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Abstract

The Internet of Things (IoT) has been growing at an immense pace over the last few

years and there are no predictions of slowing down anytime soon, but most importantly,

not only has it been growing in size but it has also been growing in capabilities, per-

formance and diversity. Diversity is incredibly important but also fracturing, in this

context. As IoT sensor nodes get more performant and diverse, their adaptability and

reconfigurability ends up being lost in the search for ultimate performance.

As a way to unify these individual single purpose sensor nodes, a need and an oppor-

tunity present themselves to develop a singular multi-parameter, multi-sensor IoT node,

that can make use of the latest reconfigurable technology to adapt itself to the require-

ments of each type of sensor, while maintaining the very high performance and precision

of dedicated sensor nodes.

This dissertation work will thus focus on developing an architecture and building a

prototype circuit board for a multi-sensor, reconfigurable IoT node based on a state-of-

the-art System-on-Chip (SoC) with extremely high resolution measurement capabilities,

which can interface with virtually any type of existing sensor. This architecture and

prototype are intended to serve as a stepping stone in the path to develop a capable IoT

node which can interface with a wider range of sensor and have a higher precision than

what is currently available.

Keywords: IoT, Sensor Node, Flexible, Reconfigurable, High-Precision, SoC
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Resumo

A Internet of Things (IoT) tem vindo a crescer a passos largos ao longo dos últimos

anos, e não apresenta quaisquer sinais de abrandar o seu crescimento num futuro próximo.

No entanto, não só tem vindo a crescer em tamanho, mas também nas suas capacidades,

performance e diversidade. Enquanto que a diversidade é extremamente importante,

neste contexto, é também fraturante. À medida que os nós IoT melhoram em performance

e diversidade, a sua adaptabilidade e reconfigurabiliade acaba por ficar em segundo plano

na procura do pico de performance.

Com o objetivo de unificar estes nós de sensores com propósitos singulares, apresenta-

se uma oportunidade e uma necessidade de desenvolver um único nó IoT capaz de fazer

interface com uma multiplicidade de sensores distintos, usando tecnologia de ponta re-

configurável para se adaptar às necessidades de cada tipo de sensor, mantendo ainda

assim a alta performance e precisão de nós de sensor dedicados.

A presente dissertação irá então focar-se no desenvolvimento de uma arquitetura

de sistema e criação de um protótipo em placa de circuito impresso referente a um nó

IoT multisensor reconfigurável, baseado num SoC de última geração com capacidades de

medição extremamente elevadas, que consiga fazer interface com qualquer tipo de sensor

existente. Esta arquitetura de sistema e protótipo são desenvolvidos com a intenção de

servirem como ponto de partida para o desenvolvimento de um nó IoT de interface com

sensores, que tenha a capacidade de medir qualquer tipo de sensor com uma precisão

superior àquilo que está atualmente disponível.

Palavras-chave: IoT, Nó de Sensores, Flexível, Reconfigurável, Alta Precisão, SoC
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1
Introduction

1.1 Motivation

Over the last few years, the Internet of Things has been growing at an incredibly fast

rate, bringing together human controlled devices and independent "things"in the same

network. These independent devices come in all shapes and forms, and in innumerous

contexts.

In consumer applications, it’s possible to find a plethora of smart home devices, from

lamps, to speakers, to voice assistants, to smart outlets, or even network connected appli-

ances such as fridges and washing machines, or even doorbells and smart thermostats.

In industrial applications, IoT is making an enormous breakthrough, with the de-

nominated Industry 4.0, where even manufacturing equipment is network connected,

enabling features like process control, where sensors can monitor the status of an assem-

bly line and relay it in real time to a central hub. In the agricultural sector, IoT is enabling

the collection of vasts amount of data, from soil sensors like moisture or pH to air quality

and crop growth, helping farmers optimize their production.

In commercial applications, it’s easy to find many IoT devices in the transportation

industry, from simple electronic toll collection systems to fleet vehicle locators and even

devices to remotely disable a vehicle in case of theft. But also in the medical industry,

where IoT devices can permanently monitor a patient’s vitals and warn them, or even call

the emergency services, in case of need.

In infrastructures, IoT makes possible the implementation of city wide smart con-

trolled traffic lights, with the help of sensors and cameras, in order to optimize the flow

of traffic.

IoT devices are becoming ubiquitous, numbering in the tens of billions, yet they all

1



CHAPTER 1. INTRODUCTION

need to be connected to the network, congesting access points due to the need for an

individual connection to each one, which is exactly one of the problems where WiFi 6

tries to improve upon its predecessor.

1.2 Objectives

With the amount and variety of specialized connected IoT devices, and specially the

amount of different sensor interfacing nodes, the need for a unified platform where all

types of sensors, from all the different areas where IoT is deployed, can be connected,

read and processed, becomes very apparent.

This is exactly the problem this thesis intends to help solve, by creating a general

purpose sensor interface node, with high precision and processing capabilities, as well as

the ability to interface with a significant number and variety of sensors at once.

To achieve this, a highly reconfigurable architecture must be designed and optimized,

such that the same IoT node can be as adaptable to the connected sensors as possible,

while maintaining high performance in as many areas as possible.

1.3 Contributions

The present dissertation made several important contributions related to the devel-

opment of an advanced IoT sensor node, such as:

• Design of a system architecture for a high precision IoT capable of reading data

from multiple sensors, process it, and transmit it;

• Implementation of the designed system architecture in KiCad, a first use of this

software, through the creation of a schematic and its layout;

• Physical production of the proposed and implemented IoT node through JLCPCB,

the first use of this PCB manufacturer;

• Creation of a first generation prototype of the high precision IoT sensor node;

• Extensive testing of the Programmable System-on-Chip (PSoC) microcontroller,

with focus on its signal acquisition capabilities, which found some incredibly good

but also unexpected and insightful results;

• First contact with the AD5941 Analog Front End Integrated Circuit (IC), which

increased knowledge about its operational principles and control library.
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1.4 Organization

This dissertation starts with Chapter 1: Introduction, where there is an overview of

the factors that led to the development of this work, and the problems it intends to solve.

The second chapter, named Research and Concept Work, tries to compile some of the

previous developments in the area being studied, as a way to bring the reader up to speed

with the subjects being researched and discussed, then proceeds to introduce some of the

planning work done in the early development.

Chapter 3 is where the brunt of the development work is explained, starting with the

Hardware side of the problem, there is a description of the challenges faces when creating

the IoT node, as well as some of the design considerations around both the Analog and the

RF sections, which are both highly sensitive and intolerant of each other. There is then a

summary of the software side of the IoT node which explains some of the core functions

and functionalities that had to be implemented in order to make this node work.

The fourth chapter centers itself around the testing of the IoT node. The described

tests feature only resistances as a simulation of the sensor’s output, but are very good at

achieving their purpose, which is to characterize the capabilities of the developed sensor

node in terms of high precision measurement.

Finally, the Conclusion makes a brief summary of the work developed and possible

future developments.
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2
Research and Concept Work

This chapter intends to present an overview into the work previously developed on

the subject of this thesis, so as to better understand the main issues that arise when

attempting to design an IoT Node for Environmental Multiparameter Sensing.

It starts with a general overview of the Internet of Things, as well as its building blocks,

the IoT Nodes. Then proceeds to give more in depth information about the components

that constitute an IoT Node, focusing on the Microcontroller, Communication methods

and Data Acquisition systems.

The second section refers to the different types of sensors available for environmental

sensing, focusing on three types of possible mediums: Air, Water and Soil. Multiple

sensors are briefly presented, in an attempt to characterize the most relevant ones and

understand their mode of operation.

In the third section, various methods for data acquisition are investigated, as a means

to interface with the researched sensors.

Following this, in the fourth section, a short overview is given about reconfigurable

hardware, namely the Field Programmable Gate Array (FPGA) and the Field Programmable

Analog Array (FPAA).

In the fifth section, the subject of edge computing is introduced and discussed.

To end this chapter, there is a small section with the concept work done before finally

deciding on a definitive architecture for the IoT Node.
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2.1 IoT: Internet of Things

The concept of Internet of Things is intertwined with that of Wireless Sensor Network

(WSN). It can be very widely defined, for example, in [1] the IoT is said to be "a paradigm

of connecting heterogeneous devices around the world", and in [2] it’s defined as "the

convergence of Internet with Radio-frequency identification (RFID), Sensor and smart

objects". However, in 2012, the International Telecommunication Union – Telecommuni-

cation Standardization Sector (ITU-T) published a Recommendation [3], where it defines

the IoT as "a global infrastructure for the information society, enabling advanced services

by interconnecting (physical and virtual) things based on existing and evolving interop-

erable information and communication technologies". However the gist of it is that the

IoT can simply be defined as a group of computing devices that are provided with unique

identifiers and are able to transfer data over a network without human intervention.

The Internet of Things has been enabled by somewhat recent advancements in sensor

and communication technology, such as the development of faster and more energy effi-

cient means of communication like Bluetooth Low Energy (BLE), ZigBee or Long Range

(LoRa) [4], as well as the increasing efficiency and data processing capabilities of current

microcontrollers due to more advanced architectures, more efficient instruction sets and

smaller fabrication nodes, as well as purpose-built microcontrollers for IoT devices [5].

2.1.1 IoT Node

An IoT Node represents the remote device on an IoT Network and, as such, each IoT

Node must be fully capable of data acquisition and transmission.

According to [6], an IoT Node architecture consists of 6 main components:

• Power Management,

• Microcontroller,

• Data Storage,

• Communication,

• Data Acquisition and Conversion,

• Sensors.

Considering these main components, a block diagram of a typical IoT Node is shown

in Figure 2.1.
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Microcontroller

Data StorageAnalog Front End

Power
Management Communication

Sensors

Figure 2.1: IoT Node Architecture Block Diagram.

2.1.2 Microcontroller

One of the primary components of an IoT Node is its microcontroller. This compo-

nent is responsible for the implementation of communication protocols, reconfigurable

systems, if present, smart control of power usage and local processing of data. Classically,

the microcontroller of an IoT Node is of the “fixed function” type, however new archi-

tectures have started to use reconfigurable hardware, such as FPGAs. This section will

focus only on “fixed function” microcontroller, while reconfigurable architectures will be

discussed in Section 2.4.

Advancements in technology have brought about immense gains in processing power

and efficiency over the years, not only through improvements in the technology node of

processors, but also through the development of more energy efficient instruction sets

like Advanced RISC Machine (ARM), as compared to x86 [7, 8]. This means that ever

smaller devices can be built, while maintaining very high local processing power, which

is necessary for most IoT devices.

With current technology it’s possible to have an IoT Node consuming only a few mW

of power, while having an equivalent processing capability to that of a desktop computer

from a few years ago, enabling better data processing at the node, without a need to

transmit the acquired data to be processed elsewhere.

One of the contributors to this increase in efficiency comes from the ability to combine

different types of interconnected cores inside of a single package. One example of this is

ARM’s Big.LITTLE technology, where two different processing cores are combined, one of

which has a smaller number of pipeline stages, resulting in better energy efficiency at the

cost of reduced performance, while the other has a longer pipeline, resulting in higher

performance and energy consumption. This leads to a processor that manages to achieve

both high performance and low power consumption at low load conditions [9].

An example of how a system like this might work can be found below, in Figures 2.2

and 2.3, based on a similar diagram by [10].
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(a) High Performance Core
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Not Met

(b) High Efficiency Core

Figure 2.2: Sub-optimal power usage when using a single core architecture.

Power

Time

Deadline

Best Power
Efficiency

Figure 2.3: Optimized power usage when using multiple core architectures.

A more recent contribution to the advancement in processing capability for IoT has

been processor specialization, with architectures developed specifically for IoT platforms,

focused on energy efficiency, like ARM’s Cortex-M line of Microcontroller Processors,

which have a very small die area and thus low cost, while retaining high energy efficiency

and considerable processing power [11]. Another example is Cypress’ PSoC series of

microcontrollers, which can contain up to a pair of ARM Cortex-M series cores, using

a similar principle to that of Big.LITTLE stated above, where one of the cores is the

M4 model, designed for higher computational performance, and the other core is the

M0+ model, designed for higher energy efficiency, while at the same time containing

resources like communication modules, Digital to Analog Converter (DAC), Analog to

Digital Converter (ADC) and memory systems on the same package, forming a complete

SoC [5].

2.1.3 Communication

Another primary component of an IoT Node is a block responsible for the communica-

tions. Mainly acting as data acquisition modules, IoT Nodes have to relay the information

they obtained to central processing, where it can displayed or processed. The IoT node

can use many different forms of wired and wireless communication [4].
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2.1.3.1 Wired Communication

The large majority of wired communication methods are based on either Serial or Uni-

versal Asynchronous Receiver/Transmitter (UART) technology, with the most common

ones being Universal Serial Bus (USB), Serial Peripheral Interface (SPI) or Inter-Integrated

Circuit (I2C).

For the purpose of the IoT, one of the main advantages of wired communication is

the reduced power consumption, with some interfaces, like USB, even having the ability

to deliver power to the node through the same connector [12].

The main disadvantage of wired communication is obvious, in the fact that it is

necessary to directly connect to the IoT Node, severely reducing the range at which it can

be placed from the host computer. This is especially true given that the highest range

achievable with the above listed wired communication methods is 100 meters, when

using SPI.

2.1.3.2 Wireless Communication

Wirelessly is, without a doubt, the main form of communication for an IoT Node.

However, this bring forward its own set of limitations, like reduced transmission rate

and higher power consumption, so it’s fundamental to compare these metrics between

different wireless communication options, in order to optimize the performance of the

Node. Making a comparison between:

• WiFi,

• BLE,

• ZigBee,

• LoRa,

• Narrowband Internet of Things (NB-IoT).

Using data from [4, 13–15], it’s possible to synthesize the metrics for data rate, range

and transmission power, as shown in Table 2.1.

Table 2.1: Comparison of metrics on wireless communication protocols.

Wireless Protocol WiFi BLE ZigBee LoRa NB-IoT

Data Rate [Mbps] 11 1 0.25 0.11 0.23
Max. Range [m] 100 100 100 2000+ "Infinite"

Max. Transmission Power [mW] 1000+ 100 35 35 840

With this data it’s possible to assert that the best combination for an “all-purpose” IoT

Node is to have 3 different forms of communication: WiFi, due to its vast support and high
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data rate, at the expense of power consumption; LoRa, which has a very reduced power

consumption while maintaining a long range, albeit at the expense of data rate; and NB-

IoT due to its ability to use one Resource Block on an existing Long-Term Evolution (LTE)

network for communication, meaning that a Node with this communication system could

be deployed wherever there is access to a cellular LTE network that supports NB-IoT.

2.2 Sensors for Environmental monitoring

Air Monitoring: Air pollution is one of the rising causes of death in recent times, with

urban air pollution being responsible for 1.6 Million deaths every year in China alone,

accounting for around 17% of all yearly deaths [16].

This is especially true in developing countries due, not only, to the rapid development

of the industrial sector and the proliferation of person transport vehicles, but also to the

very lax emission controls due to the local government’s concerns of how pollution control

may affect the country’s economy, as it happens, for example, with China [17].

Air quality can be monitored by innumerous parameters, some of the most important

ones being the concentrations of Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen

Dioxide (NO2), Sulfur Dioxide (SO2), Ozone (O3), Volatile Organic Compounds (VCO)

and Particulate Matter (PM2.5). Besides air quality, there is also a possibility to measure

general air parameters, like temperature, wind speed and noise.

With an IoT platform, it’s possible to deploy a large number of air monitoring stations

that can read the attached sensors and transmit the obtained data, as a way to replace or

supplement pre-existing tools.

Water Monitoring: Water is an absolutely fundamental component for human survival

and clean water is an ever more valuable resource, not only for drinking, but also for the

industrial and agricultural sectors [18].

Water quality has a huge impact on human health and environmental conditions, as

it can be one of the main methods of spreading disease. Contamination in water can be

measured through several parameters, namely, pH, temperature, conductivity, turbidity

and Total Dissolved Solids (TDS). These parameters provide a good overview about the

quality and drink-ability of the water in question. Additionally several other parameters

can be measured like water pressure and flow rate [19, 20].

