased Hurst exponent when any combination of the 

following happens: (1) the series contains short-term memory; (2) the series is characterized with 

heterogeneities, and (3) the series is nonstationary.  Lo (1991) modified the above R/S method and 

produced a new statistic that is robust to (1) and (2), and with a well-defined distribution. 
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Lo’s (1991) modification was made to S(n) in equation (4.2), i.e., Q(n) = R(n)/S(n). In Lo’s 

algorithm, S(n) is replaced by S(n)q. 

( ( ) ) ( ( )) ( ( ){ ( )( )}S n S n
n

w q Y Y Y Yq i
i

q

j j i
j i

n
2 2

1 1

2= + − −
=

−
= +

∑ ∑ , (4.5) 

where w q
i

qi ( ) = −
+

1
1

, q<n. 

Modified statistic is : 

Z(n)=R(n)/ S(n)q. (4.6)  

Both S(n) and S(n)q measure the standard deviation of the partial sum, but in S(n)q’s regime, the 

variance of the partial sum is not simply the sum of the variance of individual observations, but also 

includes the weighted autocovariances up to lag q.  Weight w qi ( )  is suggested by Newey and West 

(1987) to ensure positive S(n)q.  q is the optimal lag of autocovariances and is typically determined by 

Andrew’s (1991) data dependent rule: 

q T= −int [( / ) { / ( )} ]/ /3 2 2 11 3 2 2 3δ δ , (4.7) 

where int[.] denotes the integer part of [.] and δ is the first-order autocorrelation coefficient of the 

data. 

Therefore, comparing with the classical R/S statistic Q(n), the modified statistic Z(n) is able to 

isolate short-range dependence when detecting a long-range one.  Also Z(n) has the well defined Fv(v) 

distribution, which could lead to statistical inference (Lo 1991,  pp. 1291-93).   
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However, in Z(n)’s estimation, n=T, and the H exponent as well as the average length of 

nonperiodic cycle, G, could not be derived.  The classical R/S analysis contains more information than 

Lo’s new method. 

4.2   THE AFIMA MODEL 

The AFIMA model approaches the long memory process from different perspectives.  In an 

ARIMA(p,d,q) process, 

Φ Ψ( )( ) ( )B B Y Bd
t t1− = ε , (4.8) 

d is an integer, and typically either 0 or 1. When Yt is integrated of the order 1, i.e. d=1, the process is 

said to be nonstationary and its autocorrelation decays to zero linearly.  When Yt is integrated of the 

order 0, i.e., d=0, the process is said to be stationary and its autocorrelation decays to zero 

exponentially.  Hence, observations separated by long-time spans are independent. 

Eighteen series of price differences in this study satisfy the assumption of stationarity according 

to the unit root tests, as shown earlier.  However, all eighteen series exhibit dependence between distant 

observations that, although small, is by no means negligible.  There are two possibilities here.  First, the 

series do not contain exact unit roots, but the roots they have are very close to a unit.  Unit root tests 

have been fooled.  Second, the results of unit root tests are correct in that the series contain no unit 

roots, but the series carry long-range dependence, which can hardly be represented by regular ARMA 

processes.  If one differences the series again, the series will be over-differenced.   
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An AFIMA model is able to distinguish these two possibilities. In this case, Granger and Joyeux 

(1980) and Hosking (1981) suggested d in equation (4.8) to be extended to a non-integer.   

Φ Ψ( )( ) ( )B B Y Bd
t t1− = ε , where d is noninteger, and  

( )
( )

!
( )( )

!
...1 1

1
2

1 2
3

2 3− = − − − − − − −B dB
d d

B
d d d

Bd   . (4.9) 

For 0<d<0.5, it can be shown that the autocorrelations of the process decay to zero 

hyperbolically, i.e., at a much slower rate than the exponential decay of an ARMA(d=0) process. Then, 

AFIMA(p,d,q) is able to represent existing long-memory structure without over-differencing.  

If d≥0.5, the process has infinite variance and is nonstationary.  The nonstationarity missed by 

conventional unit root tests is captured by the AFIMA model.  If -0.5<d<0, an anti-persistence 

structure exists.  If d=0, the process is white noise. 

