
João Pedro Delgado Lopes

Bachelor of Science in Electrical and Computers Engineering

A Customizable IoT Platform
Developed Using Low-Code

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Electrical and Computers Engineering

Adviser: Filipe de Carvalho Moutinho, Assistant Professor,
NOVA University Lisbon

Examination Committee

Chair: João Miguel Murta Pina
Rapporteur: Rogério Alexandre Botelho Campos Rebelo

Member: Filipe de Carvalho Moutinho

November, 2020

A Customizable IoT Platform Developed Using Low-Code

Copyright © João Pedro Delgado Lopes, Faculty of Sciences and Technology, NOVA Uni-

versity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my grandparents.

“The passion for stretching yourself and sticking to it, even (or
especially) when it’s not going well, is the hallmark of the
growth mindset. This is the mindset that allows people to

thrive during some of the most challenging times in their lives.”

Carol S. Dweck, Mindset: The New Psychology Of Success

Acknowledgements

Thank you to my supervisor, professor Filipe Moutinho, for his consistent support through-

out this difficult period of my life. For his neverending availability, mainly via remote

calls and even during weekends; for his patience, for the knowledge he shared with me

and for understanding my lack of time. I am truly grateful.

I would also like to thank Noesis for providing me with the technical skills required

to do this thesis and for giving me all of the conditions to finish it. A special appreciation

to Inês Brilhante, Inês Mariano, Margarida Morais, Miguel Silva and Tiago Fernandes for

advising me; for the great leadership and for making me happy to go to work every day.

My sincere gratitude to Luís Santos Monteiro and José Pedro Proença for helping me in

so many ways: with technical and personal advices; for reviewing my dissertation, provid-

ing corrections and improvements and for helping in the maintenance of an Outsystems

component that will be further mentioned in this thesis.

I am specially grateful to José Pedro Proença and José Silva Pinto for the infinite

support; for sharing their growt-mindsets with me; for never giving up and never letting

me give up; for all the things I learned from them; for all of the laughs and for encouraging

me to believe in myself and to finish my thesis and for saving time to read and review my

dissertation, thank you!

To Ayala, Duda, Zé, Ricardo and Tiago, thank you for all the laughs, beers and adven-

tures, for the great friendship and for not letting me give up.

A note of appreciation to my family, namely my parents and my sister, for all of the

efforts they made for me to finish my masters. Without them, this would not have been

possible. I would also like to remember my grandparents. They will always be carried in

my heart. My maternal grandfather said that I would be an engineer since I was a little

kid. This is for him!

Last but not least, I would like to thank the most important person of my life, Inês

Vitória Gemas Jorge. For being my confident in all occasions; for always being available

to calm me down; for being my daily motivation; for never letting me give up; for the

good advices; for never letting me feel alone; for understanding me; for making my life

brighter and making me look forward to a beautiful future. For all of this and much more,

thank you! I would also like to thank João, Laurinda and Pedro, for making me feel at

home, caring about me and for giving me important advices.

vii

https://www.noesis.pt/
https://www.outsystems.com/profile/106290/
https://www.outsystems.com/profile/41592/
https://www.outsystems.com/profile/116929/
https://www.outsystems.com/profile/218620/
https://www.outsystems.com/profile/218620/

Abstract

In nowadays’ societies and businesses’ ecosystems of acceleration, it is of most impor-

tance the digitalization of the formers. In this sense, Internet of Things (IoT) emerges to

connect devices to the internet, allowing the access to large amounts of data and, through

its analysis, to act upon it.

An IoT platform allows, among others, to manage IoT devices. Nonetheless, its devel-

opment is still a complex and expensive process that requires high technical knowledge.

To accelerate developments when building IoT applications, this thesis proposes the use

of Low-Code platforms, such as Outsystems.

To improve the user experience, an embedded customizable dashboard is included

in the platform. To achieve this, a reusable Forge component was built and is currently

available for download and in use by the community. This component allows to provide

drag and drop functionalities to both web and mobile applications. In this case, it will

allow the reordering of dashboard cards to personalize dashboards. Another component

that enables barcode/qr code reading by Zebra devices is also included in this thesis.

To assess the developed IoT platform, an IoT device prototype was created, using an

Arduino with an ESP module, as well as a set of sensors and actuators that communicate

with the IoT platform via the Message Queuing Telemetry Transport (MQTT) protocol.

Keywords: Internet of Things; IoT; Low-Code; Dashboard; Platform; Arduino; Outsys-

tems; Web; Mobile; Application; MQTT; Forge; SortableJS; Customization; Dashboard.

ix

Resumo

No ecossistema de aceleração em que a sociedade e as indústrias se encontram actual-

mente, é da maior importância a rápida digitalização das mesmas. O conceito de Internet
of Things (IoT) surge então para conectar uma grande diversidade de dispositivos à inter-

net, possibilitando o acesso a uma grande quantidade de dados e, aquando da análise dos

mesmos, optimizar um conjunto de operações.

Plataformas IoT são ferramentas bastante úteis em projectos IoT. Estas permitem,

entre outros, a gestão de dispositivos IoT, no entanto, o seu desenvolvimento é um pro-

cesso complexo e demorado que requer elevados orçamentos e conhecimentos técnicos.

Para acelerar o desenvolvimento deste tipo de plataformas, esta dissertação propõe o uso

plataformas de desenvolvimento Low-Code, nomeadamente Outsystems.

Para melhorar a experiência de utilizador, neste trabalho é proposta uma plataforma

IoT com dashboards personalizáveis, utilizando uma arquitetura modular. Para tal, foi

desenvolvido um componente reutilizável, publicado na Forge e que está atualmente dis-

ponível e a ser utilizado pela comunidade. O mesmo permite adicionar a funcionalidade

de drag and drop em aplicações web e mobile. Neste caso, o componente permite arras-

tar cartões, de forma a personalizar dashboards. Um outro componente que permite a

leitura de códigos qr/de barras foi também desenvolvido e encontra-se disponível para

download.

Para validar a plataforma desenvolvida, foi criado um protótipo de um dispositivo

IoT, utilizando um Arduino com um módulo ESP e um conjunto de sensores e atuadores,

que comunica com a plataforma através do protocolo MQTT.

