
IL L INOI S
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE

University of Illinois at
Urbana-Champaign Library

Large-scale Digitization Project, 2007.

T CIA 1 L5

ISSN 0276 1769 Number 177
March 1987

. ,' .

)I

Prototyping a Microcomputer-Based
Online Library Catalog

by

Susan S. Lazinger
and

Peretz Shoval

THE Lbi•iRY OF THE

APR 1 5 1987
UNlVi.-SITY OF ILLINOIS

UR": 7A-CHAMPAlM

I ~

Prototyping a Microcomputer-Based
Online Library Catalog

by

Susan S. Lazinger
and

Peretz Shoval

© 1987 The Board of Trustees of The University of Illinois

Contents

Introduction: Goal of the Research 3
The Life Cycle Approach to Systems Development 3

The Stages of Systems Development 3
Library Systems Development 8

The Prototyping Approach to Systems Development 10
Prototyping: A Definition and Rationale 10
The Two Types of Prototyping 14
Prototyping Roles .. 20

Prototyping Roles and Library System Development 21
The Model .. 21
The Software .. 22

Prototyping on Online Catalog in the Library of the
Graduate Library School of Hebrew University: A
Case Study 26
dBase II 28
The First Prototype: RSP 30
The Second Prototype: RCP 32

Prototyping as a Viable Systems Development Methodology
for Libraries: Evaluation and Conclusion 38
Advantages of Prototyping 38
Limitations of Prototyping and Conclusion 40

References 42
Additional References .. 44
Vitae
Susan Smernoff Lazinger 48
Peretz Shoval 48

INTRODUCTION: GOAL OF THE RESEARCH

In this work an attempt will be made to examine and evaluate the applica-
tion of prototyping methodology in the design of a microcomputer-based
online library catalog. The methodology for carrying out this research will
involve a five-part examination of the problem on both the theoretical and
applied levels, each of which will be covered in a separate section as
follows:

1. A discussion of the standard life cycle in information systems develop-
ment as defined in the literature of systems development and, particu-
larly, of library systems development.

2. A definition of prototyping as perceived in some of the more recent
literature of systems development.

3. Presentation of the two distinct types of prototyping in use in software
engineering with accompanying discussion of how development
according to each of these types differs from the standard development
cycle.

4. Presentation of the model of prototyping roles and how it differs from
the models of roles for standard development cycles.

5. Adaptation of the model of prototyping roles to the specific configura-
tion in the presence of which prototyping is suggested as a design
methodology for a microcomputer-based online library catalog.

6. Analysis of the use of prototyping methodology in the design of a
microcomputer-based catalog in the Library of the Graduate Library
School of Hebrew University-i.e., a case study of the application of the
model.

7. An evaluation of prototyping as a viable systems-development metho-
dology for libraries.

THE LIFE CYCLE APPROACH TO SYSTEMS DEVELOPMENT

The Stages of Systems Development

Systems development is a relatively new branch of technology. Dating back
only 20 to 25 years, it has nevertheless undergone evolution. In the 1960s,
software developers began attempting to design and implement increas-
ingly complex information systems, a significant percentage of which
were unsuccessful-i.e., they failed to satisfy the demands of the envisioned
application. Anthony Wasserman, in his excellent 1980 article on informa-
tion system design methodology, cites a number of reasons, which include:

The developers didn't orient the system to the end users, who then
rejected the system as being difficult to learn or difficult to use.

There were no intermediate steps during the project at which project
management and customer could review progress and determine the
system status.

The application demanded the use of highly advanced technology,
which was not generally available.

There was little or no effective communication between the user
community and the development organization. 1

Because of these problems, it was often impossible to distinguish the
successful from the unsuccessful projects until very late in the project cycle
which sometimes lead to disaster. Every piece of software for every infor-
mation system was custom-made following no consistent pattern or cycle
and benefiting little from previous experience.

In the late 1960s and early 1970s an attempt to structure the unruly methods
of systems development came from the manufacturing concept set forth by
the young field of software engineering-the "life cycle" concept. This
concept of a "software life cycle" sought to combine all the different
techniques of software production with appropriate management tech-
niques into a consistent framework. Wasserman defines the various steps
of the engineering process that serve to delineate the activities of software
development as including, "but...not limited to, requirements analysis
and definition, design, manufacture, quality assurance, and
maintenance/enhancement." 2

It has been said with some justification that there are as many definitions of
systems analysis as there are people who have written about it. The term is
sometimes used to cover the entire cycle of systems development and
sometimes used to mean only the part that is called in the more recent
literature "requirements analysis and specification." It is always divided
into a number of stages, but the stages can vary from four to eight or more
depending on how the analyst subdivides them. Table 1 compares the
stages of system analysis as defined in two works of the midseventies-
Burch and Strater's Information Systems: Theory and Practice and Chris
Mader's Information Systems: Technology, Economics, Applications.

Wyllys, in one of the series of articles on system design that appeared in the
Annual Review of Information Science and Technology throughout the
seventies, mentions the problem of nonstandardized terminology in the
literature of systems development:

For example, ROSOVE [see references and additional references for all
authors cited here] calls the phases: requirements, design, production,
installation and operation; HAYES &8 BECKER include a preliminary

phase-feasibility-and follow it with specification, design, pro-
gramming, test, implementation; HICE, ET AL., concentrating on
data processing system development, call their phases: definition,
preliminary design, detail design, program and human job develop-
ment, testing, data conversion and system implementation, and
system operation and maintenance.5

Wyllys then proceeds to add his own contribution to the welter of defini-
tions of the phases of the system development cycle: "Here the phases will
be called: analysis, design, production, implementation, and operation." 6

Since his five-step definition is nonetheless an attempt to standardize the
vocabulary of systems development it seems an appropriate framework for
describing the phases in the development life cycle in a bit more detail.

In the analysis phase, the system design team begins by defining the overall
purpose of the existing system and of the changes desired-i.e., the require-
ments for the new system. In identifying system requirements, various

TABLE 1
THE STAGES OF SYSTEMS DEVELOPMENT ACCORDING TO BURCH AND STRATER

AND MADER

Burch and Strater3 Mader4

1. Systems analysis:

1.1. Definition and formulation
of the problem;

2. Systems design:

2.1. Developing alternative designs and
solutions;

2.2. Building models which formalize
the alternative designs/solutions;

2.3. Determining the cost/effectiveness
of the design alternatives;

2.4. Making recommendations;

3. Systems implementation:

3.1. Implementation of the chosen
alternative.

1. Statement of systems objective(s);

2. Creation of alternatives;

3. Systems analysis;

4. Systems design;

5. Systems implementation:
5.1. Computerizing the designed system:

5.1.1. Programming;

5.1.2. Debugging;

5.1.3. Database preparation, if any;

5.2. Installing the system;

5.2.1. Documentation;

5.2.1. Training;
parallel with its predecessor systems;

6. Systems evaluation.

constraints on the new system-e.g., cost, schedule, state-of-the-art (limita-
tions of available hardware or software)-are considered. Careful and
integrated analysis of existing conditions, requirements and constraints
should eventually lead to a formal statement of what the new system
should do. This is often called the requirements analysis document. When
the system design team and the organization that will use the system
concur on the system requirements, the analysis phase ends and the design
phase begins.

The design phase follows the analysis phase although the two can overlap.
In the second phase the system design team (or person if it is a one person
design effort) considers how to carry out the functions required in the
proposed system. If the analysis has been carried out thoroughly, the
design of the system will logically follow from data collected in the
observational and analytical processes. Alternative designs/solutions are
considered, cost and effectiveness of the alternatives are determined, and
recommendations are made.

In the production phase the chosen alternative is translated into reality.
This phase usually includes the acquisition of the required computer
hardware or software and, if necessary, the actual computer programming
and testing of the programs.

As the components of the new system are programmed and tested the cycle
begins to move into the implementation phase which includes conversion.
This phase concludes when each subsystem or component of the system
has been completed, tested, and found to be acceptable; when the system
has been documented; and finally, when those who will operate the system
have been trained. While some systems theorists end their definition of the
systems-development cycle here, Wyllys adds what he calls the operational
phase (sometimes called the evaluation phase) since it is in this phase that
the evaluation of the system continues, often leading to further
improvements.

In a rather early work on information systems development (1968), Donald
Heany breaks the process down into eight numbered steps and then indi-
cates precisely in which steps the user is usually involved:

It is convenient to visualize system development as a process with eight
discrete steps: (1) establishing or refining an information requirement,
(2) developing gross system concepts, (3) obtaining approval to detail a
particular gross system concept, (4) preparing detailed system specifica-
tions, (5) testing, (6) implementing, (7) documenting, and (8) evaluating
the system and the process followed in putting the system in place.7

Users of the system's output are coparticipants in its development, particu-
larly in steps 1,3,5,6, and 8. Heany's inclusion of the user in all but the
physical design and programming of the system is progressive thinking for
someone writing so early in the history of the field. He demonstrates even
further that he is ahead of his time in his stress on the iterative nature of the
process, a feature of systems development that was not easy to carry out
given the state of computer technology in 1968: "These steps in system
development often overlap. It is not always possible to finish one step
before going on to the next. Furthermore, the process is iterative; designers
are often forced to recycle." s

Approximately a decade later, the recognition of the need to include the
user in system analysis and design, as well as a dissatisfaction with the
standard tools of systems analysis (flowcharts, English narrative to des-
cribe the proposed system) gave rise to structured systems analysis. The
stages in the development life cycle remain approximately the same in this
updated version of systems analysis, but the techniques employed to do the
analysis (and later the design) have evolved. Wasserman, in discussing the
latest techniques-including Structured Systems Analysis (SSA)-also
prefers to call the entire predesign phase by an updated name: "In this
article, the term 'requirements analysis and definition' (RA&D) will be
used to encompass the traditional notion of 'systems analysis' and the
activity of producing a system specification."' He mentions in passing that
a large number of techniques have been devised, developed, and used to
assist in the requirements analysis and/or specification phases of the
software life cycle and then goes on to describe in detail a few of these
methods. One such method is SSA which is intended to be used in conjunc-
tion with Structured Systems Design (SSD). SSA incorporates four separate
concepts or tools which Wasserman describes as follows:

(i) Data Flow Diagrams show the flow of data between various process-
ing units along with the processes to be carried out and the stores of data
that are created, accessed, and modified throughout the system. A process
is described in non-procedural terms within the box. Each box may be
"explored"into another level of detail (or multiple levels) showing addi-
tional data flow, error conditions, and similar items.

(ii) A Data Dictionary records information about all of the various data
items and constraints upon them.

(iii)Immediate Access Analysis is based upon a relational data base
design to show the data base and the types of operations that will be
performed.

(iv) Program Design Language ("Structured English") or Decision
Tables are used to show the process logic for each process box.'0

Of even more interest than the new tools proposed by SSA are the reasons
that are given for their development. Gane and Sarson, in the first chapter
of their basic text on SSA, identify four limitations of the pre-SSA analyti-
cal tools: (1) There is no "model" in data processing unlike in the engineer-
ing sciences-i.e., there is no way of showing a vivid tangible model of the
systems to users before the system is actually in operation. The pictorial
tools-e.g., the Data Flow Diagrams-of SSA are intended to give the user
a better "model" of the system than was previously possible. (2) English
narrative is too vague and long-winded. (3) Flowcharts do more harm than
good since they trap the analyst into a commitment to a physical imple-
mentation of the new system prematurely-e.g., whether the input will be
on cards or through a CRT. (4) There is no systematic way of recording
user preferences and trade-offs." This awareness of the need to give the user
what Gane and Sarson call a vivid tangible model of the system is thus one
of the primary goals of this updated version of systems-development tech-
nique. The next step toward the production of a "vivid tangible model," as
we shall see in the next section, is the technique of prototyping.

Library Systems Development

The stages of library systems development, as described in the literature of
the profession, also vary in name and number but involve essentially the
same phases as in development of other types of systems. As table 2 shows,
Robinson breaks the development cycle into eight stages while Corbin and
Fasana define a six-stage life cycle.