Lo (1991, p. 1285) used the following Table 11 to illustrate the property of the long memory 

process, in which AR(1) is compared with two AFIMA processes.  For AFIMA(0,d=1/3,0), the 

dependence, indicated by autocorrelation ρ(j), lasts for very long; for AFIMA(0,d=-1/3,0), ρ(j) decays 

to zero very fast like a regular AR process.  For example, at lag 10, ρ(j) of AFIMA(0,d=1/3,0) is as 

high as 0.235,  ρ(j) of  AFIMA(0,d=-1/3,0) and AR(1) are        -0.005 and 0.001, respectively.  At 

lag 100, ρ(j) of AFIMA(0,d=1/3,0) is still as high as 0.109,  but ρ(j) of AFIMA(0,d=-1/3,0) and 

AR(1) are not different from 0.   
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Table 11.  The Comparison Between AR(1) and Two AFIMA Processes 

Lag  ρ(j) ρ(j) ρ(j) 
j AFIMA(0, d=1/3, 0) AFIMA(0, d=-1/3, 0) AR(1) ρ=0.5 
1 0.500 -0.250 0.500 
2 0.400 -0.071 0.250 
3 0.350 -0.036 0.125 
4 0.318 -0.022 0.063 
5 0.295 -0.015 0.031 
10 0.235 -0.005 0.001 
25 0.173 -0.001 2.98x10-8 
50 0.137 -3.24x10-4 8.88x10-16 
100 0.109 -1.02x10-4 7.89x10-31 

Source: Lo (1991, p.1285, Table 4.1) 

Many estimators have been suggested to estimate d (see Beran (1994) for a comprehensive 

review).  The most robust estimator is the maximum likelihood estimator suggested by Haslett and 

Raftery (1989). Suppose an AFIMA(p,d,q) is defined by (4.9) with innovations ε t being independent 

Gaussian random variables.  Let 

$ ( | ,..., ,..., , , ,..., ),Y E Y Y Y dt
t

t t p q
−

−=1
1 1 1 1φ φ ϕ ϕ  

denote the conditional mean one-step-ahead prediction of Yt .   Let  

σ φ φ ϕ ϕ2
1 1 1 1f Y Y Y dt t t p q= −var ( | ,..., ,..., , , ,..., ),  

denote the conditional variance of $Yt
t −1, where σ2 is the variance of ε t.  Maximizing the following 

concentrated likelihood function by choosing the certain values of  φ φ ϕ ϕ1 1,..., , , ,...,p qd : 

log ( ,..., ) tan ( log ( $ ) )L Y Y cons t f Y Yt t
t

T

t t
t

T

1
1

2

1

1
2

= − + −
= −
∑ ∑ . 

Practically, having a long series it is not affordable for CPU time to numerically maximize the above 

likelihood function (for example, a single evaluation of the likelihood takes about three hours of CPU 
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time on a VAX 11/780). Haslett and Raftery (1989) proposed an excellent approximation method in 

which (see Haslett and Raftery 1989, pp. 12-14 for details): 

1. the conditional mean and variance could be accurately approximated by using the partial 
autocorrelations for the AFIMA(0,d,0) process; 

2. ft could be approximated analytically, and concentrated likelihood is a function only of 
φ φ ϕ ϕ1 1,..., , , ,...,p qd ; 

3. the simplified likelihood function is maximized. 

 
5. EMPIRICAL RESULTS OF LONG MEMORY TESTS 

The classical R/S analysis is able to capture long memory and reveal the average length of 

nonperiodical cycles.  But it is vulnerable to distortion from the existence of short memory and 

heteroscedasticity, and not subject to statistical inference.  The modified R/S method is robust to the 

possible distortion from short memory and heteroscedasticity, and provides a well-defined statistical test 

for the existence of long memory.  However, it is not able to tell the average length of nonperiodical 

cycles, and it presents only long memory.  While the AFIMA model is still not able to indicate the 

average length of nonperiodical cycles, it parametrically models short and long memory simultaneously.  

Therefore, the results of three long memory models complement each other.  