Conventional water analysis methods consist of physically acquiring a water sample

and examining in a lab. This process is expensive, time consuming, infrequent, and the

water is usually tested at the source, meaning that, if there are pollutants in the pipes,

those will not be detected [20, 21].

This means there is a need to put in place mechanisms to ensure the quality of drink-

ing water in real time, and IoT is the perfect platform for implementing such a system
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due to the ability to develop a low cost, wireless, real time system that achieves all the

necessary requirements.

Soil Monitoring: Knowing the quality of the soil can be fundamental for industries like

agriculture and agronomy, where a high quality soil can lead to plentiful crops and a low

quality soil can lead to a complete lack of growth.

Furthermore, monitoring plant health can help to make a better usage of fertilizing

agents, be it by increasing or reducing usage, or by leading to a redistribution of fertilizer

among a field [22].

The most important parameters to measure regarding soil quality are pH, moisture,

temperature and electrical conductivity. This means that most sensors used to assert

soil quality, apart from the moisture sensor, are also used for monitoring air and water

parameters[23, 24].

2.2.1 Temperature Sensors

There are several types of temperature sensors, but the main three are Thermocouples,

Thermistors and Resistance Temperature Detector (RTD)s.

Thermocouples are based on 2 different conductive material forming a junction. On

this junction, due to the Seebeck effect, there will be a potential difference between the

hot conductor and the cold one, thus enabling the measurement of temperature based on

the potential difference observed. Different combinations of materials enable different

working ranges for the thermocouples, with the possibility to measure from -200 °C (Type

E Thermocouple) up to 1700 °C (Type B Thermocouple).

Thermistors are 2 wire semiconductor devices with a junction between materials that

changes resistance with a change of temperature. These types or temperature sensors are

very widely used due to their small size, reliability and relatively low cost.

Resistance Temperature Detectors are based on the change of resistance of materials

due to temperature. One example of this is how a nickel based RTD with a nominal

resistance of 1000 Ω will change approximately 5 Ω per °C [25].

2.2.2 Conductivity Sensors

Conductivity, measured in S/cm (siemens per centimeter) measures how well a solu-

tion conducts electricity, and pure water is a very poor conductor. This happens because

the conductivity in water comes mostly from acids, bases, salts, and certain gases such as

carbon dioxide, hydrogen chloride, and ammonia that dissolve into positive and negative

ions, while pure water itself only conducts electricity due to its ability to dissociate into

the hydrogen ion (H+) and the hydroxyl ion (OH-). As such, measuring conductivity in

water is a very good indicator of ionic contaminants [26].
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Electrode-based conductivity sensors are usually constituted by 1 or 2 pairs of elec-

trodes. In 2 pair systems, an Alternating Current (AC) is forced through one of the pairs.

Then, both current and voltage are read by analog channels, in order to calculate the

conductivity [27, 28].

V
Voltage Measurement

Alternating Current Source

Figure 2.4: Representation of a conductivity sensor, adapted from [26].

There are also toroidal conductivity sensors that work in a similar way to their elec-

trode counterparts. They are constituted by a pair or toroidal coils. When an AC voltage

is applied to one of the coils, a current is induced on the second one, such that the amount

of coupling between the coils is proportional to the conductivity of the solution [26].

2.2.2.1 Electronics for measuring conductivity sensors

Impedance measurement can be used for the conductivity sensor, as conductivity

is directly proportional to the cell constant and inversely proportional to the measured

resistance, leaving us with the equation:

σ = KC
1
R
. (2.1)

Meaning that, for this sensor, both the current flowing through it and the voltage at

its terminals need to be known.

Furthermore, conductivity sensors also suffer from temperature drift, which means

that a temperature sensor is needed to compensate this phenomenon, creating the need

for an additional analog channel [26].

2.2.2.2 Temperature compensation of Conductivity Sensors

The conductivity of a solution increases with temperature, due to the higher mobility

of the ions carrying the electrical current.

This means that any conductivity measurement also needs a temperature measure-

ment, in order to compensate for this effect, however, the amount of compensation re-

quired depends on the solution being tested and the value of conductivity itself.
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The most used type of compensation, that can be used for solutions above 10 µS/cm

is the simple linear compensation, described by the equation:

σt = σref [1 +α(t − tref )]. (2.2)

In this equation, σt represents the conductivity at temperature t, σref represents the

measured sigma, α represents the temperature coefficient of the solution at temperature

tref [27].

2.2.2.3 Total Dissolved Solids

TDS in water can be calculated as a function of conductivity, by multiplying the

measured electrical conductivity of the water sample in question by a constant Ke, called

the correlation factor, normally varying between 0.55 and 0.8 [29].

2.2.3 pH Sensors

pH is an indicator of how acidic or basic a solution is. In this scale, from 0 to 14, a

lower value indicates that the measured solution is acidic, while a higher value indicates

a basic or alkaline solution. In turn, acidity or alkalinity is determined by the relative

concentrations of hydrogen ions (H+) and hydroxyl ions (OH-), respectively [30].

Its measurement is based on a pH-sensing electrode (made of a specially formulated

glass), which develops a voltage potential depending on the pH of the solution and a

reference electrode to which the voltage of the pH sensing electrode is compared.

2.2.3.1 Temperature compensation of pH Sensors

Similarly to what happens with conductivity, the pH of a solution increases with tem-

perature. This means that any pH measurement also needs a temperature measurement,

in order to compensate for this effect.

The change in pH with temperature follows a linear trend centering on pH 7, varying

positively for values below 7 and negatively for values above, as can be seen in Figure 2.5,

and described by the equation:

E = E0 +
dE0

dT
(T − 298.15K)− RT

F
(2.303)logpH. (2.3)

In this equation, E represents the potential read between the pH and reference elec-

trode, E0 the standard potential of the pair, dE
0

dT represents the standard change in poten-

tial with temperature, T the absolute temperature, R the universal gas constant, and F

Faraday’s constant.
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Figure 2.5: Compensation Voltage in relation to pH of the measured solution, adapted
from [30].

2.3 Data Acquisition and Conversion

From Section 2.2, we can see that different types of sensors output their measured

parameters differently. This means that, for an IoT Node to have the capability to read

multiple sensors, it must also be able to have multiple ways of acquiring the data from

those sensors.

This means that, for sensors in Section 2.2, at least 2 types of analog measurement

channels are necessary:

• Voltage Measurement,

• Current Measurement.

2.3.1 Voltage Measurement

Measurement of analog sensors outputting their value in voltage is relatively straight

forward, with the use of an ADC.

Most possible input signals will need a range change, in order to match the output

of the sensor with the used ADC. For example, if the used ADC has a 0-5V range, and

the output signal by the sensor is in the 0-1V range, a stage with gain 5 will be needed

before the signal is sent to the ADC for measurement, in order to maximize the available

resolution.

The employed ADC may also vary architecture depending on the requirements of

the input signal. If an extremely fast sample rate is required, but outright resolution and

power consumption can be compromised, a Pipeline ADC can be used. Alternatively, if a

fast sample rate and low power consumption are required, while resolution is not the top

priority, a Successive Approximation Register (SAR) ADC may be employed. However, if

the sample speed is not the main focus, but resolution is essential, a Delta-Sigma (∆−Σ)

ADC is the best choice [31].
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2.3.2 Current Measurement

Current sensing involves a bit more work than measuring voltage. For starters, the

same sort of voltage sensing ADC as was used for voltage measurement, must be used

for current measurement, so a way to convert current to voltage is required. This is done

mainly in 2 ways, through a shunt resistor, or a Transimpedance Amplifier (TIA).

A shunt resistor is a very low value resistor put in the current path in order to develop

a low voltage at its terminals while causing minimal influence to the signal to be measured.

However, for very small signals, a shunt can have a big impact on the signal to measure,

and thus a TIA must be used.

A transimpedance amplifier is a type of amplifier that converts a current input to

a voltage output while putting a near zero load on the signal. This type of amplifier is

widely used to measure sensors when a very high accuracy is necessary [32].

2.3.3 Successive Approximation Register ADC

The SAR ADC is a relatively simple type of analog to digital converter that relies on

the trivial flowchart shown in Figure 2.6 to function.

Sample 
input voltage

No

Yesi > - 1

End

dout = 0
i = nbits - 1

douti = 1

Vin > VDAC
Yes

douti = 0

i = i - 1

No

Figure 2.6: Flowchart of the functioning principle of SAR ADCs, adapted from [33].
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What this means in practice, is that the converter successively halves the conversion

scale in each iteration of the process and compares it to the signal, until it converges on

the value of the analog input. For each halving, an additional bit is calculated, so, for a 0.6

V signal, in a 1 V scale, the process would be as follows: Halve the initial scale, splitting

it in a 0 - 0.5 V range and a 0.5 - 1 V range. Comparing these halves to the analog signal,

we realize that the input is in the larger division, thus our Most Significant Bit (MSB) will

be 1. On the second iteration, the 0.5 - 1 V scale would be separated into 0.5 - 0.75 V

and 0.75 - 1 V ranges, where the signal would be in the smallest of the ranges, thus the

second bit would be zero. This processed would be repeated until a suitable resolution is

achieved, or the noise overpowers the signal and no more information can be extracted.

This is described in the flowchart on Figure 2.6, and a graphical representation of the

process can be seen in 2.7 [34].
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Figure 2.7: Graphical representation of the possible paths in a SAR ADC, adapted
from [34].

2.3.4 Delta-Sigma ADC

A Delta-Sigma or Sigma-Delta ADC, used interchangeably in this thesis, are cleverly

based around an "oversampling"architecture in order to simplify the input low pass filter,

shifting the noise spectrum beyond the passband. This means they can provide very good

performance, both in the form of resolution and accuracy.

The "oversampling"characteristic comes from the fact that, unlike standard converters

that operate at sampling frequencies close to the Nyquist frequency, the sampling in a

∆−Σ ADC is much higher than Nyquist, enabling a trade between conversion time and

resolution, which allows this type of converter to reach very high resolutions when driven

with a very high frequency clock [34].

The basic block architecture of the ∆−Σ ADC can be seen in Figure 2.8.
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Oversampling
ModulatorSignal in 1-bit bitstream Lowpass

Filter Signal out

Figure 2.8: Basic architecture of a Delta - Sigma DAC, adapted from [34].

In principle, this seems like a simple concept, however different architectures of

oversampling modulator and different types of Lowpass filters severely dictate the perfor-

mance of the ADC. Because of this, in order to achieve good performance, a high order

modulator and good filtering is a must to achieve the necessary resolution for high bit

conversion, such as 20 or 24-bits.

2.4 Reconfigurable Hardware

2.4.1 Reconfigurable Digital Systems

The most common type of reconfigurable digital system to find in an IoT Node is a

FPGA.

FPGAs offer the capability of designing digital circuits in an Electronic Design Au-

tomation (EDA) software and implement them in hardware, through an array of Pro-

grammable Logic Block (PLB) (Red blocks in Figure 2.9) linked together through a pro-

grammable interconnect network (Green interconnectors in Figure 2.9) to Input/Output

(I/O) blocks (Blue blocks in Figure 2.9), which can drastically decrease the development

time of a circuit for a specific application.

PLB PLB PLB PLB

PLB PLB PLB PLBI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Figure 2.9: Basic architecture of an FPGA, adapted from [35].

However, the trade-off for their programmability in relation to Application Specific

Integrated Circuit (ASIC)s is that FPGAs normally have a higher power consumption and
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occupy a larger silicon area, while at the same time being slower, and even though recent

developments have brought the gap between ASICs and FPGAs closer, it still exists [35,

36].

Where FPGAs excel is in tasks where ASICs are uncommon, such as Image Processing

or Deep Neural Networks. Compared to a regular microcontroller, an FPGA programmed

to run a specific task can improve performance by orders of magnitude [37].

2.4.2 Reconfigurable Analog Systems

The most common type of reconfigurable analog system to find in an IoT Node is a

FPAA.

FPAA architectures are varied, but the most basic ones rely on analog components

being clustered together, so as to minimize the amount of routing switches used. These

clusters are then connected to a Computational Analog Block (CAB) [38, 39].

The routing switches used in an FPAA are usually in a floating-gate configuration, as

this improves the linearity of the switch’s resistance over the usable voltage range and al-

lows them to function as pure resistors or even current sources. These same floating-gate

transistors can be built in a smaller area than their pFET or transmission gate counter-

parts, which helps with scalability [38, 40, 41].

Each one of the CABs hosts a variety of primitive analog functions such as filters,

DACs or matrix multipliers. It is common to find multiple types of CABs in a single FPAA,

each designed to implement a specific task, similarly to how a processor implements

an Arithmetic Logic Unit (ALU) and and Floating Point Unit (FPU), calling upon them

depending on the mathematical operations that have to be realized [42, 43].

CAB CAB CAB CAB

CAB CAB CAB CAB

I/O

I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Figure 2.10: Basic architecture of an FPAA, adapted from [41].

Considering this, it’s possible to understand that the basic layout of an FPAA will be
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similar to that of an FPGA, where the PLBs will be replaced with CABs, as can be seen in

Figure 2.10.

In Figure 2.10, the Red Blocks represent CABs, the Green interconnectors represent

the routing switches, are the Blue Blocks represent the I/O connectors.

2.5 Edge Computing

Edge computing refers to a paradigm of distributed computing, where processing of

data is done at the “Edge” of the network, that is, away from a centralized server or cloud

node, and closer, or even at, the IoT node itself.

This concept of Edge Computing is becoming increasingly important as the comput-

ing capabilities of small, low power IoT nodes grow, enabling a decentralized processing

of gathered data.

More advanced implementations of the Edge Computing paradigm can even enable

inter-node communication in order to leverage computing resources from other idle nodes

in the network to process the data, reducing the amount of bandwidth needed to transmit

outside of the local network.

There are, of course, also trade-offs. Some of the main issues come from the decentral-

ization of processing itself, meaning that, with the addition of nodes to the local network,

they will not only have to communicate with a central controller, but also amongst them-

selves, leading to an increase in local network traffic, and added network infrastructure

and architecture complexity.

 
External Network

Cloud

Edge Node

Edge Node

Processing

(a) Edge Computing

 
External Network

Cloud

Edge Node

Edge Node

Processing

(b) Cloud Computing

Figure 2.11: Edge vs Cloud Computing, adapted from [44].

Instinctively it is also easy to understand that, in the case of a battery or solar powered

IoT node, data processing on the device may not be necessarily desired due to the energy

penalty that it brings associated with it.

Alternatively, it may also be more energy efficient to process the data locally and

transmit the processed data over the network, if this means that the communications

module would be active for a smaller amount of time. This is a case by case situation, and
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must be weighed when designing the IoT Node.

Another obvious trade-off is that, even with many nodes in a network, and the ability

to use idle nodes to process certain data, the computing power may not be enough for a

specific task, as such Edge Computing alone may not be able to fully fulfill the processing

requirements of the IoT system.

Because of this, it becomes apparent that Edge and Cloud Computing must definitely

coexist, and the choice of one over the other, or even a combination of both, depends on

the specific application at hand [44, 45].

2.6 Concept Work

The objective of this thesis work is to design and develop an advanced IoT Node, for

environmental sensing of several physical, chemical and biological parameters through

various sensors, with a high level of flexibility and reconfigurability, in order to accom-

modate the ability to digitize signals from each different sensor, in order to prepare them

for digital processing.

To achieve this with a very high level of precision, it is necessary to research, design,

implement and test an IoT Node based on a state-of-the-art SoC and Analog Front-End

(AFE), which can acquire the sensor signal and use advanced signal processing to extract

additional information from the acquired signals.

This, of course, always while holding under consideration the power requirements of

the system, as it may be deployed as a battery powered solution.

2.6.1 Design and Architecture

The architecture of the IoT Node is to be based around a PSoC 5LP or PSoC 6 repro-

grammable Microcontroller (µC) by Cypress.