Palavras-chave: Internet das Coisas; IoT; Low-Code; Platforma; Arduino; Outsystems;

Web; Mobile; Aplicação; MQTT; Forge; SortableJS; Customização; Dashboard.

xi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Proposal . 2

1.3 Dissertation Structure . 3

2 Literature Review 5

2.1 IoT Platforms . 5

2.2 IoT Protocols . 7

2.2.1 Communication/Transport Protocols 8

2.2.2 Data Protocols . 10

2.2.3 Semantic Protocols . 11

2.3 Low-Code Development Platforms . 12

2.4 Outsystems Overview . 13

2.4.1 React vs. Traditional Web . 14

2.4.2 Service Studio . 14

2.4.2.1 Interface . 14

2.4.2.2 Logic . 15

2.4.2.3 Processes . 16

2.4.2.4 Data . 16

2.4.3 Service Center, LifeTime, Integration Studio and Forge 17

3 Architecture 19

3.1 Introduction . 19

3.2 User Stories and Database Design . 20

3.2.1 Users and Groups Management . 21

3.2.2 Devices and Locations Management 21

3.2.3 Dashboard Configuration . 23

3.2.4 Mobile Application . 24

3.3 Information Architecture Organization and Assembling 25

4 Developments 29

4.1 Locations Actions . 29

4.2 Location-User and Device Actions . 30

xiii

CONTENTS

4.3 Locations List Screen . 32

4.4 Locations Detail Screen . 33

4.5 Devices Actions . 34

4.6 Devices List Screen . 37

4.7 Devices Detail Screen . 37

4.8 Transducers Actions . 39

4.9 Transducer Block . 40

4.10 Communications Data . 40

4.11 Message Payload Registration . 43

4.12 Dashboard Actions . 46

4.13 Dashboard Detail Screen . 46

4.14 Dashboard Main Screen . 48

4.15 Card Actions . 52

4.16 Card Blocks . 52

4.17 Offline Synchronization . 53

5 SortableJS Component 57

5.1 SortableJS Library . 58

5.2 Development . 59

6 Prototype 63

6.1 Arduino WiFi Module Configuration . 63

6.2 Integration with the MQTT Protocol . 65

6.3 Prototype Schematics . 67

7 Validations 71

7.1 Precision Agriculture Use Case . 71

7.2 Teams . 72

7.3 Locations . 73

7.4 Devices and Transducers . 75

7.5 Dashboard . 75

7.6 Components . 80

7.7 Offline Synchronization . 82

7.8 Discussion . 82

8 Conclusions and Future Work 85

Bibliography 87

Apêndices 93

A Zebra DataWedge Connector Plugin 93

xiv

CONTENTS

B Bootstraping Data 99

C Prototype Embedded Code 105

xv

List of Figures

2.1 Collecting temperature values from an Arduino using Node-RED for Precision

Agriculture. 6

2.2 Node-RED flow example. 7

2.3 Communication Protocols: Range vs. Data Rate Comparison. 8

2.4 MQTT vs CoAP protocols. 12

2.5 Service Studio screenshots . 15

3.1 High level overview. 19

3.2 Users and groups database entities and relations. 21

3.3 Devices and locations database entities and relations. 22

3.4 Dashboard interactions database entities and relations. 24

3.5 Local database for mobile application (Offline Synchronization). 25

3.6 Architecture Iteration. 25

3.7 Project Modules (Architecture). 27

4.1 Locations Create or Update Actions. 31

4.2 Outsystems action to either add or remove sensor to/from a location. 32

4.3 OnLocationListItemClick Client Action (Location List Screen). 33

4.4 OnLocationSaveClick Outsystems Client Action (Location Detail screen). . . 34

4.5 Outsytems client actions to add/remove devices from a location. 35

4.6 Actions to create, update and assess a device. 36

4.7 Devices data source actions. 38

4.8 Device actions. 39

4.9 Action to add and validate transducer. 41

4.10 Transducer actions. 42

4.11 Communications data actions. 44

4.12 Message payload actions. 45

4.13 Timer to store transducer payloads. 47

4.14 Dashboard actions. 48

4.15 Action to save a dashboard. 49

4.16 Dasboard screen actions. 50

4.17 CSS Grid to display dashboard cards. 50

4.18 Action to add the CSS class to the card. 51

xvii

List of Figures

4.19 Action to change the order of a card in a dashboard. 53

4.20 OfflineDataSync action, to perform the offline data synchronization. 54

4.21 Server Data Sync Action . 56

5.1 OnDragEnd SortableJS event handler Outsystems action. 61

6.1 Arduino’s ESP8266 ESP-01 schematic. 64

6.2 Arduino’s ESP8266 ESP-01 schematic to flash new firmware. 65

6.3 MQTT Client Actions . 67

6.4 Action to write MQTT message content in the database. 68

6.5 Hardware to showcase devices and transducers’ platform usage. 68

7.1 Users list screen to manage users and its roles. 72

7.2 Groups list screen to manage groups and its roles. 73

7.3 Locations screens in the web application. 74

7.4 Devices web screens. 76

7.5 Dashboards initial web screens. 77

7.6 Screens to add a card to dashboard in web application. 78

7.7 Dashboard with cards in location. 79

7.8 Drag and drop with the SortableJS component. 80

7.9 DraggableJS Forge Component Demonstration. 81

7.10 Mobile application dashboard. 83

A.1 Datawedge connector plugin actions. 97

B.1 Screenshot with bootstraped device data. 101

B.2 Logic to send data via MQTT . 103

xviii

List of Tables

2.1 Communication/Transport Protocols’ characteristics. 8

2.2 CoAP vs. MQTT Data Protocols . 11

2.3 Comparison between JSON and XML. 12

3.1 Users and groups permissions. 20

3.2 Users and groups management user stories. 21

3.3 Devices and locations management user stories. 22

3.4 Dashboards user interactions user stories. 24

3.5 Mobile Application User Stories. 25

4.1 Locations create or update actions. 29

4.2 Actions to add or remove devices and users to/from locations. 30

4.3 Actions to create or update devices. 36

4.4 Actions to add or remove devices and users to/from locations. 40

4.5 Communications data actions. 43

4.6 Actions to register message payloads. 44

4.7 Actions related to dashboards. 46

4.8 Actions related to dashboard cards. 52

6.1 Transducers in Location (T). 69

6.2 Transducers in Location (L). 70

xix

Listings

4.1 Javascript to return the card identifiers. 49

4.2 CSS Grid classes to allow cards with different sizes. 51

4.3 Javascript to add CSS classes to cards. 52

4.4 SQL query to fetch cards in given dashboards. 55

5.1 Drag and Drop Forge Component Javascript Code (initial version). 59

5.2 SortableJS Outsystems component JSON input example. 60

5.3 Drag and Drop Forge Component Javascript Code (final version). 60

6.1 Javascript snippet to write payload in database. 66

6.2 Javascript script included in client’s web page. 67

6.3 Javascript snippet to retrieve message data from queue. 67

A.1 Referencing the Cordova plugin. 93

A.2 Assessing if cordova plugin is available in the target module. 94

A.3 Javascript snippet to register a broadcast receiver 95

B.1 Python Script to generate devices and transducers’ data to an Excel file. . 99

B.2 Transducer JSON Object. 100

B.3 Device JSON Object . 101

xxi

Glossary

Aggregate From the Outsystems documentation: tool to “fetch data using an op-

timized query. Aggregates can load data from the server of the local

database, and they support combining several Entities and advanced

filtering.”

Automatic Activity Defined in the Outsystems documentation as “(...) work to be carried

out automatically in your process (...) without the need for human in-

tervention. (...) can have output parameters and local variables.”.

Exception Defined by Outsystems as “an exceptional circumstance that prevents

your application flow from running normally”.

IoT Acronym for Internet of Things. Term that contains all devices/objects

connected to the internet. With a network of these objects, it is possible

to collect high amounts of data, analyse it and act upon it.

Preparation Defined by Outsystems as an action containing the logic that is executed

before the screen or Web Block (WB) renders.

Timer From the Outsystems documentation: “(...) allows executing applica-

tion logic periodically on a scheduled time” and are known as batch

processes. Multiple Timers can run at the same time, in parallel, but

each timer can only have one scheduled execution time at a time.

Transducer Term that describes both sensors and actuators.