5.1   THE CLASSICAL AND MODIFIED R/S ANALYSIS  

In this study, when equation (4.1) is estimated for daily, weekly, and monthly price differences, 

suppose w is a series of natural integers, such as 1,2,3, and T is total observations.  For monthly prices, 

n series was set as 3, 6,..., w3≤ integer of T/2;  for weekly series, n is the series of 4,8,...,w4≤ integer 
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of T/2; and for daily series, n is the series of 5, 10, ..., w5≤ integer of T/2.  3, 4, and 5 are chosen for 

the factors of constructing subsamples because 3 months form a quarter, 4 weeks a month, and 5 days 

a working week, which are convenient assumptions.  Experiments showed that the estimates of the H 

exponent are not sensitive to the factors differing from 3, 4, and 5. 

While (4.1) was applied to estimate H exponents, the average length of nonperiodic cycles was 

identified, labeled as L in Table 12.  At the same time, the estimation of L was supplemented by V 

statistics as suggested by equation (4.4).  The results are in Table 12. 

Table 12. The Hurst Exponent (H) and Average Lengths of Non-periodic Cycles Identified by 
Model (4.1) (L) and by V statistics (V) 

 Markets Daily Weekly Monthly 
 H L V H L V H L V 
Corn 0.62 265 215 0.68 52 44 0.73 11 11 
Soybeans 0.59 235 260 0.62 60 60 0.66 10 9 
Wheat 0.58 235 255 0.65 56 56 0.68 13 12 
Hogs 0.61 265 235 0.67 56 48 0.70 13 13 
Coffee 0.62 100 125 0.65 28 28 0.68 8 7 
Sugar 0.60 250 210 0.66 52 44 0.78 12 13 

 

All H estimates are above 0.5, which indicates the existence of long memory in the series since 

H=0.5 implies an independent process.  From daily to weekly and to monthly time frequencies, the 

estimated H increases for each of commodities, especially in the case of sugar. As time frequencies 

increase, the series become more noisy, which will reduce H.  Roughly, for daily series, estimates are 

around 0.60, for weekly around 0.65, for monthly around 0.70. 

Among the six commodities, corn seems to have the highest H estimates except in the case of 

monthly frequency where it is the second largest after sugar.  The variation among the six commodities in 

H estimates increases as the time frequency decreases. The ranges between the maximum and minimum 



  

 40

are 0.04, 0.06, and 0.10 for daily, weekly and monthly series, respectively.  This implies that as noise 

decreases, the different commodity markets begin to demonstrate their own characteristics. 

The average length of nonperiodic cycles was investigated by the process of H estimations and 

V statistics, as reported by the columns with headings L and V in Table 12, respectively.  It is noticeable 

that the average length of nonperiodic cycles indicated by L and V statistics are roughly the same. 

Except coffee, the other five markets have roughly 1 year as their average length of nonperiodic 

cycles.  It is about half year for coffee.  This time length stands for all three time frequencies.  Though 

certain differences in time length exists among three time frequencies, the differences are not substantial. 

The above results from the classical R/S analysis remain to be clarified further since the classical 

R/S analysis is sensitive to the heterogeneities, which have been found in all eighteen series.  Also, the 

distribution of H exponents is not well defined and no statistical inference could be pursued.   

Lo’s (1991) modifications to the classical R/S analysis attack these shortcomings, which  

includes the weighted sum of autocovariance into the denominator of R/S ratio.  Lo (1991) analytically 

proved that the modification provides robustness to short memory.  Further, Cheung and Lai (1993) 

showed by Monte Carlo simulations that the modified R/S analysis is robust to ARCH effects and the 

shifts in variances. 

Table 13 reports the estimates of Z(n) statistics and the order of autocovariance, q, that has 

been identified by Andrew’s (1991) rule, i.e., equation (4.7). 
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Table 13.  Z(n) of Lo’s Modified R/S Analysis and Lag of Autocovariances Included (q) 

Commodity Daily Weekly Monthly 
 Z(n) q Z(n) q Z(n) q 
Corn 1.109 4 1.032 2 0.907 0 
Soybeans 0.919 4 0.861 0 0.719 1 
Wheat 1.398 0 1.386 0 1.166 2 
Hogs 1.365 0 1.266 4 1.202 0 
Coffee 1.565 4 1.509 1 1.351 1 
Sugar 1.994** 4 1.790** 4 1.324 5 

The null hypothesis is, Yt  carries no long memory.  The alternative is, Yt carries long memory. 
Critical values (Lo 1991, p. 1288): 10%: 1.620, 5%: 1.747 
** Significant at 5% level. 