Both µC options have their merits. The PSoC 5LP is based on a single Cortex®-M3

core, with a maximum clock speed of 80 MHz, and contains up to two 12-bit SAR ADC

and one 20-bit ∆−Σ ADC, 62 General Purpose I/O (GPIO) pins, with no built-in wireless

communication options.

However, the PSoC 6 uses a totally different dual-core architecture, based on the

combination of a Cortex®-M4 core and a Cortex®-M0+ core, with a clock of up to 150

MHz on the former and 100 MHz on the latter, providing much higher computing power

than the PSoC 5LP, however, it has only a single 12-bit SAR ADC, greatly reducing

the analog to digital conversion capabilities, on the other hand, it can have up to 102

GPIO pins, allowing for more connected devices, and can also have built-in BLE wireless

communication.

Aside from the main microcontroller, the IoT Node can, if necessary, contain a high

precision dedicated AFE module. The preliminary candidates are the ADuCM355 and
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AD5941 by Analog Devices.

Both of these AFE modules contain high sampling rate 16-bit SAR ADCs, with the

ability to measure voltage, current and impedance, as well as having internal and external

current and voltage channels, ultralow leakage switch matrix, input Multiplexer (MUX),

input buffer and programmable gain amplifier. This means that in the analog input

section both these AFE modules are very similar, with the main difference being the

digital to analog conversion section, where the ADuCM355 has more capabilities, and in

the peripheral communication protocols, where the ADuCM355 can communicate using

I2C, UART and SPI while the AD5941 can only communicate using SPI.

(a) ADuCM355 Simplified Block Diagram

(b) AD5941 Simplified Block Diagram

Figure 2.12: Comparison of the simplified block diagram of the ADuCM355 and the
AD5941 Analog Front-End (AFE) modules, obtained from the respective product data
sheets, [46] and [47], respectively.

As a way to interface with several sensors, the analog inputs of either the PSoC micro-

controller or the AFE module must be multiplexed. Multiplexing allows a single analog

input to read multiple independent sensors, one at a time, through the control of the

multiplexing device.

The optimal characteristics to look for in a multiplexer are a large number of I/O ports,

to allow the interface of as many sensors as possible and a low ON Resistance (RON ), so
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as to alter the input signal as little as possible. Because of this, the primary multiplexer

being considered is the MAX14661 from Maxim [48]. This is a 16 input and 2 output

multiplexer, with a typical RON of 5.5 Ω. When controlled though an I2C interface, up

to 4 of these multiplexers can be used in a system, allowing for up to 32 independent

sensors to be connected, when using a 2-wire sensor. However, when controlled through

SPI, a virtually infinite number of multiplexers can be used, limited only by the number

of available SPI Slave Select pins which can be driven my the microcontroller.

2.6.2 Block Diagram for the Proposed Architecture

Using what we have previously researched in Section 2.1.1 and Section 2.6.1, we can

sketch up a preliminary block diagram for the architecture of the proposed IoT Node,

with the selected components. This can be seen in Figure 2.13, and contains some details

which are yet to be fully defined, such as the use of I2C or SPI communication to interface

with the multiplexers, as well as the number of multiplexers used.

Microcontroller:

Cypress PSoC 5LP
Cypress PSoC 6

Analog Front End:

ADuCM355
AD5941

Power Management

Communication:

Bluetooth Low Energy
Wi-Fi
NB-IoT
LoRa

MAX14661

Sensors
Actuators

MAX14661

Sensors
Actuators

Sensors
Actuators

Sensors
Actuators

MAX14661Sensors
Actuators

MAX14661

Sensors
Actuators

Sensors
Actuators

Sensors
Actuators

Optional

Figure 2.13: Block diagram of the proposed IoT Node.

Here we can see that the proposed IoT Node will allow the connection of a large

number of sensors through the cluster of multiplexers. These multiplexers are 16 input, 2

output MAX14661, enabling the ability to connect the sensors to either the AFE or to the

PSoC microcontroller directly, which means that the AFE module can be removed when

the application doesn’t demand a very high precision measurement.

2.6.3 Preliminary Testing

As a proof of concept for the proposed architecture in Section 2.6.2, a similar system

was tested in PSoC Creator, the Integrated Design Environment (IDE) Software used to

program Cyress’ PSoC microcontrollers. The tested system is very simple, and consists

of using a MUX with eight analog inputs and one analog output, connected to the ∆−Σ
ADC, which is configured for a 16-bit resolution. The signal read by the ADC is then sent

22



2.6. CONCEPT WORK

to the host computer through a UART Interface. A simple switch on the CY8CKIT-059

PSoC Prototyping Kit, which is being used for this testing, controls the switching of the

MUX’s channels.

The block diagram of the implemented test system can be seen below, in Figure 2.14,

and the code used to control this system can be found in Appendix A.

Figure 2.14: System implemented in PSoC Creator for testing.

This basic system tests the operating principles of the underlying proposal for the

final work. It uses the ∆−Σ ADC to read signals from eight inputs connected to a MUX,

and transmits the readings over a communication interface. The final work will function

in a similar fashion, with added complexity, of course, however the success in this test

proves that the concept work is sound.
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Board Development

The third chapter of this thesis work deals with the process surrounding the develop-

ment of the IoT node’s Printer Circuit Board (PCB), first from a perspective of hardware

development and then from a perspective of software development, given that both com-

ponents are fundamental to the proper functioning of the noise, and will have to work

together in order to achieve the desired result.

Initially there is a description of the steps taken to develop the PCB in KiCad [49],

both in terms of the schematic design, as well as the circuit board layout itself, while also

including a brief description of finalized component selection and some of the decisions

that led to these choices. There is then a explanation of some of the considerations that

were had in the design of the PCB with regard to noise isolation and a brief summary

of the used ICs and their functions, followed by the experience when assembling all the

components on the board.

The software section describes how problems were tackled relating to the software

side of the IoT node, starting with the selection of analog sensor channels, then discussing

wired data transmission through the USBUART interface and some of the challenges faced

when reading sensor data from both the PSoC 5 LP microcontroller as well as the AD5941

AFE, specially as the latter one includes a very extensive library which needed to be

ported to the PSoC microcontroller, including some very good examples for the intended

use case of this IoT node as well.
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3.1 Hardware Development

The primary goal in terms of hardware development is to create a printed circuit

board with the components proposed in Section 3.1.1. This PCB must contain all the

described components, PSoC microprocessor, wireless communications, High Precision

Analog Front End and MAX14661 multiplexers, while providing adequate, clean power

to all of them, including some special care in terms of circuit grounding, in an attempt to

reduce noise in the sensor measurements.

The PCB was developed in KiCad, a free software suite that facilitates the design of

schematics for electronic circuits and their conversion into printed circuit boards, as well

as provide a 3D Viewer and the ability to export production oriented documents like Bills

of Materials and Gerber files.

Due to the relatively accessible pricing, a 4-layer type of PCB was chosen, this means

the circuit board has 4 independent copper layers in which tracks can be laid. This is

something that not only helps with layout of the traces and components due to more

available space, but also helps with grounding, as one or more of these layers can be used

as a dedicated ground plane.
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Figure 3.1: High Precision Analog Front End Daughter Board Schematic.
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The first step of the PCB development is to create a schematic with the chosen compo-

nents and make the signal and power connections between them. This consists in having

a representation of the inputs and outputs of all the individual ICs and carefully choosing

which ports should be connected to which. Using the small AFE daughter board as an

example, a circuit schematic looks similar to what is represented in Figure 3.1. The full

circuit schematic and board layout for the developed node are available in Appendix B.

3.1.1 Final Component Selection

When it came to the final component selection, the choice for the main microcon-

troller was to use the PSoC 5LP, for three main reasons:

Firstly, the PSoC 6 microcontroller uses a Ball Grid Array (BGA) style package, mak-

ing it extremely difficult to solder on the PCB with the available soldering techniques,

while the PSoC 5LP uses a relatively simple Quad Flat Package (QFP) with 100 leads.

Secondly, the PSoC 5LP contains an internal 20-bit ∆−Σ ADC and two 12-bit SAR

ADC, while the PSoC 6 contains a single 12-bit SAR ADC, meaning that board perfor-

mance without the external AFE module should be higher with the PSoC 5LP.

Lastly, the QFP package of the PSoC 5LP allows for the separation of digital and

analog ground signals, something very important in order to reduce overall analog signal

noise, specially due to noise coming from digital interfaces, while the package on the

PSoC 6 wouldn’t allow such separation.

Another important decision was to use the AD5941 AFE module. This decision was

also mostly based on the IC package type, as the ADuCM355 uses the same BGA package

as the PSoC 6, which makes it virtually impossible to solder by hand or with conventional

reflow methods.
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Figure 3.2: Finalized block diagram of the proposed IoT Node.
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Wireless communications will make use of NB-IoT technology, as this communica-

tion standard appears to provide several advantages over most other considered options,

namely in range and power consumption, but compromising on data rate, as can be seen

in 2.1. For the actual IC handling NB-IoT, the u-blox SARA-N2 series of NB-IoT modules

was chosen due to its relatively affordable price and ready availability.

Wired communications will be assured by a UART interface, running over a USB in-

terface, which assures very high data rate transfers. These two solutions provide a choice

between short range wired connectivity with high data rates and long range communica-

tion with low data rates.

It was also decided to use six MAX14661 multiplexers, which means the communi-

cation with these chips will have to be done via an SPI interface, as only four can be

controlled with an I2C interface, due to only having 4 available I2C addresses.

These changes mean that the final block diagram of the IoT node will be slightly

different from what was originally considered, as is represented in Figure 3.2.

3.1.2 Noise Considerations

One of the most important aspects in the developed PCB is noise isolation. When

measuring a sensor at very low voltage levels (in the µV level) like those expected from the

sensors, it’s of the utmost importance to have a stable, noiseless ground floor. This means

some special considerations around good grounding practices, and avoiding ground loops

have to be taken.

An important source for this section was [50], according to which there are four main

types of signals to consider when designing a PCB:

• Low Frequency Analog Signals: In the case of the developed PCB these will be

mostly the very low voltage signals (in the level of µV coming from the sensors).

These are extremely sensitive signals in terms of return path and should be com-

pletely isolated from higher voltage noisy signals, such as digital signals;

• High Frequency Analog Signals: The most obvious high frequency analog signals

on the IoT node are those in the RF communications section. These signals are in

the Volt order of magnitude and can reach multiple GHz in frequency, meaning

that they have to be very well isolated from the low frequency analog signals;

• Digital Signals: Digital signals are typically multiple Volts in amplitude, high fre-

quency and are especially noisy due to their square nature. These digital signals

usually have sharp voltage transitions between levels (with a high slew rate), which

creates very high frequency harmonic noise;

• Powerful Load Signals: This type of signal is usually associated with high power

devices such as motors or actuators and is not present in the IoT node.
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Only three of these four types of signals are present in the IoT node, which already

slightly simplifies the design process, however, mixing low frequency analog signals

with digital and high frequency analog signals still requires careful design considerations

around the ground return path and the routing of the low frequency, and low voltage

analog signals.

To achieve this, two separate ground planes were created, one for low frequency

analog signals (denominated Analog Ground), and one for digital and high frequency

ones (denominated Digital Ground). The digital ground plane was then virtually divided

in a pure digital section and a high speed analog section for RF signals.

Ultimately, the developed PCB had 2 separate ground planes, and 3 signal regions. At

the left is the Radio Frequency section, with the NB-IoT radio, antenna and SIM card slot.

In the center is the digital section with the PSoC microcontroller, power supply, wired

communications and the AD5941 AFE, and at the far right is the analog section, with the

6 multiplexers and all the analog sensor inputs.

The two ground planes are tied in a star ground configuration, with both planes

connected to the power supply ground in a single point, through a 0 Ω resistor. This is

the simplest way to isolate ground planes, however if this proves ineffective or insufficient,

a high frequency inductive filter such as a ferrite bead can be added.

Equally important to keep sensor noise as low as possible is the analog signal routing.

Even the best ground plane separation cannot help if the signals are routed poorly. To

achieve the best possible routing, all analog signals were routed only though the section

containing the analog ground plane for the trace running from the multiplexers into

the PSoC microcontroller and the AD5941 analog front end IC. These traces were also

made as wide as possible with the available space, in order to reduce signal loss to trace

resistance.

3.1.3 Radio Frequency Section

The radio frequency section is comprised of a u-blox SARA-N2 NB-IoT module. This

module provides NB-IoT communications in a relatively small, easy to integrate package

which is also priced reasonably, while only needing 3.3 V power, an antenna and a SIM

card to operate, but also offering some additional interfaces like UART and I2C in order

to control the sent and received data. This simplifies the integration of the module over

others that may need external 1.8 V power, or even external crystals or oscillators, as

these components are already integrated into the SARA-N2 module, as can be observed

in Figure 3.3.

The NB-IoT communication protocol is specifically designed for IoT applications, in

particular those which are battery operated, and thus conscious of energy consumption.

This translates to a communication standard which uses an extremely low amount of

energy and can communicate over large distances through the cellular network.
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The specific variation of the SARA-N2 module used was the SARA-N210, which

provides support for NB-IoT Band 20 used throughout Europe, meaning that, as long

as there is a cellular signal in the NB-IoT Band 20 and a compatible SIM card is installed,

the module should be able to communicate with a host device.

Figure 3.3: SARA-N2 block diagram, obtained from the module’s data sheet [51].

Even with the relative ease of integration, some design guidelines have to be taken

into consideration. Fortunately, u-blox provides an "Integration Manual" which details

some of the steps necessary to a successful integration of the SARA-N2 module.

Module Supply: u-blox recommends that all supply pins must be connected to an ex-

ternal supply in order to minimize power trace impedance, and all ground pins must be

connected to a solid ground plane in order to improve RF and thermal performance.

As the module, in our application, is powered via a switching regulator, there are

some special considerations to be taken into account, such as ensuring the regulator has

enough power capability to support a transmission at maximum power, low output ripple

and good decoupling. To achieve this, a network of capacitors of differing sizes will be

used between the regulator output and the module input in order to achieve both a good

size energy buffer for larger loads, as well as a good transient response for fast peaks.

Antenna Connection: The antenna connection will directly affect RF performance of

the module, so it’s extremely important to make sure it works as intended.

The first basic requirement is to use a 50 Ω transmission line between the SARA-

N2 antenna pin and the antenna connector itself, a 50 Ω connector and an appropriate

antenna with optimal radiation performance in the NB-IoT Bands.
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In terms of the PCB design itself, a ground keep-out zone is advised, and no digital

signals should be routed near the RF connection as these can cause interference. The

50 Ω transmission line should be as short as possible in order to minimize insertion loss,

and it should have no stubs or cross with any other signals, so its placement is extremely

sensitive.

SIM Interface: SIM Card Interfacing is one of the least sensitive aspects of the PCB

design, from an RF perspective, however some mild considerations must still be taken

into account to prevent phenomena like RF coupling and electrostatic discharges.

To achieve this, the SIM Card connection lines must have ESD protection, as well

as small decoupling capacitors, specially as the SIM Card can be inserted and removed

during use. The SIM Card holder will also be placed near the SARA-N2 module just as

a general good design practice, in order to keep the data lines as short as possible and

board layout tidy.

System Functions: System functions are things such as Power On and Reset signals.

These signals must present adequate voltage levels to the SARA-N2 module and not have

any sorts of transient noise, which could compromise power up or reset the module during

operation.

Other Interfaces: Additional interfaces such as UART and I2C are essential to the op-

eration of the module, as they provide the data and control connection between the

SARA-N2 and the main microcontroller, which needs to receive and transmit information

through the NB-IoT wireless network. The SARA-N2 module in particular communi-

cates over UART with a 3.3V logic level, meaning that there is no need to do any sort of

voltage conversion as there is with other modules that operate at 1.8V, which the PSoC

microcontroller doesn’t support.

