
i

Conversational AI Assistant Using Artificial

Neural Networks:

Juan Camilo Díaz Herrera

Implementation of a contextual chatbot framework

in a Point-of-Sale system.

Internship report presented as partial requirement for

obtaining the Master’s degree in Advanced Analytics

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

CONVERSATIONAL AI ASSISTANT USING ARTIFICIAL NEURAL

NETWORKS: IMPLEMENTATION OF A CONTEXTUAL CHATBOT

FRAMEWORK IN A POINT-OF-SALE SYSTEM.

by

Juan Camilo Díaz Herrera

Internship report presented as partial requirement for obtaining the Master’s degree in Advanced

Analytics

Advisor / Co Advisor: Mauro Castelli

iii

 September 2021

DEDICATION

Dedicated to my parents, for always supporting me in my academic and professional career.

iv

ACKNOWLEDGEMENTS

Special thanks to the company that gave me the opportunity to work in such a wonderful, open

minded, and innovative start-up. It was an invaluable learning process and knowledge that will help

me in my future experiences as a Data Scientist.

I would also like to express my special gratitude to my beloved partner and undoubtedly backing in

life, Fernanda. Without her unconditional support, this process certainly would not be the same.

Finally, I would also want to extend my appreciation to my supervisor Mauro Castelli who gave me the

tools, knowledge, and opportunity to work on this project. I sincerely enjoyed his classes and he

motivated me to keep researching the field.

v

ABSTRACT

Artificial intelligence is changing the way how businesses are affronting their day-to-day difficulties.

Chatbots are the perfect demonstration of how simple tasks and queries such as customer support or

sales metrics and reporting could be solved without human intervention. This project introduced a

task-oriented chatbot framework for Spanish language in a Point-Of-Sale webpage. We applied Natural

Language Processing (NLP) techniques such as NER and evaluated two supervised learning methods:

(i) an Artificial Neural Network (ANN) and (ii) a Support Vector Machines (SVM) model to create a

contextualized chatbot that classifies the user’s intention in a text conversation, allowing bidirectional

human-to-machine communication. These intents could go from simple chitchatting to detailed

reports, always providing a natural flow in conversation. The results using an augmented and balanced

corpus suggested that ANN model performed statistically better than SVM. Additionally, a real-word

scenario with a small-talk survey made to five users gave positive feedback about the quality of

predictions. Finally, a software architecture using a PaaS computing service and an API framework was

proposed to implement this dialog system in further works.

KEYWORDS

Natural Language Processing, Name Entity Recognition, Natural Language Understanding, Artificial

Neural Network, Support Vector Machine, Word Embeddings, Chatbot, Virtual Assistant.

vi

INDEX

1. Introduction ... 1

1.1. Company Overview .. 1

1.2. The team and activities .. 2

1.3. Internship Goals.. 2

2. Literature Review ... 3

2.1. Chatbots ... 3

2.1.1. Types of chatbots .. 3

2.1.2. How they work? .. 4

2.2. Natural Language Processing ... 4

2.3. Natural Language Understanding ... 5

2.4. Name Entity Recognition .. 5

2.4.1. Rule-based approach .. 5

2.4.2. Statistical approach .. 6

2.5. Tokenization ... 6

2.6. Word Representation ... 7

2.6.1. Bag-of-words ... 7

2.6.2. Term Frequency-Inverse Document Frequency (TF-IDF) .. 8

2.6.3. Word2Vec ... 10

2.7. Support Vector Machines ... 12

2.8. Artificial Neural Networks (ANN) ... 15

3. Methodology .. 17

3.1. Methodological workflow .. 17

3.2. Data .. 18

3.2.1. Data Augmentation ... 18

3.2.2. Data Preprocessing ... 20

3.2.3. Data Exploration ... 21

3.2.4. Vectorization ... 23

3.3. Intent Classification .. 23

3.3.1. ANN Approach .. 24

3.3.2. SVM Approach .. 25

3.4. Entity Recognition .. 25

4. Results and discussion .. 27

5. Conclusions .. 32

6. Limitations and recommendations for future works ... 33

7. Bibliography ... 35

vii

8. Annexes .. 38

8.1. Spanish Spelling Errors ... 38

8.2. Word2Vec Representation ... 39

8.3. NER, Further details .. 40

8.4. Results of hyperparameters optimization .. 42

8.5. K-Folds Results .. 43

8.6. Results of chatbot survey from users ... 44

viii

LIST OF FIGURES

Figure 1. Example of NER using Stanford CoreNLP 4.2.0 .. 6

Figure 2. Example of NER using Spacy v2.3 small model. ... 6

Figure 3. Example of skip-gram input. ... 11

Figure 4. Skip-gram model. ... 11

Figure 5. SVM representation in 2D space. ... 13

Figure 6. Representation of polynomial and RBF kernel. .. 14

Figure 7. Neural Network scheme. .. 15

Figure 8. Representations of activation functions. ... 16

Figure 9. Methodological workflow .. 17

Figure 10. Number of sentences per intent before (left) and after (right) augmentation. 19

Figure 11. Sample Length Distribution .. 22

Figure 12. Word Embeddings Unigrams .. 22

Figure 13. ANN and SVM test accuracy in a 5-folds CV ... 27

Figure 14. Comparison of One-vs-Rest ROC between-models by dataset variant................................ 28

Figure 15. Comparison of One-vs-Rest ROC within-model using macro average AUC. 28

Figure 16. Losses and accuracy by epochs of best model. .. 30

Figure 17. ROC curves of best model selected by classes. .. 30

Figure 18. Software implementation proposed. ... 34

ix

LIST OF TABLES

Table 1. Examples of tokenization methods ... 7

Table 2. Example of BoW. ... 8

Table 3. Example of TF-IDF. ... 9

Table 4. Description of Intents .. 18

Table 5. Word frequency by category ... 21

Table 6. Summary of entities extracted. ... 26

Table 7. Average and standard deviations of test accuracy in a 5-fold cross validation 27

Table 8. K-Fold paired t-Tests at 5% significance level for different dataset variants 27

Table 9. Results of user's feedback ... 31

x

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

DL Deep Learning

ML Machine Learning

NN Neural Network

ANN Artificial Neural Network

DNN Deep Neural Network

NER Natural Language Recognition

NLU Natural Language Understanding

NLP Natural Language Processing

SVM Support Vector Machines

B2C Business-to-Consumer

BoW Bag-of-Words

TF-IDF Term Frequency Inverse Document Frequency

POS Point-of-Sale

API Application Programming Interface

1

1. INTRODUCTION

Conversational software agents activated by Natural Language Processing (NLP), commonly known as

chatbots, have been presented as one of the biggest advances in recent years in the fields of Artificial

Intelligence (AI) and Deep Learning (DL). Even though there are still some drawbacks in providing an

effective chatbot conversation such as grammatical errors, ambiguity, semantics, or language

structure, the advances in the field are very promising and, with the introduction of new

methodologies in Deep Neural Networks (DNN), these issues are vanishing gradually.

The presence of chatbots in business has been growing rapidly in the last decade. A survey made by

Business Insider showed that 80% of the companies are already using or were planning to use chatbots

by 20201. Nowadays, a vast number of economic sectors have implemented this kind of emerging

technology in their systems with a positive outcome.

According to Business Insider Intelligence, the prediction on global annual cost savings derived from

chatbots across the insurance industry will rise from $0.5 billion in 2020 to $5.8 billion in 2025. And

this just in sales representatives’ expenditures, with the greatest share in Customer Service

representatives2.

This project has been done in the context of an internship dissertation for the master’s degree in Data

Science and Advanced Analytics at the faculty of Information Management School (IMS) in the

Universidade Nova of Lisbon and has the main goal to develop a task-oriented chatbot framework that

serves as a virtual assistant for the start-up company 2Luca.

1.1. COMPANY OVERVIEW

2Luca was created in 2018 in Bogotá, Colombia as a Point-of-Sale (POS) web solution for small

businesses that goes beyond simple administration of business operations. 2Luca’s goal is to give

access to data analytics tools to small or newly created businesses and help them to increase their

sales, have control of their day-to-day operations and save them time with a smart sales system. To

achieve this, the platform processes the customer’s data and transforms it into valuable information

so the final business will use it as a key point in the decision-making process.

2Luca presents a Freemium business model where their customers only pay for what they use and the

resources that adapt to their own necessities. The customer creates a free account that gives access

to the regular POS System where they can register products, customers, and transactions for free. At

this point, the customer can buy different solutions as subscription packages.

Two examples of these solutions are the analytics solution that grants access to a vast number of

analytical tools such as product recommendations, customer segmentation, advanced dashboards,

pricing recommendation system, and more. The second solution is the chatbot solution, that is

associated with this project. Where the customer has the chance to integrate a private virtual assistant

that can handle requests such as create customers, give sales reports, create transactions, or give

general insights about the business.

1 https://www.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
2 https://www.businessinsider.com/business-chatbot-examples

https://www.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
https://www.businessinsider.com/business-chatbot-examples

2

Currently, 2Luca has a local coverage within the Colombian territory with more than 50 active clients.

However, the business model could be easily extrapolated in the future to other countries of the

region. Furthermore, the company is in the latest phase to get a partnership with one of the principal

banks in the country that would help to increase the access to bank services in the country by giving

credit facilities to small businesses that are currently using the platform.

The kind of customer that 2Luca has at this moment is wide since the platform is easily adapted to

multiple business models. Currently, 40% of customers are restaurants or food-based stores such as

healthy/organic food or bakeries, 35% are local food markets with small coverage, 15% are gyms or fit-

centers and 10% are other kinds of business such as beauty stores, barbershops, and others.

1.2. THE TEAM AND ACTIVITIES

My role in the company as Data Scientist Intern was to create the framework for a virtual assistant that

understands natural language voice/text commands, completes tasks and generates reports for final

users; to achieve that, I was requested to use Named Entity Recognition (NER) and Intent Classification

(IC) models which can be integrated into a Natural Language Understanding (NLU) service inside the

webpage.

Given the current pandemic situation, all the work was done remotely from Lisbon and with the direct

support of my supervisor in Colombia. Some specific tasks were given at the beginning of the project

and every Friday in a Work-In-Progress meeting all my work during the week was tracked and changes

were introduced as needed.

My responsibilities as Data Scientist in the company where:

• Organize the corpus using baseline samples and create synthetic samples for each intent to

have a decent number of records that can be used to test the virtual assistant.

• Train and test an NLP model using ML models that classifies customer’s intents and give a

proper response to the user using Python language.

• Create an algorithm that allows extracting relevant entities from the text using NER

techniques.

1.3. INTERNSHIP GOALS

The goal of this project is to train and test a contextualized AI chatbot that is intended to be used as a

virtual assistant for small businesses in the Point-Of-Sale (POS) webpage solution of 2Luca. This virtual

assistant should be able to understand simple queries from customers and answer them in the best

way possible. Sentences were categorized into different groups of intents that were previously

identified by the company as fundamental for this first phase of implementation.

This project is organized as follows. In Section 2 we discuss the literature review that provides a

theoretical framework for the work. In Section 3 we explain the methodological workflow. Section 4

presents the results and finally, Section 5 and Section 6 summarize the conclusions and limitations

found during this work.

3

2. LITERATURE REVIEW

2.1. CHATBOTS

A chatbot can be defined as a conversational software system created to emulate human-like

conversations that interacts automatically with a user. Chatbots are mostly based on AI techniques

that can understand natural language, identify meaning, emotions, and respond in a meaningful way.