Web Block Defined by Outsystems as a reusable screen part that can implement its

own logic. It defines not only reusable User Interface (UI), but also the

underlying logic.

xxiii

GLOSSARY

xxiv

Acronyms

4LC 4-Layer Canvas

AD Analog-Digital

AJAX Asynchronous Javascript and XML

AP Access Point

API Application Programming Interface

B2B Business-to-Business

BL Business Logic

BLE Bluetooth Low Energy

BPT Business Process Technology

CoAP Constrained Application Protocol

CPS Cyber Physical Systems

CRUD Create, Read, Update and Delete

CS Core Services

CSS Cascade Style Sheets

DB Database

xxv

ACRONYMS

DnD Drag and Drop

DS-Pnet Dataflow, Signals and Petri Nets

FK Foreign Key

GSM Global System for Mobile Communications

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IP Internet Protocol

JSON JavaScript Object Notation

LBPT Light Business Process Technology

LCDP Low-Code Development Platform

LCS Low-Code Solution

LDR Light Dependent Resistor

LED Light-Emitting Diode

LoRa Long Range

LoRaWAN LoRa Wide Area Network

LPWAN Low Power Wide-Area Network

M2M Machine to Machine

xxvi

ACRONYMS

MCS Mobile Core Services

MQTT Message Queuing Telemetry Transport

OS Outsystems

PA Precision Agriculture

PaaS Platform-as-a-Service

PK Primary Key

POC Proof of Concept

QOS Quality of Service

REST Representational State Transfer

RF Radio Frequency

RGB Red-Green-Blue

SaaS Software-as-a-Service

SOAP Simple Object Access Protocol

SotA State of the Art

SQL Structured Query Language

SSID Service Set Identifier

UHF Ultra High Frequency

UI User Interface

US User Story

xxvii

ACRONYMS

UX User Experience

WB Web Block

XML Extensible Markup Language

*

xxviii

C
h
a
p
t
e
r

1
Introduction

The XXI century can be described as an “(...) ecosystem of acceleration”, with an “(...) ever-

increasing pace by digital technology that is transforming the way we live and work” [1].

Currently, in the midst of a pandemic and resulting economic crisis, the ability to change,

either from an individual, or from a business perspective is even more demanding [2].

According to [1], it is important to reinvent the way to work, by using technology in our

favour, relying on the use of applications running on the cloud. IoT can be one of the

ways technology is used to aid in this reactive/fast-changing world.

To help understand the meaning of IoT, Madakam et al. [3] divided it into two: “In-

ternet” and “Things”. The first “is a global system of interconnected computer networks

that use the standard (...) (TCP/IP) to serve (...) users worldwide”, whereas the second

includes, not only electronic devices, but everyday objects as well. In other words, these

“things” are “real objects in this physical or material world”. Furthermore, Madakam

et al. ends up defining IoT as: “an open and comprehensive network of intelligent objects

that have the capacity to auto-organize, share information, data and resources reacting

and acting in face of situations and changes in the environment”.

IoT represents the future of computation and communication, as it is estimated that

there will be over 21 billion IoT devices in 2025, or over 30 billion devices in 2023, accord-

ing to [4] and [5], respectively. Other than the wide increase in expected devices over the

next years, the range of IoT applications is also vast: smart agriculture; autonomous and

connected vehicles; smart watches, fitness trackers and wearables; industry and supply

chains; and cities-management (energy, transportation, parking...) [5].

Summing up, there is the need to cope with change; the reactivity to change fast; the

relying on applications running on the cloud and IoT. But how do these concepts relate?

Well, as IoT consists of objects connected to the internet, it is responsible for the increase

in productivity in companies and peoples’ lives and, consequently, to keep up with the

1

CHAPTER 1. INTRODUCTION

fast-pace requirements nowadays. In IoT, the need to connect devices to the internet is

not, itself, of much help. It is also required to handle those objects, as well as its data

and use this information wisely. For that, cloud-based applications can be used. So far

nothing new, but what if one could improve on these concepts?

1.1 Motivation

One way one could accelerate the reactiveness to perform changes and to change rapidly

is to use a Low-Code platform. In [6], Gartner estimates that “by 2024, Low-Code appli-

cation development will be responsible for more than 65% of application development

activity.”. As someone who has been working with a Low-Code platform named Outsys-

tems1 in big-scale projects for almost two years, I think that these kind of platforms are

incredibly efficient; decrease the time-to-market; are less prone to errors; ease the code

maintenance, development, deployment and the control of project versions; etc.

With the capability to build cloud-based applications in a novel, fast way, Outsystems,

with the new coding paradigm comes in handy in the aforementioned “ecosystem of

acceleration”. It allows to build applications faster than ever before and to react quickly

to changes/new requirements. Additionally, the platform optimizes code (e.g. in selecting

attributes to select in Structured Query Language (SQL) queries).

Moreover, one can also develop applications (namely, an IoT platform) in a fast way,

while maintaining efficiency. The development efficiency can be further increased with a

modular architecture, separating the application’s concepts and functionalities in differ-

ent modules. Moreover, every developer can build and publish Outsystems components,

which can later be used by the development community.

Other than that, given the multitude of IoT appliances, developing a different appli-

cation for each one might be expensive and time consuming. Instead, one could build a

web and mobile IoT platform as generic as possible, so that it is compatible with different

scenarios, different devices, different protocols, among others. This application, devel-

oped using the Low-Code paradigm, has to be user friendly and highly customizable, so

that different users with different use cases, could profit from using the application.

1.2 Proposal

Before diving into the proposal, per-se, it is important to distinguish two concepts: plat-

form and dashboard. A dashboard, in the scope of this thesis, is defined as an interface

(web and mobile), that allows to gather, organise and present information in a way that

is easy to read. The definition from Gartner, [7], is the following: “Dashboards help

improve decision making by revealing and communicating in-context insight (...) using

intuitive visualization, including charts, dials, gauges and “traffic lights” that indicate

1https://www.outsystems.com/

2

https://www.outsystems.com/

1.3. DISSERTATION STRUCTURE

the progress (...) toward defined targets”. Its main component is therefore the Human-

Machine Interface (HMI), with the function to assemble and depict data from the physical

world into a easy to understand exhibit [8]. A platform, on the other hand, is a broader

concept and can contain a dashboard.

This thesis proposes the development of a platform (to manage users, devices, loca-

tions and dashboards). The dashboards are fully customizable in order to provide the

data that interests the most. If a user is in charge of a small part of a large system, he

can opt to only show the sensor’s data or actuators’ controllers regarding that “part” and

can sort the information from the most important/relevant to the least. He can therefore

optimize the dashboard to his preferences and to increase efficiency. In addition, users

can create and select multiple dashboards and each dashboard is related to a location. As

an example, if one is monitoring aquariums, then a location can be called “Aquarium”.

On the other hand, if the system being monitored is a factory, then a location can be

called “Station”.

Finally, other than showcasing the versatility of Low-Code platforms and that it is

possible to develop complex and highly efficient applications managing high volumes of

data and with a fast pace development, it is also important that this IoT application can

be learnt with low effort.

The aforementioned an IoT platform will be developed with the aid of the Outsys-

tems Low-Code platform and with a modular architecture. Finally, some contributions

were made to the Outsystems community, not only with this dissertation, but also by

publishing an article and some Outsystems components with the main one being a React

Drag-And-Drop component. This component was used in the embedded dashboard so

that the user could configure it (eg. changing the order of plots) to his own taste while

improving the User Experience (UX) simultaneously.