3.1.4 High Precision Analog Front End

The module which is designated as the High Precision Analog Front End is a small

daughter board that can be connected to the main IoT Node and has an AD5941 Analog

Front End IC which provides a DAC and ADC with a significantly higher resolution and

sample rate, while hopefully having a lower noise level, than those integrated into the

PSoC 5 LP microcontroller.

This additional module can be added to the main board when there is need for addi-

tional performance, as, while the ADC on the PSoC can have a higher 20-bit resolution, it

can only do so at an extremely low sample rate of 187 samples per second, while the ADC

on the AD5941 can achieve 16-bit at up to eight hundred thousand samples per second,

which is slightly higher.
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The AD5941 IC: The AD5940 and AD5941 are a small family of ICs which are high

precision, low power analog front ends designed for applications that require high pre-

cision electrochemical measurement techniques such as voltammetric, amperometric or

impedance measurements, specially those around body and skin impedance or toxic gas

sensing. A block diagram of the internal components making up the AD5941 can be seen

in Figure 3.4

Figure 3.4: AD5941 Block Diagram, obtained from the product’s data sheet [47].

These small ICs contain an amazing amount of high precision sensor interfacing

capability in a small package, including a high performance, 16-bit resolution ADC with

voltage, current and impedance measurement capability, including input buffers and a

programmable gain amplifier, two 12-bit DACs, one able to generate signals up to 200 Hz

and the other up to 200 kHz, as well as other miscellaneous amplifiers, accelerators and

reference voltages. Communication with the AD5941 IC is made via SPI interface, which

will also be used to communicate with the channel multiplexers, meaning that all IC

communication in the board will be done through the SPI protocol, which theoretically

simplifies trace routing. SPI is also a higher speed interface than I2C, which may be

necessary when sampling and transmitting data at up to 800 kSPS.

Daughter Board Design: As with the main board, the smaller daughter board’s design

had to take into account techniques to reduce overall noise, such as adopting separate

analog and digital ground planes, using wide signal tracks to reduce resistive losses, and

keeping the analog sensor signals as far away as possible from the high speed digital ones,

essentially creating two separate halves on the small PCB. These design techniques can be

seen in the final layout for the High Precision Analog Front End, presented in Figure 3.5.
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Figure 3.5: High Precision Analog Front End Daughter Board Layout.

3.1.5 Channel Multiplexers

Channel Multiplexing will be be fundamental to the proper working of the node, as

both the PSoC microcontroller and the AD5941 AFE provide only 2 pairs of inputs, and

thus, without multiplexing, only a maximum of two sensors can be interfaced at any one

time. As the intention of the IoT node is to be connected to several sensors at once, the

need for signal multiplexing becomes apparently obvious.

Special care has to be taken in the choice of multiplexer to use, as these will be directly

in the signal path of very low voltage, and very noise-prone analog signals. It’s also

important to chose multiplexers that have a high enough input/output ratio, choosing a

2:1 or 4:1 multiplexer is not enough for the intended use.

These facts lead to the choice of the MAX14661 multiplexers by Maxim Integrated.

MAX14661 Multiplexers: The MAX14661 is a dual-channel multiplexer with 16 pins

that can be connected to either the common pin or to each other simultaneously in any

combination. This provides great connection flexibility as there is no strictly defined

input or output. A very wide supply range from 1.6 to 5.5 V once again makes this

multiplexer very adaptable, as does the serial control through either SPI or I2C. However

the true selling features when it comes to multiplexing low voltage analog signals are the

5.5 Ω RON and very low crosstalk between channels.

The serial control is very intuitive, with each individual bit of 2 bytes, per channel,

being toggled to control each of the sixteen switches for each of the two channels, meaning

that toggling channels open or closed is a simple matter of flipping the corresponding

bit.
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3.1.6 Board Assembly

Figure 3.6: 3D Render of the IoT Node’s PCB and AD5941 Daughter Board.

The circuit board design itself followed the usual procedures of creating the schematic,

assigning footprints to the components, placing them in a layout and laying out traces,

with the additional concerns described in Sections 3.1.2 and 3.1.3 being taken into consid-

eration. Not much else can be said about this part of the work other than the full layout

being available in Appendix B.

After the whole PCB layout was finished it was looked over to check for mistakes and

when none were found, an order for 5 prototypes, as well as an aluminium stencil, was

placed. This stencil has cutouts where solder paste should be applied in order to solder

the components, and helps immensely with the soldering step of the assembly process.

Some of the chosen components are extremely small, and feature packages such as

Quad Flat No-Leads (QFN) which are difficult to solder. With the help of the stencil, a

large dose of patience and some surgical hand control, all the components were placed

on a prototype PCB for testing. This looked similar to the KiCad render of the PCB in

Figure 3.6, with the addition of a few components whose 3D models were unfortunately

unavailable.

To solder all the components, a Bismuth based solder paste was used. This type of

solder paste has a much lower melting point (~160º C vs ~260º C for regular solder paste)

and so it not only reduces the heat on all the components, but is also much easier to touch

up if any solder bridges are present. After applying the solder paste with the help of the

stencil, the PCB was placed in a reflow oven with a temperature profile appropriate to

the solder paste used in order to solder the board.
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3.1.7 Power Consumption Considerations

Power consumption in any electronic device merits importance, however, when a

device is designed to be mostly battery operated, as is the case with the proposed IoT

node, power consumption becomes one of the most important parts of development, as

every small efficiency gain translates directly into longer battery life.

While no actual testing was conducted with the proposed node, a fair amount of

research was put into gaining a better understanding of the power consumption charac-

teristics of the PSoC 5LP microcontroller, including some power consumption reduction

techniques and the working principles of the available low power modes.

Luckily, Cypress provides detailed information into these subjects on Application

Note AN77900 [52], including not only extensive documentation about low power modes,

but also a spreadsheet which allows the user to estimate the power consumption for a

given use case and a PSoC Creator example project implementing some of the described

power consumption reduction techniques.

3.1.7.1 Power Modes

The PSoC 5LP has 4 main power modes: Active mode, AltAct mode, Sleep mode and

Hibernate mode. These power modes can be split into "active" modes and "low power"

modes. The available low power modes differ mainly in power consumption, wake-up

time and available wake-up sources, with a lower power consumption obviously leading

to a longer wake-up time and less available wake sources.

Active and AltAct modes: These are the main running modes of the PSoC microcon-

troller, with Active mode being the primary operating mode and AltAct an alternate

power configuration for Active mode. AltAct provides a method in which a set of analog

or digital blocks can be quickly turned off without the need to toggle each one individ-

ually. These are the modes that will be used when the microprocessor is doing any task

such as sensor sampling or data transmission.

Sleep mode: Sleep mode is the least severe of the two lower power modes available,

with a typical current consumption of 2 µA and a wake-up time of 25 µs, while also

providing the largest number of wake-up sources from the two low power modes. Sleep

mode can be entered by calling the CyPmCleep() function and the system can be woken

up from multiple sources including sleep timers, real-time clock, a button press or an

I2C command, among others.

Hibernate mode: Hibernate mode is the most severe low power mode and reduces cur-

rent consumption to a measly 300 nA while having a 125 µs wake-up time. Hibernate
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mode can be entered by calling the CyPmHibernate() function and it provides the small-

est amount of wake-up sources, being limited only to a button press, an over-temperature

event or a reset command.

These low power modes are extremely important in systems that have long pauses

between activities, such as the IoT node described in this dissertation, which can be

configured to have very long intervals between samples. For example, if the system is

configured to sample a sensor for 1 second, send the data, and then repeat the same

process a minute later, using the spreadsheet provided by Cypress in [52], the difference

between using sleep mode between samples, and running in active mode permanently is

a massive 20 to 30x decrease in overall power consumption.

Hibernate mode seems to be too extreme for the intended use, as the only methods of

waking the system back are to either physically press a button or to toggle the XRES pin

of the PSoC, both of which have to be physically controlled and mean that a person would

need to be present at all times to control data sampling, which is completely impractical

for the desired application.

There are some more considerations to have when reducing power consumption using

low power modes, for instance, by default the PSoC microcontrollers have a "Fast IMO

Startup" setting enabled, which starts the IMO with a 48 MHz clock in order to speed up

boot time, leading obviously to higher power consumption. Disabling this mode can be

useful when the system wakes up from sleep very often, as it reduces power consumption

during the wake from sleep phase.

Even so, not every single workload can use these low power modes. If continuous

sampling is required, or if PSoC has to be communicating with other devices, sleep mode

can’t be used, meaning that it’s also important to reduce active state power consumption

as much as possible.

3.1.7.2 Active Power Consumption Reduction

Reducing active state power consumption can be achieved in some very obvious ways

such as powering off unused components or running the microcontroller at a lower clock

speed, however, there are also some more obscure ways to achieve this effect and those

are the ones that will be explored.

Slowing Down the ADC: The Delta Sigma ADC on the PSoC microcontroller can be

configured anywhere from 8 to 20 bits of resolution, as well as a wide range of sampling

rates, however all of these factors affect the module’s power consumption. According

to [52], running the ADC at about half the maximum sample rate, at any resolution,

should result in a power consumption of around 0.8 µA, while running the ADC at the

maximum sample rate results in about 2.3 µA of power consumption.
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Using Slow mode on the Current DAC: The PSoC 5LP has 4 DACs with both a voltage

and a current mode. For the drive of resistive sensors, the current mode is normally used

and the DACs allow for a "Slow" or "Fast" configuration. This setting basically dictates the

slew rate of the current, however, using the fast setting leads to a current consumption

which is about 10x higher than when using the slow mode. When driving slowly changing

sensors, the slow mode should be used to conserve energy.

Changing Clock Speeds According to Need: As it was stated in the introduction to

this section, one of the most obvious ways to reduce power consumption is to reduce

the clock speed of the system, however, this may not be possible due to the need for

higher clocks when processing data or when using a communications interface such as

USB. However, the PSoC microcontroller allows the dynamic change of clocks in code

through functions such as CyIMO_SetFrequency() which means that the clock can be

manipulated according to need, being set higher when it needs to be, and much lower

when the system is doing more routing tasks such as sampling sensors.

Lowering the Voltage: According to the spreadsheet provided by Cypress to calculate

the power consumption of the PSoC microcontrollers, the drawn current doesn’t change

with the supply voltage, and the PSoC accepts an input from 1.8 to 5 V. By lowering the

input voltage and maintaining the current, there is a drop in power consumption directly

proportional to the voltage drop.

Additionally there are "Low-Power" modes for several system components such as the

external crystal oscillator, GPIO pins, SIO pins, Digital Blocks and VREF Sources. While

these don’t have a very big impact in overall power consumption, it’s important to note

that these modes are still available.

3.1.7.3 High Power Consumption Components

From the previously mentioned spreadsheet it’s also easy to understand that some

components have a severe effect in power consumption, for instance, while the IMO clock

can be changed from 3 to 48 MHz while only incurring a 600 µA penalty, doing this same

change for the actual CPU clock results in a 20 mA jump to current usage.

Similarly, when using the USB interface, it is important to suspend communications

when they are not being used, as simply keeping an open communication line draws

10 mA of current.
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3.2 Software Development

As with any project involving a microcontroller, software needs to be developed in

order to achieve the designed tasks. This envelops everything from basic things like

selecting which internal features of the microcontroller to enable and define which ports

are connected, to more complex things like developing libraries to interact with external

ICs.

In the case of the chosen PSoC 5 LP microcontroller, this software development is

done through the PSoC Creator IDE.

3.2.1 PSoC Creator

PSoC Creator is an integrated development environment designed by Cypress that

enables software development, compiling and debugging for the PSoC architecture. The

IDE provides a graphical user interface which aids development.

There are essentially 5 main windows which will be used throughout this work.

Top Design: This first window provides an overview of "Components", internal features

of the PSoC microcontroller which can be picked from a list and subsequently enabled

and configured with the help of a graphical interface. This forms a sort of block diagram

of the developed system, where wire connections can be made between the different

components, such as connecting pins to ADCs or enabling interrupts and communication

interfaces.

This type of programming is extremely beginner friendly and was appreciated in a

first contact situation with the PSoC ecosystem.

A screenshot of the "Top Design" page for the developed software architecture can be

seen in Figure 3.7

Figure 3.7: Block Diagram on the "Top Design" Window of PSoC Creator.

Pins: The "Pins" window is rather self explanatory. It allows manual definition of where

each pin and component defined in the "Top Design" window should be physically con-

nected in the PSoC microcontroller.
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This is important because in the PCB design stage of the project, particular pins of the

microcontroller were connected to various external ICs, interfaces or analog pins through

traces. The graphical interface itself shows a top down view of the specific chosen SKU of

PSoC microcontroller, including variations in package type and number of pins, making

it easy to personalize the pinout of the PSoC microcontroller for each custom application.

Analog: The "Analog" window allows manual routing of the components and pin con-

nections implemented in the "Top Design" and "Pins" windows.

The need for such a window comes from the fact that the PSoC microcontroller has an

internal mesh of routes and switches, which allow an enormous flexibility when connect-

ing devices to the microcontroller, but can become problematic when routing sensitive

analog signal through areas where there may be high speed digital signals also present,

due to the noise that these digital signals, and their fast slew rates, generate.

Because of this, specially in the developed analog sensor measurement application,

special care must be taken when choosing which ports to connect to the DACs and ADCs,

as the internal switches have considerable resistance, which can quite severely impact

both drive and measurement of analog sensors due to resistive losses. The internal dia-

gram of the PSoC microprocessor as it was used in this application can be seen in Fig-

ure C.1, Appendix C and it can be seen that certain ports, such as P0[6], P0[7], P3[1] and

P3[0] have a direct connection to the DACs, which reduces losses when driving sensors at

higher currents.

Clocks: The "Clocks" window displays an overview of all the internal clocks in the PSoC

microcontroller, allowing the user to manually change each of them.

Changing these clocks becomes necessary when using the USBUART module de-

scribed in Section 3.2.3, as this module needs a 48 MHz clock in order to comply with the

USB specification. The 48 MHz clock is not usually active in the PSoC by default, as it’s

achieved via 2x multiplication from the main internal oscillator, which is usually run at

3 MHz, but needs to be run at 24 MHz specifically, as only this specific clock frequency

has a good enough precision to satisfy the needs of the USBUART interface.

Main: "Main" is not a window per se. It’s the name of the C programming file used. This

window shows the "main.c" file, where the main "hard" code is written. Even with the

very good graphical helping tools, the actual programming for the PSoC microcontroller

is done through normal programming in C language.

This includes the enabling of all the components placed in the "Top Design" window,

as well as coding all the logic that will run on the microcontroller.

The "main.c" file, in this case, is also accompanied by the "ad5940.c" and "ad5940.h"

files, whose use will be described in depth in Section 3.2.4.2, as these files implement the

interface library with the AD5941 AFE IC.
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3.2.2 Analog Channel Selection

To select which analog signal to measure, an SPI command has to be sent to the

multiplexers instructing them to enable the specific sensor port to open, and whether to

route it to the PSoC microcontroller or the AD5941 AFE.

In the hardware design, the common port A of multiplexers 1, 2, 3 and 4 were con-

nected directly to the PSoC microcontroller in ports P0[6], P0[7], P3[1] and P3[0] as these

have a direct connection to the sensor driving DACs. The common port A of multiplexers

5 and 6 were left unconnected, leaving only common port B of each of these connected to

port 16 of multiplexers 4 and 3, respectively. Common port B of multiplexers 1 through

4 were connected directly to the input ports of the AD5941 AFE.

This meant that, to simply connect to a specific sensor port, specially those in multi-

plexers 5 and 6, some juggling of the open ports had to be done, as for instance, a port

connected to multiplexer 5 has to then travel to multiplexer 4 and only then to the PSoC

microcontroller or the AD5941 AFE.

The MAX14661 multiplexers are controlled either through I2C or SPI, however in

I2C mode they are limited to four separate addresses, meaning that a maximum of four

multiplexers can be used, which is why the developed board uses SPI to communicate

with these multiplexers. Port open and close is controlled through a series of four byte

long registers. In the developed analog channel selection function, each of these four

bytes is declared as a variable, with one set of four variables per pair of multiplexers, as

these will be controlled in pairs due to the minimum two-wire connection to sensors.