(Nuruzzaman & Hussain, 2018)

The former applications of conversational agents began with ELIZA in 1966. This bot was developed by

the laboratory of Artificial Intelligence of MIT by Professor Joseph Weizenbaum and it was a

benchmark in the creation of human-like conversations (Weizenbaum, 1966). After ELIZA, there were

more intentions to create a virtual assistant. In 1972, the psychiatrist Kenneth Colby from Stanford

University developed an AI-based bot named Parry that simulated patterns from a schizophrenic

person (Colby, Weber, & Hilf, 1971).

During the 80’s, 90’s and 2000 some other bots were created always with the idea to improve natural

language. Some examples are Jabberwacky (Carpenter, 1997) in the latest 80’s, which was the first to

implement human interaction; Dr. Sbaitso in 1992, created by Creative Labs in Singapore which

simulated the role of a psychiatrist; A.L.I.C.E (Artificial Linguistic Internet Computer Entity), created by

Richard Wallace in 1995 that was known for the use of heuristic patterns (Wallace, 2009); and the bot

Watson in 2006 created by IBM as part of the research project DeepQA which used machine learning

algorithms to answer questions. It was trained using news, libraries, and other open resources.

In 2010 the company Apple developed one of the most popular virtual assistants used nowadays, SIRI.

This chatbot was the first virtual assistant build and distributed massively. SIRI was followed by Google

Now in 2012, ALEXA and CORTANA in 2015. All of them are mostly based on task-based ML algorithms

to understand intents in conversations.

2.1.1. Types of chatbots

There are two types of dialog systems: open-domain and task-oriented. The former has an open-ended

goal without pre-defined tasks or labels and presents more challenges to build, whereas the latter is

designed to perform specific tasks and has been broadly implemented in real-world applications

(Huang & Zhu, 2020). The conversational agent proposed in this project was built under a task-oriented

dialog system, also known as contextualized chatbot, using specific tasks related to customer service,

reporting, and POS general actions.

These two systems differ also in their architecture. On one hand, task-oriented bots are created under

a specific schema in which a set of pre-labeled intents are defined, and each intent is classified. On the

other hand, open-domain dialog systems must learn from a multiple variety of sources and fields to be

able to maintain a coherent conversation.

The efforts in open-domain agents have been increased rapidly in the last decade. Recently in 2020,

Google introduced Meena, an open-domain chatbot trained with a neural network with 2.6 billion

parameters that makes much easier the conversational flow in a more cohesive and comprehensive

way. Given that number of parameters, the bot can practically talk about any topic. Furthermore, the

authors developed a new metric called Sensibleness and Specificity Average (SSA) that captures key

4

elements in human conversation. This metric goes from 0% to 100%, being 100% the best

performance. The full version of Meena scores 79%, whereas the light version 72%, overcome just by

a normal conversation between humans that has a SSA of 86%. (Adiwardana, et al., 2020)

Task-oriented dialog agents have played an important role in a vast variety of real-world applications.

For instance, in the FinTech sector, the German digital bank N26 has implemented an in-house

customer service AI that is available 24/7 and can answer 30% of basic customer inquiries in five

different languages.3 This sort of conversational interface has a positive B2C relationship, where final

users are improving their experiences in customer support and business are reducing unnecessary

costs from both a human and resources perspective.

2.1.2. How they work?

The way how a task-oriented chatbot understands what the user says could be done in many ways.

One possible option is by matching the pattern of user input with some pre-defined commands and

try to figure out how to answer each sentence. However, this option is very hard to extrapolate to real-

world cases, and its lack of flexibility makes it inappropriate on a big scale.

The second possible option is by using a Machine Learning model that classifies the intents of any

user’s input with NLP. This technique requires a set of inputs that are already labeled by intents and

the idea is to classify new inputs into these categories. The key components of a task-oriented chatbot

are (Bocklisch, Faulkner, Pawlowski, & Nichol, 2017):

• The Entities are relevant variables or features that are extracting from a given sentence and

that represent a person, object or characteristic that could help the bot to interact naturally

with the human. For instance, in the sentence: “I need a sales report of the last year”, the term

“last year” must be interpreted as a date entity. Other types of entities could be names,

locations, zip-codes, phone numbers, time, or currency.

• The Intents represent the tasks that the bot needs to perform given the user’s message. These

are the labels to be predicted by the model, and they need to be as general as possible. In a

corpus, each intent comes with many utterances that are related to each action. For instance,

the sentence “give me the number of sales today” represents an intent that queries the total

number of sales in a particular timeframe.

• The Actions are the responses to be committed by the bot after an intent classification has

been done. There are usually functions that take optional parameters with detailed

information also called context.

2.2. NATURAL LANGUAGE PROCESSING

The purpose of Natural Language Processing (NLP) is to develop computational mechanisms that

allows bidirectional human-to-machine communication in a “natural” way. NLP represents a subfield

of Artificial Intelligence where linguistics interacts with computer science using statistical and

computational resources. This kind of mechanism helps computers to understand, respond and

interact with any source of communication (text or voice) in much the same way humans do. (IBM

Cloud Education, 2020)

3 https://n26.com/en-eu/blog/building-the-most-reliable-customer-service-in-the-world

https://n26.com/en-eu/blog/building-the-most-reliable-customer-service-in-the-world

5

NLP itself has many components such as text classification, language translation, summarization,

question and answering, sentiment analysis, name entity recognition, part-of-speech tagging, and

more. All these features allow machines to interact with humans and have numerous practical

applications in multiple fields of science in real-world scenarios: Linguistics, biomedicine,

conversational chatbots, contextual chatbots, news topic classification, spam detection, customer

service, and much more.

2.3. NATURAL LANGUAGE UNDERSTANDING

The idea behind Natural Language Understanding (NLU) is to extract relevant information from text

that can help to understand the main idea of the message. The goal of NLU is machine reading

comprehension using the context and grammar structures of the text. This structured information

about user messages includes user's intents and entities. (Bocklisch, Faulkner, Pawlowski, & Nichol,

2017)

In a chatbot system, NLU is used to understand what the user is trying to convey. For instance,

greetings, book a flight, know the balance in an account, etc. This ensures a natural flow in the

conversation and improves the user’s experience.

2.4. NAME ENTITY RECOGNITION

Name Entity Recognition (NER) is a subset of NLP that has the goal to identify boundaries and types of

entities from a given text. Entities are pieces of relevant information that are inside the text and can

be used to understand the context. There are many types of entities, the more general ones are names

of persons, names of organizations, and locations. However, they will entirely depend on the task or

field of study. For instance, in medicine, the identification of gene and protein entities could be

relevant.

There are two types of mechanisms that can be used to extract entities in text: The rule-based

approach and the statistical approach. The former has the benefit to be simpler to implement but

presents several difficulties identifying specific entities, especially proper names. In Spanish, as in many

other languages, proper names are particularly difficult to identify since they could have a vast number

of structures and can overlap with other words. The goal of NER using statistical models is to recognize

this type of entities and resolve the structural and semantic ambiguity in names. (Wacholder, Ravin, &

Choi, 1997).

2.4.1. Rule-based approach

This approach allows extracting entities in text using specific patterns that are previously defined. In

many specific cases in which there is a finite number of possibilities and where the pattern is fully and

easily recognizable, the rule-based approach is an optimal choice. These kinds of instances can be

extracted using specific tokens or regular expressions. Some examples could be IP addresses, URLs,

country names, chemical elements, e-mails, or dates (Spacy, 2020).

In practice, this kind of approach is combined with statistical models to boost the results and extract

more complex types of entities. However, since statistical models require training data, this approach

could be more practical when there is not enough data and could be used as initial method for data

collection process.

6

2.4.2. Statistical approach

There are multiple statistical methods that could be used to extract entities. Nymble (Bikel, Miller,

Schwartz, & Weischedel, 1998) is a statistical approach used to detect names and other non-recursive

entities in text using a slightly modified version of the standard Hidden Markov Model (HMM). Other

well-known approach is the Condition Random Fields (CRF) which is essentially a way to combine the

conditional probabilities classification with graphical modeling (framework for representation and

inference in multivariate probability distributions) and could be used for segmenting and labeling

sequence data (Sutton & McCallum, 2012).

Many open-source entity recognition solutions in the market allow detecting multiple entities from

pre-trained models. One example is the Stanford Named Entity Recognizer that is a JAVA tool

developed by Stanford University and provides a general implementation of linear-chain Conditional

Random Fields (CRF) model. Allowing to label sequences of words in a text such as persons, companies,

locations, and others. (Finkel, Grenager, & Manning, 2005). CRF models were pioneered by (Lafferty,

McCallum, & Pereira, 2001). The package library NLTK offers a module called StanfordNERTagger for

interacting with the Stanford taggers. This tool also offers a Spanish model available for NER using the

CoreNLP toolkit (Christopher, et al., 2014), one example of its usage is illustrated in Figure 1.

Figure 1. Example of NER using Stanford CoreNLP 4.2.0

Another popular tool used for NER is Spacy Entity Recognizer that is a transition-based named entity

recognition parser. This component recognizes non-overlapping labelled tokens in text using a pre-

trained model in which the loss function was optimized for whole entity accuracy. For Spanish

language, Spacy uses a pipeline that was trained using the AnCora-ES corpus4 with more than 500,000

unique vectors in 300 dimensions. The original annotation of this corpus was done as part of the

AnCora project directed by the University of Barcelona. This pipeline comes in three different sizes:

small (13MB), medium (41 MB) and large (543 MB). Figure 2 illustrates one example using the small

model.

Figure 2. Example of NER using Spacy v2.3 small model.

2.5. TOKENIZATION

Tokenization in NLP refers to the process of chopping a document into pieces called tokens, these

tokens correspond to instances of a sequence of characters that are grouped together and provide

important semantic information that could be used in posterior models (D. Manning, Raghavan, &

Schütze, 2008).

4 http://clic.ub.edu/corpus/en/ancora

http://clic.ub.edu/corpus/en/ancora

7

Tokens are crucial factors during the creation of the vocabulary of terms that is used during the

vectorization process, and they are relevant to accomplish good results in subsequent NLP analysis

such as NER or text classification.

There are many ways to split a text, the most used are by words, characters, sentences, or lines. The

simplest type of tokenization method is to divide a string into words using white spaces as separators.

However, this method has some drawbacks since punctuation or special cases need to be considered

and not all languages have the same grammatical structure which makes tokenization a language-

specific problem.

There are many python libraries available for tokenization that can deal with most of these issues. To

list just a few of them: Spacy tokenizer, Keras tokenizer, NLTK tokenizer, or Gensim tokenizer. The

selection of one of them will depend on the language and the task.

Fortunately, Spanish has not many special cases to consider like hyphenation in English, compound

nouns in German, or apostrophes in French. However, there are general cases that are present in

multiple languages that we would like to avoid creating a single token, for instance, internal spaces in

phone numbers or dates.

The following table shows examples of different methods of tokenization and their common issues:

Original text “Hola! Necesito ver los reportes del año pasado.”

Word tokens using white spaces “Hola!”, “Necesito”, “ver”, “los”, “reportes”, “del”, “año”, “pasado.”

Word tokens using white spaces

and considering punctuation

“Hola”, “!”, “Necesito”, “ver”, “los”, “reportes”, “del”, “año”, “pasado”,

“.”

Char tokens (unigrams) “H”, “o”, “l”, “a”, “!”, “ “, “N”, “e”, . . . , “p”, “a”, “s”, “a”, “d”, “o”, ”.”,

Bigrams tokens “Ho”, “ol”, “la”, “a!”, . . . , “pa”, “as”, “sa”, “ad”, “do”, “o.”

Sentence tokenizer “Hola!”, “Necesito ver los reportes del año pasado.”

Line tokenizer “Hola! Necesito ver los reportes del año pasado.”