Furthermore, a prototype circuit will be designed to showcase a real-life scenario and,

to make sure it can communicate successfully with the platform, an IoT communication

protocol will be used: MQTT.

1.3 Dissertation Structure

The dissertation structure is as follows:

• In Chapter 2, the literature review takes place, namely, regarding the IoT protocols,

the low-code development platforms and the overview of Outsystems;

• In Chapter 3, the architecture will be thought and designed, ending with the used

modules;

• In Chapter 4, the web and mobile developments will be presented;

• Chapter 5 shows the developed forge components, namely, SortableJS;

3

CHAPTER 1. INTRODUCTION

• Chapter 6 depicts the hardware prototype that was built in order to have transduc-

ers data and test/validate the results;

• In Chapter 7, the developed platform and this thesis’ results are analysed;

• In Chapter 8, the conclusions and future work take place;

• Appendix A, Appendix B and Appendix C depict the mobile plugin developments,

data bootstrap to generate data and the Arduino code, respectively.

4

C
h
a
p
t
e
r

2
Literature Review

The focus of this dissertation’s State of the Art (SotA) is as follows: in Section 2.1, the

study of different IoT platforms available takes place, together with their advantages

and disadvantages; moreover, although it’s not the focus of this thesis, IoT protocols are

reviewed (Section 2.2); Section 2.3 contains the literature review regarding the concept

of a Low-Code Development Platform (LCDP) and in Section 2.4, the LCDP chosen for

this thesis, Outsystems, is studied.

2.1 IoT Platforms

The study of the commercial IoT platforms already available in the market is important,

not only to analyse the characteristics of those solutions, but also to evaluate if certain

features should be included in this thesis’ solution. Just to remind, this solution is an IoT

platform to collect data from multiple sources; store that data and manage devices. Also,

this platform will allow to create and edit dashboards, as well as it will be build using

Low-Code and with a well thought modular architecture.

The first platform that is analysed is Thingsboard1. Its first advantage is that it is

compatible with industry standard IoT protocols, such as MQTT and Constrained Ap-

plication Protocol (CoAP) and supports both cloud and on premises deployments [9].

These protocols will be discussed in Section 2.2. It also allows to customize the configu-

ration of a dashboard and to attribute the dashboard to specific users, thus, it has a role

management integrated. Additionally, it can be integrated with Node-RED, which will

be discussed further in this section. Finally, the platform allows to create and manage

alarms, which is an important feature to alert users about certain thresholds that were

surpassed, or even trigger some actuators. Additionally, it is open source and adapts to

1https://thingsboard.io/

5

https://thingsboard.io/

CHAPTER 2. LITERATURE REVIEW

mobile devices [10]. As drawbacks, some important integrations are in the paid version,

such as IBM Watson and AWS IoT; most of the customizations are also paid; has a small

community and some features are still under development [10].

Another platform available in the market is Ubidots2. As in the previous solution,

this platform eases the collection of data and turns it into perceptible information. It

allows to connect to hardware using Hypertext Transfer Protocol (HTTP), MQTT and

it is possible to use protocols such as SigFox or Long Range (LoRa). Additionally, it is

possible to improve the data analytics using Application Programming Interface (API)s

such as the IBM Watson or Google Locations; it stores an history of data; it is possible to

create dashboards using a point-and-click interface, where several widgets can be added,

or even custom HTML code; has an embedded users and roles management interface and

the platform can suit the businesses/users’ needs by changing parameters such as colours,

labels and images.

A rather different tool is Node-RED3. Similarly as Thingsboard and Ubidots, it’s

an MQTT Dashboard, meaning that it allows both control and display of data from MQTT

devices. It allows to develop control logic through nodes, instead of the conventional lines

of code. Several nodes can be connected to each other and messages (topics and content)

flow through these nodes. It is also possible to embed Javascript in logic nodes. Figure 2.1,

shows an example of these nodes where, in this case, a message with the temperature

data from a sensor is received and several actions are performed. Moreover, the node-red

↪→ -dashboard allows to add tabs and boards (create and edit dashboards) in a modular

way. These dashboards adapt to mobile devices as well. Figure 2.2 depicts a dashboard

developed for a Precision Agriculture (PA) system, where several plots; gauge displays;

and personalized text showing data from several sensors can be seen. It is also possible

to add custom HTML and CSS to a dashboard. Both Figure 2.1 and Figure 2.2 are a result

of an academic project that took place at FCT/UNL. Node-RED also contains a Library,

similar to Forge in Outsystems (see Section 2.3), where different users can create share

flows.

2https://ubidots.com
3https://nodered.org/

Figure 2.1: Collecting temperature values from an Arduino using Node-RED for Precision
Agriculture.

6

https://ubidots.com
https://nodered.org/

2.2. IOT PROTOCOLS

Figure 2.2: Agriculture Dashboard implemented in Node-RED.

Plenty more solutions could have been mentioned, such as Kaa4; freeboard5; ThingS-

peak6; thethings.io7; thinger.io8; IoTtweet9; and IOT HOOK10. All of these platforms

are very similar, although some have some interesting features such as artificial intelli-

gence and machine learning integrations. Some of the platform characteristics that were

analysed a-priori will be included in this thesis’ platform. These include the creation

and personalization of multiple dashboards, that can be available to different users and

different usages; a screen to manage devices; the possibilty to personalize the overall look

of the platform with characteristics such as colors; the possibility to filter each sensor

and actuator by location (e.g. one could be monitoring two different agriculture fields, or

locations); the possibility to create and manage users; among others. It will be seen in

the Section 2.3 that the platform will be built in a way that allows faster developments,

improvements and deployment of features.

2.2 IoT Protocols

The first thing that is important to evaluate when building any IoT solution is the multiple

protocols that exist. For the purpose of this thesis, only three types of protocols will be

evaluated. These are: Communication/Transport; Data Protocols and Semantic.

4https://www.kaaproject.org/
5https://freeboard.io/
6https://thingspeak.com/
7https://thethings.io/
8https://thinger.io/
9https://www.iottweet.com/

10https://iothook.com/en/

7

https://www.kaaproject.org/
https://freeboard.io/
https://thingspeak.com/
https://thethings.io/
https://thinger.io/
https://www.iottweet.com/
https://iothook.com/en/

CHAPTER 2. LITERATURE REVIEW

2.2.1 Communication/Transport Protocols

Starting with the Communication/Transport protocols, the technologies can be devided

into 3 types:

• Short-range wireless communications (such as WiFi, Bluetooth, Bluetooth Low En-

ergy (BLE) and ZigBee);

• Cellular communications (2G/3G/4G/5G);

• Low Power Wide-Area Network (LPWAN) communications (e.g. LoRa and SigFox).

A summary of the most known wireless technologies is in Table 2.1, where the subGHz

frequencies are around 800− 900 MHz or 400 MHz. Figure 2.3 also helps organizing and

comparing these protocols.

Table 2.1: Communication/Transport Protocols’ characteristics, based on [11].