In total the PCB will have 47 analog channels, sixteen from each pair of multiplexers,

minus one from multiplexers 3 and 4 which serves as pass-through for multiplexers 5

and 6.

The function developed for easy control of channel opening and closing works through

a very simple principle, it takes three input variables: channel; output; state. Channel

corresponds to what analog channel is being addressed, output refers to the common pin

A or B, one connected to the PSoC, the other to the AD5941 and finally state indicates if

the intended action is to open or close the specific channel. There are 12 integer variables

which correspond to each of the bytes on the three pairs of multiplexers, when an open

command is called, the corresponding byte in these variables is changed and is trans-

mitted through SPI to the corresponding multiplexer. The same happens when a close

command is given.

3.2.3 USBUART Transmit and Receive

UART is the main wired communication method used. The PSoC microcontroller

offers two distinct methods of implementing UART interfaces, the first one is as a stan-

dalone interface, with the usual TX and RX lines, which will then connect to any other
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UART device. The second method is through a USBUART, that is, a UART interface run-

ning through the USB communication protocol. The PSoC Creator IDE has a template for

the USBFS (USB Full Speed) interface with all the descriptors implemented in order to

enumerate a simple serial port device. This second method is the one that will be used, as

the node is already powered via USB from a computer, and to transmit the UART data to

USB manually, an additional UART to USB converter IC would be needed, which would

add additional unnecessary complexity.

Two UART related functions were developed, one of them is a simple initialization

which configures the USBUART device with the setting of an incoming connection, mak-

ing it possible for the connected computer to use any Baud Rate, Parity or Polarity settings

and the PSoC will adapt to the settings used. The second one is a "bounce back" function

which simply reads what the connected computer wrote in the serial port and returns it.

This was done as a way to test two way communication functionality, even tho only one

way communication, from the PSoC to the serial port, was then used. A function for the

actual data transmission wasn’t developed, as there is already a function of the USBUART

module which implements the transmission of a string in a single command, after the

initialization process is done, making an extra function for this situation unnecessary.

3.2.4 Sensor Data Acquisition

As the ultimate purpose of the developed IoT node is to measure sensor data, this

is probably the most important part of the software development. Sensor data can be

acquired from two separate sources, either from the internal ADC on the PSoC microcon-

troller or from the external AD5941 AFE.

3.2.4.1 Sensor Data Acquisition from PSoC

The PSoC microcontroller has two types of internal ADC. The first type is a 12-bit

resolution, SAR ADC with an extremely fast sample rate of 1 million samples per second.

The advantage of this type of ADC is obvious, it has an extremely fast sample rate, which

is fundamental for fast changing signals, however it also has a relatively limited 12-bit

resolution which is not the perfect fit for high precision measurements. The second

type of internal ADC is a 20-bit resolution Delta Sigma converter, which, at full 20-bit

resolution has a sampling rate up to 187 samples per second, a far cry away from the 1

million samples of the SAR ADC.

For the intended application, however, the ∆−Σ ADC is clearly better suited, as there

can be a trade-off between sampling rate and resolution, whose optimal point will be

searched for in Section 4.2.

A large part of the software configuration of the ∆−Σ ADC is done through the

"Top Design" component, with an easy to use graphical interface that allows the user

to selecting things like Conversion Mode, Resolution, Conversion rate, Single Ended or
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Differential modes, Reference voltage and Input Range. This configuration window is

shown in Figure 3.8.

Figure 3.8: Configuration Page of the Delta-Sigma ADC in PSoC Creator.

As far as actual programming is concerned, very little has to be done apart from en-

abling the module through a single line of code and starting and stopping the conversion

when desired. Additionally, the PSoC Creator IDE makes available to the user precon-

figured functions which convert the ADC’s output code directly into volts, millivolts or

microvolts, which makes measurements extremely convenient.

3.2.4.2 Sensor Data Acquisition from AD5941

Communication with the AD5941 Analog Front End IC is made through an SPI con-

nection. This IC has an extremely extensive feature set and very powerful capabilities,

looking at the datasheet of these devices, we can attest that they have over 180 control

registers, which means that developing a library to control all their functionality every

time someone had the intention to integrate it into a custom design would be quite

complicated. Exactly because of this, Analog Devices provides an extensive firmware

library for the AD5940, AD5941 and ADuCM355 ICs. These are state-of-the-art SoC for
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electrochemical and biosensors, exactly the use case of the developed IoT node.

Porting this library is also made very simple by Analog Devices, as only six functions

have to be implemented: CS Set, CS Clear, RESET Set, RESET Clear, Delay 10 µs) and SPI

Read/Write N Bytes. Even tho they are simple, they present an issue, as the RESET pin

of the AD5941 is a push button control, luckily this function is only used as a hardware

reset of the AD5941 before the library is started, to ensure that the AD5941 is in a default

state when communication starts, which shouldn’t be an issue if the library is loaded right

after the IoT node is powered up. For a future version of the IoT node, however, AD5941

RESET functionality should be implemented.

Another peculiarity of the PSoC microcontroller is that it doesn’t allow manual con-

trol of the CS pin, this is instead done automatically by the SPI Transmit and Receive

functions, however the control of CS pin implemented by these functions matches what

is done in the AD5941 library, so this shouldn’t present an issue either.

To help guide the user of the AD5941, Analog Devices also provides an extensive

repository of example code for specific types of sensor measurement such as Amperomet-

ric, Impedance, Body Impedance, Temperature, etc. As well as some examples of sensor

polarization techniques such as square wave voltammetry. All in all, both the library and

the example files are extremely powerful in helping the user of the AD5941 get familiar

with the device.

In these examples, there is also an SPI Debug function which tests the SPI Writes and

Reads to the AD5941 which will be used in Chapter 4.4.
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Board Testing

As with any sort of work, and especially development work, proper testing has to be

done in order to ensure the correct working order of all the different components, be they

hardware or software.

To that extent, several functional blocks of the developed PCB will be tested, starting

with the six MAX14661 Multiplexers, then moving on to the PSoC’s internal ∆−Σ ADC,

which also includes the PSoC’s internal current DAC, used to drive the device under test.

Finally, there is a small section about the tests made to the AD5941 AFE IC.

Figure 4.1: Picture of the assembled IoT Node and AD5941 Daughter Board.
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Figure 4.1 shows a picture of the fully assembled circuit board in working order.

This is the prototype board where all tests were made, with the AD5941 Daughter Board

placed in its respective location between the six multiplexers.

4.1 Testing of the Multiplexers

The developed PCB contains six individual MUXs. All six are the MAX14661 IC,

with sixteen input and two output channels. They work by connecting each of the six-

teen input channels to either of the two output channels through very low impedance

switches, nominally 5.5 Ω. The internal switch layout of these multiplexers can be seen

in Figure 4.2

This configuration provides immense versatility as it enables multiple input channels

to be connected to each other, multiple input channels to be connected to a single output

channel or even both output channels to be connected to one another. This interconnect-

ing ability is used in MUXs 5 and 6, which are connected to MUXs 3 and 4, which are

themselves then connected to the PSoC µC or to the AD5941 AFE.

In order to test the MAX14661 MUXs’ channel selection software, all the switches on

every single MUX were commanded to open, and the SPI data was recorded on a Logic

Analyzer.

This data was analyzed channel by channel, and when it was confirmed to be working

as expected, the hardware side of the multiplexers was tested, by using a multimeter in

continuity mode.

The theoretical principle behind this test is that, as all the switches were open, this

means that all channels would read continuity between them if they were functioning

properly. All six MUXs passed this test with flying colors.

Figure 4.2: Internal Configuration of the MAX14661 Multiplexers.
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4.2 Testing the Internal Delta-Sigma ADC with Low Value

Resistors

Testing the PSoC’s internal ∆−Σ ADC will be more difficult than the simple testing

done with the MUXs, as the ADC features many settings which can greatly affect the

output result.

In this testing we are looking at obtaining high accuracy measurements with the

lowest possible noise while keeping a reasonable sample rate. Unfortunately, as with all

things a trade-off has to be made between accuracy and sample rate. Higher resolution

modes result in a higher measurement accuracy and lower noise, however that also means

a lower sample rate, which may become a problem with fast changing signals or impact

the ability to apply certain filters.

Four different resolutions will be tested: 20, 18, 16 and 14 Bits. For each of these

resolutions there will be two test settings, one with a unitary input buffer gain, and one

with a buffer gain of 2. This brings the total to 8 test configurations. All tests will be made

in "Multi Sample (Turbo)" mode, with a 0 to VREF scale. This mode provides a higher

sample rate than the regular "Multi Sample" mode, although not quite reaching the rate

of "Continuous" mode.

For each configuration there are two main things to look at: measured value accuracy

and measurement noise.

The measured value will be represented by a bar graph with a 95% Confidence Inter-

val (CI) error bar. Each resolution and buffer gain combination will test three different

sensor polarization currents (1, 10 and 100 µA) and three different resistor values: 22 Ω

(measured with a multimeter as 21.7 Ω), 470 Ω (measured as 465 Ω) and finally 1 kΩ

(measured as 992 Ω).

The measurement noise will be displayed in table form for all the same scenarios,

three currents and three resistances, and the noise will be displayed in four different

forms:

• Peak to Peak Noise: Simple peak to peak determined by subtracting the lowest

measured value from the highest one.

• 99.7% Noise: Equivalent to 6σ or 6 standard deviations, the measured values closely

follow a normal distribution, thus a mean and standard deviation can be calculates.

• Root Mean Square (RMS) Noise: Equivalent to a single standard deviation, as we

can assume that the mean noise value is zero.

• RMS Noise (LSB): Regular RMS noise given as a function of least significant bits.

Graphs were generated by exporting the measured ADC value, already converted

to µV, through a UART interface running on USB. For each test, 5000 to 20000 mea-

surements were made. This data was then processed with a MATLAB script available in

Appendix D, noise values were calculated, and the shown graphs were plotted.
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4.2.1 20-Bit Mode

Starting with the highest resolution mode available in the ∆−Σ ADC, 20-bit.

20-Bit, Buffer Gain = 2: The first test with a buffer gain of 2 and a sample rate of

92 samples per second exemplifies the most extreme end of the accuracy - sample rate

spectrum and represents a Least Significant Bit (LSB) value of 0.5 µA. Measurement

accuracy data is presented in Figure 4.3.

20-bit DelSig ADC, Multi Sample (Turbo), SR = 92 SPS, Buf. Gain = 2, 5.000 Samples per Measurement
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Figure 4.3: Results of measurements using 20-bit ∆−Σ, Multi Sample (Turbo), SR = 92
SPS, Buf. Gain = 2, 5.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.1, using

the four metrics described in Section 4.2.

Table 4.1: Noise values of measurements using 20-bit ∆−Σ, Multi Sample (Turbo), SR =
92 SPS, Buf. Gain = 2, 5.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 9 9 11 10 14 17 55 106 140
Noise 99.7% (µV) 7.94 8.27 10.2 9.0 11.8 14.3 46.2 85.0 108
RMS Noise (µV) 1.32 1.38 1.70 1.50 1.96 2.37 7.71 14.2 18.0

RMS Noise (LSB) 2.71 2.82 3.49 3.08 4.02 4.86 15.8 29.0 36.8
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20-Bit, Buffer Gain = 1: The second test was conducted with a unitary buffer gain a

sample rate of 182 samples per second, with an LSB of 1 µA. Measurement accuracy data

is presented in Figure 4.4.

20-bit DelSig ADC, Multi Sample (Turbo), SR = 182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement
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Figure 4.4: Results of measurements using 20-bit ∆−Σ, Multi Sample (Turbo), SR = 182
SPS, Buf. Gain = 1, 5.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.2, using

the four metrics described in Section 4.2.

Table 4.2: Noise values of measurements using 20-bit ∆−Σ, Multi Sample (Turbo), SR =
182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 14 14 15 13 17 21 59 95 141
Noise 99.7% (µV) 11.5 12.5 15.7 11.6 15.5 20.0 49.6 83.1 120
RMS Noise (µV) 1.91 2.09 2.62 1.93 2.58 3.33 8.26 13.9 19.9

RMS Noise (LSB) 1.96 2.14 2.69 1.97 2.64 3.41 8.46 14.2 20.4
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4.2.2 18-Bit Mode

Stepping down 2 bits of resolution, this series of tests was done at 18 bits.

18-Bit, Buffer Gain = 2: This third test shows a buffer gain of 2 and 1238 samples per

second, resulting in 2 µA of LSB. Measurement accuracy data is presented in Figure 4.5.

18-bit DelSig ADC, Multi Sample (Turbo), SR = 1238 SPS, Buf. Gain = 2, 10.000 Samples per Measurement
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Figure 4.5: Results of measurements using 18-bit ∆−Σ, Multi Sample (Turbo), SR = 1238
SPS, Buf. Gain = 2, 10.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.3, using

the four metrics described in Section 4.2.

Table 4.3: Noise values of measurements using 18-bit ∆−Σ, Multi Sample (Turbo), SR =
1238 SPS, Buf. Gain = 2, 10.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 29 31 37 31 37 43 80 121 177
Noise 99.7% (µV) 23.7 24.0 28.2 23.7 28.7 31.3 67.2 96.5 151
RMS Noise (µV) 3.96 3.99 4.71 3.95 4.78 5.22 11.2 16.1 25.1

RMS Noise (LSB) 2.03 2.05 2.41 2.02 2.45 2.67 5.74 8.23 12.9
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4.2. TESTING THE INTERNAL DELTA-SIGMA ADC WITH LOW VALUE

RESISTORS

18-Bit, Buffer Gain = 1: The fourth test was configured with a buffer gain of 1 and 2477

samples per second, which corresponds to an LSB of 4 µA. Measurement accuracy data is

presented in Figure 4.6.

18-bit DelSig ADC, Multi Sample (Turbo), SR = 2477 SPS, Buf. Gain = 1, 10.000 Samples per Measurement
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Figure 4.6: Results of measurements using 18-bit ∆−Σ, Multi Sample (Turbo), SR = 2477
SPS, Buf. Gain = 1, 10.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.4, using

the four metrics described in Section 4.2.

Table 4.4: Noise values of measurements using 18-bit ∆−Σ, Multi Sample (Turbo), SR =
2477 SPS, Buf. Gain = 1, 10.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 54 59 55 51 59 51 93 141 203
Noise 99.7% (µV) 41.2 41.4 42.2 41.5 43.1 43.3 78.7 117 170
RMS Noise (µV) 6.87 6.90 7.04 6.92 7.18 7.20 13.1 19.5 28.4

RMS Noise (LSB) 1.76 1.77 1.80 1.77 1.84 1.84 3.36 5.00 7.26
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4.2.3 16-Bit Mode

Stepping down another 2 bits from the previous series of tests, this series was done

at a 16 bit resolution. Measurement accuracy data is presented in Figure 4.7.

16-Bit, Buffer Gain = 2: The fifth test had a buffer gain of 2 and 5505 samples per

second, resulting in 8 µA of LSB.

16-bit DelSig ADC, Multi Sample (Turbo), SR = 5505 SPS, Buf. Gain = 2, 20.000 Samples per Measurement
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Figure 4.7: Results of measurements using 16-bit ∆−Σ, Multi Sample (Turbo), SR = 5505
SPS, Buf. Gain = 2, 20.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.5, using

the four metrics described in Section 4.2.

Table 4.5: Noise values of measurements using 16-bit ∆−Σ, Multi Sample (Turbo), SR =
5505 SPS, Buf. Gain = 2, 20.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 156 149 157 172 164 171 195 227 297
Noise 99.7% (µV) 135 126 124 153 138 134 180 189 241
RMS Noise (µV) 22.5 21.0 20.7 25.4 22.9 22.3 30.0 31.6 40.2

RMS Noise (LSB) 2.88 2.69 2.65 3.26 2.93 2.85 3.85 4.04 5.15
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4.2. TESTING THE INTERNAL DELTA-SIGMA ADC WITH LOW VALUE

RESISTORS

16-Bit, Buffer Gain = 1: This sixth test returns to unitary buffer gain and uses a sample

rate of 11010 samples per second, with an LSB of 16 µA. Measurement accuracy data is

presented in Figure 4.8.