Table 1. Examples of tokenization methods

2.6. WORD REPRESENTATION

Considering that learning algorithms need a numerical representation as input to process the data, the

unstructured form in texts needs to be vectorized first in word embeddings. There are several

mechanisms that can be used to accomplish that requirement. Namely, Bag-of-words, TF-IDF or

World2Vec are the most popular ones. This step is essential to achieve good performance in

subsequent natural language processing tasks since it represents the way how the system will interpret

the semantics, grammar, and other structures in the text (Mikolov, Sutskever, Chen, Corrado, & Dean,

2013).

2.6.1. Bag-of-words

Bag-of-words (BoW) is the simplest way to represent text in numerical vectors. It uses a vocabulary of

unique words to create a sparse vector that gives a simple and flexible representation of the text,

where the final dimension of the embedding will be equivalent to the number of words in the

vocabulary (D. Manning, Raghavan, & Schütze, 2008) For this reason, previous steps such as pre-

processing or tokenization are highly important to reduce dimensionality since a bad preprocessing

means more tokens, and more tokens mean more dimensions.

8

Consider as example the following three sentences (English translations are inside the parenthesis):

Document 1: “Me gustaría agregar un cliente a la cuenta”

 (I would like to add a customer to the bill)

Document 2: “Me gustaría agregar un producto a la cuenta actual”

 (I would like to add a product to the current bill)

Document 3: “Me encantaría agregar la cliente a la cuenta”

 (I would love to add the customer to the bill)

The vocabulary for these three documents could be represented with the following 11 unique words:

“Me”, “gustaría”, “agregar”, “un”, “cliente”, “a”, “la”, “cuenta”, “producto”, “actual”, “encantaría”.

With the following BoW representation:

 Doc. 1 Doc. 2 Doc. 3

Me 1 1 1

gustaría 1 1 0

agregar 1 1 1

un 1 1 0

cliente 1 0 0

a 1 1 1

la 1 1 2

cuenta 1 1 1

producto 0 1 0

actual 0 1 0

encantaría 0 0 1

Table 2. Example of BoW.

However, there are two drawbacks associated with this approach. The first comes with the high

dimensionality that is represented in the sparse vector, which could be mitigated using pre-processing

techniques such as lowercase, stop-words, lemmatization, and the use of a good tokenizer. And the

second downside, and perhaps the biggest one, is that BoW comes with the lack of retaining important

grammatical information in the sentence since the order of the tokens is not taken into consideration.

Thus, the document “Juan está jugando con María” means exactly the same as the document “María

está jugando con Juan”, in which the subject and object in the predicate are not being part of the

vectorization process. (D. Manning, Raghavan, & Schütze, 2008)

2.6.2. Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is a statistical method for feature selection that considers the frequency of each term not only

inside each document but across the complete corpus. In this method, higher values are given to terms

that are rare compared to other terms. This property is particularly important to identify relevant

terms that are giving additional information to the document and that are not frequent terms found

in several documents. The more times the term appears across all documents (such as stop-words) the

less value it has (D. Manning, Raghavan, & Schütze, 2008).

As the name suggests, there are two parts that constitute the TF-IDF statistic, the Term Frequency (TF)

and the Inverse Document Frequency (IDF).

9

Term Frequency (TF)

Term frequency gives the proportion of the number of times a specific term is present inside the

document. This could be calculated as follows:

𝑡𝑓𝑡,𝑑 =
𝑛𝑡,𝑑

𝑀

Where 𝑛𝑡,𝑑 represents the number of times the term 𝑡 appears inside the document 𝑑, and 𝑀

represents the total number of terms in the document 𝑑. If the term is highly frequent inside the

document, this value will be close to one. If the term is not present in the document, then TF takes the

value of zero.

Inverse Document Frequency (IDF)

On the other hand, IDF gives a proportion of how frequent the term is throughout the documents in

the corpus. It can be computed as follows:

𝑖𝑑𝑓𝑡 = log
𝑁

𝑑𝑓𝑡

Where 𝑁 represents the total number of documents and 𝑑𝑓𝑡 represents the total number of

documents with the term 𝑡 on it. This metric is high when the document is rare to find, and it is close

to zero when the term is common. If the term is present in all the document this value should be zero.

TF-IDF Weighting

Once both pieces of the TF-IDF are calculated, it is possible to build the weighted metric as follows:

𝑡𝑓𝑖𝑑𝑓𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 ∗ 𝑖𝑑𝑓𝑡

Considering the same three sentences used in BoW for demonstration purpose. We can calculate the

terms TF-IDF terms as follows:

Term
𝒏𝒕,𝒅 𝒕𝒇𝒕,𝒅

𝒊𝒅𝒇𝒕
𝒕𝒇𝒊𝒅𝒇𝒕,𝒅

Doc. 1 Doc. 2 Doc. 3 Doc. 1 Doc. 2 Doc. 3 Doc. 1 Doc. 2 Doc. 3

Me 1 1 1 1/8 1/9 1/8 log(3/3) = 0.00 0 0 0

gustaría 1 1 0 1/8 1/9 0/8 log(3/2) = 0.18 0.023 0.02 0

agregar 1 1 1 1/8 1/9 1/8 log(3/3) = 0.00 0 0 0

un 1 1 0 1/8 1/9 0/8 log(3/2) = 0.18 0.023 0.02 0

cliente 1 0 0 1/8 0/9 0/8 log(3/1) = 0.48 0.06 0 0

a 1 1 1 1/8 1/9 1/8 log(3/3) = 0.00 0 0 0

la 1 1 2 1/8 1/9 2/8 log(3/3) = 0.00 0 0 0

cuenta 1 1 1 1/8 1/9 1/8 log(3/3) = 0.00 0 0 0

producto 0 1 0 0/8 1/9 0/8 log(3/1) = 0.48 0 0.05 0

actual 0 1 0 0/8 1/9 0/8 log(3/1) = 0.48 0 0.05 0

encantaría 0 0 1 0/8 0/9 1/8 log(3/1) = 0.48 0 0 0.06

Table 3. Example of TF-IDF.

In this toy example, it is possible to notice that stop-words like “Me”, “a”, “la” have a value of zero in

all the documents, which make them less relevant. In contrast, words like “cliente” and “producto”

10

have higher values and are more relevant. Although this approach gives more information compared

to BoW, the issue of not considering the order of tokens is still present. This problem is solved using

the embedding representation of the Word2Vec model.

2.6.3. Word2Vec

Word2Vec is a powerful tool to represent words as vectors since it uses embedding-based models to

learn the vector representation from the context of the document. In this model, a vocabulary of words

is first created from the corpus and then the model learns the vector representation of words. The

model was proposed by (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and has two variants:

Continuous Bag-of-Words (CBOW) and Skip-gram model.

In CBOW, the idea is to predict the current word using the embeddings of its context words. In the

Skip-gram model, the idea is that given a corpus, the model analyzes each word inside a sentence and

tries to predict the surrounding words using the embedding of the current word. (Deng & Liu, 2018)

There are some interesting properties of a word vector since it captures many linguistic regularities.

For instance, given the transitivity property present in some languages, it is possible to perform vector

operations within the word’s representation. Furthermore, word embeddings can be also used in

unsupervised learning algorithms such as K-means to derive word classes and word similarities.

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013)

Skip-gram model

As mentioned before, the skip-gram model uses the embedding of the current word to predict the

surrounding words. The main idea of this model is to obtain the probability of each word in our pre-

defined vocabulary set that says how close is each word relative to the current word.

The basic form to represent this model is by using a Feed Forward Neural Network with a single hidden

layer, in which the input vector is the embedding of the current word, and the output vectors represent

the “proximity” probability of each word in the vocabulary given a window size. Once the model learns,

the embedding matrix that carries the weights represents the vectors of each word that captures

relevant semantic structures. (Mikolov, Chen, Corrado, & Dean, 2013)

Given the Corpus, the training samples are build using pairs of words in the form (center, context) using

a specific window size. For instance, if the document is: “El hombre vino a casa por una copa de vino”

(“The man came home for a glass of wine”), then it is possible to create the following 32 training

samples using a window size of 2 words:

11

Figure 3. Example of skip-gram input.

Notice that the word “vino” has two meanings in this sentence, in the first occurence “vino” represents

the third person of the singular of the verb “come”, and in the second occurrence it represents the

noun “wine”. In simple BoW representation, this word would not be differentiated; however, we

expect that the skip-gram model is able to capture this difference since it relies on the context of the

surrounding words.

The input vector of the NN system would be a one-hot representation for each center word (the green

words in Figure 3). The dimension is given by the vocabulary set. The input is then processed by the

NN and the output layer returns the proximity probability for each word in the vocabulary to the input

word. The number of units in the hidden layer represents the dimensionality of the final embedding

matrix. Figure 4 illustrates this process for the first center word: “el”.

Where 𝑉 represents the vocabulary size and 𝑁 the number of units in the hidden layer. The word “el”

is first represented as one-hot encoding, passing through the hidden layer, and finally producing the

output vector for each context word associated with it. Subsequently, the model updates the

embedding matrix by back propagating the error that is given by comparing the real labels “hombre”

and “vino” with the predicted vectors, one at a time. The same logic applies for all other center words

in the training samples.

Context Matrix

W’NXV

“el”

Input layer

XVx1

Hidden layer

Embedding Matrix

WVXN

0

0

0

0

0

1

h1
h2
h3

hi

hN

HNx1

Output layer
Softmax

Context Matrix

W’NXV

“hombre”

“vino”

YVX1

YVX1

Figure 4. Skip-gram model.

12

At the end of this process, the embedding matrix in the hidden layer (𝑊) contains the vector

representation for each of the words. Each word embedding will be N-dimension since it is the number

of units in the hidden layer. The number 𝑁 represents a hyperparameter that needs to be selected.

For instance, in (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) a 300-dimensional vector with 3

million English words and a window size of 5 was trained using the Google News dataset.

In practice, there are some open-source python libraries built with pre-trained vector embeddings such

as Gensim or Spacy that can be used for general purposes. The only disadvantage is that the training

corpus could not capture specific needs in some close-domain tasks. There are few pre-trained models

for the Spanish language, the most reliable is presented by (Cardellino, 2016) which consists of an

unannotated corpus of nearly 1.5 billion words with a 300-dimensional vector that was built from

multiple web resources.

2.7. SUPPORT VECTOR MACHINES

Support Vector Machines (SVM) is an algorithm used for nonlinear classification and regression that

was developed in the early 90’s by (Boser, Guyon, & Vapnik, 1992). This approach has shown good

performance with small datasets, and it is considered one of the best “out of the box” classifiers.

Therefore, there is no need to dedicate extra effort to tune hyper-parameters. SVM are intended for

binary classification. However, there are extensions of the model that can be used for multi-class

classification problems (James, Witten, Hastie, & Tibshirani, 2013).

SVM are a clear example of learning patterns from examples, and they can achieve high performance

in real-world applications. Generally speaking, SVM is a linear model in a high-dimensional feature

space where kernel functions are used to perform computations directly in the input space (James,

Witten, Hastie, & Tibshirani, 2013).

Furthermore, SVM can be contrasted with a feed-forward neural networks since their structure is

similar because both induce an output function which is expressed as a linear combination of simple

functions. For instance, the number of support vectors can correspond to the number of hidden layers,

the kernel function to the activation function, the support vector to the hidden layer weights, and the

coefficients found by the convex optimization problem in SVM correspond to the output layer weights

from an ANN point of view (Moraes, Valiati, & Neto, 2013) (Romero & Toppo, 2007) (Joachims, 1998).

Support vectors are coordinates of individual observations that support the decision boundary that is

given by the distance between a threshold represented by a hyperplane and the support observations.