Technology Frequency Data Rate Range Power Usage Cost

WiFi
subGHz;
2.4 GHz;
5 GHz

0.1− 54 Mbps < 100 m Medium Low

Bluetooth 2.4 GHz 1,2,3 Mbps ∼ 10 m Low Low
ZigBee subGHz < 50 kbps ∼ 100 m Low Medium

2G/3G/4G/5G
Cellular
Bands

10− 100 Gbps
Several
Kilometers

High High

LoRa 2.4 GHz 250 kbps 2− 15 km Low Medium

SigFox subGHz < 1 kbps
Several
Kilometers

Low Medium

BLE
ZigBee

Bluetooth

WiFi
2G

3G
4G

5G

LoRa
Sigfox

LPWAN

Cellular
Communications

Sort-range
Wireless
Communications

D
at

a
R

at
e

Range

Figure 2.3: Communication Protocols: Range vs. Data Rate Comparison, adapted
from [11].

In regard to short range communications, WiFi uses radio waves, Radio Frequency

(RF), for multiple devices to communicate with each other. Usually, an internet router is

used to communicate with devices such as computers and laptops, but multiple devices

can interact directly without the need of a gateway [12]. As sending data at a higher rate

8

2.2. IOT PROTOCOLS

will impact on the power consumption and will not have a long range, WiFi might is not

the best option for IoT in some cases as IoT devices may not need to send high amounts of

data, but just a few bytes instead and the information needs to be sent over high distances

[13]. In addition, the power requirement might be an issue, as IoT devices often need to

operate on batteries for long periods of time [13].

An alternative is Bluetooth. Compared to WiFi, the transmitted signal can only be

received at shorter distances. This protocol is often used in small devices that connect to

smartphones or computers. It uses Ultra High Frequency (UHF) radio waves to transmit

data [12]. Additionally, BLE does not compromise the device’s battery as much as Blue-

tooth. On the other hand, achieves a slightly lower data rate and range. This standard

is rather recent (from 2006), and is used in devices such as fitness trackers and smart

watches [12].

The IEEE 802.15.4, ZigBee, designed to be used in Machine to Machine (M2M) net-

works [12]. Its characteristics allow to maximize a device’s battery and the protocol also

offers encryption [12]. It enables to connect multiple devices to each other with the so

called mesh network, where several nodes behave as a single network and each client

can connect directly to any of the other nodes. Mesh networks allow IoT applications to

cover more ground and therefore, gathering more data. In IoT there are three types of

nodes that may exist within a mesh network. These are a Gateway, which are devices that

are connected to devices not in the mesh, to pass messages; a Repeater, that are devices

that transmit messages between nodes; and Nodes, that are mesh devices that transmit

messages [14].

Moving on to the Cellular Communications, or Global System for Mobile Communi-

cations (GSM), all protocols, such as 2G/3G/4G/5G, have very high ranges and data rates

and, the higher the generation, the higher these two parameters. The biggest drawback,

however, is the power consumption. The latter may present as a big disadvantage in IoT

applications where devices are not connected to an electricity source [15]. In GSM, a

signal is sent to nearby cell towers, which then send signals back down [15]. These cell

towers are connected to wired ground stations that help to transmit the signal at greater

distances [15]. One drawback is that GSM does not operate on open frequencies, as each

cellular carrier operates at his own frequency and one must pay to use this frequency.

Whether or not it is a suitable option for IoT, it all depends on the use cases, as seen

above.

LPWAN protocols are meant to send small data packages over long ranges taking

the battery into consideration, by using RF. One of these protocols is LoRa. In contrast

with GSM, LoRa operates on an open frequency, so it does not require a license. The

disadvantage is the resultant low data rate and possible interferences. Moreover, the

range of the LoRa technology largely depends on the type of environment. The main

idea behind LoRa is that multiple sensors, with a lifespan of around 2 years on battery

transmit data to multiple gateways, which are connected to the internet [16]. There are 2

main components of a LoRa network: nodes (transducers - slave devices) and gateways

9

CHAPTER 2. LITERATURE REVIEW

(routers, receiving data from nodes and send it over an Internet Protocol (IP) network).

Finally, Sigfox is defined in [17] as a cellular network for things. It is a “cellular style,

long range, low power, low data rate form of wireless communications (...) for devices

like remote sensors, actuators and other M2M and IoT devices” [18]. It solves some of

the problems with GSM appliances to IoT, such as the fact that it is focused on voice

and high data rates; are not suited to low data rates due to the complexity of the radio

interface; high cost; and high power consumption [18]. With these characteristics, the

Sigfox is intended to be applied in low cost M2M where large areas are needed to be

covered. Its functioning is as follows, a Sigfox module (or node) sends messages, which

are automatically authenticated using a private key specific for each device. Then, a

Sigfox base station (connected to the internet) listens to these messages, receives and

forwards them to the Sigfox cloud which then redirects the message to a dedicated cloud

using the HTTP Protocol, for instance. Moreover, it uses unlicensed radio bands and the

number of messages sent per day is limited. According to the selected plan, this limit

may differ.

To conclude, there is no perfect protocol as its choice always depends on the appli-

cation. If smart-home devices are to be used, then perhaps, WiFi is the suitable option;

on the other hand, for wearables, Bluetooth; and for applications such as autonomous

driving, GSM technologies are the most suited.

The next section will present the different data protocols and a comparison between

them will be made.

2.2.2 Data Protocols

In this section, some of the most well known data protocols for IoT will be presented,

namely: HTTP; websockets; MQTT; and CoAP.

Starting with HTTP, it is often used by devices that need to send a lot of data [19].

With a request/response or client/server architecture running via TCP or UDP, it uses

a normal IP header to transmit packets [19]. Data is not encrypted before transmission

(has no embedded data security protocols) and it can only send data to one client at a

time and [19].

On the other hand, websockets act as a handshake between browsers and servers. The

bi-directional communication in websockets is more suited for monitoring systems, com-

paring to the request/response type of communication used in the HTTP protocol [20].

However, with the newest version of HTTP, HTTP2, which now includes bi-directional

transactions, websockets usage is likely to diminish [20]. It allows TCP multiplexing to

perform several requests, as well as to prioritize requests and header compression.

Moving on to MQTT11, it is a M2M (as a client communicates with a server) protocol

[21] that can be used by sensors and small devices, being a suitable solution for IoT de-

vices. MQTT devices and applications communicate through a message broker running

11http://mqtt.org/

10

http://mqtt.org/

2.2. IOT PROTOCOLS

on a server and all communication routes are centralized (publish and subscribe mech-

anism) in this server [21]. For the MQTT broker, Node-RED (mentioned in Section 2.3)

can be used. In addition, the protocol is designed for TCP/IP networks [22]. Further-

more, several authentication and data security mechanisms are supported [22]. These are

defined on the broker and the client must follow them [22].

By taking into account bandwidth, battery and the versatility of features, MQTT is

superior to HTTP and websockets, since neither were designed with M2M in mind [20].

Next, CoAP12 is also a M2M protocol. It uses Representational State Transfer (REST),

it can use either IP/UDP or UDP to save some bandwidth and it takes care of security [23].

CoAP intends to emulate the REST features of HTTP, but in a more accessible way [24].

Extending its definition, CoAP is a software protocol specially useful for low power

sensors, switches, valves and similar devices that need to be supervised or controlled at a

distance [24].