It is worth noting that Fasana emphasizes that his division into six stages is
somewhat arbitrary and approximate and, more important, that while in
theory the steps in a systems study should be done in sequence, "in fact, the
process is iterative and overlapping." 15

Since every author writing on library systems development, like every
author writing on general systems development, defines the stages slightly
differently, while still grasping the life cycle in essentially the same way-
i.e., as "the systematic and logical analysis of a problem and the design of a
system to correct any of the inefficiencies or errors which exist in the
current operations" 16-- there is no point in describing further the various
development phases as defined by each author. What is significant in this
consistency in the literature of library systems development and different
from the literature of general systems development is the emphasis on the
need for the librarian to be trained in the role of the systems analyst or at
least to have a basic understanding of the techniques of the system analyst.
Author after author emphasizes that a library system designed exclusively

TABLE 2
THE STAGES OF LIBRARY SYSTEMS DEVELOPMENT

ACCORDING TO ROBINSON, CORBIN, AND FASANA

Robinson12 Corbinl3 Fasana14

1. Determine feasibility; 1. Project planning and 1. Preliminary study;
management;

2. Data gathering; 2. New systems 2. The descriptive phase;
requirements;

3. Data analysis (Procedure 3. System evaluation and 3. The analysis phase;
performance analysis); comparison;

4. Design and development
phase;

4. System design; 4. System design and 5. The implementation phase;
programming;

5. Specify system; 5. Acquisition of hardware, 6. Evaluation and feedback.
software, and vendor
assistance;

6. Program specification; 6. System implementation.

7. System testing;

8. Implementation.

by nonlibrarians will never answer the needs of the library it is meant to
serve.

Fasana says that while the technical assistance required by libraries-with
the onset of library automation-can be partially supplied by technicians,
the coordination of these nonlibrary technical specialists can only be done
properly by librarians because the system that will be developed will
eventually have to be operated by librarians. He concludes: "The need,
therefore, for librarians to gain experience and some level of expertise in
systems analysis to guide the design and development of automated sys-
tems and then to operate them is becoming increasingly critical." 17 Chap-
man, one of the foremost writers on library systems analysis, states that the
systems study must be done by the library organization and not for it if the
study is to be successful. Since the staff must be familiar with the recom-
mended operational structure and procedures in order to carry out such a
study, he concludes that systems analysis and data processing courses must
be included as a required part of library education. Writing in 1973, he
notes that "many library schools are beginning to recognize the need for an
introduction to systems study and data processing," in recognition of the

fact that "library systems analysis, evaluation, and design will be ineffec-
tual unless done by persons who are trained or formally educated in
librarianship." 18

Carter and Griffin go one step further and propose that the librarian
should know not only systems analysis but also programming in order to
facilitate effective library system development. Carter poses a rhetorical
question as to where the main responsibility for library automation should
fall and then answers it unequivocally: "Who should be the person(s)
responsible for performing systems analysis in a library when a probable
result is automation of one or more technical processing functions? Proba-
bly, the most frequent answer is that the analyst, or at least the project
director, will be someone who is also a librarian with some training in
programming."' 9 Griffin also advocates the training and use of the librari-
an/programmer/analyst. He adds to the obvious reason that a librarian
understands libraries the additional argument that if the analyst is also the
user that the motivation for effective systems development is heightened:

It is unfortunate but true that the best environment for library program-
ming is within the library by programmer-analysts who have had train-
ing and appropriate experiences as librarians. They know why libraries
do the peculiar things they do, and they have some interest in doing
things better. If they are on the library staff, they are visible and face the
prospect of living with satisfied or dissatisfied users-a good incentive to
make the system work well.20

This involvement of the user in the design of the system is one of the
cornerstones of prototyping methodology and will be discussed in detail in
the following chapter on the prototyping approach to systems develop-
ment. The librarian as systems analyst is a key component in the adapta-
tion of prototyping to a design methodology that is viable for developing a
microcomputer-based online library catalog, and will be dealt with in
detail in section 3.

THE PROTOTYPING APPROACH TO SYSTEMS DEVELOPMENT

Prototyping: A Definition and Rationale

As discussed in the previous section, Wasserman's 1980 article detailing the
history of information system design methodology cites the "custom-
made" method of the sixties, the life cycle approach of the seventies, and
the improved life cycle approach-Structured Systems Analysis and Struc-
tured Systems Design-that arose in the late seventies. Gane and Sarson, in
their textbook on SSA, stated that one of the major reasons for the introduc-

10

tion of structured systems analysis was the need for what they called a
"vivid tangible model," which they claimed the pictorial tools in their
book would give.

It is this same Wasserman-who in 1980 described SSA as the latest tech-
nique in systems development-who shows up just two years later as the
author of one of the Working Papers from the ACM SIGSOFT Rapid
Prototyping Workshop held in Columbia, Maryland in April 1982 and
published in a special issue of ACM Sigsoft Software Engineering Notes in
December of the same year. His paper opens in an almost apologetic tone
as though justifying his about-face from his position as a major proponent
of the structured life cycle approach only two years earlier. While com-
mending the "systematic approach to software design and development,"
he catalogs the shortcomings that have caused him to change his views
during the two years since his previously cited article. Since Wasserman
states clearly and succinctly the essential argument against the life cycle
approach (and by inference for the prototyping approach) which begins
nearly every article on prototyping, it is quoted here at some length:

In general, efforts to follow a systematic approach to software develop-
ment involve putting increased effort into requirements analysis, specifi-
cation, and design, with the expectation of lower costs for testing and
system evolution, since the implemented system will represent a better fit
to the user's needs and will operate more reliably than would otherwise
be the case.

We found much to commend such a systematic approach to software
design and development, but also found one significant shortcoming:
there may be a long delay between the early stages of analysis and
specification and the actual delivery of a tested, documented, reliable
system.

...Two problems arise when trying to follow systematic methods:

(1) the user's needs may change significantly during development
(2) the user has no system in the interim.

When the system finally becomes operational, it may do what was
originally specified, but user experience with the system may show that
what is needed is quite different.21

Another problem with the life cycle approach frequently mentioned in
prototyping literature is that the user does not always know precisely what
his needs are or may be in the future." Conversely, the system designer may
not be able to understand what the user really wants even if the user himself
clearly understands: "When we attempt to build systems with novel capa-
bilities, we often imperfectly understand the true user needs." 23

The solution to each of these problems, according to the authors who
stated them, is a relatively new approach to systems development, the basic

11

principle of which-in Wasserman's words-is "let's build one of these
and see how it works." 24 First of all, this methodology directs itself to the
problems of changing user's needs and the lack of an interim system:

We believe that each of these problems could be alleviated to some extent
if the intermediate products of the systematic development process
included preliminary versions of the system. Such preliminary versions
would be helpful to both the user, who would obtain something tangible
to use, and the developer, who could determine the feasibility and cor-
rectness of the earlier work, as well as modify the preliminary system
based on user experience. 25

The hands-on preliminary version or versions of the system, according to
Taylor and Standish, would also solve the problems of the user's not being
sure of what he needs and the builder's not understanding what the user
says he needs:

Exposure to working systems is often a helpful learning method. Look-
ing at a system design on paper may not be as effective as direct exposure
to the system behavior, since the user can often understand the latter
without technical training, whereas it takes technical training to exam-
ine a design and to imagine what its behavioral implications are....

There is a learning process involved in articulating the true user needs,
which involves exposing the user to a working initial version of the
system and seeing if he is satisfied.2 6

There is one last argument for producing a working version of the system
which the user can interact with at an early stage of the system's develop-
ment. This reason was mentioned in the literature of library systems
analysis with regard for the need to involve the librarian in the design of a
library system. It is, of course, user involvement. In other words, when the
user interacts with the working system, he is forced to think about the
system's functioning, needs, and shortcomings. Thus, in listing the rea-
sons for building a prototype, Wasserman concludes that "it would give
the user a more immediate sense of the proposed system and thereby
encourage users to think more carefully about the needed and desirable
characteristics of the system., 27

It is interesting to note that the need to interact with a working version of
the system, before a final commitment is made to implement it, is recog-
nized in systems-development literature of more than a decade ago. Corey
and Bellomy, in their 1973 article on determining requirements for an
automated library system, describe a strategy called "the pilot test
approach" which could be viewed as a precursor to the contemporary
prototyping approach:

The pilot test approach to implementation also allows the requirements
study to be shortened with little risk. As before, a pilot test approach may

12

be used even though a model requirements analysis was conducted; in
fact it often is. But there are situations where the pilot was seen as an
alternative to a model requirements analysis. The new system is tried
only for a subportion of the procedures that would be impacted by the
complete operational system. For instance, the new system might be
installed at a branch instead of the main library, or it may be tried on just
monographs and not serials. The pilot is watched closely and after a
preestablished period of time, the decision is made to convert fully to the
system or scrap it. Pilot projects have the merit of offering empirical
evidence of a system's suitability for meeting library requirements. Hard
data are superior to the predictions of the most highly credible studies.2

As we shall see, there are several significant differences between this "pilot
test approach" of a decade ago and contemporary prototyping. First, there
is no mention of iterative developmental stages: the pilot system is imple-
mented, tried out, and accepted or scrapped. This was unavoidable in the
early seventies because computer technology had not yet reached a stage
permitting interactive and incremental design improvement. Second, the
pilot project is only sometimes seen as an alternative to detailed require-
ments analysis; essentially it is intended to be utilized at the implementa-
tion stage, somewhat later in the developmental cycle than in modern
prototyping. However, it does recognize the fact that no paper analysis can
prove a system's suitability or lack of suitability for meeting the require-
ments for which it was designed like a working model.

Four years later, writing in 1977, Patricia Zimmerman lists the need for a
dynamic model of the system-i.e., a model which permits
modifications-as one of the cardinal principles of systems design. Still
limited by the available technology at the time she was writing, she
concedes that economic considerations may preclude a truly dynamic
model but recognizes that extensive iterations of a paper representation of
the system are the essential minimum required to prevent user dissatisfac-
tion later:

Cost factors may well prohibit a truly dynamic model, but some form of
paper representation may be adequate. A representation can be as simple
as flowcharts along with sample inputs and outputs and may be dynamic
as a result of iterations of this documentation. The need for this step
becomes clear the first time a user says, "I didn't think the report would
look like that-it's not what I had in mind." It seems impossible to avoid
this reaction, the real damage is when it first occurs after
implementation. 29

Thus, even before we offer a formal definition of the prototyping
approach, it is clear that the concept involves two essential ideas: (1) design
by means of a functioning, working model of a proposed system; and
(2) iterative refinement of that design. Both of these concepts are reflected

13

in the many variations of names given to the prototyping approach in
systems-development literature dealing with this method. Read and Har-
mon call it "iterative requirements analysis," 30 Podolsky speaks of a "re-
cursive development cycle," 31 Keen terms it "adaptive design," 32 MacEwan
advocates "iterative development accounting," 33 McCoyd and Mitchell
describe "system sketching,""34 and Smoliar discusses the "transforma-
tional approach to software development." 35 All of them refer to an
approach that is defined in Naumann and Jenkins's seminal article on
prototyping as the use of a preliminary system "that captures the essential
features of a later system....A prototype system, intentionally incomplete,
is to be modified, expanded, supplemented, or supplanted." 36 It is this
second half of the definition-a system which is to be modified, expanded,
supplemented, or supplanted-which brings us to the next step in our
definition of prototyping-an analysis and description of the two distinct
types of prototyping.