If the threshold allows for misclassified observations to avoid outliers, this distance is called the soft

margin. The Support Vector Classifier (SVC) is the hyperplane that gives the widest separation possible

between the classes. This SVC could be a point in a 1-dimensional space, a line in a 2-dimensional space

(illustrated in Figure 5), a plane in a 3-dimensional space, or any hyperplane in higher dimensional

spaces.

13

Given the training samples matrix 𝑿𝑁×𝑀 with

dimensions equal to 𝑁 number of observations and 𝑀

number of features. And the binary label vector 𝒚 with

𝑁 × 1 dimensions. Then, the linear model for each

observation 𝑖 could be express as follows:

𝑦𝑖 × (𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏) ≥ 1

𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏 ≥ 1 → 𝑖𝑓 𝑦𝑖 = 1

𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏 ≥ −1 → 𝑖𝑓 𝑦𝑖 = −1

Where 𝒘 and 𝑏 correspond to the vector of weights

with dimensions 𝑀 × 1 and the scalar bias,

respectively. In order to find these two variables in the

equation system, it is necessary to use a cost function

and apply gradient descent. One example of cost

function is the Hinge Loss function:

𝐻 = max (0, 1 − 𝑦𝑖 × (𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏))

The SVM is created by solving the constrained minimization linear system. To do so, it is necessary to

minimize the Lagrange function 𝐿 as follows:

𝐿 = 𝜆‖𝒘‖2 +
1

𝑛
∑max (0,1 − 𝑦𝑖 × (𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏))

𝑛

𝑖=1

This function is composed by two parts, the first element is intended to maximize the margin (2/‖𝒘‖)

and the second part is the cost function. 𝐿 gets the following form depending on the value of the linear

model:

𝐿 = {
𝜆‖𝒘‖2, 𝑦𝑖 × (𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏) ≥ 1

 𝜆‖𝒘‖2 + 1 − 𝑦𝑖 × (𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − 𝑏), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Therefore, it is possible to calculate the gradients that will be used to update the weights and biases.

These gradients correspond to the derivative of the Lagrange function with respect to 𝑤 and 𝑏, and

they are calculated for each of the two conditions as follows:

(
𝑑𝐿

𝑑𝑤𝑘
,
𝑑𝐿

𝑑𝑏
) = {

(2𝜆𝑤𝑘 , 0) , 𝑦𝑖 × (𝒘 ∙ 𝑥𝑖⃗⃗ ⃗ − b) ≥ 1

 (2𝜆𝑤𝑘 − 𝑦𝑖 ∙ 𝑥𝑖⃗⃗ ⃗ , 𝑦𝑖) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Thus, the update rules for each training sample 𝑥𝑖 using the learning rate 𝛼 is expressed as:

𝒘 = 𝒘 − 𝛼 ∙
𝑑𝐿

𝑑𝑤𝑘
 𝑏 = 𝑏 − 𝛼 ∙

𝑑𝐿

𝑑𝑏

The SVC is used for binary classification and if the boundary between the two classes is linear like the

one shown in the Figure 5. However, for non-linear boundaries like Figure 6, the Support Vector

Machines (SVM) is used. SVM is an extension of the SVC that is the result of expanding the feature

space to a higher dimension using kernels in which the idea is to accommodate a non-linear boundary

Figure 5. SVM representation in 2D space.

𝒙𝟏

𝒙𝟐

𝑏

||𝒘||

𝒘

Support
Vectors

14

between the classes. (James, Witten, Hastie, & Tibshirani, 2013). There are different types of kernel

functions to use. Namely linear, polynomial, Radial Basis Function (RBF) or sigmoid are the most

common ones.

Polynomial Kernel

The polynomial kernel function for two observations 𝑥1 and 𝑥2 with a polynomial degree 𝑑 and

polynomial coefficient 𝑟 is:

𝐾(𝑥1, 𝑥2) = (𝑥1𝑥2 + 𝑟)𝑑

In the polynomial kernel, the parameters 𝑟 and 𝑑 are considered hyperparameters and are obtain by

cross-validation.

Radial Basis Function kernel (RBF)

The Radial Basis Function kernel for two observations 𝑥1 and 𝑥2 could be expressed as follows:

𝐾(𝑥1, 𝑥2) = 𝑒−𝛾(𝑥1−𝑥2)
2

Where the parameter 𝛾 scales the influence between the two observations. A good initial measure to

use for this parameter could be (𝑀 × 𝑣𝑎𝑟(𝑋))−1. The RBF kernel represents the data in infinite

dimensions using Taylor series, contrary to the polynomial kernel, in which the dimensionality is given

by the polynomial degree.

Figure 6. Representation of polynomial and RBF kernel.

𝑥1

𝑥2

𝑥1

𝑥2

15

2.8. ARTIFICIAL NEURAL NETWORKS (ANN)

The main idea of a Neural Network is to recognize underlying patterns and relationships in data. This

goal is achieved by using algorithms that mimic the way our brain works. Biologically speaking, the

brain operates using neurons which send impulses to communicate with other neurons in a process

called synapsis. This biological process could be broadly replicate with algorithms where information

is passed through the network in a way the system learns relationships via error correction

mechanisms (IBM Cloud Education, 2020).

A network with two or more hidden layers is called a Multi-layer Perceptron Network (MLP) with a

feed forward mechanism like the one in Figure 7. In this network, the neurons (or nodes) are

interconnected and communicate with each other by passing pieces of information the same way the

synapsis does. Each neuron is also called a perceptron, and each perceptron has the job of aggregating

and processing the signal produced by prior layers and send new information to posterior layers. This

information could be processed in several ways. The most common one is by using an activation

function that introduces non-linearity to the system (James, Witten, Hastie, & Tibshirani, 2013).

In an ANN like the one in Figure 7, the aggregation 𝚺 and activation 𝒇 can be represented as follows:

𝒇(𝚺) = 𝒇(∑𝑥𝑖𝑤𝑖𝑗 + 𝑏

𝑁

𝑖=1

) ∀𝑗 = 1,… , 𝐿

The activation function 𝒇(𝚺) represents a differentiable and non-linear function that is used to learn

complex patterns or relationships in the hidden layers. This activation function makes neural networks

robust, since in most cases data comes from a non-linear generation process. There are several types

ℎ1
1

ℎ2
1

ℎ3
1

ℎ𝑀1

1 ℎ𝑀𝐿

𝐿

ℎ3
𝐿

ℎ2
𝐿

ℎ1
𝐿

Input layer
Hidden layer

Output layer

𝑥1

𝑥2

𝑥𝑁

𝑦1

𝑦𝑐

𝑤
ℎ1

1
𝑥1

Layer 1 Layer L

𝒇 𝒇

𝒇

𝒇

𝒇 𝒇

𝒇

𝒇

𝑤
ℎ1

𝑙
𝑦1

𝑤
ℎ𝑀𝑙

𝑙

ℎ1
1

Back
Propagation

𝒇

𝒇

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

𝒃
+
𝚺

Figure 7. Neural Network scheme.

16

of activation functions that could be used in an ANN, namely sigmoid, ReLU (Rectified Linear Unit), ELU

(Exponential Linear Unit), SELU (Scaled Exponential Linear Unit), tanh, SoftPlus, Exponential, SoftMax

and more. Figure 8 illustrates some of them. However, in practice the most frequently used are: ReLU,

Sigmoid and Tanh.

Figure 8. Representations of activation functions.

The simplicity and efficiency of ReLU function makes it perhaps the most popular one nowadays. Its

functional form is basic but powerful. It returns zero when the input is negative and returns the same

input value otherwise. This function overcomes the problem of vanishing gradient that is present in

multi-layer feed-forward neural networks, in which the network is not able to propagate information

using the gradient during back propagation process. This issue limits the learning process and makes

the model prematurely converge to non-optimal solutions (Goodfellow, Bengio, & Courville, 2016).

The type of activation function used in the hidden layers could be selected via hyperparameter

optimization. However, the activation function used in the output layer should be selected depending

on the number of classes in the predicted variable. For instance, a binary classification problem should

use a sigmoid activation function since the outcome has two mutually exclusive classes. Here the

output is rounded to get the probability that belongs to one class. On the other hand, for a multiclass

classification problem, like the one presented in this project, the softmax function is commonly used

since it returns a normalized vector of probabilities, and the final class is chosen by taking the

maximum argument of that vector.

17

3. METHODOLOGY

3.1. METHODOLOGICAL WORKFLOW

The implementation of the task-oriented chatbot in this project involves the traditional methodology

followed during any NLP task. Figure 9 presents the schematic pipeline with the detailed workflow.

This pipeline is composed of three main building blocks, namely data preprocessing, intent

classification, and entity extraction.

During the first stage of the pipeline, the corpus is first augmented and then preprocessed to clean the

sentences before using them as inputs. These first two steps are crucial to obtain quality results since

they help reducing dimensionality and extracting relevant features in the text. After this phase, the

data is tokenized and then vectorized to transform the unstructured data to a numerical

representation that can be read by the algorithms.

Once the data goes through the first stage, machine learning models are trained to classify the intent

attached to each of the utterances. In this stage, two models were evaluated: the first one, a Feed

Forward Neural Network, and the second one a Support Vector Machine model.

Once the intent is classified, during the final stage, the entities in the text are detected in order to

identify the key pieces of information that will allow the bot to provide a proper response. In the

following subsections, these three stages with their components will be fully detailed.

Figure 9. Methodological workflow

18

3.2. DATA

The dataset used for this project was gathered from a collection of documents provided by the

company that was built from private conversations with their final customers. This dataset was hand

labeled to match the option that best represents the intention of the utterance. The total number of

sentences in this dataset was 7122 with an imbalanced class distribution as shown in Table 4;

nevertheless, the next section shows how the data was augmented to balance the distribution.

A total of 18 intentions divided into 4 domains were used. Three of these four domains correspond to

the main agents that make up the platform, namely customers, items, sales, and bills. While the fourth

is dedicated to the bot's natural talk that allows maintaining a basic conversation with the final user,

for instance, greetings, thanks, or support. This last domain was created by hand and contains the main

intents used by a simple chatbot system. Table 4 presents a summary of these intents and their

description.

Domain Intent Description Sentences

Customer ItemAdd Creates a new item (product) in the system 1000 (14.1%)

Item CustomerAdd Creates a new customer in the system 1000 (14.1%)

Sales
SalesStrategy Gives a sales strategy that helps the client 1000 (14.1%)

SalesReport General report of sales 664 (9.3%)

Bill
CurrentBillClearAll Clears all information in the current bill 670 (9.4%)

CurrentBillProcess Starts process payment in the current bill 390 (5.5%)

Bot

Natural

Talk (BNT)

GreetingsHello BNT - Hello from user 198 (2.8%)

GreetingsBye BNT - Bye from user 183 (2.6%)

AnswerThanks BNT - Thanks from user 119 (1.7%)

AnswerPositive BNT - User's positive response 432 (6.1%)

AnswerNegative BNT - User's negative response 72 (1.0%)

BotReal BNT - User asks bot if it is real 531 (7.5%)

BotName BNT - User asks for bot's name 181 (2.5%)

BotCompliment BNT - User compliments the bot 79 (1.1%)

BotAge BNT - User asks bot's age 92 (1.3%)

BotFunctionality BNT - User asks bot's functionalities 81 (1.1%)

AnswerYourWelcome BNT - Your welcome from user 74 (1.0%)

GreetingsHowRU BNT - User asks about the bot status 356 (5.0%)

Total 7122

Table 4. Description of Intents

3.2.1. Data Augmentation

Some studies have found that appropriate data augmentation methods are useful for controlling

generalization error for deep learning models and can boost short text classification (Marivate &

Sefara, 2020). Similar to computer vision, these techniques could be applied to text-based models and

may help the ML algorithms to deal with imbalanced data. However, data augmentation in text should

be completed carefully since the exact order of words and characters may contain syntactic and

semantic meaning. (Zhang, Zhao, & LeCun, 2016)

19

Even though, this data augmentation process should be done by rephrasing the sentences one by one,

by hand, and maintaining the grammatical structure of the sentences, in practice this approximation

is unrealistic and highly expensive. However, there are other methods available for this purpose. For

instance, using synonyms (Zhang, Zhao, & LeCun, 2016), using word embeddings (Yang Wang & Yang,

2015), using back-translation (Sennrich, Birch, & Haddow, 2016), or using Natural Language Generation

methods (Kafle, Yousefhussien, & Kanan, 2017).