At this point, REST was mentioned. It is an API, which simply means that it allows

two applications to talk to each other. Its functioning is simple: the client makes a call to

the server, which then replies, both over HTTP. In conclusion, REST is an architecture for

the design of networked applications and is resource-based, which indicates that every

server object can be created and destroyed. It uses HTTP verbs to indicate actions. Also,

it is important to say that it is a stateless web service, which is translated on the fact that

every communication (request and response) is independent and transmitted/received at

once.

As MQTT and CoAP are both suitable for IoT, the Table 2.2 and Figure 2.4 present a

comparison between both. The most import aspect to notice is that, whereas MQTT

uses a publish/subscriber paradigm, CoAP uses a request/response one [25]. More-

over, MQTT uses a centralized solution to receive and send messages from/to the clients,

whereas CoAP is a one-to-one protocol, similar to HTTP [25]. Finally, while MQTT is an

event-oriented protocol, CoAP is more used for state transfer [25].

Table 2.2: CoAP vs. MQTT Data Protocols

MQTT CoAP
Base Protocol TCP UDP
Communication Node M:N 1:1
Power Consumption Higher than CoAP Lower than MQTT
Paradigm Pub/Sub Model Req/Response Model (RESTful)

2.2.3 Semantic Protocols

In this section, the most common semantic protocols for Web: JavaScript Object Notation

(JSON) and Extensible Markup Language (XML) [26] are compared. The Table 2.3 sums

up the differences between these two protocols.

12https://coap.technology/

11

https://coap.technology/

CHAPTER 2. LITERATURE REVIEW

Client ClientBroker

Client Client Server

Client

ClientServer

MQTT CoAP

Client

Figure 2.4: MQTT vs CoAP protocols.

Table 2.3: Comparison between JSON and XML, based on [26].

JSON XML

Applicability
Allows to transmit data in a
parseable manner.

Data in a structure manner. Can
be used to save metadata. Parse
the scripts.

Popularity Reason Less verbose and faster.
Uses more words to describe the
intention. Parsing it is slow and
consumes a more memory.

Data Structure

Map, similar to key/value
pairs Useful when interpreta-
tion and predictability is re-
quired.

Tree representation of data.
More time consuming when
working with it.

Data Information
Preferred for data transmi-
tion between servers and
browsers.

Preferred for storing informa-
tion on the server.

Metadata Tagging Not allowed directly.
Simple with the use of at-
tributes.

While JSON is “an open-standard file format that is used for browser-server com-

munications (...)” (a data interchange protocol) and a “language-independent data for-

mat.”, XML is a “set of rules that help the users to encode documents in a human-readable

format and machine-readable.” (markup language) [26]. Moreover, JSON is easier to com-

prehend and learn (is data oriented) versus the document oriented XML; glsJSON is less

structured; JSON only supports text and number data types and XML supports images,

charts, among others [26]. Another JSON advantage (in this thesis) is that the Outsystems

platform (Section 2.3) has built-in mechanisms to parse data from JSON to structures and

vice-versa, which eases the implementation time.

2.3 Low-Code Development Platforms

According to [27], LCDPs are “visual-based, integrated development environments (IDEs)

comprising many of the same tools and functionalities developers and IT teams use

12

2.4. OUTSYSTEMS OVERVIEW

separately to design, code, deploy, and manage an application portfolio”. These type of

solutions allow to develop both fast and with minimum hand-code [28]. LCDP may [28]:

• A visual IDE (for defining the user interface; workflows; data models and hand-

written code compatibility;

• Allow to connect various back-ends/services, handling structures, storage and re-

trieval of data.

• Have an application lifecycle manager, with tools to build, debug, deploy and main-

tain the application in test, staging and production.

The origin of this concept relates to the rapid progression of the software development

world and businesses/societies in general. To react to these changes, called Software-as-

a-Service (SaaS) and Platform-as-a-Service (PaaS) can be used. Whereas the first is a

software that can only be accessed via browser, the second is one level below [29] and

provides an online platform to develop, manage and run applications [29].

Moreover, Hendriks another concept is related to these platforms: model-based plat-

form. A model-based platform uses models as the center of application. Segments are

then drag and dropped to to be linked together and create an application [29]. Often,

these platforms are LCDP [29]. The platform will finally generate code based on the

model that the user created [29].

One widely known LCDP is Outsytems, a PaaS that provides development and de-

ployment environments for applications from the cloud [30]. The benefits of it are: de-

velopment speed, as “Reusable components, visual IDEs, abstraction and automation

streamline application development, provisioning and deployment” can be used [30];

scalability, since everything is using the cloud (big advantage over on-premises solutions),

among others.

2.4 Outsystems Overview

The aim of this section is to give the reader an overview of the Outsystems platform, as

it will be used to develop the web and mobile IoT applications. As a Low-Code Solution

(LCS), LCDP or model-based platform, it aims to aid with projects were the complex-

ity involved is high [31], enabling developers to start with the high level design model,

including the system behaviour and data structures, instead of writing software code. Cit-

ing [32], the “(...) goal of Outsystems (OS) is to enable and accelerate the development and

delivery of enterprise web and mobile applications by providing a development environ-

ment that generates code and can deploy it to an enterprise-grade full stack system (...)”.

13

CHAPTER 2. LITERATURE REVIEW

2.4.1 React vs. Traditional Web

As nowadays, for web development, it is possible to choose between React or Traditional

Web, a brief comparison between both will take place. The front-end architecture based

on ReactJS avoids the traditional expensive server-side rendered applications, reducing

the pressure on backend servers, allowing the application to an easier scaling up and

to improve the overall UX [33]. According to [33], the advantages of using this library

are: faster applications; a single development experience, since this paradigm was al-

ready being used for mobile application’s development, but only recently was introduced

for web development as well and it uses a state-of-the-art architecture, abstracting the

developer’s need to select and learn the constantly evolving Javascript framework. The

three main characteristics introduced with Reactive are [33][34]:

• Client-side logic is available, other than the server-side logic, already present in

the traditional web;

• There is no preparation, as the data is fetched asynchronously;

• Although in the traditional web, one had to perform Asynchronous Javascript and

XML (AJAX) refreshes, when using React, explicit server-side rendering is present.

The Outsystems platform can be separated into 4 applications (Service Studio, Service

Center, LifeTime and Integration Studio), each with a different goal to aid the developer

in the designing, management and maintenance processes.

2.4.2 Service Studio

Service Studio, visible in Figure 2.5, contains the development environment that allows

the creation of mobile and web applications. As it can be seen from the figure, it is similar

to a conventional Integrated Development Environment (IDE). Still in the figure, on the

left, it is possible to observe a web page with components, such as a button, a table and

a plot. A sidebar is also visible, containing several pre-built widgets, that can be used to

construct a web page or a mobile screen. Additionally, in the top-right corner of Figure 2.5

it is possible to see that there are four tabs: Processes; Interface; Logic and Data.

2.4.2.1 Interface

Starting with the Interface, it is possible to create, both new screens and new Web Blocks.