The Two Types of Prototyping

If we revise Naumann and Jenkins's definition slightly so that it reads "a
prototype system...is either to be modified, expanded, and supplemented,
or supplanted," we arrive at a definition of the two distinct types of
prototyping described in the literature although not always clearly distin-
guished one from the other. The prototype information system which is
intended to be supplanted by a later, separate production system is close in
concept to the prototype engineering system. Like a prototype engineering
model, its purpose is primarily to revise and complete the specifications for
a later, more sophisticated model by giving the user a working model to see
and the designer a working model to test against the user's expectations
and specifications. The second type of prototyping-which is intended to
be modified, expanded, and supplemented-is the type that is of primary
interest in this work, both because it is the method on which the prototyp-
ing model for library catalog systems is built and, on a theoretical level,
because it is unique to information systems design as Maryam Alavi points
out:

This use of the prototype system (as a system that evolves into the
production system rather than a system which is replaced by the produc-
tion system) reveals a difference between an information system proto-
type and a hardware or engineering prototype. In engineering fields, a
prototype is usually only a provisional system and is often discarded after
experimentation and replaced by the operational system.37

Thus prototyping can be broken down into two-system, "throw-away"
prototyping, and one-system, "add-on" prototyping. Hans Keus, in an
important article defining and clarifying the precise differences between

14

two-system and one-system prototyping,3 8 assigns them the names Rapid
Specification Prototyping (RSP) and Rapid Cyclic Prototyping (RCP)
respectively, and henceforth in this work they shall be referred to by these
names.

Rapid Specification Prototyping
In rapid specification prototyping we generally deal with throw-away
prototypes which are models of specified parts of the functional system.
The use of these RSPs enables intense user participation in a relatively
short period of the total system-development process. The objective is to
increase communication between the system designers and the users in
order to revise, refine, and complete the specifications. In this type of
prototyping, no attempt is made to incorporate into the prototype all of the
features desired in the final system, only those which are suitable for testing
in a working model:

Because of the nature and the application mode of the RSP only a spe-
cially selected set of quality factors is applicable. In general quality fac-
tors like maintainability, efficiency, portability, documentation and
completeness are of little or no importance. However, in order for the
prototype to fulfill its function properly, the following set of quality fac-
tors is prerequisite: speed of realisation, modifiability, testability, com-
municativeness, accessibility. 39

In this type of prototyping the tools and the programming language in
which the prototype is developed often differ from those with which the
production system is built. In addition, while RSP involves a significant
deviation from standard life cycle systems development, it does not replace
the entire life cycle but only a part of it.

In an early (1978) article on prototyping, which does not refer to the add-on
type of prototyping at all (probably because this technologically more
advanced concept had not yet appeared by this date), Michael J. Earl
presents a model which he calls "Prototype methodology within the
systems development cycle." It is in fact a model of RSP-as opposed to
Rapid Cyclical Prototyping-within the systems-development cycle, but it
nonetheless illustrates graphically the place of rapid specifications proto-
typing in the life cycle process.

Note that in this model the prototype is built and tested at the analysis and
design stages, after feasibility studies are performed. The prototype is then
run through all the remaining steps of the life cycle-programming and
testing, conversion and installation, and monitor and review. If it is
decided to produce a second or third prototype, these subsequent working
models are respecified, redesigned, reprogrammed, and retested until it is

15

Figure 1. Rapid Specifications Prototyping (RSP) within the Systems
Development Life Cycle (Based on Earl's Model) 40

decided that the final system is ready to be built, ending the prototyping
phase of development. The final or production model, which grows out of
the changing specifications produced by testing each subsequent proto-
type, then proceeds through the remaining steps of the life cycle, as cited
earlier. Thus RSP turns the life cycle into a loop of designing and testing
progressive working models but does not replace it. Each prototype here is
a distinct, separate model, replacing the previous model-i.e., the steps are
discrete, not continuous.

Rapid Cyclical Prototyping
As we have seen, in the first of the two models for prototyping, a functional
model is constructed to establish what the system should do-i.e., to refine
rapidly identified basic requirements. This model is later discarded and

16

replaced by a finished product, often implemented in a different (generally
more traditional) programming language.

The second prototyping model is constructed on the assumption that the
prototype will be refined and augmented to produce the final system. This
model is based on the use of a very high-level programming language
throughout (as opposed to the possibility of using a high-level language to
program the prototype and a lower level language for the production
system in RSP), a database management system, and/or an applications
generator (the tools of RCP will be discussed at length in the next section).
Naturally, the initial version, intervening versions, and final version are
all in the same language for in effect they form a continuum, a single
evolving system.

Rapid cyclical prototyping, the second model, affects the systems-
development life cycle in a much more drastic way than rapid specifica-
tions prototyping. With this model it is not just portions of the life cycle
that are changed. RCP replaces the traditional life cycle with a four-part
cycle, the stages of which are defined with surprising consistency in the
prototyping literature (unlike the stages of the traditional life cycle which
are never defined exactly the same in any two works). In one of the few
articles on prototyping that discusses the difference between the two types
of prototyping (the majority of articles in the field do not relate to the
difference between the two models), Bruce Blum points out the impact of
RCP on the life cycle, although he doesn't call it by Keus's term RCP:

The first model does not necessarily impact the traditional software life
cycle. It may increase the cost and time of the initial stages to implement
the prototype, but decrease the cost and time of the entire life cycle due to
a better understood and more realizable target. However, the second
model has a significant impact. It replaces portions of the middle of the
life cycle with the process of prototype refinement. In order to quickly
generate refinements, the model requires tools that provide rapid turna-
round of prototypes. As a consequence, the end-product is more stable
and closely aligned with the user's needs.41

Maryam Alavi, in a 1984 article on prototyping, presents a model (see fig. 2)
showing the differences between the prototyping approach and the life
cycle approach to information systems development. Although she does
not specify that her model depicts specifically add-on prototyping or RCP,
it is in fact a parallel model to Earl's earlier model-as Earl's model showed
the place of RSP in the life cycle, Alavi's model shows the replacement of
the life cycle by RCP.

This same four-stage cycle-identify, develop, use, and revise-is defined
two years earlier by Naumann and Jenkins who, again without specifying

17

Protototyping Approach

Figure 2. Rapid Cyclical Prototyping v. the Life Cycle Approach
(Based on Alavi's Model) 42

that their model describes add-on prototyping or RCP, present a prototyp-
ing model nearly identical to Alavi's (and possibly on which Alavi's later
model is based). Their model, however, is constructed as a data flow
diagram rather than the flow-chart type structure of Alavi's (see fig. 3).

The first stage in this model, in which basic user requirements are identi-
fied, is left vague by both Naumann and Jenkins and Alavi. It must be
assumed that the "identify" stage includes at least an abbreviated study and
definition of systems objectives, as well as some sort of formulation of the
system's general design and structure before the prototype is programmed,
as illustrated in the case study in section 4. Alavi herself points out that the
"quick and dirty" approach of providing the user with a working system

18

,1 _ . ~,

m mA
Life Cycle Approachl

Figure 3. The Rapid Cyclical Prototyping Model (Based on Naumann and
Jenkins's Model) 43

before the goals and specifications have been thoroughly worked out can
lead to problems such as poor planning, budgeting, and control of the
project 4 at the same time that it helps solve other problems such as a
system that does not meet the user's desires. The other key difference
between this model and the RSP model, aside from its virtual replacement
of the life cycle, is that this model is a continuum rather than a set of
discrete prototypes. Once the system is programmed, the same system is
modified online continually until it satisfies the user's requirements.

19

Prototyping Roles

The models for rapid cyclical prototyping of Alavi and of Naumann and
Jenkins describe a four-step interactive process between two elements that
Naumann and Jenkins call "user" and "builder." Both of these elements
interact with the application system in a three-way iterative cycle. In this
cycle, the initial version is defined, constructed, and used quickly. As
problems are discovered, revisions are made to the working system in its
user's environment. In order to define the working relationship between
the user, the builder, and the system, Naumann and Jenkins present a
second model which they call "Prototyping Roles." According to this
model, the user is responsible for the functions of the application system
starting with the definition of the system's basic requirements. By using
and evaluating the system which the builder constructs according to these
basic requirements, the user discovers problems and communicates them
to the builder. The builder then constructs and revises the system in
response to the feedback of the user as shown in figure 4.

ENTS
SFITS

Figure 4. Prototyping Roles (Based on Naumann and Jenkins's Model) 45

As we see from this model of prototyping roles, it calls for a radical
departure from the roles of the user and the builder in the life cycle

20

approach. Users play more active roles in prototyping than in the tradi-
tional systems-development methods. As Naumann and Jenkins point out,
"in effect they are system designers who use and evaluate a system, and in
the process, identify problems and suggest solutions.""4 It is the users who
set the pace of development by the time they spend using and evaluating
the prototype and who determine when the cycle of revision and refine-
ment ends. The builder's role is to construct successive versions of the
systems resolving conflicts between the user's needs and desires and the
form of the system as constrained by technology and economics.

It is the model of prototyping roles that is of primary interest to us in the
development of a microcomputer-based online library catalog. The adap-
tation of this model of prototyping roles to the specific configuration in
the presence of which it is suitable for such an application is the subject of
the next section.

PROTOTYPING ROLES AND LIBRARY SYSTEM DEVELOPMENT

The Model

Naumann and Jenkins's model of prototyping roles is eminently suitable
for the in-house development of an online library catalog, notably when
using a powerful microcomputer (probably a multiuser supermicro) with
a hard disk. A computer with less capability than this is unlikely to meet
the requirements of any but the smallest library. A microcomputer with a
hard disk is suitable for in-house development of an online library catalog
for a small- to medium-sized library (5,000 to 50,000 books), such as many
special libraries and school libraries. Libraries larger than this are likely to
require a minicomputer or main-frame, and will probably turn to the
services of an outside organization to help them meet the complex require-
ments of a very large online library catalog. Thus the use of the model is
recommended for libraries of a size that permits their collection to be stored
on the disk of a microcomputer.

The software required for prototyping a library catalog includes a database
management system with application generator capabilities. A precise
definition of this type of software will be given later.

The personnel requirements for prototyping an online library catalog on a
microcomputer are low: a librarian-analyst, with the type of background
described in section 1-that is, a basic familiarity with computers and the
principles and techniques of systems analysis-and an in-house pro-

21

grammer. Naturally there can be more than one librarian working on the
system, and there can be more than one programmer. However, as the case
study described in section 4 demonstrates, one of each, working side by
side, can be very effective. In rare cases the librarian can also be the
programmer, but for the most part the complexity of the programming
required for an online catalog, even with sophisticated software, indicates
the need for an experienced programmer. Unless the librarian is competent
in programming beyond the level of even most computer-literate librar-
ians, it probably will not be efficient to have the builder and the user
manifested in the same person. In addition, even a librarian who is a
competent programmer would do well to have input and feedback from at
least one other person. Therefore, one builder and one user appear to be the
minimum number of personnel recommended.

Thus Naumann and Jenkins's model of prototyping roles would be
adapted for library system design to include a librarian/analyst (user), an
in-house programmer (builder), and a microcomputer with a hard disk
and an applications generator (system) as shown in figure 5.

Figure 5. Prototyping Role Model for Library System Development

The Software

In view of the fact that the application generator is an integral part of the
model of prototyping roles for online library catalog development, a
discussion of the type of software required for the application of the model
and of its significance for prototyping seems appropriate at this point.

22

Library software comes in three types: (1) off-the-shelf, ready-made systems
(e.g., a fully-programmed catalog system, ready for input of a library's
individual records); (2) a completely custom-developed system, pro-
grammed by a professional software house, usually in a traditional pro-
gramming language; and (3) a customized system programmed with an
applications generator. Our model utilizes the third method which can be
compared to using a sewing machine to make one's own dress as opposed
to buying it off the rack or having it made by a dressmaker. For a small- to
medium-sized library with specialized demands it can mean the best of
both worlds.

Since the first feature of an application generator is that it includes a
database management system (DBMS) we will begin with a definition of a
DBMS. Although databases-and thus DBMS applications-vary widely,
there is nonetheless a more-or-less consistent set of DBMS features which
can be identified. A DBMS is a layer of software between the physical
database itself-i.e., the data as actually stored-and the users of the
system. It is a set of programs that hides the physical organization (point-
ers, hashing, etc.) of the data from the user and provides a framework that
allows the user to define and build databases without extensive program-
ming knowledge. All requests from users for access to the database are
handled by the DBMS, thus shielding database users from hardware-level
detail in much the same way that programming-language systems for
languages such as COBOL shield programming users from hardware-level
detail.