In general, the results are opposite of Table 12 where the evidence of long memory was found.  

All Z(n) estimates except two (daily and weekly sugar series) are below the critical value of 10% 

significance.  For those series, the existence of long memory is not confirmed though suggested by the 

classical R/S analysis. 

The special feature of the Z(n) statistic is its inclusion of the weighted sum of autocovariances of 

the data, which is to correct the biasness caused by the existence of short memory as well as 

heteroscedasticity.  The values of q tell roughly to what extent this correction effort is needed.  The 

question could be asked whether the results reported by Table 13 are sensitive to different q’s.   

The various values of q, differing from those identified by Andrew’s (1991) rule and reported in 

Table 13, were assumed and Z(n) statistics were re-estimated to examine the stability of the results.  It 

was found that changing q influence the estimates of Z(n), but not substantially.  For example, when q is 

equal to 3 or 5, the Z(n) for daily sugar is 2.055 or 1.943, when q is equal to 4 or 5, the Z(n) for 

monthly sugar is 1.345 or 1.357, and when q is equal to 1 or 2, the Z(n) for daily hogs is 1.345 or 

1.357.  This indicates that the results in Table 13 are robust to the variation of q. 
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The Z(n) estimates are quite similar for a given commodity among three time frequencies except 

sugar.  The Z(n) estimates for daily series tend to be highest while for monthly tend to be the lowest, but 

the differences are not very big.  The Z(n) estimates for corn, soybeans, wheat and hogs are similar in 

terms of magnitude, but the estimates for coffee, though not significant,  are more close to those for 

sugar.  

Sugar daily and weekly series contain long memory structure, as suggested by Z(n) estimates, 

but sugar monthly data do not19.  The sugar market is the only one here containing long-range memory.   

Though the classical R/S analysis tends to suggest that all eighteen series are long memory processes, 

the modified R/S analysis confirmed only two of eighteen cases, i.e. daily and weekly sugar prices.  The 

remaining sixteen series, after taking account of short memory and heterogeneities and subjected to 

statistical inferences, are not long memory processes.  This conclusion can be verified further by the 

AFIMA model, which follows. 

5.2   THE AFIMA MODEL 

For the AFIMA(p,d,q) model: 

Φ Ψ( )( ) ( )B B Y Bd
t t1− = ε , 

where 0<d<1 and typically 0<d<0.5,  Φ(B) and Ψ(B) are the polynomials of the order p and q, 

respectively.  The specification of p and q will affect the maximum likelihood estimates (MLE) of Φ(B) 

and Ψ(B).  By examining the structure of autocorrelations and partial autocorrelations given earlier,  it 

                                                 
19 It will be discussed in the last section why long memory has been found in daily and weekly, but not monthly 

series, of the same sugar market.  
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was found for all eighteen series that short memory was very weak, which suggests that both p and q 

should be specified as 0.  The estimation is then based on the specification of AFIMA(0,d,0).  

Estimates of d and standard deviations, as well as the values of likelihood of the specifications, are in 

Table 14. 

Table 14.  AFIMA Estimates of d 

 AFIMA Daily Weekly Monthly 
  d likelihood d likelihood d likelihood 

Corn (0,d,0) 0.029 -14286 0.051 -3864 0.000 -1106
Soybeans (0,d,0) 0.036 -20321 0.005 -5167 0.000 -1390
Wheat (0,d,0) 0.000 -16874 0.020 -4342 0.052 -1192
Hogs (0,d,0) 0.004 -5629 0.084 -2012 0.000 -681
Coffee (0,d,0) 0.055 -13719 0.030 -3780 0.070 -1064
Sugar (0,d,0) 0.050 -3738 0.104 -1664 0.231 -566
 

In the AFIMA(0,d,0) specification, in all but the sugar cases, estimates of d are very close to 

zero.  The magnitude of d estimates for weekly and monthly sugar series are noticeable compared with 

the series of other markets, 0.104 and 0.231, respectively, but the result of the daily sugar series is not 

different from daily series results of the other commodities, where d is close to 0. 