As an example, in Figure 2.5, one has defined a web screen, which is using the WB Menu

(the top menu that will be reused in every web page). Moreover, WBs can be used, not

only inside web screens, but also inside other WB, although, a WB can not reference itself,

since that will result in infinite calls. The platform is prepared against that. Another

important note regarding WBs is that they have their own scope and can not access the

scope of the screen/WB they are in, implicitly. In the same way, the parent (screen/WB

14

2.4. OUTSYSTEMS OVERVIEW

Figure 2.5: Service Studio interface: screen designing on the left and logic fluxogram on
the right.

that contains another WB) can not directly access its child variables directly. Events,

which are an asynchronous way to notify the parent and pass its variable(s), are required

for this. The advantage of using WBs is maintainabilit, since if some change is required

in several screens using that WB, it is only required to make that change in one place; as

well as encapsulation and abstraction of logic from a screen.

2.4.2.2 Logic

In Outsystems, when one has to encapsulate logic that implements the business rules

of an application, actions are needed [35]. In Figure 2.5b, one can see some front end

logic. Instead of written lines of code, Outsystems allows to program visually, with a

resemblance of a fluxogram. Some differences between traditional web and React exist

when building application logic.

Starting with the traditional web, a Preparation can be included, usually, to fetch data

from the database, which will later be displayed. There is no need to call the preparation,

as it is automatically called before the rendering [35]. On the other hand, screen actions

allows the website to run server-side logic when the user interacts with the screen (e.g.
click on a button or link) [35].

In React, however, a Preparation is not needed as data is fetched asynchronously from

the database. Also, actions can now be executed on the client-side and not only on the

server. A client action (formerly known as screen action) can call server actions, but not

the other way around. Also, performance-wise, it is not advised to call several server

actions inside a client action, as it will result in multiple server calls and might delay the

screen rendering and decrease the UX. Moreover, each Aggregate can have an after fetch

event, which can execute more logic. Finally, there are actions called data actions, which

are executed in the same way as the Aggregates, asynchronously and are generally used

to execute SQL queries.

15

CHAPTER 2. LITERATURE REVIEW

It is also possible to consume or expose Simple Object Access Protocol (SOAP) web

services and REST APIs, as well as manage roles. The latter allow managing what an

user can and can not access. It is possible to place roles on screens and decide if cer-

tain components should be shown inside a page. Outsystems provides a function called

Check<RoleName>Role that return true or false, depending if the user has the RoleName per-

mission.

Furthermore, it is possible to create Exceptions. After creating a new Exception it

is possible to trigger them in the code and create handlers for those exceptions. An

AllExceptions handler is visible in Figure 2.5b, which is the most general exception handler.

If, for a certain exception, more specific handlers exist, those will be executed instead.

2.4.2.3 Processes

To perform asynchronous operations, one can create Timers and Asynchronous Processes,

with the latter, also known as Business Process Technology (BPT), allowing to manage

business processes, regarding the life cycle of an entity [36]. For instance, taking as an

example, the IoT use case of this thesis, it might be required to archive sensor data that is

older than x weeks, so that data can be loaded faster. For that, BPTs are used. A process

can either start when an entity is created or by a trigger in an action [36]. This said, BPTs

can be compared to threads. When a process starts, a process instance is created and

every time a process activity is found, an activity instance is created [36]. Regarding

Processes, it remains saying that BPTs are designed for activities that wait long times,

such as months, until an event occurs. For large scale batch processing cases (eg. event

broker), Outsystems recommends the use of Light Weight BPTs.

2.4.2.4 Data

Firstly, OS permits the creation of database entities (tables), as well as its attributes. To

access entities on the screen, one can use Aggregates and SQL, with the difference that

the former is optimized by the platform. However, some things can not be achieved

without SQL, such as bulk operations and unions, for instance. As it was seen prior, when

in traditional web, to fetch data to screens, a Preparation had to be used but when using

React, these are not needed and data is fetched asynchronously, either through Aggregates,

or data actions. Also, react allows to fetch data from the database when the user enters

the screen or on demand, whenever needed. Plus, one of the ways Outsystems optimizes

applications is by executing Aggregates in a specific order, if the result of one is required

in another.

Other than that, it is also possible to create structures. These are simply custom data

types, that can be composed of attributes, both of simple and complex data types. A

structure can even have a datatype of another structure. One great advantage inhere is

the possibility to convert data structures to JSON and vice-versa, by using functions built

in the Outsystems platform. Finally, it is also possible to create Site Poperties, which

16

2.4. OUTSYSTEMS OVERVIEW

are variables that do not change often and Resources which are files that are stored in

directories.

2.4.3 Service Center, LifeTime, Integration Studio and Forge

Starting with Service Center, it allows to manage applications and monitor its logs, in-

cluding error logs. Moreover, it is possible to manage timers; integrations; processes;

the environment health and security, among others. All of this can be accessed on the

browser.

Lifetime is also a Web application that extends the Service Center’s capabilities across

the different servers in the life cycle of the application. It is possible to track applications

and its versions.

Integration Studio will not be used in this thesis but allows the creation/manage-

ment of extensions, which are a set of actions, structures, and entities, that increments

OutSystems and allows the integration with external systems [37].

Finally, the Outsystems Forge is a source of downloadable components that can help

speed up application development and delivery. In Chapter 5, the creation of a compo-

nent to rearrange a dashboard using drag and drop takes place.

17

C
h
a
p
t
e
r

3
Architecture

Before starting the developments, one of the key aspects to ensure their success and avoid

technical debts in the future is to design a good architecture, which, together with the

modularization of the applications’ modules, allows to develop new functionalities and

maintaining the code in an easier and faster way.

3.1 Introduction

Figure 3.1 shows this thesis (and its platforms) high level diagram. Firstly, Outsytems

(see Section 2.4) was used to develop an IoT management platform (web and mobile).

Transducers are connected to the platform through devices. Finally, Outsystems allows

reusable components to be created and shared to the developer’s community. The gray

blocks in Figure 3.1 represent the initial developments, after which, a second application

for mobile devices was developed, reusing the previous work.

IoT Management Platform

Transducers

Low-Code

Communication
ProtocolsForge Components

Using Modular
Architecture

Web

Devices

Mobile

Figure 3.1: High level overview.

19

CHAPTER 3. ARCHITECTURE

There are 3 main steps [38] on the architecture design process: disclosure (Sec-

tion 3.2); organization and assembling (both in Section 3.3). The thinking process

behind each of these steps, applied to this thesis, will now be discussed.

3.2 User Stories and Database Design

The first step when designing an application architecture is the disclosure, which includes

figuring out the business concepts and integration needs. To help with this, user stories

will be created.

According to [39], a User Story (US) “is the smallest unit of work in an agile frame-

work”. It is “an end goal, not a feature, expressed from the software user’s perspective

(...) often expressed as persona + need + purpose”:

As a , I want to , so that .

Where a persona is a person that needs to solve a problem: a representation of the user

base [40]. By creating personas, one not only thinks about the problem that needs solving,

but also, the person that needs that problem solved [40]. Different personas can have

multiple roles, for instance, a persona can be an administrator and a devices’ manager

at the same time. Nonetheless, for this thesis, one will assume that each person has a

single role, therefore, there will be 4 personas. The result is depicted in Table 3.1. The

functionalities of the different users will become more clear, once the USs are defined.

Table 3.1: Users and groups permissions.

Roles Description

Admin
Will have all of the permissions and no other user will be able to
change his status.

UsersManager
Can create other users; create user groups; add users to groups;
and add roles to users and groups. Note that it can not add the
Admin role to a user/group.