The architecture of a database system is divided into three general levels-
i.e., internal, conceptual and external. The internal level is the one con-
cerned with the physical storage of the data; the external level is the one
concerned with the way in which the data is viewed by individual users,
and the conceptual, level defines a community user view. For example, the
external level for users from the personnel department-i.e., the part of the
database of interest to them-may be a collection of department record
occurrences plus a collection of employee record occurrences, while users
from the purchasing department may regard the database as a collection of
supplier and part record occurrences. The conceptual model (sometimes
referred to as the data model), on the other hand, is a representation of the
entire information content of the database, a view of the total database
content, or multiple occurrences of multiple types of conceptual records.
For example it may consist of a collection of department record occurren-
ces plus a collection of employee record occurrences plus a collection of
part record occurrences plus a collection of supplier record occurrences. An
external record (or logical record) is not necessarily the same as a stored

23

record (or physical record). The user's data sublanguage-i.e., the subset of
the programming language which is concerned with retrieval and storage
of information in the database-operates in terms of external records, the
records the user sees when he retrieves information. On the other hand, the
conceptual record is not necessarily the same as either an external or an
internal (stored) record. It is defined by means of the conceptual schema
which is a definition of the union of all individual users' views. The
database management system, as we mentioned, is the software that han-
dles all access to the database. C.J. Date describes what occurs in a typical
access request with regard to this three-part schema:

Conceptually, what happens is the following: (1) a user issues an access
request, using some particular data manipulation language; (2) the
DBMS intercepts the request and interprets it; (3) the DBMS inspects, in
turn, the external schema,....the conceptual schema...and the storage
structure definition; and (4) the DBMS performs the necessary opera-
tions on the stored database. For example, consider what is involved in
the retrieval of a particular external record occurrence. In general, fields
will be required from several conceptual record occurrences. Each con-
ceptual record occurrence, in turn may require several fields from several
stored record occurrences...the DBMS must retrieve all required stored
record occurrences, and then construct the required external record

47occurrence.

In a DBMS, files, records, and keys are all defined by the user, and in most
systems (including all applications generators) the user can design his own
forms, tailoring them to suit the particular record type. Once the format of
the record has been designed and entered, the DBMS enables the user to
enter, change, or delete data by filling in the form he/she has created. The
information may then be sorted and retrieved in various ways. The data is
entered only once which reduces the chances of errors. Database manage-
ment systems vary considerably in terms of programming skill require-
ments. Some of them were designed with programmers in mind for use in
developing complex application programs-such as online catalogs. Oth-
ers require no more programming skill than that needed for word
processing.

The extent of the user-friendliness of the DBMS depends largely on its
structure. The hierarchical model is based on a tree structure and groups
items in a predefined order. It is limited as to the type of data which can be
conveniently represented, since every element has a defined relationship
with another more general or more specific type. The network approach
differs from the hierarchical in that it does not limit the number of
superiors or subordinates to which a record can be linked. However,
because there is access from either direction, link patterns must be consi-
dered and the retrieval commands are complex. The third type of DBMS,

24

the relational, is the last to appear on the scene chronologically and the
most user friendly. It is based on the mathematical construction known as
the relation, which can be represented graphically as a table with rows and
columns. In this type of DBMS, data is arranged into tables of a fixed
number of columns (fields) and a variable number of rows (records). This
arrangement permits a high degree of data independence-since there are
no formal internal link structures-and allows storage in a nonredundant
form. The DBMS dBase II, is of this relational type, which is the recom-
mended type for use with the prototyping model for the reasons noted
earlier. Another advantage of the relational database is that it supports the
use of fourth-generation languages (4GL) such as FOCUS, NOMAD,
RAMIS, and INQUIRE. These languages are also known as nonproce-
dural languages, but Read and Harmon claim that this term is too limited
because "in large, real world systems a liberal sprinkling of procedural
code (e.g., IF statements) is essential for fine-tuning the main nonprocedu-
ral code."48 Some of the advantages of these nonprocedural or fourth
generation languages as Read and Harmon describe them are:

-90% reduction in physical code over third generation languages such as
COBOL;
-performance of major rewrites simply and routinely when the organi-
zation changes;
-dynamic, relational database accessing, which lets the user collate data
on-the-fly from all the key fields and data fields...more simply, any data
can be retrieved from anywhere with no restrictions;
-language code comprising a wide range of powerful nonprocedural
verbs with English syntax;
-interactive file editor, permitting on-line interactive update and
retrieval;
-large new pool of programming talent (i.e., neither prior program-
ming experience nor technical training are prerequisites for use of 4GL
programming techniques).49

All of these features characterize dBase II, the software package used in the
case study described in section 4, although the amount of previous pro-
gramming experience required varies with the complexity of the applica-
tion. Applications as complex as the online catalog of the case study
require a programmer or someone with considerable programming expe-
rience, while simpler applications, including the first model, based on a
straightforward use of dBase II's relational structure, can be programmed
with minimal experience and little computer background.

The application generator, a type of software which is characteristic of,
although not exclusively designed for, microcomputers, also varies in
capabilities and degree of skill required for use. However, like the DBMS,
the application generator has several consistent features. First it includes

25

or "sits on" a DBMS. Second, it usually possesses (1) a screen generator,
(2) a menu generator, (3) a user-friendly query language (a DBMS may have
an interface with a host language rather than a query language of its own),
and (4) a reports generator. Blum, in describing prototyping tools, defines
the application generator as follows:

An application generator is an interpretive system that is molded to a
specific environment. A user of the system types in a specification of the
application desired and the system responds by interpreting the specifi-
cation and performing the desired function. Typical functions include
database management and update, report generation, retrievals, graph-
ics, statistical analysis, and screen layouts. °

Such high-level interpretive tools form the basis for the innovative type of
system development offered by the prototyping role model. By offering a
level of ease of modification not offered by traditional languages such as
COBOL or FORTRAN, combined with relative ease of programming and
formatting, they permit the kind of interactive, online system development
which will now be described in the case study which forms the subject of
the next section.

PROTOTYPING AN ONLINE CATALOG IN THE LIBRARY
OF THE GRADUATE LIBRARY SCHOOL

OF HEBREW UNIVERSITY: A CASE STUDY

The library of the Graduate School of Library and Archive Studies of
Hebrew University is a small library in size-10,000 volumes and 115
journals. Nonetheless, the library required a bibliographic record for its
online catalog which possessed features of a large library. Because it is the
most extensive collection in library and information science in Israel, and
the library of the oldest and only graduate library school in Israel, it was
felt that it should set an example in its catalog. That is, full cataloging was
established as the standard for its automated record, which was to contain
all the information on the cataloging card plus Library of Congress subject
headings for subject access to the material. This need for a long, complex
record-coupled with the determination to develop an online catalog
which permitted the type of subject access that a card catalog generally does
not (i.e., by up to six or seven different subjects per volume)-indicated the
need for a software package with capabilities beyond the requirements
which the size of the collection might suggest.

The Library School library was in a unique position with regard to
automation. While the rest of the Hebrew University Libraries were being
automated through the university's specially designed ALEPH system, it

26

was decided after much deliberation not to become a part of this network-
at least for the near future. There were two reasons for this decision.
(1) The library school possessed two multiuser microcomputers and an
in-house programmer to run the computer laboratory for the students that
these computers serviced. (2) Ironically, simultaneously, because the
Library School is not part of a larger, wealthier faculty, it did not have the
financial resources to connect to the ALEPH system and pay the monthly
charge. A third reason was proposed, which in the final analysis did not
figure in the planning of the system: that an in-house designed system
could be used as a laboratory for the students. In the ultimate compromise
between sophistication of design coupled with efficiency of storage struc-
ture and simplicity of programming (i.e., programming within the capa-
bility of library school students), it was decided to opt for the most highly
sophisticated system possible within the limits of the equipment, the
software, and the programmer's talents. This decision was reached at a
relatively late stage in the planning only after it had been decided that full
AACR2 cataloging was to be used in the online catalog's bibliographic
record. The initial and primary goal was to design an online catalog that
would facilitate retrieval of material by subject with the aid of Library of
Congress subject headings, including material not covered in the manual
catalog-so called "fugitive material": special reports and the various
publications sent out periodically by library schools and other organiza-
tions. Subject retrieval in a manual (card) catalog required the typing of
cards for each of the up to six or seven subject headings that could be
assigned to a single book or report, an investment in employee time and
catalog space that was considered unreasonable. Obviously, computeriz-
ing the bibliographic records so that all the data for each record would be
entered only once would be an enormous saving in manpower and the
physical space the six to eight cards per book would require in the card
catalog.

As mentioned, the resources available for automation of the catalog were:
(1) an 8-bit IMS microcomputer, with three processors and an 85 megabyte
disk, which had been acquired for the computer laboratory used in teach-
ing the students; (2) a librarian-analyst with approximately the back-
ground described in section 1; (3) an in-house programmer-lab technician;
and (4) dBase II, one of the most popular and widely used of the commer-
cial DBMS/application generator packages. Several other packages had
also been acquired by the library school and were considered for use. They
were either file management, rather than database management or, like
Superfile, "free format" information retrieval packages. Since we wanted a
record with defined fields, it was decided to program the catalog in dBase
II. The programmer estimated that 12 to 15 megabytes would suffice to

27

store the records for 10,000 books, so disk storage space was determined to
be more than adequate. The programmer and librarian worked in close
physical proximity so that the builder and user parameters of the model
were present. The final parameter, the application generator dBase II, was
judged suitable for the application because of its powerful capabilities and
ease of programming. Since the software is such an important tool in the
prototyping process, a detailed description of dBase II's structure and
capabilities, as an example of the type of software required, would be
appropriate at this point.

dBase II

Ashton-Tate's dBase II is probably the best known and most widely used of
the growing number of database management systems designed for micro-
computer applications. It is composed of a group of programs which allow
the creation and manipulation of data files structured into the tables of
rows and columns characteristic of relational database management sys-
tems. It utilizes a series of simple commands which allow the creation,
editing, deletion, printing, and display of stored records.

The dBase II system differs from file management systems, such as Super-
file (mentioned earlier), in that it allows the simultaneous processing of
two data files and, in general, that it is based on the relational model. In
addition, it possesses capabilities beyond those of a DBMS, capabilities
which permit it to be used as an application generator as well:

In addition to functioning as a data base management system with its
own command language, dBase II can be viewed as an application
generator that permits the creation of files of commands that operate
much like programs. The creation of such command files is much
simpler than conventional programming, however, and permits the
implementation of complex applications much more quickly....

In providing the capability to create and execute command files, dBase
II goes beyond the capabilities of a data base management system and
incorporates features associated with so called "application
generators"-programs designed to facilitate the writing of other
programs.5'

In spite of the ease of creating command files, relative to the skill required
to program in a conventional language, dBase II is nevertheless not
intended for users with no previous computer experience whatsoever. For
the most part, it is command-driven rather than menu-driven as are pro-
grams intended for end users with no programming knowledge. That is,
the user is required to master a set of commands and not merely choose
predefined alternatives from a list or menu displayed on a single screen. It
is an intermediate step, a package for the intermediate user who has a

28

certain amount of background and/or programming staff but whose
resources do not extend to the hiring of expensive professional systems
consultants and developers. In the article quoted earlier, Saffady relates to
the requirements for the use of dBase II in a library environment: "While
dBase II operations can be learned relatively easily and quickly, this is
certainly not a software package for the naive user. Librarians acquiring
dBase II for use in a particular application should budget sufficient time
for the study of the user manual as part of the implementation process." 52

Like other DBMS, dBase II files are composed of records. The maximum
record length in dBase II is 1000 characters with a maximum of 32 fields.
The maximum file size is 65,535 records, and the maximum length of any
single field (fields are fixed-length) is 254 characters.