As mentioned before, the data augmentation process in this study was performed since the initial

corpus contains an imbalanced number of classes, as shown in the left-hand chart in Figure 10. These

issues were solved using three methods. The first one creating synthetic documents using synonyms,

the second one using back-translation, and the last method introducing misspellings in the text.

In the first approach, a list of 483 Spanish synonyms was created using the Real Academia Española

(RAE) dictionary as a reference. To maintain the syntax of the sentence, all synonyms were carefully

selected always respecting the semantic of the text. For instance, the grammatical structure of the

word was maintained, so verbs were transformed to verbs, nouns to nouns, and so on. Likewise, since

the Spanish nouns have lexical gender, their transformations were also considered.

The second approach was performed using the back-translation method. In this method, a percentage

of the training samples were translated from the target language, in this case Spanish, to other

languages, and then the translated sentence was translated back to the original language. Two python

libraries were used for this step: The library googletrans5 that uses the Google Translate API, and

TextBlob6 that is a library for processing textual data with common NLP tasks.

Lastly, augmenting data using possible Spanish spelling errors like “s” instead of “c” or skipping an “h”

in a world was also considered. A list of all Spanish misspellings can be found in Annex 8.1. Thus, at the

end of this process, the dataset was augmented by 153% passing from 7122 to 18022 documents with

a balanced class distribution. An overview of the final number of sentences per intent is shown on the

right-hand side of Figure 10.

Figure 10. Number of sentences per intent before (left) and after (right) augmentation.

5 https://py-googletrans.readthedocs.io/
6 https://textblob.readthedocs.io/

https://py-googletrans.readthedocs.io/
https://textblob.readthedocs.io/

20

3.2.2. Data Preprocessing

During this stage, the idea is to process the raw corpus that is composed of pairs of sentences and

labels and create the dataset that will be used to train the Machine Learning models. Thus, the models

will learn to identify only the relevant patterns in data that are needed to classify intents and not any

other unnecessary aspect of the text that would not be relevant to include.

As mentioned previously in the workflow schematic in Figure 9, the preprocessing procedure consists

of the following ordered steps:

1. Lowercase the sentences: This step allows the tokenizer to not duplicate tokens whose

meaning is the same, but the only difference is the capitalization.

2. Delete punctuation marks: In this step any special character that could unnecessarily enlarge

the dimensionality and complexity of the model was removed. Namely, the following

characters were removed: !¡?¿|=:()«»;,.*´'_{}#^~<>\

3. Lemmatization: The normalization technique of Lemmatization was applied using SpaCy’s

python library (since it is the only ready-to-use library that allows for Lemmatization in

Spanish). This step is especially important to reduce dimensionality since the way a user gives

instructions to the bot could be expressed using several forms of the verbs, or in singular/plural

form, but the meaning remains the same. Thus, lemmatization takes the root form of the

inflected word and considers the morphology of the term. For instance, the sentences

“agregar el cliente”, “agrega los clientes” and “agregando los clientes” have the same root

“agrega el cliente” or “add customer” and they represent the same idea that is aligned with

the intention.

4. Replace any vocal accent mark from Spanish language for the root character, i.e. áéíóúü: This

step was done for the same reason as the lowercase step, and also to prevent possible

orthographic errors from the final user and bearing in mind that in most of the cases the accent

marks in Spanish are used only to emphasis the stressed syllables, so the pronunciation gets

clearer but the meaning of the sentence remains the same7. It is important to mention that it

needs to be done after lemmatization, so it does not interfere with the process.

5. Stop words: The following customized stop words were removed since their contribution to

the intent classification is assumed to be insignificant: 'de', 'del', 'la', 'con', 'el', 'los', 'las', 'por',

'mi', 'mis', 'tu', 'te', 'su', 'me', 'que', 'pero', 'en', 'es', 'a'.

6. Remove multiple white spaces between words: In this step, any blank space with two or more

consequently blank spaces were replaced by a single space using the following regular

expression: \s{2,}

7. Strip: In this step white spaces at the beginning and end of each sentence were removed.

7 There are circumstances where the meaning of a word could change entirely if the accent marks were not used
correctly. Some accent marks in the last vocal of the word could modify both the tense and subject of the
sentence. For instance, camino (I walk) and caminó (You/he/she walked). However, since these special scenarios
of confusion are rare to find in the context of this chatbot and especially in short-length sentences, the cost of
not including them is presumed to be small.

21

3.2.3. Data Exploration

To better understand and analyze the text contained in the document, three data exploration analyses

were performed. The first corresponds to a simple word frequency, the second a sample length

distribution and the third a graphical representation of the word embeddings by unigrams, bigrams,

and trigrams. All three methods were done after preprocessing the sentences.

Table 5 presents the top five terms that appear most frequently in all documents by category of intent

and overall. Here, it is possible to observe how each category has terms that are more frequently used

within the group. For instance, the category Customer contains unigrams like “usuario” and

“consumidor” that are synonyms of the way a customer is called; furthermore, it contains bigrams that

are related with customer’s personal information, such as “correo electronico” or “numero cedula”.

The same logic occurs in the rest of the categories. These word frequencies help to understand how

future models would classify the intention that is attached to the documents.

 Unigrams Bigrams

All

gracias (thanks) correo electronico (e-mail)

como (how) nuevo código (new code)

eres (you are) cuanto han (how much have)

nuevo (new) e mail (e-mail)

hola (hello) factura actual (current invoice)

Customer

usuario (user) correo electronico (e-mail)

consumidor (consumer) e mail (e-mail)

correo (mail) numero cedula (national ID number)

cliente (client) direccion correo (e-mail address)

nuevo (new) mail (mail)

Items

nuevo (how) nuevo codigo (new code)

codigo (code) servicio nuevo (new service)

producto (product) item nuevo (new item)

nombre (name) producto nuevo (new product)

item (item) articulo nuevo (new article)

Sales

ventas (sales) cuanto han (how much have)

como (how) han aumentado (have increased)

compras (purchases) han crecido (have increased)

ganancias (earnings) han incrementado (have increased)

han (have) como puedo (how can I)

Bill

actual (actual) factura actual (current invoice)

factura (invoice) actual gracias (current thanks)

ayuda (help) cuenta actual (current bill)

gracias (thanks) quisiera ayuda (I would like help)

todo (all) necesito ayuda (I need help)

Bot Natural
Talk

eres (you are) quien eres (who are you)

hola (hello) eres muy (you are too)

esta (to be) cuantos años (how many years)

como (how) como llamas (how is your name)

gracias (thanks) eso esta (that is)

Table 5. Word frequency by category

22

The second exploration uses the sample length distribution to give an idea of how long the sentences

are in terms of number of characters. Figure 11 provides two insights; first, the average sentence has

around 25 characters, which means that the user inputs are quite concrete and small which is expected

in a conversation with a chatbot, and lastly, there are no outlier sentences in Corpus.

Figure 11. Sample Length Distribution

The last exploration technique used is the graphical representation of word embeddings. In which it is

possible to understand how similar terms are grouped together since they presumably represent the

same idea. Figure 12 shows on the left side the word embeddings representation using unigrams and

in the right side the clusters representation using the unsupervised learning method of K-means with

13 clusters, that were determined using the elbow method.

Figure 12. Word Embeddings Unigrams

Among the most representative clusters, it is possible to find the group that helps identifying the

purchase process, it includes words like: “factura” (bill), “compra” (purchase) or “pago” (payment).

Another relevant cluster detects how the user approaches the bot and asks for support, it includes

words like: “colaborarme” (formal help), “explícame” (explain me) or “ayudarme” (help me). The last

group to highlight is the cluster that gathers the way the business refers to itself, for instance: “bar”,

“restaurante” (restaurant), “gimnasio” (gym) or “peluquería” (hair saloon). All these clusters give an

idea of how the algorithm will extract relevant features using word embeddings, grouping them by

similarity and use them to identify the intention. Further analysis using bigrams, and trigrams can be

found in Annex 8.2.

23

3.2.4. Vectorization

Once the preprocessing is done, the next step is to transform the unstructured corpora to a numerical

representation, so the subsequent ML models will be able to handle the input. To achieve this, all three

vectorization methods presented during the literature review were tested independently. Namely

BoW, TF-IDF and Word2Vec. For that purpose, the following grid was built:

1. Three types of analyzers: Splitting by words or splitting by characters and words.

2. Multiple types of n-grams: Unigrams, bigrams, trigrams, and their combinations.

3. The minimum document frequency: Remove terms that only appear a specific number of

times, varying from 1 time to 3 times.

4. The maximum document frequency: Remove terms that appear more than a specific

percentage throughout all documents, varying from 85% to 100%.

The Word2Vec methodology was applied using the skip-gram model provided by genism8 and using

the pre-trained Spanish embeddings presented in the literature review (Cardellino, 2016), which

consists of a corpus of nearly 1.5 billion words with a 300-dimensional vector. This model uses as input

the sequence of integers for each document, where each integer represents the index of a token in a

vocabulary dictionary, for this purpose, the Keras tokenizer was used.

Since the embedding matrix was created using the available corpus, not all the vocabulary was covered

by the pre-trained model. In fact, the percentage of vocabulary covered using the augmented dataset

was only of 43.41%. This issue is happening since most of the unknown terms come from the

misspelling data augmentation. Thus, the dataset used to train the models with Word2Vec

vectorization did not considered this type of augmentation. This correction allowed cover up to 84.28%

of the vocabulary.

Finally, it is important to note that this optimization was built for each intent classification model, so

each of the three vectorization methods was tested independently for every type of run. The results

of these three techniques are presented in the following section.

3.3. INTENT CLASSIFICATION

Once the sentences were preprocessed and transformed to a numerical representation, the next step

is to train a supervised algorithm that learns how to classify the intention that is attached with the

sentence. For this purpose, two approaches were considered. The first is an Artificial Neural Network

(ANN) that has been used widely in this subject (Moraes, Valiati, & Neto, 2013) (Chena, Liub, & Chiua,

2011) (Yang, 1999). The second approach is a Support Vector Machine (SVM) model that is commonly

compared with a feed-forward neural networks since their structure is similar because both of them

induce an output function which is expressed as a linear combination of simple functions (Romero &

Toppo, 2007) (Joachims, 1998).

For both algorithms, a K-Fold cross validation technique was applied. Therefore, the database was

divided into three blocks or subsamples where the data was shuffled before splitting into batches.

Thus, one of the blocks (with 30% of the observation) is used to validate the model while the remaining

k-1 blocks (with 70% of observation) are used for training purpose. This technique helps ensuring

8 https://radimrehurek.com/gensim/index.html

https://radimrehurek.com/gensim/index.html

24

consistency in the results and improves generalization. In the end of this process, the average of the

subsamples is measured to determine the performance of the model being tested.

Furthermore, a heuristic hyperparameter optimization was performed using Optuna9 which allows to

automate the search for hyperparameters and can be used in any machine learning or deep learning

framework. The metric of performance that was selected for both models is the accuracy. It was

chosen since there are not special motivations to use other metric that considers for possible penalties

for misclassify neither true positives nor false negatives.