16-bit DelSig ADC, Multi Sample (Turbo), SR = 11010 SPS, Buf. Gain = 1, 20.000 Samples per Measurement
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Figure 4.8: Results of measurements using 16-bit ∆−Σ, Multi Sample (Turbo), SR =
11010 SPS, Buf. Gain = 1, 20.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.6, using

the four metrics described in Section 4.2.

Table 4.6: Noise values of measurements using 16-bit ∆−Σ, Multi Sample (Turbo), SR =
11010 SPS, Buf. Gain = 1, 20.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 235 281 297 281 312 266 344 375 422
Noise 99.7% (µV) 203 228 231 228 251 224 256 278 317
RMS Noise (µV) 33.8 37.9 38.5 38.0 41.8 37.3 42.7 46.3 52.8

RMS Noise (LSB) 2.16 2.43 2.47 2.43 2.68 2.38 2.73 2.96 3.38
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4.2.4 14-Bit Mode

For the last resolution setting we step down another 2 bits, thus this testing is done

at 14 bits. Measurement accuracy data is presented in Figure 4.9.

14-Bit, Buffer Gain = 2: The seventh series of tests is done with a buffer gain of 2 and

14840 samples per second, which results in 32 µA of LSB.

14-bit DelSig ADC, Multi Sample (Turbo), SR = 14840 SPS, Buf. Gain = 2, 20.000 Samples per Measurement
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Figure 4.9: Results of measurements using 14-bit ∆−Σ, Multi Sample (Turbo), SR =
14840 SPS, Buf. Gain = 2, 20.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.7, using

the four metrics described in Section 4.2.

Table 4.7: Noise values of measurements using 14-bit ∆−Σ, Multi Sample (Turbo), SR =
14840 SPS, Buf. Gain = 2, 20.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 250 250 250 250 282 282 282 313 343
Noise 99.7% (µV) 177 195 198 203 215 205 218 238 275
RMS Noise (µV) 29.4 32.5 33.0 33.8 35.8 34.2 36.3 39.7 45.9

RMS Noise (LSB) 0.94 1.04 1.05 1.08 1.15 1.10 1.16 1.27 1.47
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4.2. TESTING THE INTERNAL DELTA-SIGMA ADC WITH LOW VALUE

RESISTORS

14-Bit, Buffer Gain = 1: The eighth and final test uses a buffer gain of 1 and samples

the signal at 29681 samples per second, corresponding to an LSB of 64µA. Measurement

accuracy data is presented in Figure 4.10.

14-bit DelSig ADC, Multi Sample (Turbo), SR = 29681 SPS, Buf. Gain = 1, 20.000 Samples per Measurement
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Figure 4.10: Results of measurements using 14-bit ∆−Σ, Multi Sample (Turbo), SR =
29861 SPS, Buf. Gain = 1, 20.000 Samples per Measurement.

For these test parameters, measurement noise data is shown below, in Table 4.8, using

the four metrics described in Section 4.2.

Table 4.8: Noise values of measurements using 14-bit ∆−Σ, Multi Sample (Turbo), SR =
29861 SPS, Buf. Gain = 1, 20.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992
Noise pk-pk (µV) 500 562 437 562 562 500 375 437 500
Noise 99.7% (µV) 366 363 362 385 429 355 313 319 366
RMS Noise (µV) 61.1 60.5 60.4 64.2 71.6 59.1 52.2 53.2 60.9

RMS Noise (LSB) 0.98 0.97 0.97 1.03 1.14 0.95 0.84 0.85 0.97
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4.2.5 Drawing Conclusions From the Data

There are some clear observations that can be made from the acquired data, and

educated guesses can be made for other observed phenomena.

Firstly, in terms of measurement accuracy value, it’s quite obvious that there is a ben-

efit in increasing the drive current of the measured resistor. While this current increase

mostly results in higher noise, the effective signal to noise ratio improves immensely. This

can be seen particularly well when looking at the 22 Ω resistor, due to its very low value.

The 1 µA drive current results in a big disparity between the measured value and the

real one, as even in the best possible resolution the peak to peak noise is in the order

of 10 µV, which is just shy of half of the expected measured voltage across the resistor,

that is, the signal to noise ratio is approximately 6 dB. With a 10 µA current, the noise

level is similarly in the 10 µV range, while the expected measured voltage is now around

220 µV, resulting in a 22:1 signal to noise ratio, which corresponds to approximately

26.8 dB. With 100 µA of current, noise is anywhere from 50 to 120 µV, which once again

increases signal to noise ratio. The conclusion here is simple then, a higher drive current

is beneficial to measurement accuracy, as it increases signal to noise ratio (the voltage

level of the signal increases faster than the voltage level of noise).

According to [53], it is possible to extrapolate the theoretical effective number of bits

(ENOB) on the full scale of the ADC from the measurements made using equation 4.1.

ENOB =
SINADmeasured − 1.76 + 20 · log(FullScaleAmplitudeInputAmplitude )

6.02
(4.1)

Where SINAD is the signal-to-noise-and-distortion ratio, in dB, Full Scale Amplitude

and Input Amplitude in Volts.

Also according to [53], the value for SINAD can be approximated with a high con-

fidence by the signal-to-noise ratio (SNR). This means that by calculating the SNR of

the measurements, a good picture can be drawn regarding the effective number of bits

on the Delta-Sigma ADC. Using the 20-bit resolution measurements, as these represent

the measurements with the lowest noise values, the SNR values can be calculated for the

three current levels, using Equation 4.2.

SNR =
µ

σ
(4.2)

Where µ is the mean value of the measurement and σ is the standard deviation, which

corresponds to the RMS Noise.

The RMS values for all 20-bit measurements were calculated and are presented in

Table 4.9.
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RESISTORS

Table 4.9: Signal-to-Noise Ratio of measurements using 20-bit ∆−Σ, Multi Sample
(Turbo), SR = 182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992

Signal (µV) 22 465 992 220 4650 9920 2200 46500 99200
RMS Noise (µV) 1.91 2.09 2.62 1.93 2.58 3.33 8.26 13.9 19.9

SN Ratio (dB) 21.2 46.9 51.6 41.5 65.1 69.5 48.5 70.5 73.9

Using Equation 4.1, we can take the SNR and calculate the ENOB for all the values:

Table 4.10: Signal-to-Noise Ratio of measurements using 20-bit ∆−Σ, Multi Sample
(Turbo), SR = 182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 22 465 992 22 465 992 22 465 992

SN Ratio (dB) 21.2 46.9 51.6 41.5 65.1 69.5 48.5 70.5 73.9
ENOB 18.7 18.6 18.3 18.8 18.3 17.9 16.6 15.9 15.4

It is also important to mention that the ADC is using its Internal Reference, and mea-

surements are being made in Single Ended mode. Referring to the datasheet for the ∆−Σ
ADC Component of the PSoC [54], we can find some clues at what noise performance to

expect when testing in these conditions.

(a) External Reference (b) Internal Reference

Figure 4.11: Comparison of Internal and External Reference Noise Performance,
from [54].

From 4.11 it’s clear to see that using a high precision external reference provides

advantages when it comes to noise performance of the ADC. With an external reference,

the measurements have a much smaller deviation from the mean value, which is especially

noticeable when looking at the amount of measurements falling 2 or even 3 LSB to each

side of the mean. Additionally, we can extract some data from Figure 4.12, obtained

from [54], which show a comparison of the expected noise levels for single ended and

differential measurements.
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Figure 4.12: Comparison between single ended and differential noise performance,
from [54]

Looking at the first column of both tables, it would seem like the differential mea-

surement improves noise performance significantly, however it’s important to notice that

the measurement scale changes. In single ended mode, the measurements occur between

0 V and VREF, while in differential mode they occur between -VREF and +VREF, which

effectively doubles the measurement scale and thus the value of the LSB.

This means that, in reality we should compare the first column of the single ended

measurements with the second column of the differential measurements, as this provides

the same LSB value for both measurement methods. Looking at the single ended mode,

at 20 bits and at the highest sample speed possible, the expected RMS noise is 1.87 LSB.

For a differential measurement with similar characteristics, albeit a slightly lower sample

rate, the expected RMS noise is 0.98 LSB.

Considering the fact that these measurements were made with an external reference,

at the highest resolution mode the ∆−Σ ADC can handle, 0.98 LSB of RMS noise is

the absolute best case scenario. This value is around half the noise of that obtained in

testing, both due to the differential nature of the measurements, and the use of an external

reference. This means that future work should seriously consider both of these options

in order to improve the noise performance of the ADC.
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4.3. TESTING THE INTERNAL DELTA-SIGMA ADC WITH HIGH VALUE

RESISTORS AND INVESTIGATION INTO THE CURRENT DAC

4.3 Testing the Internal Delta-Sigma ADC with High Value

Resistors and Investigation into the Current DAC

From the testing with low values resistors, one interesting phenomenon can be ob-

served, especially for the measurements with 100 µA of drive current, and that is that

noise increases as the resistor value increases. This is something that should not be

happening, as noise, both in the resistor and the ADC should be relatively constant.

This increase in noise is especially noticeable with higher resolution settings, where the

measurement noise is very low. When using 16 bits of resolution the effect practically

disappears, and when using 14 bits it is completely unnoticeable, most likely due to the

LSB noise overshadowing the strange noise detected.

Because the noise rises with resistor value, and mostly with 100 µA drive current, it is

theorized that this noise is coming from the Current DAC, as the drawn power increases

linearly with resistor value.

To test this hypotheses, 3 tests will be done, with a similar setup to those in Section 4.2,

using 20, 18 and 16 bits of resolution with a unitary buffer gain, and the maximum sample

rate possible for each resolution in Multi Sample (Turbo) mode.

If the noise being measured is coming from the Current DAC, this test should see a

significant increase in noise compared to those in the last Section due to the increase in

current draw being directly proportional to the measured resistor. However, the noise

increase may not be linearly proportional to the drawn current, as there is no way of

knowing what, inside the Current DAC, is the culprit of said noise.

Even if the expected noise increase is measured though, there can still be doubts if

it is coming from the Current DAC or from the ADC itself, so there will be the need to

compare the ADC noise for a high value resistor driven by the Current DAC with another

voltage source that is known to be of very low noise. For this, a simple installation will

be used with a lithium ion battery, which has a voltage of around 4 V, connected to a

resistive divider.

The resistive divider is needed in order to bring the 4 V output from the battery into

the 0 - 1.024 V measurement range of the ADC, however this testing setup will inevitably

introduce some noise due to not only the resistive divider itself, but also the cables and

connections used to interface the battery with the ADC. As such, this test should only be

used to compare the Current DAC with an external voltage source and should not be used

as a de facto baseline for the amount of noise that is to expect from an external sensor.
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4.3.1 20-Bit Mode

Starting the testing for the high value resistors, 20 bits of resolution will be used. This

testing doesn’t intend to evaluate the measured value accuracy, only the measurement

noise, so the bar graphs won’t be shown, leaving only the noise tables for each of the

resolutions.

Table 4.11: Noise values of measurements using 20-bit ∆−Σ, Multi Sample (Turbo), SR =
182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 3.3K 6.8K 10K 3.3K 6.8K 10K 3.3K 6.8K 10K
Noise 99.7% (µV) 17.0 27.4 39.4 36.4 69.3 98.0 303 592 842
RMS Noise (µV) 2.84 4.57 6.57 6.06 11.6 16.3 50.6 98.6 140

RMS Noise (LSB) 2.90 4.68 6.73 6.20 11.8 16.7 51.8 101 144
ENOB 18.2 17.5 17.0 17.1 16.1 15.6 14.0 13.1 12.6

4.3.2 18-Bit Mode

Next, we have the noise measurements for high value resistors using 18 bits of resolu-

tion.

Table 4.12: Noise values of measurements using 18-bit ∆−Σ, Multi Sample (Turbo), SR =
2477 SPS, Buf. Gain = 1, 10.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 3.3K 6.8K 10K 3.3K 6.8K 10K 3.3K 6.8K 10K
Noise 99.7% (µV) 51.2 59.3 74.5 64.7 103 136 411 734 1162
RMS Noise (µV) 8.53 9.89 12.4 10.8 17.1 22.6 68.5 122 194

RMS Noise (LSB) 2.18 2.53 3.18 2.76 4.38 5.79 17.5 31.3 49.6
ENOB 16.6 16.4 16.0 16.2 15.6 15.2 13.6 12.7 12.1

4.3.3 16-Bit Mode

Lastly, we have the noise measurements for high value resistors using 16 bits of

resolution.

Table 4.13: Noise values of measurements using 16-bit ∆−Σ, Multi Sample (Turbo), SR =
11010 SPS, Buf. Gain = 1, 20.000 Samples per Measurement.

Pol. Current (µA) 1 10 100
Resistor Value(Ω) 3.3K 6.8K 10K 3.3K 6.8K 10K 3.3K 6.8K 10K
Noise 99.7% (µV) 173 182 204 170 198 225 513 931 1339
RMS Noise (µV) 28.8 30.3 34.0 28.3 33.0 37.5 85.4 155 223

RMS Noise (LSB) 1.84 1.94 2.18 1.81 2.12 2.40 5.47 9.93 14.3
ENOB 14.8 14.8 14.6 14.9 14.6 14.4 13.3 12.4 11.9
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RESISTORS AND INVESTIGATION INTO THE CURRENT DAC

4.3.4 Measuring the Voltage of an External Battery

A battery is a very stable voltage source, which should provide a good indication if

the measured noise is coming from the ∆−Σ ADC or the Current DAC. If, for a similar

voltage value, the noise in the measurement is significantly smaller when testing the

battery, then we can have even more evidence that the Current DAC is causing the noise

observed.

For this test, a Lithium-Ion battery will be used. This type of battery provides a

voltage between 3 and 4.2 Volts which is incompatible with the 0-1.024 V measurement

range of the ∆−Σ ADC, which means a resistive divider has to be used to lower this

voltage. This resistive divider consists of a 220 Ω and a 1 KΩ resistor, which are relatively

low values in order to keep the thermal noise from the resistive divider to the minimum.

Even then, the resistive divider is placed on a breadboard which means some additional

noise will sure be generated by the battery connections to the breadboard, and from

the breadboard to the PSoC, which means the noise value won’t be the absolute best

achievable, and should only be used to compare with the noise obtained in previous tests.

With the resistive divider in place, and a measured battery voltage of 4.06 V, the

voltage at the terminals of the ADC should be around 0.73V. This is similarly comparable

to the 6.8 KΩ resistor with a 100 µA drive current, which is the comparison we can see in

Table 4.14.

Table 4.14: Noise values of measurements using 20-bit ∆−Σ, Multi Sample (Turbo), SR
= 182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement, comparing a battery and a
resistor.

Pol. Current (µA) - 100
Resistor Value(Ω) - 6.8K

Battery Voltage (V) 0.73 -
Noise 99.7% (µV) 96.0 592
RMS Noise (µV) 16.4 98.6

RMS Noise (LSB) 16.0 101
ENOB 15.2 13.1

The absolute measured average voltage on the resistive divider is 0.7277 V which is

very close to the expected value, confirming that the measurement was successful. It’s

also easy to observe that the battery measurement has a drastically lower noise level than

the measurement with the 6.8 KΩ resistor with a 100µA drive current. This leads to

the conclusion that this noise is coming from the Current DAC, however it’s unknown

if this is the normal operation of the PSoC µC or a problem with the developed PCB,

which means some additional tests will be needed to compare the developed PCB with a

Prototyping Kit developed by Cypress.
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4.3.5 Comparing the Developed PCB with a Prototyping Kit

As a final test, the performance of the developed PCB was tested against the CY8CKIT-

059 Prototyping Kit as a way to ensure the odd results were not due to incorrect PCB

design, and were, in fact, a characteristic of the PSoC 5LP microcontroller. A single 10

KΩ resistor was measured at 100 µA of drive current, which was causing the highest

amount of noise in the previous tests. The noise results of these tests, compared to the

developed board, can be seen in Table 4.15.