One of dBase II's unique features is that it does not use predefined keys.
However, an index can be created simply by telling the system what the
temporary key will be for sorting. Index files maintain pointers in ascend-
ing order to the contents of fields in the database files. By using database
files with the appropriate index file it is possible to search the database file
very quickly. Up to seven index files may be kept up to date when their
database file is updated or edited or when records in a database file are
deleted. Because the index files are maintained for these functions in the
course of modifying the contents of the database file, it is not necessary to
invert indexes as a separate process-the files are kept constantly up to
date. The chief difference here from other programs is that the user does not
have to specify any particular fields as keys while designing the data entry
form. As a result he has the freedom to create various indexes based on any
field at any time.

The dBase II software also allows the user to perform searches without
specifying any index or key fields. Thus, for strategies that he knows will
be used often, he can use the indexed method which is much faster. On the
other hand, for doing unrestricted immediate searches, taking into account
that they may take much longer, he has the option of an unindexed search
on any field of his choosing at any moment. For example, a search on the
"Imprint" field (which gives the place of publication) of a catalog system
might not be required often enough to justify the disk space required to
index it. Nevertheless, if a user desires occasionally to retrieve all books
published in Chicago, for example, it can be done by searching the file
sequentially. Saffady discusses this important feature also with regard to
library applications:

One of the most powerful and useful features of dBase II is the ability to
combine the DISPLAY command with relational and logical expres-

29

sions in order to retrieve specific types of records. These capabilities are
of considerable importance in library applications. Thus, for a data file
consisting of bibliographic citations to magazine articles, the command
DISPLAY ALL FOR SUBJECT = 'MICROCOMPUTERS' will display
all records containing the value MICROCOMPUTERS in the SUB-
JECT field. The more complex command DISPLAY ALL FOR SUB-
JECT = 'MICROCOMPUTERS' AND JOURNAL = 'BUSINESS
WEEK' uses the Boolean AND operator to select and display all records
for articles about microcomputers published in Business Week maga-
zine. dBase II also supports the Boolean OR and NOT operators, as well
as the customary range of relational expressions. A substring operator
can be used to display records containing a specified character string in
specified fields.53

One final note on the capabilities of dBase II before we proceed to the
actual application. By adapting the data structure appropriate to the
system being developed, considerable flexibility can be gained. Thus,
while the maximum physical record is 1000 characters, the maximum size
for logical records depends only on the ingenuity of the system designer
and the needs of the specific application as the next section will show.

The First Prototype: RSP

In designing the online catalog of the Graduate Library School of Hebrew
University, both types of prototyping were used. In the first stage a model
was programmed by the librarian, using relatively simple programming
techniques, to determine the specifications and to see how dBase II's
programs would function on an actual, if simplified, system. In the second
stage, a much more complex system was designed with the specifications
determined by the librarian and the programming techniques determined
by the in-house programmer-technician. This system was then revised and
refined online and interactively by entering a database of actual bibliogra-
phic records. Thus the first model demonstrates the use of Rapid Specifica-
tions Prototyping and the second model the use of Rapid Cyclical
Prototyping in a library environment.

Once the goals of the system had been established (see references 47, 48, 49,
50), a thorough search of the relevant literature was begun on the subjects
of microcomputers and libraries, microcomputer software, recommenda-
tions for designing original in-house systems and methods of retrospective
conversion. In addition, in order to determine the sorts of requirements
and capabilities it was reasonable to expect in a custom-designed online
catalog, a thorough study of ALEPH was undertaken including field trips
to observe the system in action in the newly-opened Hebrew University
Library. Another trip was taken to the University of Haifa to view, and

30

discuss with its designer, their online cataloging system HOBITS (Haifa
Online Bibliographic Text System).

A preliminary set of specifications for field types and lengths, based on the
original definition of goals and the adaptation of ALEPH's bibliographic
record format to meet them, was then formulated by the librarian who
began experimenting with programming in dBase II. While the library
prototyping model proposed in section 3 uses only RCP-in the case of the
library school-RSP was used to help determine the "basic requirements"
of the prototyping model in a first system that was intended to be replaced.
The librarian here used a "throw-away" model in order to get the "feel" of
the DBMS, the general record structure which would be required, and its
capabilities using normalized records and the simple relational program-
ming techniques it offered. In programming the first model, the librarian
did not relate to efficiency of storage or response time, problems which the
limits of her programming experience and the time she would have to
devote to mastering dBase II to the level of a professional programmer
placed beyond her scope. The goal here was simply an online rather than a
written preliminary model of record construction and retrieval
possibilities-i.e., a specifications prototype.

The first librarian-programmed catalog system was based on a single file,
composed of maximum-length, 1000-character records of the following
structure:

FLD NAME TYPE WIDTH DEC
001 DDC C 020
002 INV:NO C 020
003 AUTHOR C 100
004 TITLE C 125
005 IMP:PP C 100
006 ADD:ENTR C 130
007 EDITION C 050
008 SERIES C 125
009 NOTES C 125
010 LC C 020
011 SUBJ:HEAD C 125
012 VOL:COP C 050
013 LOCATION C 010

** TOTAL ** 01001

The 13 fields defined were: (1) the Dewey Decimal Classification number;
(2) the Inventory Number assigned by the Jewish National Library to each
book; (3) the first author or editor; (4) the title; (5) the imprint (place,
publisher, date); (6) added authors, editors, compilers, or corporate bodies;
(7) edition number and description; (8) series to which the book may

31

belong; (9) notes on the book's form or content; (10) Library of Congress
Classification number; (11) Library of Congress Subject Headings assign-
ed to the book; (12) number of volumes and/or copies of the books the li-
brary possesses; and (13) the book's location-i.e., whether the book is on
the shelves, with the material reserved for courses, or in the journals section.
The added entries, series, and subject headings-all of which were fields that
potentially included more than one entry-were input in continuous
strings, and command files were programmed to allow Boolean searches
on any part of these strings. Thus authors could be search utilizing an
AND or OR operator which, in the case of authors, operated on any part of
the combined fields of AUTHOR and ADD:ENTR. Series could be re-
trieved from any position within the series string, and subject headings
could be retrieved with the AND or OR operators from any position with-
in the string input into the SUBJ:HEAD field. The entire catalog was
menu-driven with options for retrieval by author, title, series, subject head-
ing, or key word(s) in the title.

A small database of 60 actual bibliographic records was entered into the
catalog system to see if it worked, which it did. Thus it was established that
a catalog, permitting Boolean searches on several fields and-of primary
importance to the library school-subject searches, could be programmed
in dBase II. The field lengths were determined to be adequate for most
records but not for all thereby giving the librarian-analyst a fairly clear
idea of the changes in field length and type which would be necessary for
the next version of the catalog. This first model of the online catalog was
never considered as a viable system for permanent use. It operated on
unindexed files and therefore was unacceptably slow once more than 50 or
60 records were input. In addition, it was highly wasteful of disk space
since it used fixed length fields long enough to accommodate most occur-
rences in most bibliographic records. Clearly a more efficient structure
would have to be programmed. Just as clearly the first prototype had
demonstrated that a sophisticated online catalog programmed in dBase II
was feasible and that the field structure and lengths were approximately,
although not totally, satisfactory. The next step was to take the specifica-
tions determined through the first prototype and turn them into a catalog
system that was viable for entering 10,000 bibliographical records so that
the slow response time and inefficient storage structure could be improved.

The Second Prototype: RCP

Phases 1 and 2: Identify and Develop
The online catalog designed by the programmer from the librarian's

32

definition of "Basic Requirements and Design Specifications" took advan-
tage of the ease of programming and modification offered by dBase II's
high-level, nonprocedural programming language, but used a pointer
system to store the data rather than normalized records. The entire system
was designed to provide a flexible and inclusive external record while
minimizing the amount of disk space required for the internal or stored
records. Normalized records of the type used in the first model would
require allocating to each stored record the number of characters per field
that would cover all occurrences of the field in all bibliographic records.
Say for example that the average author requires 30 characters, but there
are also authors whose titles require up to 200 characters of space (e.g.:
"Conference on the Future Role of Computerised Information Services at
the University of London, London, 1977"). To allow 200 characters to the
author field for each stored record would waste a prohibitive amount of
disk space.

Another consideration was the need for certain features which the librarian
wanted to copy from ALEPH and which one would normally expect only
from a mainframe system. The most striking examples are the variable-
length field and the repeating field. It was clear that fields long enough to
accommodate all, or virtually all, entries in the AUTHOR/ADDED
ENTRY, TITLE, SERIES, and SUBJECT fields could not be pro-
grammed as they were in the first model, as fixed-length fields containing
the entire field entry. It was both wasteful of space and could not be
accommodated within a record the maximum length of which was only
1000 characters. At the same time, these same fields were fields which often
had more than one entry per bibliographic record-i.e., more than one
author, series, or subject-and therefore there was also a need for repeating
fields.

In designing the catalog, the working method agreed upon was that the
librarian would indicate the specifications and the programmer would
implement them through whatever programming techniques were feasi-
ble or inform the librarian that the specifications could not be imple-
mented in dBase II. As it turned out, virtually all the desired features were
able to be programmed into the system thereby demonstrating that the
limits of dBase II's capabilities are indeed dependent to a great degree on
the programmer's skill. Simple applications are available to beginners and
quite complex applications are possible for advanced users.

The original record (i.e., the user record-the record displayed on the
screen for input and retrieval) designed by the librarian and implemented
by the programmer according to the model of prototyping roles was, like
the first model, composed of 13 fields:

33

1-INVENTORY NO.
2-DDC NO. (Dewey Decimal Classification number)
3-LC CLASS (Library of Congress classification number)
4-AUTHOR ADDED/ENTRY
5-TITLE
6-EDITION
7-IMPRINT
8-COLLATION (pages, illustrations, size of book: not in previous

model, but necessary for full cataloging)
9-SERIES

10-HOLDINGS (volumes and copies in library; replaced VOL:COP field)
11-NOTES
12-LOCATION
13-SUBJECT

The programmer solved the need for repeating fields and variable-length
fields by programming a complex system that operates on the following
principles. To create the effect of variable-length fields, he created a main
file-CATALOG-(see the appendix for structures of all the files de-
scribed later) with pointers to secondary files for authors, titles, subjects, or
series entries over a certain length. Thus, for example, the main file
contains a 40-character field for the first author (which is also the number
of characters retrieved for this field in the short card retrieval option). Full
information on authors is contained in the next field (AUTHOR:PTR)
which is a 40-character field containing eight five-digit pointers to the full
author records stored in a separate file, thereby allowing eight repeating
fields. Each record in the AUTHORS file contains 40 characters for the
author's name. Another one-character field in this same record, called
EXTENDED, indicates by Y or N ("yes" or "no") whether it is necessary to
go to the next overflow record for the rest of the entry on the author. A field
called STATUS is included for indexing purposes so that only the first
record of each author is found by searches. Thus an author with 40
characters in his name requires only the main record. An author with 80
characters in his name requires 2 records-the main record plus one
overflow record. The last field in each overflow record-BOOK-is a
five-digit field for storing the number of the book in the main file (i.e., each
book input into the catalog receives a sequential book number which is its
permanent number in the catalog). A similar structure is utilized for
storing the other retrieval fields requiring variable-length repeating
fields-i.e., title, series, and subject.

At the same time, the nonsearchable fields (e.g., edition, imprint, collation,
holdings, notes) are stored in a file called EXTRAS. Each record in this file

34

contains three fields: (1) WHAT, a one-character field which tells what
field (or the user record) is stored in the EXTRAS record, (2) CONTENTS,
which gives the contents of the field from the user record which it stores,
and (3) BOOK, which here also indicates the book number assigned by the
system. In actual use, the EXTRAS file was broken down into three files:
EXTRASA and EXTRASB, to store odd number and even number books,
respectively, in order to avoid exceeding the maximium number of records
in a dBase file, and EXTRASX, a temporary storage file used for editing the
fields which will eventually be stored in EXTRASA or EXTRASB (i.e., the
program copies all of the information for a given book out of EXTRASA
and EXTRASB into EXTRASX, does the editing, and then replaces it in
EXTRASA and EXTRASB once it is clear how many records will be
required for all the "extras").