Finally, one type of dataset variant was considered in addition to the augmented dataset (18022

sentences) presented in Section 3.2.1 and the original imbalanced dataset (7122 sentences). This

variant corresponds to a small dataset with 120 sentences per intent that were randomly chosen,

which produced a training set of 2160 utterances. This was done with the intention to assess the

performance of the best models under three different data scenarios. (Larson, et al., 2019).

3.3.1. ANN Approach

The ANN model was implemented using Keras10, that is a high-level Deep Learning API that runs on top

of TensorFlow 2. The final ANN was selected considering the following remarks:

1. The entire hyperparameter optimization process for feature selection, architecture and

optimizer was conducted for each of the three vectorizers (i.e. BoW, TF-IDF and Word2Vec)

presented in Section 3.2.4. The number of iterations in the heuristic optimization was set to

50 iterations, each of them with a 3 K-Fold cross-validator as mention previously.

2. Just in the case of Word2Vec, an embedding layer was included in the first layer of the model.

This layer has an input dimension equals to the vocabulary size that resulted from the

tokenization process, and it has an output dimension equals to the embedding dimension of

the pre-trained model (Cardellino, 2016), which is 300. The maximum length of the input

sequences was set to 100, considering that the maximum number of words per sentence has

an average of 25 words as shown in Section 3.2.3. Finally, this embedding layer was followed

by a global max pooling operation that allowed to downsample (reduce size) the input

representation by taking the maximum value over the second dimension.

3. The architecture was selected by optimizing several parameters in a 2 layers neural network.

This includes the number of units on each hidden layer in decreasing order and by factor of 32

units (between 32 and 512 in the first hidden layer and between 32 and 224 in the second

hidden layer), the type of activation function (relu, sigmoid, softplus, tanh, selu and elu) and

finally the probability of dropout between layers that goes from 0 (no dropout) to 0.5 (dropout

half of the time). The batch-size was fixed at 32 and the number of epochs to 20.

4. Two types of optimizers were tested (Adam and SGD), varying the learning rate for each of

them in the range 𝛼 ∈ {0.0001, 0.001, 0.01, 0.1, 1, 0.003, 0.03, 0.3}. For the specific case of

Adam optimizer, the exponential decay rate for the 1st moment 𝛽1 ∈ {0.85, 0.9, 0.95} and 2nd

moment 𝛽2 ∈ {0.99, 0.999, 0.9999} were tested using the general recommendations by the

authors (Kingma & Ba, 2015). In the case of SGD optimizer, only the momentum that

9 https://optuna.org/
10 https://keras.io/

https://optuna.org/
https://keras.io/

25

accelerates gradient descent 𝛾 ∈ {0, 0.9} was tested. Where 0 represents the vanilla gradient

descent and 0.9 is the convention (Ruder, 2016).

5. A learning rate schedule was implemented where the initial learning rate was used for the first

10 epochs and an exponential decay of 𝛼 = 𝛼𝑒−0.1 was introduced gradually after that. This

adaptive learning rate help reducing the training time and could increase the performance.

(Goodfellow, Bengio, & Courville, 2016).

By the end of this process, a total of 450 runs (50 iterations × 3 folds × 3 vectorizer methods) with 20

epochs each were performed using different combinations of parameters, and hyperparameters. The

results are presented in the following section.

Lastly, to avoid overfitting, the following techniques were applied:

• An early-stopping mechanism was used to stop training when the accuracy in validation set

has stopped improving after three epochs.

• A dropout layer with a certain optimizable probability was introduced between each hidden

layer for regularization.

• The training set was shuffled before each epoch, so the ANN does not learn from the order of

the training samples and instead only learns relevant patterns that help identifying the

intention.

3.3.2. SVM Approach

The methodology followed to select the best SVM model was done similarly to ANN. Thus, the

hyperparameter optimization was done using Optuna. However, as discussed during the literature

review and since SVM are considered “out of the box” classifiers. Only two of the most essential

hyperparameters were tuned, namely the kernel function and the regularization parameter.

The final model was selected considering the following:

1. The hyperparameter optimization process was performed for each of the three vectorizers

(i.e., BoW, TF-IDF and Word2Vec) presented in Section 3.2.4. The number of iterations in the

heuristic optimization was set to 50 iterations, each of them with a 3 K-Fold cross-validator as

mentioned previously.

2. The kernel function was optimized considering the following options:

a. Polynomial kernel with degrees 𝑑 ∈ [2, 6].

b. RBF with scale parameter of 𝛾 ∈ {1, 0.1, 0.01, 0.001, 0.0001}.

3. Lastly, the regularization parameter was optimized with values of 𝐶 ∈ {0.5, 1, 10 or 100}.

At the end of this process, a total of 450 runs (50 iterations × 3 folds × 3 vectorizer methods) were

performed with different combinations of hyperparameters.

3.4. ENTITY RECOGNITION

Once the intent classification model was selected, then it is necessary to extract the entities from the

text. These entities represent important pieces of information that will help the chatbot to understand

the context and give a more natural response based on the information that the user has provided.

26

Therefore, the rule-based approach and the statistical approach presented in the literature review

were applied simultaneously to extract their best advantages.

The rule-based approach was used to extract specific patterns that have a standard form or a finite

number of possibilities, such as emails, dates, barcodes of products or phone numbers in Colombian

pattern. Depending on the task, the use of regular expressions or a list of specific tokens were used.

On the other hand, the statistical approach implemented to extract more complex entities such as

proper names was the spaCy’s v.2.0 pre-trained NER module in Spanish (es_core_news_md). It was

trained using the AnCora corpus mentioned in the literature review and contains 20 thousand unique

embeddings with 300 dimensions11. This model has a F-Score in test of 0.9 for the name entities

component and allows to extract locations (LOC), organizations (ORG), and persons (PER). However, it

will only be used to extract locations and persons.

The following table summarizes the 16 entities extracted along with their description and

approximation used. Further details can be found in Annex 8.3:

Entity Code Description NER Approximation

sys-num-any Extract any number in any form Rule-based (from regular expression)

sys-units-name Extract names of units Rule-based (from tokens)

sys-units-symbol Extract abbreviations of units Rule-based (from tokens and regular expression)

sys-date Extract any date in any form Rule-based (from regular expression)

sys-person Extract any person’s full name Spacy NER Model

sys-gender Extract a gender Rule-based (from tokens)

sys-location Extract any location Spacy NER Model

sys-address Extract any physical address Rule-based (from regular expression)

sys-email Extract any email Rule-based (from regular expression)

sys-barcode Extract EAN-13 and EAN-8 barcodes Rule-based (from regular expression)

sys-phone Extract Colombian phone numbers Rule-based (from regular expression)

sys-gel Extract greater, equal, or less Rule-based (from tokens)

sys-typeid Extract any identification type Rule-based (from tokens)

userItemName Extract any user's item by name Rule-based (from tokens)

userItemId Extract any user's item by id Rule-based (from tokens)

Table 6. Summary of entities extracted.

11 https://spacy.io/models/es

https://spacy.io/models/es

27

4. RESULTS AND DISCUSSION

Once the heuristic hyperparameter optimization has been performed, the best model for each

vectorizer was selected (further details in Annex 8.4). These models were run one last time using a 5

K-fold cross-validation in order to have a more reliable significance of the results. Additionally, as

discussed during the methodology section, these best-performed models were tested using three

dataset variations, Augmented, Small and Imbalanced datasets. Figure 13 shows a summarized

representation in terms of average accuracy score and standard errors for each combination of model

and vectorizer. A detailed table with these results is reported in Table 7.

Furthermore, in order to test whether the two classifiers have the same performance rate or not. A K-

fold paired t-test was done with a 5% significance, following (Alpaydin, 2004, pp. 501-502). It was

created by taking the difference between accuracy rates for both models during cross-validation and

testing the null hypothesis of no difference between classifiers. The results for each method are

presented in Table 8.

Figure 13. ANN and SVM test accuracy in a 5-folds CV

 ANN SVM

 Augmented Small Imbalanced Augmented Small Imbalanced

BoW 97.70% ± 0.35 90.60% ± 2.25 97.08% ± 0.33 96.55% ± 0.35 86.62% ± 1.84 96.14% ± 0.26

TF-IFD 98.16% ± 0.25 91.16% ± 1.85 97.39% ± 0.32 96.15% ± 0.17 87.13% ± 1.62 95.51% ± 0.40

Word2Vec 98.04% ± 0.08 91.57% ± 2.09 97.08% ± 0.35 96.80% ± 0.22 86.76% ± 2.25 94.59% ± 0.53

Table 7. Average and standard deviations of test accuracy in a 5-fold cross validation

 Augmented t-Test Small t-Test Imbalanced t-Test

BoW 4.306 7.89 6.796

TF-IFD 16.974 8.036 11.81

Word2Vec 13.384 11.429 14.066
 Significance at 5% (𝑡0.05,4 = 2.78). If 𝑡𝑡𝑒𝑠𝑡 > 𝑡0.05,4 reject Ho: both models have the same performance.

Table 8. K-Fold paired t-Tests at 5% significance level for different dataset variants

28

Figures 14 and 15 show the multi-class Receiver Operating Characteristic (ROC) curves for two types

of comparisons. On one hand, Figure 14, compares different dataset variants between classifiers and

vectorizers. On the other hand, Figure 15 compares vectorizers and dataset variants within classifiers.

The ROC curve plots two parameters, on the x-axis the False Positive Rate (FPR) and on the y-axis the

True Positive Rate (TPR), showing the performance of a specific classification at different threshold

levels. Moreover, these ROC curves were zoom-in to have a better picture of the differences between

methods.

The multi-class ROC curve was done using the One-vs-rest strategy, where one classifier is fitted per

class and tested against all other classes, transforming a multi-class classification problem into a binary

classification, and gaining more interpretability and knowledge about the class. Finally, the macro-

average Area Under the ROC Curve (AUC) was used to compute the metric independently for each

class and taking the average, the higher the number the better the classifier to predict between classes.

Figure 14. Comparison of One-vs-Rest ROC between-models by dataset variant.

Figure 15. Comparison of One-vs-Rest ROC within-model using macro average AUC.

29

Considering the results obtained, it is possible to observe the following:

• Although both models achieved good levels of accuracy using the imbalanced dataset. Data

augmentation increased performance for both classifiers with a higher effect on SVM using TF-

IDF and word embeddings as vectorizers.

• As expected, the small dataset had the worst performance of all three, with a notorious drop

of accuracy for both models. Given the volatility in the k-fold estimations, the performance is

statistically equal between vectorizers. Furthermore, it was an unexpected outcome the fact

that SVM underperformed ANN, given that it is a classifier that tends to respond better in this

small-data scenario.

• Even though Word2Vec methodology was not the best vectorizer in all cases (just 2 out of 6 in

Table 7), its performance is remarkable considering that it uses a pre-trained model that can

be retrained in further studies and could incorporate the vocabulary and sentences used for

training the intention in the embedding’s representation.

• In terms of accuracy, tables 7 and 8 showed that ANN significantly (with a t-test at 5% of

significance) achieved the best accuracy in all datasets and vectorizers with the higher

performance using the augmented dataset and TF-IDF as a feature selection method.

• The results obtained by the ROC curves in Figure 14 showed that ANN presented the best

results of both classifiers using the augmented and imbalanced datasets; however, in the small

dataset, this advantage is less clear.

• Observing the within-model comparison in Figure 15, and aligned with the results using the

accuracy metric, the augmented dataset had the best performance for both models. Small and

imbalanced datasets had a less clear differentiation.