Table 4.15: Comparison of noise values of measurements using 20-bit ∆−Σ, Multi Sample
(Turbo), SR = 182 SPS, Buf. Gain = 1, 5.000 Samples per Measurement, comparing the
and a resistor.

Pol. Current (µA) 100
Resistor Value(Ω) 10K
Device Under Test Dev. Node CY8CKIT-059
Noise 99.7% (µV) 842 693
RMS Noise (µV) 140 116

RMS Noise (LSB) 144 118
ENOB 12.6 12.8

Some of the differences in the results can be attributed to the connection of the resistor

to the PCB. In the CY8CKIT-059, the resistor can be introduced directly into the female

pin headers, while on the developed board, male pin headers were used, which means

the resistor has to use a small female to female cable. Additionally, the developed board

has multiplexer chips in the signal path, which may introduce some more measurement

noise. Even with these differences, the measurements on both boards seem to display a

pattern of additional noise as the drive current increases for these relatively high value

resistor measurements.

Either way, the order of magnitude of the sampled noise is the same in both cases, and

that is enough to prove that the issue at hand comes from the PSoC 5LP microcontroller

and not from any design errors, as even tho the noise is slightly lower on the CY8CKIT-

059, it is still a whole two orders of magnitude higher than what would be expected, and

from what is actually observed for low value resistors with a smaller drive current. This

makes the PSoC 5LP completely unsuited for these types of measurements, because even

tho it has a very high precision ADC, the DAC cannot keep up.
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4.4 Testing the AD5941 Analog Front End and u-blox SARA-N2

NB-IoT Module

AD5941: The AD5941 uses direct register manipulation to control the chip’s functions.

Fortunately, a software library, as well as some example functions are provided by Analog

Devices to the users of this IC. The implementation of this library was described in

Section 3.2.4.2.

In this test, one of the example functions provided by Analog Digital was used to test

the reading and writing to the AD5941’s registers through the SPI interface. This example

is called "AD5940_SPI" and executes ten thousand consecutive writes and consecutive

reads from a specific register. The objective is to write a determined value to a register

and be able to read back this same value. If the read value corresponds to the written

value, then a successful SPI connection has been established. Repeating this test a large

number of times helps to detect some kind of instability that may be occurring with the

data transmission.

Unfortunately, this test proved unsuccessful. The writing sequence did not present

an issue, however when the register value was read back, there would be no data trans-

mission coming from the AD5941. This is a somewhat inconclusive issue, as it doesn’t

provide enough data to truly evaluate if the problem occurs when reading or writing

the data. One assumption is that the problem may be in the AD5941 itself, as during

debugging of some of the initial PCB mistakes described in Section 3.1.6 a 5 V signal

may have been accidentally injected in the 3.3 V rail, therefore damaging the IC. This

however doesn’t appear to be the issue, as both the internal 1.82 V and 2.5 V regulators

measure their respective voltages under a multimeter, and show good, constant signals

when observed in an oscilloscope, as can be seen from Figures 4.13 and 4.14.

Figure 4.13: Oscilloscope trace of the AD5941’s 1.82 V Regulator.
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Figure 4.14: Oscilloscope trace of the AD5941’s 2.5 V Regulator.

These are very unfortunate results, as even several attempts to solve the problem

proved useless. The described issue can also be observed through a Logic Analyzer in

Figures 4.15 and 4.16 .

Figure 4.15: Logic Analyzer Data of a SPI Write Command to the AD5941.

Figure 4.15 shows an SPI Write Command. Initially a byte with 0x20 is sent, this

is defined in the AD5941’s library as "set address", telling the AD5941 that a register

address will follow, which in this case is 0x2230. Another byte is then sent with the

address 0x2D which is a "write address" command, followed by 0xC539151E, randomly

generated data to write into the 0x2230 register.

Similarly to the SPI Write Command, the SPI Read Command shown in Figure 4.16

starts with a 0x20 "set address" command, and the 0x2230 address is sent. Things then

start to differ, as this time a 0x6D "read address" command is sent. After this, a dummy

read is done, then CS is once again pulled low in order to receive data, however the

AD5941 doesn’t respond.

64



4.4. TESTING THE AD5941 ANALOG FRONT END AND U-BLOX SARA-N2

NB-IOT MODULE

The purpose of the dummy read is to generate pulses on the clock line, which the

slave device then detects and replies to. This is the implementation provided in the

AD5941’s library and should be expected to work, but it does not. This means that the

problem is most likely hardware related.

Figure 4.16: Logic Analyzer Data of a SPI Read Command to the AD5941.

u-blox SARA-N2: The u-blox SARA-N2 NB-IoT module was a big bet when designing

this sensor board, however it could not be tested in the allotted time. Testing this module

would require an NB-IoT enabled SIM card and the development of a significant amount

of software which simply there was not enough time for.
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Conclusion

This dissertation work proposed to create the basis for an adaptable and reconfig-

urable IoT node with the ability to measure data from several environmental sensors with

an extremely high level of accuracy.

An IoT architecture was developed with the use of a state of the art PSoC micro-

controller with a very high resolution ADC and a additional, optional, analog front end

integrated circuit in the form of the Analog Devices AD5941. Multiplexers would tie the

sensor inputs to the ADCs in either the PSoC or the AD5941 in order to accommodate a

larger number of sensors than either of these devices would allow.

Wireless communications would be assured by the u-blox SARA N210 NB-IoT mod-

ule, which allows long distance communication at low data rates, with low energy usage,

over vast distances.

A 4-layer printed circuit board was developed in KiCad containing all the describe

components, while taking into account several layout considerations described in Chap-

ter 3.1. This circuit board was designed in a way that it could form a foundation for future

work in this area, with its design files being made available for change and development.

The developed circuit board was then manufactured by JLCPCB, components were

ordered from Mouser and Digikey and then reflow soldered in a reflow oven. At this point

some unexpected issues arose which delayed development, as the PSoC microcontroller

would not initialize. This issue was tracked to a design mistake in the PCB which was

luckily a relatively easy fix, however it was extremely time consuming, as it took over a

month between diagnosing and ordering new parts.
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With the PCB issue remedied, software was developed to test the different compo-

nents of the board, starting with the simplest which were the MAX14661 multiplexers,

then following with the PSoC microcontroller and the AD5941 analog front end module.

All six of the MAX14661 multiplexers were tested and worked with no issues. Moving

on to the PSoC microcontroller, tests were made at various ADC resolutions and sample

rates, with some unexpected results, both positively and negatively. To start, the 20-bit

Delta-Sigma ADC has extremely good noise performance, generating some very impres-

sive results when testing resistors at low drive currents such as 1 and 10 µA, resulting in

an effective number of bits (ENOB) which is calculated to be above 18 bits and almost as

high as 19 bits for the best case scenario, while also having 15.2 effective bits measured

in the battery comparison made in Chapter 4.14, which is a non-ideal scenario as there is

a resistive divider and some questionable quality connectors involved.

There were however some negative results at higher currents, and with higher resistor

values, which were investigated and tracked to be caused by an extremely noisy output

coming from the current DACs. This was extremely unfortunate as it means that the high

resolution ADC is almost completely useless in these tests, resulting in an ENOB as low

as only 12.6 when measuring at a 20-bit resolution, meaning that the only thing the ADC

effectively measures is noise being generated by the DAC. These tests are presented in

length in Chapters 4.2 and 4.3.

When it came to AD5941 analog front end module, it was discovered that it was

unresponsive to user commands, either through severe user error, which seems unlikely

as the library which implements the AD5941 functionality is very simple to import for

a given microcontroller architecture, or due to hardware issues which possibly occurred

when diagnosing the initial problems with the PSoC microcontroller. Either way, testing

of the AD5941 was impossible to realize, which is extremely unfortunate, as this module

appears to be very promising, as it contains an extremely good suite of ADCs and DACs

specially designed to interface with sensors which need very high precision measurements

such as skin and body impedance or electrochemical toxic gas sensing.

5.1 Future Work

There is a relatively high likelihood of future work being developed on top of the

developed IoT node, therefore the project was uploaded to GitHub at GitHub - KNoT.

This also means that some tips or recommendations will be rather important.

Firstly, it is very important to understand the capabilities of the AD5941, as this

module appears to be extremely capable in the application this IoT node is designed to

fulfill. Not being able to even run basic tests on this chip is probably one of the biggest

disappointments of this dissertation.

Evaluation boards for this module are available, although they are prohibitively ex-

pensive, however a simple test setup can be developed by designing a small, custom
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made "evaluation board"which provides an SPI connection to an external off the shelf

microcontroller board such as Arduino or a Raspberry Pi for data communication, and

exposes the sensor input ports of the AD5941 to a small sensor connector. This will not

only help validate the performance claims of this module, but also develop the required

interface software.

If this module does as much as it advertises, it is important to chose a clear direction

about whether to integrate it directly into the mainboard, as this can lead to a different

strategy regarding the main microcontroller platform, as the choice of PSoC 5LP hinged

mainly on its signal acquisition capabilities which were tested and found not to be very

satisfactory, meaning that it could then be switched to a more powerful and cheaper one,

such as the STM32 family, leading to an improvement in the node’s signal capabilities

which can help with filtering and processing measured data.

Regarding the NB-IoT module, a lot of work also needs to be put into it regarding

software interfacing and general RF testing, specially as NB-IoT is still a somewhat niche

communication standard with limited software support. Between the AD5941 and the

NB-IoT node, there is easily enough research work for two dissertations, specially as they

both require a lot of testing and data gathering, as they are relatively new and unexplored

platforms.

Some additional considerations were also discussed in Chapter 3.1.6 regarding devel-

opments to the current printed circuit board, namely the placement of additional pins

connecting the AD5941’s GPIOs and RESET pins to the mainboard.

To summarize, as future work, it is important to:

• Research and test the capabilities of the AD5941.

• Research and test the SARA-N2 NB-IoT module.

• Decide whether to integrate the AD5941 in the mainboard.

• Decide between continuing to use the PSoC microcontroller or switch to an alterna-

tive platform.
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A
Code For the Initial MUX and ADC

Experiments

1 #include <p r o j e c t . h>

2 #include " s t d i o . h"

3

4 /* UART Defines */
5 # def ine FALSE 0

6 # def ine TRUE 1

7 # def ine TRANSMIT_BUFFER_SIZE 16

8

9 /* There are 8 input channels */
10 # def ine NUMCHAN (8u )

11

12 i n t main ( )

13 {

14 /* I n i t i a l i z e v a r i a b l e that i n d i c a t e s which mux channel

15 i s displayed on LCD */
16 uint8 curChan = 0u , transChan ;

17 AMux_1_Init ( ) ;

18 AMux_1_FastSelect ( curChan ) ;

19 /* Variable to s t o r e ADC r e s u l t */
20 uint32 Output0 = 0 ;

21 uint32 Output1 = 0 ;

22 /* Variable to s t o r e UART rece ived c h a r a c t e r */
23 uint8 Ch ;

24 /* Flags used to s t o r e transmit data commands */
25 uint8 ContinuouslySendData ;

26 uint8 SendSingleByte ;

27 /* Transmit Buffer */
28 char TransmitBuffer [TRANSMIT_BUFFER_SIZE ] ;

29

77



APPENDIX A. CODE FOR THE INITIAL MUX AND ADC EXPERIMENTS

30 /* S t a r t the UART */
31 UART_1_Start ( ) ;

32

33 /* I n i t i a l i z e Var iables */
34 ContinuouslySendData = FALSE ;

35 SendSingleByte = FALSE ;

36

37 /* Send message to v e r i f y COM port i s connected properly */
38 UART_1_PutString ( "COM Port Open" ) ;

39

40 ADC_Start ( ) ;

41

42 fo r ( ; ; )

43 {

44 transChan = curChan ;

45 Output0 = Output1 ;

46 /* I f SW i s pressed */
47 i f ( ! ChannelSelect_Read ( ) )

48 {

49 ADC_StartConvert ( ) ;

50 i f ( ADC_IsEndConversion (ADC_WAIT_FOR_RESULT) )

51 {

52 Output1 = ADC_CountsTo_mVolts ( ADC_GetResult16 ( ) ) ;

53 }

54

55 /* Wait u n t i l button i s r e l e a s e d */
56 while ( ! ChannelSelect_Read ( ) )

57 {

58 }

59

60 /* Increment to next channel fo r display */
61 curChan++;

62 AMux_1_FastSelect ( curChan ) ;

63

64 /* I f we are at channel 8 , r e s e t to channel 0 */
65 i f ( curChan == NUMCHAN)

66 {

67 curChan = 0u ;

68 }

69 }

70

71 /* Non−blocking c a l l to get the l a t e s t data rec ieved */
72 Ch = UART_1_GetChar ( ) ;

73

74 /* Set f l a g s based on UART command */
75 switch (Ch)

76 {

77 case 0 :

78 /* No new data was rec ieved */
79 break ;

78



80 case ’C ’ :

81 case ’ c ’ :

82 SendSingleByte = TRUE;

83 break ;

84 case ’ S ’ :

85 case ’ s ’ :

86 ContinuouslySendData = TRUE;

87 break ;

88 case ’X ’ :

89 case ’ x ’ :

90 ContinuouslySendData = FALSE ;

91 break ;

92 defaul t :

93 break ;

94 }

95

96 i f ( ( SendSingleByte | | ContinuouslySendData )

97 && ( Output0 != Output1 | | curChan != transChan ) )

98 {

99 /* Format ADC r e s u l t f or transmit ion */
100 s p r i n t f ( TransmitBuffer , " Channel number %i

101 with the value : %lu mV\ r \n" , transChan , Output1 ) ;

102 /* Send out the data */
103 UART_1_PutString ( TransmitBuffer ) ;

104 /* Reset the send once f l a g */
105 SendSingleByte = FALSE ;

106 }

107 }

108 }

Listing A.1: Code for Inicial MUX and ADC Experiments
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B
IoT Node Schematic and Layout

Figure B.1: 3D Render of the IoT Node’s PCB and AD5941 Daughter Board.
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APPENDIX B. IOT NODE SCHEMATIC AND LAYOUT
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Figure B.2: Sensor Node Schematic, Page 1.
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Figure B.3: Sensor Node Schematic, Page 2.
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Figure B.4: Sensor Node Schematic, Page 3.
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Figure B.5: Sensor Node Schematic, Page 4.
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Figure B.6: Sensor Node Schematic, Page 5.
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Figure B.7: Sensor Node Schematic, Page 6.
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Figure B.8: Sensor Node Layout, Top Copper Layer.
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Figure B.9: Sensor Node Schematic, First Inside Copper Layer.
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APPENDIX B. IOT NODE SCHEMATIC AND LAYOUT

Figure B.10: Sensor Node Schematic, Second Inside Copper Layer.
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Figure B.11: Sensor Node Schematic, Bottom Copper Layer.
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APPENDIX B. IOT NODE SCHEMATIC AND LAYOUT

Figure B.12: Sensor Node Schematic, Top Silkscreen.