The information stored in the main records-those contained in the file
named CATALOG-is utilized for retrieving records in the short form (LC
number, location, primary author, and title). This short form is displayed
to the user doing an author or title search in the form of a list of hits that
answer the search profile. The user then has the option of requesting the
full form of a specific record or records that includes all the fields included
in the user record described at the beginning of this section (note: several
changes were made in this original record that will be discussed later).

In all, the online catalog system specified by the librarian and programmed
by the in-house programmer was composed of 12 DBF or data files, 7 index
files, and 41 command files. It allowed for input of up to 8 authors, 5 titles
(the need for more than one title field was discovered in the course of
prototyping tests on the system and will also be discussed late), 10 series,
and 6 subject headings per book. It was programmed, once the basic
specifications were established, within six weeks by a single programmer
and then tested on a database of 400 actual bibliographic records.

Phases 3 and 4: Implement and Use, Revise and Enhance

The theoretical basis for prototyping is that even the most careful specifi-
cations analysis on paper cannot foresee every problem or demand on the
system. Also, that only by using a system does one become aware of all the
refinements necessary. In the case of the library school, preliminary specifi-
cations had even been based on a preliminary prototype. However, because
of limitations on the programming skill of the librarian, the first model
could not be modified greatly. This second system model was designed
specifically to be used with Rapid Cyclical Prototyping-to implement,

35

use, revise, and enhance online continuously until the user declared it was
finished.

It was decided to enter a fairly sizable database (400 records) in order to
cover essentially all variations in bibliographic records. In spite of, or
perhaps because of strict cataloging rules, there are hundreds of minor
variations in length and precise form of bibliographic records. Further-
more, variations in books and authors also introduce variations into
catalog records. In the course of entering the 400 records, many changes
were implemented, most of which could not have been anticipated without
hands-on experience with the system.

Types of changes included, first of all, addition and subtraction of fields.
The library was in the process of reclassification when the prototyping
began, and a midstream decision to input only books that had been
reclassified from the Dewey Decimal to the Library of Congress classifica-
tion system eliminated the need for the field "DDC NO." Simultaneously
it was found that there was a need for an alternate title field to provide for
books that had titles in more than one language or which might be
popularly known by less than the full title. As data entry continued, it was
decided that there should be provision for up to four titles, so the ultimate
structure allowed one TITLE field and three repeating ALTERNATE
TITLE fields. The last field that was added in the course of testing was the
RESPONSIBILITY field which describes the relationship of the author or
authors to the book (editor, compiler, etc.). This field, while not adding
any essential information not contained in other fields, is nonetheless a
part of full cataloging and so it was decided in testing to add it. Thus the
completed and revised user record, which comprised both the input form
and the full card retrieval form, contained 14 fields of which fields 3, 5, 10,
and 14 functioned as repeating fields for input as follows:

1 - INVENTORY NO.
2 - LC CLASS
3 - AUTHOR/ADDED ENTRY
4 - TITLE
5 - ALTERNATE TITLE
6 - RESPONSIBILITY
7 - EDITION
8 - IMPRINT
9 - COLLATION

10 - SERIES
11 - HOLDINGS
12 - NOTES

36

13 - LOCATION
14 - SUBJECT

The second type of revision implemented in testing was in the length or
structure of the fields. These changes included:

1. establishment of how many repetitions of SUBJECT and SERIES fields
to allow;

2. increase in the length of the NOTES field;
3. restructuring the SUBJECT field so that segments of subject headings

were retrievable in any order;
4. creation of the author/added entry relator (i.e., name of author plus

equal sign plus relationship, e.g., "SMITH, JOHN = ED.");
5. establishment of format for entering titles that begin with numbers or

abbreviations (as a TITLE/ALTERNATE TITLE combination); and
6. determination of the spacing between segments of subject headings in

the SUBJECT field (i.e., it was necessary here to distinguish between
hyphens in words and dashes between segments).

The third and final type of revision implemented through testing of the
prototype was the type of change that can be termed "human
engineering"-i.e., aesthetic changes intended to make the system more
user-friendly or attractive. These revisions in turn can be broken down into
input and output modifications. Examples of input modifications are:

1. a decision to require use of the "return" key after all answers to all
choices (to lessen the chance of mistakenly hitting a key and executing
an order by accident);

2. rewording of instructions for response to the authority file verification
when they were thought to be unclear;

3. addition of a program to implement corrections while still in the input
mode (as opposed to a separate edit mode which requires exiting from
the record being input);

4. further revision of this correction program so that it leaves the text
being corrected in place for overtyping so that the inputter can see what
needs correcting;

5. addition of a feature which constructs an inventory number for gifts to
which the acquisitions department does not assign an official inventory
number as it does to ordered books; and

6. revision of the correction program to display the full record before and
after each correction.

Examples of output modifications are:

1. addition of alternating color modes (green and black stripes) for empha-
sis of main headings in short form;

37

2. decision to have user indicated whether he wants the full form displayed
by a "yes/no" response rather than a "±" response which was felt to be
confusing;

3. changing of the user instruction "list cards" (to receive a short form
entries list answering the search profile) to "list records" which was
considered more appropriate for an online catalog; and

4. addition of cross referencing for field entries that may have alternate
forms.

While there may be some justification in claiming that modifications of
the first type and perhaps even of the second type could have been rendered
unnecessary by meticulous systems analysis (although it is debatable
whether the investment in time to plan the system down to the last detail
would have been worth it), it can be stated with some certainty that
revisions of the third type-the finishing touches on the system's human
engineering aspects-were changes that needed to be done online after the
prototype had been developed. These were revisions of the type that come
to light only with hands-on use of a functional system-in other words,
only by prototyping.

PROTOTYPING AS A VIABLE SYSTEMS
DEVELOPMENT METHODOLOGY FOR LIBRARIES:

EVALUATION AND CONCLUSION

Advantages of Prototyping

The literature of prototyping is full of arguments for the use of this new
and fashionable systems development method. Many of the advantages of
prototyping have been mentioned, at least in passing, in the previous
section. A summary of the advantages and limitations of prototyping as
cited in the prototyping literature is nonetheless appropriate in
conclusion.

Wasserman and Shewmake, in their statement of the four reasons for
building a prototype, cover the most important advantages of prototyping
in a single list:

1. it would enable the user to evaluate the interface in practice and to
suggest changes to the interface;

2. it would enable the developer to evaluate user performance with the
interface and to modify it so as to minimize user errors and improve user
satisfaction;

3. it would facilitate experimentation with a number of alternate
interfaces and modification of interfaces without having to redraw speci-

38

fication diagrams...; furthermore, it would be possible to generate the
dialogue quickly and to make minor revisions in a matter of minutes;

4. it would give the user a more immediate sense of the proposed system
and thereby encourage users to think more carefully about the needed
and desirable characteristics of the system.54

Wasserman and Shewmake see this last reason as the most significant
reason for prototyping, a judgment with which the present authors are
inclined to agree. In nonprototyping development environments, there is
typically a long time interval between the analysis of the problem and the
construction of an operational system. By building a prototype and allow-
ing the user to interact at an early stage in the system's development with a
functional automated model, the user is forced to think more carefully
about the task being automated and about the way in which operations
will be requested. Two important results of this thinking should be (1) a
more accurate understanding of the problem and improved communica-
tion between the user and the builder of the system, and, even more
significant, (2) a final system that fits user needs far more closely than was
previously possible.

Alavi, in a controlled study of experimental groups of "Users Exposed to
Prototyping Approach" as opposed to "Users Exposed to Life Cycle
Approach," reports that "mean scores indicate a higher utilization of the
system designed by the prototyping approach." 55 Although these results
cannot be considered conclusive, this finding may indicate that the proto-

typing approach does, indeed, tend to produce a final system that fits user
needs more closely than a system produced by the life cycle approach.

Martin Feather suggests that developing a system by prototyping is an
easier task than developing what he calls a "polished implementation":

Our experience confirms our belief that prototyping is easier than devel-
oping a polished implementation, taking advantage of both the lack of
necessity for optimal efficiency and freedoms not available to an actual
implementation (e.g. use of perfect information).

The methodology allows the incremental incorporation of techniques
(gathered by adapting those of other researchers and by discovering new
ones ourselves) and provides a convenient framework within which to
introduce machine support for the various activities.56

McCoyd and Mitchell suggest that prototyping allows the discovery of
defects in the system's specifications which even the most careful systems
analysis might not discover. Their claim is that the user is not trained to
conduct the analysis necessary to provide the builder with precise specifica-
tions. In addition, aside from this consideration (which is less significant if
the user has some systems analysis background), the prototype provides an
atmosphere of "excitement and discovery" that enhances user motivation

39

to explore and improve the system and which no other development
method provides:

The value of rapid prototyping lies in the ability to see the system that
has been specified. Despite the...simplicity of the systems we used to
test...logical omissions in their specification were revealed by sketching
them; corrections to the specification...were accomplished in minutes.
While it can be argued that a careful, in-depth analysis of the require-
ments would have uncovered these deficiencies, the point is that a func-
tional user is neither trained nor inclined to conduct this analysis. The
prototype is not only easier to use, but since it creates an atmosphere of
excitement and discovery, it increases the motivation of the user to
explore all facets of his system description. 57

Limitations of Prototyping and Conclusion

In spite of the wave of enthusiastic literature advocating prototyping
(including this work) there are certain limitations on the method which
should be kept in mind. First, prototyping is not appropriate to all systems
in all environments. For example, it is not recommended for designing
so-called "number-crunching" systems, or systems used primarily for
mathematical calculations. Mason, et al., after stating that it is increasing-
ly recognized that the traditional systems-development methodologies are
not adequate for certain important classes of applications, go on to define
these applications and describe the problems arising from the traditional
methodologies:

This is widely agreed to be the case for applications often characterized as
Decision Support Systems (DSS), or Interactive Information Systems
(IIS), and is often considered to be true for most business data-processing
applications. The problems which lead to this conclusion include the
apparent inability of development departments to deliver acceptable
system function within acceptable time and cost limits. The ultimate
users of application systems in the business environment are increas-
ingly impatient with development departments which consistently
deliver, too late, the wrong systems.58

Library systems fall into the second category-Interactive Information
Systems-and therefore can be considered as a type of application that is, in
fact, a candidate for the newer, prototyping method of development.

Blum and Houghton also temper their praise of the prototyping method
with some caution, concluding that not every information management
system application is appropriate for prototyping. Their reservations
about prototyping involve its data dependence: prototyping can only be
effectively carried out on a system into which data, in significant quanti-
ties, has been input:

40

Rapid prototyping should provide an environment in which the final
design can be verified before the system is installed. However, the data
dependence of an IMS introduces several special problems. First, the use
of the system relies upon the availability of a data base. System perfor-
mance frequently cannot be evaluated with an empty data base, and the
cost of data base creation may exceed the cost of prototyping. Next, a
requirement for the heavy commitment of users' time to nonfunctional
prototypes can doom an application before it can be completed....Conse-
quently, it must be recognized that not every IMS application is suitable
to rapid prototyping. 59

In library systems, as the case study experiment showed, the availability of
a database is not a problem. The bibliographic records of the card catalog
can be entered easily-once the fields of the online catalog are
established-even by relatively inexperienced users. Naturally it involves
an investment in time, but the records input into the library school catalog
were able to be utilized eventually for retrieval from the finished system.
The changes which were carried out online on the prototype did not
require throwing out records already entered. At most, relatively small
modifications and additions were required.

Deletions were carried out automatically and globally by the system. The
second factor-the very large investment in user time-is simply some-
thing that must be established before the working relationship between the
builder and the user is set up. A user who is not sure that he will be willing
and able to invest time in perfecting the prototype in order to arrive at a
system that really answers his needs, should not enter into an agreement to
develop a system by this method. Thus, prototyping requires both builders
and users who are well-informed about the prototyping approach and
committed to it and, in general, a supportive organizational environment.