When d=0, AFIMA(0,d,0) becomes 

Yt t= ε , 

i.e., the series is white noise.  The AFIMA model tells that except for the sugar market the other five 

markets contain no long memory.  This confirms the finding of the modified R/S analysis. 

Lo (1991) conducted Monte Carlo simulations to evaluate the size and power of the Z(n) 

statistic of the modified R/S analysis.  Z(n) is sensitive to the sample size.  When the sample size gets 

smaller, Z(n) has lower power to reject a wrongly specified null hypothesis against the long memory 
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alternative. This is especially true for a sample size below 250.  The monthly series in this study have 

251 observations.  Considering the noise the data contains, it is anticipated that the modified R/S 

analysis on monthly data might not identify long memory even if it actually exists, such as the case of 

sugar.  For the daily sugar series that have more than 5,000 observations, the modified R/S analysis 

uncovered long memory.  

As a parametric statistical model, it is understandable that the AFIMA model might be more 

sensitive to the noise in the data than to its sample size if the sample size has exceeded certain 

thresholds.  In Table 14 for sugar series, the value of d decreases as time frequency increases.  That no 

long memory was found in the daily series is very likely due to the fact that daily series have much more 

noise than do weekly and monthly series.  

Though the evidence of long memory produced by the classical R/S analysis is not reliable, the 

average length of nonperiodical cycles identified by the classical R/S analysis is still meaningful. Since 

nonperiodical cycles are not unique to long memory processes, they are also observed in chaotic 

systems.  Peters (1994) conducted many simulations on the robustness of the classical R/S analysis in 

uncovering the average length of nonperiodical cycles, and the results are very positive. 

It has been troublesome to conventional unit root tests for a long time that a series contains a 

root that is very close to a unit but not exactly a unit.  Now the AFIMA model is able to avoid this trap 

by using noninteger “d” to indicate the stationarity.  A d that is larger than 0.5 implies nonstationary. 
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6. CONCLUSIONS 

Many economic and financial theories suggest the existence of nonlinear dependence in financial 

markets.  Chartists accumulate nonlinear price patterns and advise traders for profit opportunities.  

Simple statistical screening on financial series often finds long-lasting autocorrelations and time-

dependent variances, which are the symptoms of nonlinear dependence.  The question is what type of 

nonlinear relationships they are, if they really exist. 

Price series that are twenty-one and half years long for six agricultural futures markets, corn, 

soybeans, wheat, hogs, coffee, and sugar, exhibit time-varying volatility, carry long-range dependence, 

and portray excessive skewness and kurtosis, though they are covariance stationary20.  This suggests 

that the series contain nonlinear dynamics.  ARCH and long memory are the two stochastic nonlinear 

models that are able to produce these symptoms.  Though standard ARCH tests suggest that all series 

might contain ARCH effects, further diagnostics show that the series are not ARCH processes, since it 

has been found that the autocorrelations of the variances of the data decay to zero very slowly as the 

time span increases, and this is not a property of ARCH processes.  In addition, all series exhibit 

obvious asymmetry that is out of the reach of regular ARCH processes.  The martingale difference null 

can not be rejected by the ARCH model. 

Three long memory techniques, i.e., the classical R/S analysis, the modified R/S analysis, and 

the AFIMA model, are applied to test the martingale difference null against the long memory alternative.  

The nonparametric method, the classical R/S analysis, suggests there might be long memory structures in 
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the series.  However, the other two more robust tests, the modified R/S analysis and the AFIMA 

model, confirm this in the case of sugar, but reject this proposition for the other five markets. 

Why are sugar series long memory processes while the other five markets are not?  A long 

memory model can only imply that there is long-range dependence in markets, today’s price is affected, 

or partially affected, by the previous long price records.  This long memory could either be the 

interactions of deterministic forces in the market or the effects of speculation, or both. 

In world markets, sugar trade differs from the trade of the other five commodities in one major 

way.  Sugar trade is participated in by more countries, which are diversified in terms of geographical 

locations and economic development levels, and is more competitive and less likely to be dominated by 

one or a few superpowers21.  

Live hogs are costly for international trade.  Futures prices of live hogs, compared with the other 

five commodities, are much more dependent on US domestic supply and demand, and also heavily 

influenced by corn prices.  For the time period 1974 to 1995, the US has been a dominating market 

power in the international corn and soybean trade by having about 70% of the world exports (Lin et al. 