To sum up, using the accuracy metric and examining the multi-class ROC curves, the best model was

reached using the augmented and balanced dataset with ANN as classifier and TF-IDF as vectorizer

method. Compared to SVM, this model achieved significantly better performance (at 5% of

significance) with an accuracy value of 98.2%. This result is aligned with previous works like (Moraes,

Valiati, & Neto, 2013) and (Romero & Toppo, 2007) where ANN produced superior performance

compared to SVM models, even using imbalanced or small datasets.

In order to evaluate the convergence to a satisfactory solution of the model that was selected, the

neural network was trained one last time using the same configuration of TF-IDF vectorizer in the

augmented dataset but without the cross-validation process. Figure 16 shows the loss and accuracy in

training and validation that was run for 30 epochs using an early-stopping mechanism that ended the

training process after 8 epochs since the model was not achieving a better solution in terms of

validation loss. This technique combined with the usage of a dropout layer in the network, helped the

model to converge and to avoid overfitting, as shown in Figure 16.

Thus, the model selected reached an accuracy in the test set of 98.28%, which is consistent with the

results obtained during cross-validation. This model was chosen for production purposes in the

implementation of the dialog system and was used as an intent classifier combined with the NER

approach discussed in Section 3.4.

30

Figure 16. Losses and accuracy by epochs of best model.

Finally, in order to have a deeper knowledge of how the model performs for each class, Figure 17

shows the multi-class ROC separated by intents. Its construction is similar to the one done previously

for Figures 14 and 15 but with the difference that each class is shown independently. Thus, it is possible

to observe that even though the model achieved good outcomes across all classes, the worst

performance (those farthest below the Macro-averaged ROC curve) was achieved in the classes

associated with greetings, sales strategy, thanks, and bot compliment. In contrast, the majority of the

classes that are related to the specific task for this chatbot performed well. This represents an

important point since although the proper identification of task-related queries by the system is more

relevant than queries that fall outside of the scope, those out-of-scope intents should not be discarded

and could potentially improve the user experience with the dialog system (Larson, et al., 2019).

Figure 17. ROC curves of best model selected by classes.

31

Chatbot in real-word scenario

Once the best model was selected, the entire chatbot system was put to the test in a real scenario. For

this purpose, an experimental chatbot was built using Command Line Interface (CLI) where the user

can start a conversation and provide a feedback to each answer. Thus, a short survey with 5 active

customers was performed just to qualify intent classification and NER. In this case, each user had the

task to provide a score from 1 to 3 points for each answer in both intention and entities, where 1

corresponds to a good-quality answer, 2 corresponds to a regular-quality answer, and 3 to a poor-

quality answer. It is important to mention that this chatbot was created just for testing purposes, as a

prototype in a controlled environment, and the responses are not considered as final.

At the end of this experiment, the quality of each survey was measured by taking the average of the

scores provided by the customers. Table 9 summarizes these results in terms of intents, further details

were reported in Annex 8.6.

Group Intent Expected Average Average of group

Specific
Task

CurrentBillClearAll 1.0

1.3

CurrentBillProcess 1.0

CustomerAdd 1.0

ItemAdd 1.0

SalesReport 1.8

SalesStrategy 2.0

Bot
Natural

Talk
(BNT)

AnswerThanks 1.0

1.3

BotCompliment 3.0

BotFunctionality 1.0

BotName 1.0

BotReal 1.0

GreetingsBye 1.0

GreetingsHello 1.0

GreetingsHowRU 1.0

Default Default Answer 2.5 2.5
OVERALL 1.4

Table 9. Results of user's feedback

Considering the results obtained by the survey, the following was observed:

1. The chatbot produced favorable results in terms of intent classification with an overall score

of 1.4. The main drawback in terms of specific-task intents was detected in SalesStrategy,

whereas in the BNT group the intent BotCompliment produced the poorest performance.

2. In terms of NER classification, the chatbot achieved an overall score of 1.3, which indicates

good results. However, we noticed that further tuning is required for entities predicted by the

SpaCy’s pre-trained model used for detecting persons and locations, since in some cases the

model predicted false positives, especially in cases where capitalize letters were used.

3. Lastly, the fact that the chatbot had poor results in terms of the default answer means that it

needs to be considered in further detail. In this case, the addition of new observations in an

out-of-scope class could be implemented (Larson, et al., 2019); additionally, a reduction in the

threshold value considered as the minimum level of uncertainty in the resulted probability

could also be contemplated for the final system.

32

5. CONCLUSIONS

In this project, the framework for a specific-domain dialog system was built as part of an internship

program with the start-up 2Luca. This conversational agent is based on Artificial Neural Networks and

NER models, which can be tuned and enhanced using an improved corpus based on future real

conversations with final users.

The results obtained in this project showed that MLP neural networks are one of the best options for

text classification problems. These results are consistent with other works like (Moraes, Valiati, & Neto,

2013) where ANN showed better performance compared to SVM in a binary classification problem or

(Larson, et al., 2019) in which MLP outperformed several models, including platforms such as Rasa

NLU12 or Dialogflow13 that are built for the development of task-oriented agents.

Furthermore, three dataset variants were tested including an augmented dataset that was built using

different techniques found in literature, the results showed that this augmentation process produced

an improvement in terms of accuracy level and ROC curves.

Additionally, multiple vectorizer methods were tested including a Bag-of-Words, a TF-IDF and a word

embeddings vector representation. The best results were obtained using the TF-IDF vectorization

method. However, the role of Word2Vec should not be discarded in further analysis, as it would

potentially improve the results since word embeddings would capture particular needs if the model

was trained using a specific-task corpus.

Finally, the implementation was tested using a small-talk survey made by 5 customers. The results

showed positive feedback from the final users in terms of both intent classification and NER. Moreover,

good feedback was extracted from these conversations, since it highlighted the importance to

incorporate more out-of-scope training data in order to improve the user’s experience.

12 https://rasa.com/
13 https://dialogflow.cloud.google.com/

https://rasa.com/
https://dialogflow.cloud.google.com/

33

6. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

Nowadays, the main challenge for any intelligent chatbot is to reach the same conversational capability

as human conversation. To achieve this goal, the system must understand and convey complex

concepts, sentences, and semantics using NLP techniques. The key aspect of such systems is the

communication of information in an efficient manner, which allows the conversation to be very rich

both, in content and context.

To improve the performance in the intent’s classification made by the bot, the proposed model could

be modified using a Bi-directional Transformer Model (BERT), where the use of encoders and decoders

could dramatically outperform the current results as shown in (Larson, et al., 2019). However, to use

this model it is recommended first to increase naturally the number of observations in the dataset,

potentially by storing future conversations of the current model and then tagging the intents of the

final users.

Another recommendation to be considered in future implementations is the Name Entity Recognition

model. Here, the use of online text annotation resources such as doccano14 or Prodigy15 could be useful

to create a customized dataset that helps to detect more precisely the entities that are included in the

text.

One of the main limitations encountered during the elaboration of this project was the lack of NLP

resources available for the Spanish language. There is still a long way to go in this area. For instance:

1. The development of new Word2Vec pre-trained models with further Corpus sources in

addition to the one presented by (Cardellino, 2016).

2. Additionally, the need for more NLP tools in addition to SpaCy package that include more

rigorous work on Spanish lemmatization.

Software infrastructure

Although the final implementation of the dialog system software is beyond the scope of this project, a

software ecosystem was proposed to implement the framework developed here. For this purpose, an

Application Programming Interface (API) could interact with the backend of 2Luca and serve as

endpoint for all user inquiries send to the chatbot.

Figure 18 illustrates this process, in which each user’s request (each sentence in the conversation) is

sent to the API endpoint, where the model processes the input and passes it through the neural

network to detect intentions; lastly, the system detects entities using the proposed model, which

combines statistical and rule-based approaches. The ANN model can be exported as an .H5 file which

can be easily used within the API for prediction. Once the best response from the AI model is obtained,

it is sent back to the user.

14 https://doccano.herokuapp.com/
15 https://prodi.gy/

34

Finally, the API can be easily mounted in the cloud on a Platform as a Service (PaaS) solution such as

Heroku using Flask as a web development framework, which allows to easily create a secure API

solution and will help to define the endpoints.

Figure 18. Software implementation proposed.

35

7. BIBLIOGRAPHY

Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., . . . Le, Q. V. (2020). Towards

a Human-like Open-Domain Chatbot. arXiv, 38.

Alpaydin, E. (2004). Introduction to machine learning. Cambridge: The MIT Press.

Bikel, D., Miller, S., Schwartz, R., & Weischedel, R. (1998). Nymble: a High-Performance Learning

Name-finder.

Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa: Open Source Language

Understanding and Dialogue Managemen. CoRR, 1-9.

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. COLT '92.

Cardellino, C. (2016, March). Retrieved from Spanish Billion Words Corpus and Embeddings:

https://crscardellino.ar/SBWCE/

Carpenter, R. (1997). Jabberwacky. Retrieved from http://www.jabberwacky.com/

Chena, L.-S., Liub, C.-H., & Chiua, H.-J. (2011). A neural network based approach for sentiment

classification in the blogosphere. Journal of Informetrics, 313–322.

Christopher, M., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The Stanford

CoreNLP Natural Language Processing Toolkit. Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics: System Demonstrations, 55-60.

Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial paranoia. Artificial Intelligence 2, 1–25.

D. Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge

University Press.

Deng, L., & Liu, Y. (2018). Deep Learning in Natural Language Processing. Springer.

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating Non-local Information into Information

Extraction Systems by Gibbs. Proceedings of the 43nd Annual Meeting of the Association for

Computational Linguistics, 363-370.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Adaptive Computation and Machine

Learning series). MIT Press.

Huang, M., & Zhu, X. (2020). Challenges in Building Intelligent Open-domain Dialog Systems. arXiv, 1-

33.

IBM Cloud Education. (2020, 07 02). IBM Education. Retrieved from IBM:

https://www.ibm.com/cloud/learn/natural-language-processing

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: with

Applications in R. New York: Springer Texts in Statistics.

36

Joachims, T. (1998). Text categorization with suport vector machines: Learning with many relevant

features. Proceedings of the 10th European conference on machine learning, 137–142.

Kafle, K., Yousefhussien, M., & Kanan, C. (2017). Data Augmentation for Visual Question Answering.

Proceedings of The 10th International Natural Language Generation conference, 198-202.

Kingma, D., & Ba, J. (2015). Adam: A Method For Stochastic Optimization. ICLR.

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional Random Fields: Probabilistic Models for

Segmenting and Labeling Sequence Data. Proceedings of the 18th International Conference

on Machine Learning, 282-289.

Larson, S., Mahendran, A., Peper, J. J., Clarke, C., Lee, A., Hill, P., . . . Mars, J. (2019). An Evaluation

Dataset for Intent Classification and Out-of-Scope Prediction. CoRR. Retrieved from

http://arxiv.org/abs/1909.02027

Marivate, V., & Sefara, T. (2020). Improving Short Text Classification Through Global Augmentation

Methods. Machine Learning and Knowledge Extraction.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations. In

Proceedings of Workshop at ICLR.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of

Words and Phrases and their Compositionality. arXiv, 1-9.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of

Words and Phrases and their Compositionality. CoRR, 1-9.

Moraes, R., Valiati, J. F., & Neto, W. P. (2013). Document-level sentiment classification: An empirical

comparison between SVM and ANN. Expert Systems with Applications, 621-633.

Nuruzzaman, M., & Hussain, O. K. (2018). A Survey on Chatbot Implementation in Customer Service

Industry through Deep Neural Networks. International Conference on e-Business Engineering,

9.

Romero, E., & Toppo, D. (2007). Comparing support vector machines and feedforward neural

networks with similar hidden-layer weights. IEEE Transactions on Neural Networks, 959–963.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR.

Sennrich, R., Birch, A., & Haddow, B. (2016). Improving Neural Machine Translation Models with

Monolingual Data. Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics.