Another limitation on prototyping is, of course, the technological one. A
prerequisite to successful prototyping-in addition to committed users, an
available database, and an application appropriate to the method-is the
availability of technological tools that facilitate fast response to user
requests. It is a method that cannot be implemented easily with traditional
languages (COBOL, FORTRAN, etc.) because of the difficulty of making
extensive changes in programs written in these languages. Thus an appli-
cation generator (in the case of the proposed library model), or one of the
high-level or nonprocedural languages written specifically with prototyp-
ing in mind (e.g., Ada, ACTS) are most helpful.

Even when all these limitations on the use of prototyping for systems
development are taken into account and dealt with, there are still certain
elements of uncertainty with regard to the success of systems developed this

41

way. Taylor and Standish present a list of "what we do not easily learn
from prototypes":

(1) What it is like to live with the system for a while.
(2) How easy a real system will be to alter.
(3) How a system will behave when it is pushed to the extremes of

performance (e.g., heavily loaded, various buffers nearly exhausted, dis-
plays saturated with data, etc.

(4) How a system will interact with other elements in the software
environment or related systems with which it should easily share data.i

In general, these problems relate to the stability of the system, how it will
perform in the long run, and under conditions of everyday use. These are
questions that no current method of systems development can answer, and
in this respect prototyping, if no more reliable than the life cycle approach,
is no less reliable either. In this regard, perhaps the biggest danger with
prototyping, as with any new and highly acclaimed method for doing
anything, is that it may be oversold. It is not a panacea for all problems of
all systems, but it is a viable alternative for development information
systems, including library catalog systems, under certain conditions.

In conclusion, the often-quoted adage with regard to democracy may be
considered applicable also to prototyping: it may not be perfect, but up to
now no one has come up with anything better. It (1) allows freedom to
innovate and modify an emerging system to a degree which has never
before been possible; (2) involves the user in an intimate relationship with
the system from its earliest stages; and (3) permits the construction of a
system that meets user requirements, even those initially ill-defined, more
closely than any previous method of systems development has done.
Maryam Alavi sums up the pluses and minuses of the prototyping
approach in one elegant paragraph, which seems an appropriate way to
conclude this work as well:

In summary, the prototyping approach offers an opportunity to achieve
favorable user attitudes toward the design process and the information
system. Furthermore, it facilitates fast response to user needs, allows
clarification of user requirements, and offers an opportunity for experi-
mentation. Although there are pitfalls and shortcomings, none seem
troublesome enough to outweigh the benefits.61

REFERENCES

1. Wasserman, Anthony I. "Information System Design Methodology." JASIS 31(Jan.
1980):5.

2. Ibid., p. 6.
3. Burch, John G., Jr., and Strater, Felix R., Jr. Information Systems: Theory and

Practice. Santa Barbara, Calif.: Hamilton Publishing Company, 1974, pp. 10-14.

42

4. Mader, Chris. Information Systems: Technology, Economics, Applications. Chi-
cago: Science Research Associates, 1974, p. 327.

5. Wyllys, Ronald E. "System Design-Principles and Techniques." Annual Review of
Information Science and Technology, vol. 14. White Plains, N.Y.: Knowledge Industry
Publications, Inc. for ASIS, 1979, p. 5.

6. Ibid.
7. Heany, Donald F. Development of Information Systems: What Management Needs

to Know. New York: The Ronald Press, 1968, p. 45.
8. Ibid.
9. Wasserman, "Information System Design Methodology," p. 8.

10. Ibid., p. 9.
11. Gane, Chris, and Sarson, Trish. Structured Systems Analysis: Tools and Tech-

niques. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1979, pp. 4-6.
12. Robinson, C.R., et al., "The Techniques of Systems Analysis." In Reader in Library

Systems Analysis, edited by John Lubans, Jr. and Edward Chapman, p. 31. Englewood,
Calif.: Microcard Editions Books, 1975.

13. Corbin, John. Developing Computer-Based Library Systems. Phoenix, Ariz: Oryx
Press, 1981, pp. 109-15.

14. Fasana, Paul J. "Systems Analysis." Library Trends 21(April 1973):472-75.
15. Ibid., p. 472.
16. Carter, Ruth. "Systems Analysis as a Prelude to Library Automation." Library

Trends 21(April 1973):505.
17. Fasana, "Systems Analysis," p. 470.
18. Chapman, Edward A. "Planning for Systems Study and Systems Development."

Library Trends 21(April 1973):483.
19. Carter, "Systems Analysis as a Prelude," p. 513.
20. Griffin, Hillis L. "Implementing the New System: Conversion, Training and Sched-

uling." Library Trends 21(April 1973):573.
21. Wasserman, Anthony I., and Shewmake, David T. "Rapid Prototypingof Interactive

Information Systems ACM Sigsoft Software." Engineering Notes 7(Dec. 1982):171.
22. Taylor, Tamara, and Standish, Thomas A. "Initial Thoughts on Rapid Prototyping

Techniques." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):160.
23. Ibid., p. 161.
24. Wasserman, and Shewmake, "Rapid Prototyping," p. 172.
25. Ibid., pp. 171-72.
26. Taylor, and Standish, "Initial Thoughts on Rapid Prototyping Techniques," pp.

160-61.
27. Wasserman, and Shewmake, "Rapid Prototyping," p. 173.
28. Corey, James F., and Bellomy, Fred L. "Determining Requirements for a New

System." Library Trends 21(April 1973):549-50.
29. Zimmerman, Patricia J. "Principles of Design for Information Systems." JASIS

28(July 1977):190.
30. Read, Nigel S., and Harmon, Douglas L. "Assuring MIS Success." Datamation

27(Feb. 1981):116.
31. Podolsky, Joseph L. "Horace Builds a Cycle." Datamation 23(Nov. 1977):165.
32. Keen, Peter G.W. "Adaptive Design for Decision Support Systems." ACM Database

12(Fall 1980):15.
33. MacEwan, Glenn H. "Specification Prototyping." ACM Sigsoft Software Engineer-

ing Notes 7(Dec. 1982):112.
34. McCoyd, Gerard C., and Mitchell, John R. "System Sketching: The Generation of

Rapid Prototypes for Transaction Based Systems." A CM Sigsoft Software Engineering Notes
7(Dec. 1982):127.

35. Smoliar, Stephen W. "Approaches to Executable Specifications." ACM Sigsoft
Software Engineering Notes 7(Dec. 1982):155.

36. Naumann, Justus D., and Jenkins, A. Milton. "Prototyping: The New Paradigm for
Systems Development." MIS Quarterly 6(Sept. 1982):30.

37. Alavi, Maryam. "The Evolution of Information Systems Development Approach:
Some Field Observations." Database 15(Spring 1984):21.

43

38. Keus, Hans E. "Prototyping: A More Reasonable Approach to System Develop-
ment." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):94.

39. Ibid.
40. Earl, Michael J. "Prototype Systems for Accounting, Information and Control."

Accounting Organizations and Society 3(No. 2, 1978):168.
41. Blum, Bruce I. "Rapid Prototyping of Information Management Systems." ACM

Sigsoft Software Engineering Notes 7(Dec. 1982):37.
42. Alavi, Maryam. "An Assessment of the Prototyping Approach to Information Sys-

tems Development." Communications of the ACM 27(June 1984):559.
43. Naumann, and Jenkins, "Prototyping: The New Paradigm for Systems Develop-

ment," p. 31.
44. Alavi, "The Evolution of Information Systems Development Approach," p. 24.
45. Naumann, and Jenkins, "Prototyping: The New Paradigm for Systems Develop-

ment," p. 37.
46. Ibid.
47. Date, C.J. An Introduction to Database Systems, 3d ed. Reading, Mass.: Addison

Wesley, 1981, p. 25.
48. Read, Nigel S., and Harmon, Douglas L. "Assuring MIS Success." Datamation

27(Feb. 1981):109.
49. Ibid.
50. Blum, "Rapid Prototyping of Information Management Systems," p. 36.
51. Saffady, William. "Data Management Software for Microcomputers: dBase II."

Library Technology Reports 19(Sept./Oct. 1983):485-92.
52. Ibid., p. 487.
53. Ibid., p. 489.
54. Wasserman, and Shewmake. "Rapid Prototyping of Interactive Information Sys-

tems," Notes 7, p. 173.
55. Alavi, Maryam "An Assessment of the Prototyping Approach," p. 561.
56. Feather, Martin S. "Mapping for Rapid Prototyping." ACM Sigsoft Software Engi-

neering Notes 7(Dec. 1982):23.
57. McCoyd, Gerard C., and Mitchell, John M. "System Sketching," p. 130.
58. Mason, R.E.A., et al. "ACT/I: A Tool for Information Systems Prototyping." ACM

Sigsoft Software Engineering Notes 7(Dec. 1982):120.
59. Blum, "Rapid Prototyping of Information Management Systems," p. 35.
60. Taylor, Tamara, and Standish, Thomas A. "Initial Thoughts on Rapid Prototyping

Techniques," p. 166.
61. Alavi, "An Assessment of the Prototyping Approach," p. 563.

ADDITIONAL REFERENCES

Armstrong, C.J. "The Use of Commercial Microcomputer Database Management System as
the Basis for Bibliographic Information Retrieval." Journal of Information Science
8(June 1984):197-201.

Appleton, Daniel S. "What Data Base Isn't. Datamation 23(Jan. 1977):85-92.
Balzer, Robert M., et al. "Operational Specification as the Basis for Rapid Prototyping."

ACM Sigsoft Software Engineering Notes 7(Dec. 1982):3-16.
Barstow, David. "Rapid Prototyping, Automatic Programming, and Experimental

Sciences." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):33-34.
Blair, John C., Jr. "Creating Your Own Database." Database 5(Aug. 1982):11-17.
Bonet, Rafael, and Kung, Antonio. "Structuring into Subsystems: the Experience of a Proto-

typing Approach." ACM Sigsoft Software Engineering Notes 9(Oct. 1984):23-27.
Bordwell, Stephen. "dBase II-Library Use of a Microcomputer Database Management Sys-

tem." Program 18(April 1984):157-65.

44

Brill, Evan L. "ACTS-An Application-Generator for Building Online Transaction Sys-
tems." In Proceedings of the ASIS Annual Meeting, vol. 19, edited by Anthony E.
Petrarca, Celianna I. Taylor, Robert S. Kohn, pp. 43-46. White Plains, N.Y.: Knowledge
Industry for ASIS, 1982.

Burns, R.W., Jr. "A Generalized Methodology for Library Systems Analysis." College &d Re-
search Libraries 32(July 1971):295-305.

Carr, Marilyn. "Build Your Own Database: Using Database Management Systems for
Custom Applications." In Proceedings of the Fourth National Online Meeting (New
York, 12-14 April 1983), compiled by Martha E. Williams and Thomas H. Hogan, pp.
87-92. Medford, N.J.: Learned Information, 1983.

Chandor, Anthony, et al. Practical Systems Analysis. London: Rupert Hart-Davis Educa-
tional Publications, 1969.

Chapman, Edward A., et al. Library Systems Analysis Guidelines. New York: Wiley-Inter-
science, 1970.

Clinton, Marshall. "Phoenix: An Online System for a Library Catalogue." Database 5(Feb.
1982):52-65.

Cohen, Donald, et al. "Using Symbol Execution to Characterize Behavior." ACM Sigsoft
Software Engineering Notes 7(Dec. 1982):25-32.

Corbin, John. Developing Computer-Based Library Systems. Phoenix, Ariz.: Oryx Press,
1981.

Costa, Betty. A Micro Handbook for Small Libraries and Media Centers. Littleton, Colo.:
Libraries Unlimited, 1983.

Crawford, R.G., and Macleod, I.A. "A Relational Approach to Modular Information Re-
trieval Systems Design." In The Information Age in Perspective (Proceedings of the ASIS
Annual Meeting, 1978), vol. 15, compiled by E.H. Brenner, pp. 83-85. White Plains, N.Y.:
Knowledge Industry for ASIS, 1978.

Davis, Alan M. "Rapid Prototyping Using Executable Requirements Specification." ACM
Sigsoft Software Engineering Notes 7(Dec. 1982):39-44.