1996, Ash et al. 1996).  In the international wheat market the US is still the biggest exporter in the 

world with about 30-40% of the world exports since 1970 (other big players are Canada, Argentina, 

Australia, and EU for exports; USSR and China for imports).  This share is much less than those in corn 

                                                                                                                                                             
20 A process with heteroscedasticity can be stationary with finite and constant mean and variance (Bera and Higgins 

1995). 

21 This argument and related discussion benefited from conversations with Mr. Ron Lord, an economist of Economic 
Research Service, United State Department of Agriculture.  According to Mr. Lord, the US’s share in the world 
sugar market has been around 5-7%. The sugar futures market is international in nature, the US domestic sugar 
policy has impacts on the market, but the impacts are not substantial in most time periods. 
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and soybean trade, but is significant enough to lead price fluctuations in international markets (Hoffman 

et al. 1996). 

The dominating force in the international coffee market is Brazil, which had about 40% world 

exports in 1970’s and about 25% in 1990’s.  (Other important exporters are Columbia, Indonesia and 

Cote d’Ivoire.  US and EU are the most important importers.)  And more interesting and important, the 

international coffee trade from 1962 to 1989 (which includes a major portion of the series examined in 

this study) was structured by the International Coffee Organization (ICO).  ICO successfully controlled 

the flow of coffee from exporting member countries and consequently stabilized and elevated the level of 

prices (Farmer 1994).  

International Sugar Agreements have never been a single success since the 1960’s in terms of 

imposing quotas to restrict supply and urging the release of stocks to increase supply.  While sugar 

imports are relatively equally distributed among numerous countries, sugar exports are led by a group of 

countries (EU, Australia, Brazil, Cuba, Dominican Republic, Thailand, Philippines, etc.).  The number of 

countries in this group and the share of each country have changed over time (Abbott 1990, Lord 

1996).  In the late 1970’s, and especially since 1980, there has been an emergence of a significant 

degree of potential world sugar production, which can swiftly be converted into actual production, and 

the increasing proportion of world sugar consumption has been accounted for by developing countries.  

Price elasticities of supply and demand in the sugar market seem larger than at least those for coffee 

(Harris 1987). 
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With the above market structures, for the time period as long as 21.5 years, the future prices of 

corn, soybeans, wheat, hogs, and coffee are more likely to be subject to several deterministic elements, 

such as US agricultural and trade policies and regulations, supply and demand of US economy, as well 

as ICO’s regulations and the Brazilian coffee economy.  In contrast, too many factors are acting within 

the sugar markets, such that sugar futures prices are more likely to be stochastic in nature than the other 

future prices. 

The international sugar market has many more players and less dominating forces than the corn, 

soybean, wheat, hog, and coffee markets.  This appears to suggest that the prediction of the sugar 

market might be more difficult than that of the other five markets.  The present study has concluded that 

the sugar market contains a long memory structure, and the other five markets do not.  A few 

determinants in these five markets react to each other in such a way that the produced price movements 

are very volatile.  In the end, the prices in these five markets are not very predictable.  In the sugar 

market, economic and political factors affecting prices are many and each of them is not significant 

enough, hence price movements are more likely to be smooth and continuous, and thus easier to 

predict. 

A long memory model does not attribute irregular behavior of price changes to the time 

dependent variances.  Rather, long-range dependence in the price series is responsible for the observed 

nonlinear dynamics.  In a typical long memory model, the observed time-varying volatility of the market 

is the product of long-range dependence.  Here, the time-dependent market risk is a result, not a cause.  

Investors should focus on the elements that determine long memory of the prices.  For example, traders 

with long investment horizons are more likely to wait for a trend in a given market before taking a 
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decision.  If the share of long-run investors increases in a given market, the price movements are more 

likely to have persistent patterns. 

Long memory models, especially the modified R/S and AFIMA analyses, have not been widely 

used in agricultural market studies.  This study has reviewed three major tools in long memory theory, 

and discussed the weaknesses and strengths of each one.  Among the three models, the AFIMA model 

is endowed with a flexible structure to capture short and long memory, regular and irregular behavior at 

the same time. 
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