92



Figure B.13: Sensor Node Schematic, Bottom Silkscreen.
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Figure C.1: PSoC Creator Analog Routing.
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A
p
p
e
n
d
i
x

D
MATLAB Script for Sampled Data

Processing

1 c l e a r a l l

2 c l o s e a l l

3

4 t i c

5 fo r c = 1:11

6 switch c

7 case 1

8 data = csvread ( ’ 20b_ds_mst_92_bg2_5k . csv ’ ) ;

9 data ( : , 2 ) = [ ] ;

10 n = 0 . 5 ;

11 l s b = 1.024 / 2^21 * 10^6;

12 f i g u r e ( c )

13 s g t i t l e ( { ’ 20−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 92 SPS ,

Buf . Gain = 2 , 5.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

14 case 2

15 data = csvread ( ’ 20b_ds_mst_182_bg1_5k . csv ’ ) ;

16 data ( : , 2 ) = [ ] ;

17 n = 0 . 5 ;

18 l s b = 1.024 / 2^20 * 10^6;

19 f i g u r e ( c )

20 s g t i t l e ( { ’ 20−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 182 SPS ,

Buf . Gain = 1 , 5.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

21 case 3

22 data = csvread ( ’ 18b_ds_mst_1238_bg2_10k . csv ’ ) ;

23 data ( : , 2 ) = [ ] ;

24 n = 1 ;

25 l s b = 1.024 / 2^19 * 10^6;

26 f i g u r e ( c )
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APPENDIX D. MATLAB SCRIPT FOR SAMPLED DATA PROCESSING

27 s g t i t l e ( { ’ 18−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 1238 SPS ,

Buf . Gain = 2 , 10.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

28 case 4

29 data = csvread ( ’ 18b_ds_mst_2477_bg1_10k . csv ’ ) ;

30 data ( : , 2 ) = [ ] ;

31 n = 1 ;

32 l s b = 1.024 / 2^18 * 10^6;

33 f i g u r e ( c )

34 s g t i t l e ( { ’ 18−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 2477 SPS ,

Buf . Gain = 1 , 10.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

35 case 5

36 data = csvread ( ’ 16b_ds_mst_5505_bg2_20k . csv ’ ) ;

37 data ( : , 2 ) = [ ] ;

38 n = 2 ;

39 l s b = 1.024 / 2^17 * 10^6;

40 f i g u r e ( c )

41 s g t i t l e ( { ’ 16−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 5505 SPS ,

Buf . Gain = 2 , 20.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

42 case 6

43 data = csvread ( ’ 16b_ds_mst_11010_bg1_20k . csv ’ ) ;

44 data ( : , 2 ) = [ ] ;

45 n = 2 ;

46 l s b = 1.024 / 2^16 * 10^6;

47 f i g u r e ( c )

48 s g t i t l e ( { ’ 16−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 11010 SPS ,

Buf . Gain = 1 , 20.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

49 case 7

50 data = csvread ( ’ 14b_ds_mst_14840_bg2_20k . csv ’ ) ;

51 data ( : , 2 ) = [ ] ;

52 n = 2 ;

53 l s b = 1.024 / 2^15 * 10^6;

54 f i g u r e ( c )

55 s g t i t l e ( { ’ 14−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 14840 SPS ,

Buf . Gain = 2 , 20.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

56 case 8

57 data = csvread ( ’ 14b_ds_mst_29681_bg1_20k . csv ’ ) ;

58 data ( : , 2 ) = [ ] ;

59 n = 2 ;

60 l s b = 1.024 / 2^14 * 10^6;

61 f i g u r e ( c )

62 s g t i t l e ( { ’ 14−b i t DelSig ADC, Multi Sample ( Turbo ) , SR = 29681 SPS ,

Buf . Gain = 1 , 20.000 Samples per Measurement ’ , ’ ’ } , ’ FontSize ’ , 28) ;

63 case 9

64 data = csvread ( ’ 20b_ds_mst_182_bg1_5k_high . csv ’ ) ;

65 data ( : , 2 ) = [ ] ;

66 n = 0 . 5 ;

67 l s b = 1.024 / 2^20 * 10^6;

68 f i g u r e ( c )
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69 s g t i t l e ( { ’ High value r e s i s t o r s , 20−b i t DelSig ADC, Multi Sample (

Turbo ) , SR = 182 SPS , Buf . Gain = 1 , 5.000 Samples per Measurement ’ , ’ ’ } ,

’ FontSize ’ , 28) ;

70 case 10

71 data = csvread ( ’ 18b_ds_mst_2477_bg1_10k_high . csv ’ ) ;

72 data ( : , 2 ) = [ ] ;

73 n = 1 ;

74 l s b = 1.024 / 2^18 * 10^6;

75 f i g u r e ( c )

76 s g t i t l e ( { ’ High value r e s i s t o r s , 18−b i t DelSig ADC, Multi Sample (

Turbo ) , SR = 2477 SPS , Buf . Gain = 1 , 10.000 Samples per Measurement ’ , ’ ’

} , ’ FontSize ’ , 28) ;

77 case 11

78 data = csvread ( ’ 16b_ds_mst_11010_bg1_20k_high . csv ’ ) ;

79 data ( : , 2 ) = [ ] ;

80 n = 2 ;

81 l s b = 1.024 / 2^16 * 10^6;

82 f i g u r e ( c )

83 s g t i t l e ( { ’ High value r e s i s t o r s , 16−b i t DelSig ADC, Multi Sample (

Turbo ) , SR = 11010 SPS , Buf . Gain = 1 , 20.000 Samples per Measurement ’ , ’ ’

} , ’ FontSize ’ , 28) ;

84 end

85

86 setGlobala ( 1 ) ;

87 s e t ( gcf , ’ P o s i t i o n ’ , [100 , 100 , 1600 , 900] )

88

89 data_1u_22r = data ( 1 : ( n * 10000) ) ;

90 data_1u_465r = data ( ( 1 + n * 10000) : ( n * 20000) ) ;

91 data_1u_992r = data ( ( 1 + n * 20000) : ( n * 30000) ) ;

92

93 data_10u_22r = data ( ( 1 + n * 30000) : ( n * 40000) ) ;

94 data_10u_465r = data ( ( 1 + n * 40000) : ( n * 50000) ) ;

95 data_10u_992r = data ( ( 1 + n * 50000) : ( n * 60000) ) ;

96

97 data_100u_22r = data ( ( 1 + n * 60000) : ( n * 70000) ) ;

98 data_100u_465r = data ( ( 1 + n * 70000) : ( n * 80000) ) ;

99 data_100u_992r = data ( ( 1 + n * 80000) : ( n * 90000) ) ;

100

101 [ n1 , n991 , m1, s1 , nlsb1 ] = process ( data_1u_22r , lsb , 22 , 1) ;

102 [ n2 , n992 , m2, s2 , nlsb2 ] = process ( data_1u_465r , lsb , 465 , 1) ;

103 [ n3 , n993 , m3, s3 , nlsb3 ] = process ( data_1u_992r , lsb , 992 , 1) ;

104 [ n4 , n994 , m4, s4 , nlsb4 ] = process ( data_10u_22r , lsb , 22 , 10) ;

105 [ n5 , n995 , m5, s5 , nlsb5 ] = process ( data_10u_465r , lsb , 465 , 10) ;

106 [ n6 , n996 , m6, s6 , nlsb6 ] = process ( data_10u_992r , lsb , 992 , 10) ;

107 [ n7 , n997 , m7, s7 , nlsb7 ] = process ( data_100u_22r , lsb , 22 , 100) ;

108 [ n8 , n998 , m8, s8 , nlsb8 ] = process ( data_100u_465r , lsb , 465 , 100) ;

109 [ n9 , n999 , m9, s9 , nlsb9 ] = process ( data_100u_992r , lsb , 992 , 100) ;

110

111 m4 = m4 / 10; m5 = m5 / 10; m6 = m6 / 10;

112 s4 = s4 / 10; s5 = s5 / 10; s6 = s6 / 10;
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113

114 m7 = m7 / 100; m8 = m8 / 100; m9 = m9 / 100;

115 s7 = s7 / 100; s8 = s8 / 100; s9 = s9 / 100;

116

117 % f i g u r e ( 1 ) ;

118

119 subplot ( 1 , 3 , 1 )

120 x1 = [m1,m4,m7 ] ;

121 y1 = 1 : 3 ;

122 bar ( y1 , x1 , ’ FaceColor ’ , [ 0 . 2 5 , 0 .25 , 0 . 2 5 ] )

123 x t i c k l a b e l s ( { ’ 1\mu’ , ’ 10\mu’ , ’ 100\mu’ } )

124 i f ( c < 9)

125 t i t l e ( { ’ 22\Omega R e s i s t o r ’ , ’ ( Measured at 21.7\Omega) ’ } , ’ FontSize ’ ,

18)

126 end

127 i f ( c > 8)

128 t i t l e ( { ’ 3 .3K\Omega R e s i s t o r ’ , ’ ( Measured at 3.28K\Omega) ’ } , ’ FontSize

’ , 18)

129 end

130 ylim ( [ 0 5 0 ] ) ;

131 errlow = [2* s1 2* s4 2* s7 ] ;

132 errhigh = [2* s1 2* s4 2* s7 ] ;

133 hold on

134 ax = plot ( xlim , [ 2 1 . 7 2 1 . 7 ] , ’ LineWidth ’ , 2) ;

135 ax . Color = [ 0 , 0.4470 0 . 7 4 1 0 ] ;

136 er = errorbar ( y1 , x1 , errlow , errhigh ) ;

137 er . Color = ’ r ’ ;

138 er . L ineSty le = ’ none ’ ;

139 er . LineWidth = 2 ;

140 hold o f f

141 x l a b e l ( ’ P o l a r i z a t i o n Current (A) ’ , ’ FontSize ’ , 16) ;

142 y l a b e l ( ’ Measured R e s i s t o r Value (\Omega) ’ , ’ FontSize ’ , 16) ;

143 ax = gca ;

144 ax . XAxis . FontSize = 16;

145 ax . YAxis . FontSize = 16;

146

147 subplot ( 1 , 3 , 2 )

148 x2 = [m2,m5,m8 ] ;

149 bar ( y1 , x2 , ’ FaceColor ’ , [ 0 . 2 5 , 0 .25 , 0 . 2 5 ] ) ;

150 x t i c k l a b e l s ( { ’ 1\mu’ , ’ 10\mu’ , ’ 100\mu’ } )

151 i f ( c < 9)

152 t i t l e ( { ’ 470\Omega R e s i s t o r ’ , ’ ( Measured at 465\Omega) ’ } , ’ FontSize ’ ,

18)

153 end

154 i f ( c > 8)

155 t i t l e ( { ’ 6 .8K\Omega R e s i s t o r ’ , ’ ( Measured at 6.76K\Omega) ’ } , ’ FontSize

’ , 18)

156 end

157 ylim ( [ 0 600] ) ;

158 errlow = [2* s2 2* s5 2* s8 ] ;
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159 errhigh = [2* s2 2* s5 2* s8 ] ;

160 hold on

161 ax = plot ( xlim , [ 4 6 5 465] , ’ LineWidth ’ , 2) ;

162 ax . Color = [ 0 , 0.4470 0 . 7 4 1 0 ] ;

163 er = errorbar ( y1 , x2 , errlow , errhigh ) ;

164 er . Color = ’ r ’ ;

165 er . L ineSty le = ’ none ’ ;

166 er . LineWidth = 2 ;

167 hold o f f

168 x l a b e l ( ’ P o l a r i z a t i o n Current (A) ’ , ’ FontSize ’ , 16) ;

169 y l a b e l ( ’ Measured R e s i s t o r Value (\Omega) ’ , ’ FontSize ’ , 16) ;

170 ax = gca ;

171 ax . XAxis . FontSize = 16;

172 ax . YAxis . FontSize = 16;

173

174 subplot ( 1 , 3 , 3 )

175 x3 = [m3,m6,m9 ] ;

176 bar ( y1 , x3 , ’ FaceColor ’ , [ 0 . 2 5 , 0 .25 , 0 . 2 5 ] )

177 x t i c k l a b e l s ( { ’ 1\mu’ , ’ 10\mu’ , ’ 100\mu’ } )

178 i f ( c < 9)

179 t i t l e ( { ’ 1K\Omega R e s i s t o r ’ , ’ ( Measured at 992\Omega) ’ } , ’ FontSize ’ ,

18)

180 end

181 i f ( c > 8)

182 t i t l e ( { ’ 10K\Omega R e s i s t o r ’ , ’ ( Measured at 9.90K\Omega) ’ } , ’ FontSize ’

, 18)

183 end

184 ylim ( [ 0 1200]) ;

185 errlow = [2* s3 2* s6 2* s9 ] ;

186 errhigh = [2* s3 2* s6 2* s9 ] ;

187 hold on

188 ax = plot ( xlim , [ 9 9 2 992] , ’ LineWidth ’ , 2) ;

189 ax . Color = [ 0 , 0.4470 0 . 7 4 1 0 ] ;

190 er = errorbar ( y1 , x3 , errlow , errhigh ) ;

191 er . Color = ’ r ’ ;

192 er . L ineSty le = ’ none ’ ;

193 er . LineWidth = 2 ;

194 hold o f f

195 x l a b e l ( ’ P o l a r i z a t i o n Current (A) ’ , ’ FontSize ’ , 16) ;

196 y l a b e l ( ’ Measured R e s i s t o r Value (\Omega) ’ , ’ FontSize ’ , 16) ;

197 ax = gca ;

198 ax . XAxis . FontSize = 16;

199 ax . YAxis . FontSize = 16;

200

201 f igHandles = f i n d a l l ( 0 , ’ Type ’ , ’ f i g u r e ’ ) ;

202

203 syms f i g _ b i t ;

204 eqn = 2 == nthroot ( l sb * 10^(−6) , f i g _ b i t ) ;

205 b i t s = so lve ( eqn , f i g _ b i t ) ;

206 b i t s = abs ( round ( b i t s ) ) ;
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207

208 b i t s = double ( b i t s ) ;

209 t ex t3 = [ num2str ( b i t s ) , ’ b i t s ’ ] ;

210 fn = tex t3 ;

211

212

213 % e x p o r t _ f i g ( fn , ’−pdf ’ , f igHandles ( 1 ) )

214 % for i = numel ( f igHandles ) : −1:2

215 % e x p o r t _ f i g ( fn , ’−pdf ’ , f igHandles ( i ) , ’−append ’ )

216 % end

217

218 end

219 toc

220

221 funct ion [ noise , noise99 , m, s , nlsb ] = process ( x , lsb , r , curr )

222 n = length ( x ) ;

223 noise = max( x )−min ( x ) ;

224 m = sum( x ) /n ;

225 s = std ( x ) ;

226 noise99 = 6 * s ;

227 nlsb = s / l s b ;

228

229 t b l = t a b u l a t e ( x ) ;

230 i n d i c e s = t b l ( : , 2 ) == 0 ;

231 t b l ( indices , : ) = [ ] ;

232

233 t b l ( a l l (~ tbl , 2 ) , : ) = [ ] ; %rows

234 t b l ( : , a l l (~x , 1 ) ) = [ ] ; %columns

235

236 t b l = num2cell ( t b l ) ;

237 t = c e l l 2 t a b l e ( tbl , ’ VariableNames ’ , { ’ Value ’ , ’ Count ’ , ’ Percent ’ } ) ;

238 t . Value = c a t e g o r i c a l ( t . Value ) ;

239

240

241 % a = getGlobala ;

242 % s e t ( 0 , ’ DefaultAxesTitleFontWeight ’ , ’ normal ’ ) ;

243 % f i g u r e ( a +1) ;

244 % bar ( t . Value , t . Count )

245 % s e t ( gcf , ’ P o s i t i o n ’ , [100 , 100 , 1600 , 900] )

246 % y l a b e l ( ’Number of Samples ’ , ’ FontSize ’ , 16) ;

247 % x l a b e l ( ’ Measured Voltage (\muV) ’ , ’ FontSize ’ , 16) ;

248 % t e x t = [ ’ 99.7% Noise = ’ , num2str ( noise99 ) , ’ \muV, RMS Noise = ’ ,

num2str ( s ) , ’ \muV ( ’ , num2str ( nlsb ) , ’ LSB ) ’ ] ;

249 % text2 = [ ’ Pol . Current = ’ , num2str ( curr ) , ’ \muA , R e s i s t o r Value = ’ ,

num2str ( r ) , ’ \Omega ’ ] ;

250 % t i t l e ( { text , text2 , ’ ’ } , ’ FontSize ’ , 28) ;

251 %

252 % a = a + 1 ;

253 % setGlobala ( a ) ;

254
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255

256 end

257

258 funct ion setGlobala ( val )

259 global a

260 a = val ;

261 end

262

263 funct ion r = getGlobala

264 global a

265 r = a ;

266 end

Listing D.1: MATLAB Script
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