Debons, Anthony, and Montgomery, K. Leon. "Design and Evaluation of Information Sys-
tems." Annual Review of Information Science and Technology. Washington, D.C.: ASIS,
1974, vol. 9, pp. 25-55.

Dixon, John K., et al. "Rapid Prototyping by Means of Abstract Module Specifications Writ-
ten as Trace Axioms." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):45-49.

Dodd, W.P. "Prototype Programs." Computer 13(Feb. 1980):81.
Dodd, W.P., et al. "Prototyping Language for Test-Processing Applications." ACM Sigsoft

Software Engineering Notes 7(Dec. 1982):50-53.

Fitzgerald, John M., and Fitzgerald, Ardra F. Fundamentals of Systems Analysis. New York:
John Wiley & Sons, 1973.

Ford, Ray, and Marlin, Chris. "Implementation Prototypes in the Development of Pro-
gramming Language Features." ACM Sigsoft Software Engineering Notes 7(Dec.
1982):61-66.

Gehani, N.H. "A Study in Prototyping." ACM Sigsoft Software Engineering Notes 7(Dec.
1982):71-74.

Gibson, F., and Nolan, R.S. "Managing the Four Stages of EDP Growth." Harvard Business
Review 52(Jan./Feb. 1974):76-88.

Gill, Hans, et al. "Experience from Computer Supported Prototyping for Information Flow
in Hospitals." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):67-70.

Gillespie, Jim. "dBase II at Nepean, Ont., Public Library." Canadian Library Journal
41(Dec. 1984):339-43.

Goguen, Joseph, and Meseguer, Jose. "Rapid Prototyping in the OBJ Executable Specifica-
tion Language." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):75-84.

Gorry, G. Anthony, and Scott Morton, Michael S. "A Framework for Management Informa-
tion Systems." Sloan Management Review 12(Fall 1971):55-70.

Gregory, S.T. "On Prototypes vs. Mockups." ACM Sigsoft Software Engineering Notes
9(Oct. 1984):13.

Groner, Gabriel F., et al. "Requirements Analysis in Clinical Research Information Process-
ing-A Case Study." Computer 12(Sept. 1979):100-08.

45

Hayes, Robert M., and Becker, Joseph. Handbook of Data Processingfor Libraries, 2d ed. Los
Angeles, Calif.: Melville Publishing Co., 1974.

Heitmeyer, C., et al. "The Use of Quick Prototypes in the Secure Military Message Systems
Project." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):85-87.

Hice, Gerald F., et al. System Development Methodology, rev. ed. Amsterdam: North-
Holland Publishing Co., 1978.

Hooper, James W., and Hsia, Pei. "Scenario-Based Prototyping for Requirements Identifica-
tion." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):88-93.

Huffenberger, Michael A., and Wigington, Ronald L. "Database Management Systems."
Annual Review of Information Science and Technology. White Plains, N.Y.: Knowledge
Industry Publications, Inc. for ASIS, 1979, vol. 14, pp. 153-90.

Klausner, A., and Konchan, T.E. "Rapid Prototyping and Requirements Specifications
Using PDS." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):96-105.

Lehman, M.M. "Research Proposal to Study the Role of Executable Metric Models in the
Programming Process." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):106-11.

Liston, David M., Jr., and Schoene, Mary L. "A Systems Approach to the Design of Informa-
tion Systems." In Key Papers in the Design and Evaluation of Information Systems, edited
by Donald W. King, pp. 327-34. White Plains, N.Y.: Knowledge Industry for ASIS, 1978.

MacKenzie, A. Graham. "Systems Analysis as a Decision-Making Tool for the Library
Manager." Library Trends 21(April 1973):493-504.

Markuson, Barbara Evans, et al. Guidelines for Library Automation: A Handbook for Federal
and Other Libraries. Santa Monica, Calif.: Systems Development Corp., 1977.

Minder, Thomas. "Application of Systems Analysis in Designing of a New System." Library
Trends 21(April 1973):553-64.

Mittermeir, Roland T. "HIBOL, A Language for Fast Prototyping in Data Processing En-
vironments." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):133-40.

Montgomery, David B., and Urban, Glen L. "Marketing Decision-Information Systems: An
Emerging View." Journal of Marketing Research 7(May 1970):226-34.

Norman, Margaret. Considerations in Planning an In House Database Retrieval System
(Proceedings of the 7th International Online Information Meeting, London, 6-8 Dec.
1983). Oxford: Learned Information, 1983, pp. 213-17.

Podolsky, Joseph L. "Horace Builds a Cycle." Datamation 23(Nov. 1977):162-68.
Ramanthan, J. "Use of Annotated Schemes for Developing Prototyping Programs." ACM

Sigsoft Software Engineering Notes 7(Dec. 1982):141-49.
Rao, V. Venkata. "Some Approaches to Modeling Complex Information Systems." Informa-

tion Processing & Management 18(No. 3, 1982):151-60.
Read, Nigel S., and Harmon, Douglas L. "Assuring MIS Success." Datamation 27(Feb.

1981):109-20.
Rich, Charles, and Waters, Richard C. "The Disciplined Use of Simplifying Assumptions."

ACM Sigsoft Software Engineering Notes 7(Dec. 1982):150-54.
Robinson, C.R., et al. "The Techniques of Systems Analysis." In Reader in Library Systems

Analysis, edited by John Lubans, Jr. and Edward A. Chapman, pp. 29-52. Englewood,
Calif.: Microcard Editions Books, 1975.

Rosove, Perry E. "Introduction." In Developing Computer-Based Information Systems,
edited by Perry E. Rosove, pp. 67-93. New York: John Wiley & Sons, Inc., 1967.

Rowley, J.E. Mechanised In-House Information Systems. London: Clive Bingley, 1979.
Saffady, William. "Data Management Software for Microcomputers: dBASE II." Library

Technology Reports 19(Sept./Oct. 1983):485-95.
Scheffler, Frederic L. "Novel Philosophy for the Design of Information Storage and Retrieval

Systems Appropriate for the 70's." JASIS 24(May/June 1973):205-09.
Smith, David. Systems Thinking in Library and Information Management. New York: K.G.

Saur, 1980.
Smith, David Andrew. "Rapid Software Prototyping." Ph.D. diss., University of California,

Irvine, 1982.
Smoliar, Stephen W. "Approaches to Executable Specifications." ACM Sigsoft Software En-

gineering Notes 7(Dec. 1982): 155-59.

46

Squires, Stephen L., et al. "Rapid Prototyping Workshop: Overview." ACM Sigsoft Software
Engineering Notes 7(Dec. 1982):2.

Stavely, Allan M. "Models as Executable Designs." A CM Sigsoft Software Engineering Notes
7(Dec. 1982):167-68.

Stow, William R., and Vogt, Earl C. "Prototype Development of Legislative Management In-
formation System." In The Information Age in Perspective (Proceedings of the ASIS
Annual Meeting, 1978), vol. 15, pp. 330-32. White Plains, N.Y.: Knowledge Industry for
ASIS, 1978.

Strand, Eugene M., and Jones, Warren T. "Prototyping and Small Scale Software Projects."
ACM Sigsoft Software Engineering Notes 7(Dec. 1982):169-70.

Sullivan, Jeanette. "Using dBASE II for Bibliographic Files." Online 9(Jan. 1985).
Taylor, Tamara, and Standish, Thomas A. "Initial Thoughts on Rapid Prototyping Tech-

niques." ACM Sigsoft Software Engineering Notes 7(Dec. 1982):160-66.
Vickery, B.C. Information Systems. London: Butterworths, 1973.
Wasserman, Anthony I. "Information System Design Methodology." JASIS 31(Jan.

1980):5-24.
Weber, Herbert. "The Distributed System-A Monolithic Software Development Environ-

ment." ACM Sigsoft Software Engineering Notes 9(Oct. 1984):43-73.
Weiser, Mark. "Scale Models and Rapid Prototyping." ACM Sigsoft Software Engineering

Notes 7(Dec. 1982):181-85.
Werner, David J., et al. "Designing Rational Systems." In Key Papers in the Design and

Evaluation of Information Systems, pp. 345-56.
Wyllys, Ronald E. "System Design-Principles and Techniques." Annual Review of Infor-

mation Science and Technology, vol. 14. White Plains, N.Y.: Knowledge Industry Publi-
cations, Inc. for ASIS, 1979, pp. 3-35.

Zelkowitz, Marvin V. "A Taxonomy of Prototype Designs." ACM Sigsoft Software Engineer-
ing Notes 9(Oct. 1984):11-12.

47

VITAE

SUSAN SMERNOFF LAZINGER

Susan Smernoff Lazinger is Head of the library of the Graduate School of
Library and Archive Studies, Hebrew University, Jerusalem, Israel. She is
currently on leave as special project cataloger of the Taube-Baron Collec-
tion of Jewish History and Culture at Stanford University

Dr. Lazinger has a Ph.D. in Slavic Languages and Literatures from Syra-
cuse University and an M.L.S. with a specialization in information science
from Hebrew University. She worked in the History of Science Collections
at the Jewish National and University Library, Jerusalem, for several years
and has also worked in the Syracuse University Library.

In addition to her publications in the field of Russian literature, Dr.
Lazinger's previous publications in the field of library and information
science include "The Pitt Study and Its Critics: A Survey of the Literature"
(in Hebrew with English summary), Yad-Lakore The Reader's Aid: Israel
Journal for Libraries and Archives 22(No. 2, 1985):41-47; "LC Classifica-
tion of a Library and Information Science Library for Maximum Shelf
Retrieval." Cataloging and Classifying Quarterly 5(Winter 1984):45-50;
"Tobin's 'A Study of Library Use Studies': An ERIC Update of Neglected
Areas of Research." Government Publications Review 11(1984):165-71;
and "The Alexandrian Library and the Beginnings of Chemistry." Library
History Review 2(Sept. 1975):36-47 [actually published in 1984]. She is on
the editorial boards of ISLIC Bulletin (a publication of The Israel Society
of Special Libraries and Information Centres) and Judaica Librarian.

PERETZ SHOVAL

Peretz Shoval is on the faculty of the Department of Industrial Engineering
& Management and the Department of Computer Science at Ben-Gurion
University of the Negev. He is also affiliated with the Graduate School of
Business Administration at Tel-Aviv University and with the Hebrew-
University of Jerusalem. He received a B.A. in Economics; an M.S. in
Information-Systems from Tel-Aviv University, and a Ph.D. in
Management-Information-Systems from the University of Pittsburgh. Dr.
Shoval did his thesis on expert systems for information retrieval.

Dr. Shoval's research and teaching interests include systems analysis &
design methodologies, database design, expert systems, and information
retrieval. He has published in journals such as Information Systems,
Information Processing &r Management, International Journal of Man-
Machine Studies, Data and Knowledge Engineering, Information & Man-
agement, and Data Base.

48

OCCASIONAL PAPERS deal with any aspect of librarianship and consist
of papers which are too long or too detailed for publication in a library
periodical or which are of specialized or temporary interest. Manuscripts
for inclusion in this series are invited and should be sent to: OCCA-
SIONAL PAPERS, Graduate School of Library and Information Science,
Publications Office, University of Illinois at Urbana-Champaign, 249
Armory Building, 505 E. Armory Street, Champaign, Illinois 61820.

Papers in this series are issued irregularly, and no more often than
monthly. Subscriptions for 1987 may be established for $13.00 per year. At
least five papers will be issued annually, beginning with number 178 for
1987. Individual copies of current or back numbers may be ordered each for
$3.00 plus $.50 postage and handling. All orders must be accompanied by
payment. Send orders to: OCCASIONAL PAPERS, Graduate School of
Library and Information Science, Publications Office, University of Illi-
nois at Urbana-Champaign, 249 Armory Building, 505 E. Armory Street,
Champaign, Illinois 61820. Make checks payable to University of Illinois.

Donald W. Krummel, Editor
James S. Dowling, Managing Editor

PUBLICATIONS COMMITTEE

Leigh Estabrook F. Wilfrid Lancaster
Debora Shaw