Spacy. (2020). Spacy. Retrieved from https://spacy.io/usage/rule-based-matching

Sutton, C., & McCallum, A. (2012). An Introduction to Conditional Random Fields. Foundations and

Trends in Machine Learning, 267-373.

Wacholder, N., Ravin, Y., & Choi, M. (1997). Disambiguation of Proper Names in Text. Proceedings of

5th Conference on Applied Natural Language Processing, 1-7.

37

Wallace, R. S. (2009). The anatomy of ALICE. In Parsing the Turing Test. Springer, 181–210.

Weizenbaum, J. (1966). ELIZA - a computer program for the study of natural language

communication between man and machine. Commun. ACM, 36–45.

Yang Wang, W., & Yang, D. (2015). That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding

Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors

using #petpeeve Tweets. Association for Computational Linguistics, 2557–2563.

Yang, Y. (1999). An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval,

69–90.

Zhang, X., Zhao, J., & LeCun, Y. (2016). Character-level Convolutional Networks for Text Classification.

1-9.

38

8. ANNEXES

8.1. SPANISH SPELLING ERRORS

sa ca

ch sh

za sa

gi ji

se ce rr rrr ze se go jo

si ci rr r zi si gu ju

so co va ba zo so ay ai

su cu ve be zu su oy oi

cion sion vi bi yi lli uy ui

ción sion vo bo yo llo que q

ha a vu bu yu llu wa gua

he e amp anp lla ya gui gi

hi i emp enp lle ye gue ge

ho o imp inp ga ja sc s

hu u omp onp ge je por x

39

8.2. WORD2VEC REPRESENTATION

40

8.3. NER, FURTHER DETAILS

Entity Code
NER

Approximation

Details

sys-num-any
Rule-based

(from regexp)

"[-]?[0-9]*\\.?[0-9]+",

"[-]?\\d{1,3}(\\,\\d{3})+"

sys-units-name
Rule-based

(from tokens)

"unidades", "unidad", "botellas", "botella", "vasos", "vaso", "barriles",

"barril", "cajas", "caja", "sobres", "sobre", "piezas", "pieza", "retazos",

"retazo", "equipos", "equipo", "cubos", "cubo", "micra", "micras",

"milimetro", "milimetros", "centimetro", "centimetros", "metro", "metros",

"kilometro", "kilometros","pulgada", "pulgadas","pie", "pies",

"yardas","yarda","milla","millas","pie cuadrado", "pies cuadrados", "yarda

cuadrada", "yardas cuadradas", "millas cuadradas", "milla cuadrada", "metro

cuadrado", "metros cuadrados", "hectarea", "hectareas", "kilometro

cuadrado", "kilometros cuadrados", "centimetro cúbico", "centimetros

cúbicos","metro cúbico", "metros cúbicos", "pie cúbico", "pies

cubicos","yarda cúbica", "yardas cúbica", "microlitro", "microlitros",

"mililitro", "mililitros", "mili litros", "litro", "litros", "microgramo", "mirco

gramos", "microgramos","miligramo", "miligramos", "mili gramos", "mili

gramo", "gramo", "gramos", "kilo", "kilos", "kilogramo", "kilo gramo",

"kilogramos", "kilo gramos","tonelada metrica", "toneladas

metricas","onza", "onzas","libra", "libras","libras por pulgada cuadrada",

"libra por pulgada cuadrada","partes por mil","partes por millon","segundo",

"segundos", "minuto", "minutos", "horas", "hora", "kilovatio-hora",

"kilovatio", "kilovatio hora"

sys-units-symbol
Rule-based

(from tokens)

"k", "kg", "gr", "grm", "g", "km", "mtr", "m", "mm", "dm", "hec", "m2", "m3",

"ft"

sys-date
Rule-based (from

regexp)

"((\\d{1,2})(\\\\|\\/|-|;|\\.|\\s)(\\d{1,2})(\\\\|\\/|-|;|\\.|\\s)([12]\\d{3}))",

"([12]\\d{3})(\\\\|\\/|-|;|\\.|\\s)(\\d{1,2})(\\\\|\\/|-|;|\\.|\\s)(\\d{1,2})",

"(\\d?\\d)\\s*(de)?\\s*(enero|febrero|marzo|abril|mayo|junio|julio|agos

to|septiembre|octubre|noviembre|diciembre|ene|feb|mar|abr|may|jun

|jul|ago|sep|oct|nov|dic)\\s*(del|de)?\\s*(año)?\\s*(\\d{2,4})?",

"\\b(lunes|martes|miercoles|jueves|viernes|sabado|domingo|lun|mar|m

ie|jue|vie|sab|dom)\\,?\\s?(\\d?\\d)\\s*(de)?\\s*(enero|febrero|marzo|a

bril|mayo|junio|julio|agosto|septiembre|octubre|noviembre|diciembre|

ene|feb|mar|abr|may|jun|jul|ago|sep|oct|nov|dic)\\s*(del|de)?\\s*(año

)?\\s*(\\d{2,4})?\\b",

"\\b(enero|febrero|marzo|abril|mayo|junio|julio|agosto|septiembre|oct

ubre|noviembre|diciembre|ene|feb|mar|abr|may|jun|jul|ago|sep|oct|n

ov|dic)\\s*(del|de)?\\s*(año)?\\s*([12]\\d{3}|\\d{1,2})+\\b"

sys-person Spacy NER Model -

sys-gender
Rule-based (from

tokens)

"masculino", "femenino", "M", "F", "hombres", "mujeres", "hombre",

"mujer", "trans", "transexual", "transgenero", "FTM", "MTF", "androgino",

"androgynous", "neutrois", "genderqueer", "agenero", "bigenero",

"pangenero"

sys-country Spacy NER Model -

sys-zipcode
Rule-based

(from regexp)

"\\b\\d{6}\\b"

sys-address
Rule-based

(from regexp)

-

sys-email
Rule-based

(from regexp)

“([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\\.[a-zA-Z0-9_-]+)”

41

sys-barcode
Rule-based

(from regexp)

"\\b\\d{1}\\s*\\d{6}\\s*\\d{6}\\b",

"\\b\\d{1}\\-*\\d{6}\\-*\\d{6}\\b",

"\\b\\d{4}\\s*\\d{4}\\b",

"\\b\\d{4}\\-*\\d{4}\\b"

sys-phone
Rule-based

(from regexp)

"\\b\\d{3}\\s*\\d{4}\\b",

"\\+\\d{2}\\s*\\d{3}\\s*\\d{4}\\b",

"\\(\\d{3}\\)\\s*\\d{3}\\s*\\d{2}\\s*\\d{2}\\b",

"\\+\\d{2}\\s*\\(\\d{3}\\)\\s*\\d{3}\\s*\\d{2}\\s*\\d{2}\\b",

"\\b\\d{3}\\s*\\d{3}\\s*\\d{2}\\s*\\d{2}\\b",

"\\+\\d{2}\\s*\\d{3}\\s*\\d{3}\\s*\\d{2}\\s*\\d{2}\\b"

sys-gel
Rule-based

 (from tokens)

“mayor que”, “mayor a”, “mayor de”, “menor a”, “menor que”, “menor de”,

“mayor o igual”, “menor o igual”, ”igual a” , ”igual que”, ”igual” , “mayores

a”, “mayores que”, “mayores de”, “menores a”, “menores que”, “menores

de”

idtype
Rule-based

(from tokens)

"cedula de ciudadania", "cedula", "cc", "c.c", "tarjeta de identidad", "cedula

de extranjeria", "pasaporte", "numero de identidad", "identidad", "NIT",

"numero de identificacion tributaria", "numero de identificacion", "número

de identificacion fiscal"

userItemName
Rule-based

(from tokens)

Tokens are extracted from the database

userItemId
Rule-based (from

tokens)

Tokens are extracted from the database

42

8.4. RESULTS OF HYPERPARAMETERS OPTIMIZATION

The following table summarizes the specification of the best models that were selected after 50 trails

of hyperparameter optimization using Optuna. These models were obtained independently for each

classifier and each vectorizer method using the augmented dataset and the preprocessing techniques

mentioned in Section 3.2.2.

Classifier Vectorizer Specification

ANN

BoW

Analyzers: Characters and words.

N-gram: Trigrams

Min and Max DF: 1 and 0.9

Optimizer: Adam

Learning Rate: 0.01

Hidden Layer 1: 352 units with ReLU activation function

Dropout 1: 0.4 probability

Hidden Layer 2: 160 units with Softplus activation function

Dropout 2: 0.1 probability

TF-IFD

Analyzers: Characters and words.

N-gram: Bigrams and Trigrams

Min and Max DF: 3 and 0.9

Optimizer: Adam

Learning Rate: 0.01

Hidden Layer 1: 480 units with ReLU activation function

Dropout 1: 0.5 probability

Hidden Layer 2: 224 units with tanh activation function

Dropout 2: 0.5 probability

Word2Vec

Analyzers: Words

N-gram: Unigrams

Optimizer: Adam

Learning Rate: 0.001

Hidden Layer 1: 320 units with ReLU activation function

Dropout 1: 0.3 probability

Hidden Layer 2: 96 units with ReLU activation function

Dropout 2: 0.1 probability

SVM

BoW

Analyzers: Characters and words

N-gram: Bigrams and Trigrams

Min and Max DF: 3 and 0.85

C: 100

Kernel: RBF

Gamma: Scale

TF-IFD

Analyzers: Characters and words

N-gram: Bigrams and Trigrams

Min and Max DF: 3 and 0.85

C: 100

Kernel: RBF

Gamma: Scale

Word2Vec

Analyzers: Words

N-gram: Unigrams

C: 1

Kernel: RBF

Gamma: Scale

43

8.5. K-FOLDS RESULTS

 Test Accuracy K-Fold

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

ANN

Augmented

BoW 97.78 98.03 97.42 98.09 97.20 97.70 0.35

TF-IFD 98.36 98.25 97.97 98.45 97.78 98.16 0.25

Word2Vec 98.05 98.02 97.99 98.20 97.96 98.04 0.08

Small

BoW 87.96 87.73 92.59 92.36 92.36 90.60 2.25

TF-IFD 88.66 89.35 92.82 91.67 93.29 91.16 1.85

Word2Vec 89.35 88.89 92.36 93.06 94.21 91.57 2.09

Imbalanced

BoW 96.91 96.56 97.12 97.26 97.54 97.08 0.33

TF-IFD 97.05 97.12 97.47 97.96 97.33 97.39 0.32

Word2Vec 97.27 96.56 97.27 96.79 97.51 97.08 0.35

SVM

Augmented

BoW 96.51 95.89 96.84 96.78 96.73 96.55 0.35

TF-IFD 96.28 96.00 95.89 96.28 96.28 96.15 0.17

Word2Vec 96.76 96.94 97.03 96.88 96.40 96.80 0.22

Small

BoW 85.65 83.80 89.35 87.04 87.27 86.62 1.84

TF-IFD 85.19 85.65 89.58 88.19 87.04 87.13 1.62

Word2Vec 84.95 83.33 88.19 89.35 87.96 86.76 2.25

Imbalanced

BoW 95.65 96.14 96.35 96.21 96.35 96.14 0.26

TF-IFD 94.74 95.58 95.86 95.65 95.72 95.51 0.40

Word2Vec 94.19 94.18 94.54 94.42 95.61 94.59 0.53

44

8.6. RESULTS OF CHATBOT SURVEY FROM USERS

User
Intent Score NER Score

Count Mean Count Mean

1 7 1.0 7 1.3

2 9 1.4 9 1.3

3 13 1.6 13 1.2

4 7 1.3 7 1.7

5 10 1.4 10 1.0

OVERALL 1.4 1.3

Page | i