DevicesManager Can create and edit devices, as well as change its location.

LocationsManager
To create and edit IoT locations, as well as add other users for
those to be able to visualize all of the dashboards associated with
that location.

More roles can be added in the future and, since the architecture will be counting on

it, the development effort will not be as high. Given the different types of personas, one

can start writing the USs and, through a non-technical language, see the full picture of

this project and design the application’s architecture.

20

3.2. USER STORIES AND DATABASE DESIGN

3.2.1 Users and Groups Management

The users/groups’ management USs are shown in Table 3.2. Essentially, one will need a

web page to manage both roles and users, as well as a page to create users.

Table 3.2: Users and groups management user stories.

User Stories

US 1.1
As an admin/users’ manager, I want to create other users, so that they can
access and work on IoT projects.

US 1.2
As an admin/users’ manager, I want to create groups with users, so that users
can be grouped in teams.

US 1.3
As an admin/users’ manager, I want to manage the roles and permissions of
users/groups, so that different users have different permissions.

Furthermore, the Table 3.2’s content allow us to design the initial part of the database

(users/groups’ entity diagram), presented in Figure 3.2. To fulfil the USs’ requirements,

one would need a table for: the users; groups; to assign groups to users and two others to

assign roles to both users and groups. These are all system tables.

Figure 3.2: Users and groups database entities and relations.

3.2.2 Devices and Locations Management

For the remaining USs, (Table 3.3), regarding the devices, locations and dashboards func-

tionalities, for both the web and mobile applications, the database entity diagram shown

in Figure 3.3 was created. On this diagram the relations between users and locations, as

well as the relations between devices and users, and between locations and devices are

represented.

21

CHAPTER 3. ARCHITECTURE

Table 3.3: Devices and locations management user stories.

User Stories

US 2.1
As an admin/locations’ manager, I want to be able to create new IoT locations,
where each location contain devices, so that I can control that location.

US 2.2
As an admin/locations’ manager, I want to be able to decide which users
can access which locations, so that only users with permissions can access a
specific location.

US 3.1
As an admin/devices’ manager, I want to be able to create and install devices
on the platform, so that new devices can be included in IoT locations.

US 3.2
As an admin/devices’ manager with permission to access certain locations, I
want to be able to assign devices to those locations, so that each device always
has an IoT location.

US 3.3
As an admin/devices’ manager, I want to be able to activate/deactivate those
devices, so that devices that are not being used at the time, are not receiv-
ing/sending topics.

US 3.4
As an admin/devices’ manager, I want to be able to set my device’s parameters,
so that it can communicate with my IoT platform.

Figure 3.3: Devices and locations database entities and relations.

22

3.2. USER STORIES AND DATABASE DESIGN

The database entity diagram in Figure 3.3 contains a table for storing locations, with

the following attributes: name; description and color (for personalization and user expe-

rience purposes). This covers US 3.3. Attributes for storing the location’s creator and the

time of creation were also included. Moreover, to ease the identification of a location by

a user, the location’s picture is also included in a separate entity (1− 1 relation), as it is a

good practice to place attributes such as photos in a separate entity, so that they are not

loaded when refreshing a query or reloading a page, causing the web page to be heavier

and, therefore, slower. Another table, named Location_User allows to identify which users

have access to a specific location. This covers the USs 2.1 and 2.2. For the US 3.2, the table

Device_Location associates locations with devices with a many to many relation. Other

than the location and device Foreign Key (FK)s, it contains an history of the creation

and last update (date and user), as well as a flag indicating if the current device-location

relation is active, useful because a device can be associated with one location, but then

moved to another, keeping the old’s location data.

For the USs 3.1 and 3.3, the table Device contains a name; description; and a FK point-

ing to the device status. You may have noticed that the protocol associated with the

device is not in Figure 3.3 (to simplify the project). Currently, the device status can be

of 3 types: Pending Installation (when a device gets registered in the database with

missing information; Active and Inactive. This Device is connected to a Transducer (1−N
connection), which can be of type sensor and actuator and can measure/send multiple

value types (in Figure 3.3 represented with the tables TransducerBooleanMeasurement and

TransducerNumericMeasurement for boolean and decimal values’ measurements, respectively).

The Transducer also has units’ information, by containing a FK pointing to the Unit table.

This table has the label itself (eg. ◦C) and a name to depict in plots, for instance, Tem-

perature. Finally, a Transducer contains a JSONIdentifier: a Text that arrives in the device

message payload (JSON) identifying the Transducer inside a device.

Finally, the entity CommunicationsData allows to connect to several protocols without

worrying about its specificities. This entity contains the sender and recipient addresses

which, in case of MQTT would be topics, but are also suitable for other protocols. This

address can contain an IP:Port, for instance.

3.2.3 Dashboard Configuration

As the user needs to create/configure dashboards, add cards and change their position, it

is required to create some USs for these use cases: Table 3.4. The database entities and

their relations are shown in Figure 3.4.

First, one needs a table to store dashboards. Other than a descriptive name and

description, it will also be associated with a location.

Then, each template can contain several cards and a Card can contain different types

of data and present it in different ways. For that, the table contains the FKs of the CardType

and CardSize static tables. The first indicates if it is an spline plot, a gauge plot, a table,

23

CHAPTER 3. ARCHITECTURE

Table 3.4: Dashboards user interactions user stories.

User Stories

US 4.1
As an admin/locations’ manager, I want to be able to create new dashboard
templates, so that different IoT use cases are associated with different tem-
plates.

US 4.2
As an admin/locations’ manager, I want to be able to add cards to a template,
so that the template has the required devices’ information.

US 4.2
As an admin/locations’ manager, I want to be able to change the position
of the cards on a template, so that each snippet of information is positioned
where it is preferable, to increase efficiency.

Figure 3.4: Dashboard interactions database entities and relations.

a value indicator, or a button; whereas the second contains the size of the card (note the

attributes SpanRow and SpanColumn): if it is a (1× 1), (2× 2) or (2× 4), depicting the

amount of space the card will occupy on a dashboard’s grid. Moreover, each card will

have a title; an indication (boolean) if this card belongs to a sensor or to an actuator; and

the transducer identifier FK. Also, there is a color attribute, for personalization and UX

purposes. Finally, a card as an integer, Order, to organize the way it is presented on a

template.

3.2.4 Mobile Application

Finally, the USs for the mobile application are shown in Table 3.5, containing functionali-

ties such as a screen to manage devices and locations, as well as the possibility to visualize

dashboard data (US 5.1). Also, to showcase the mobile functionalities of the novel appli-

cation, devices’ data will be shown on the dashboard even if the device is offline. This will

require local storage entities, as seen in Figure 3.5. It can be seen that some parameters

such as CreatedBy and CreatedAt were not included. This is because it is advised to reduce

the number of attributes in local storage.

This concludes Section 3.2, where both the USs and Database (DB) entity diagrams

were presented. By creating USs, even considering that they should be more specific, it is

easier to see the big picture of this project, which eases the design of the database.

24

3.3. INFORMATION ARCHITECTURE ORGANIZATION AND ASSEMBLING

Table 3.5: Mobile Application User Stories.

User Stories

US 5.1
As an IoT user, I want to be able to access all of the main functionalities of the
web application on a mobile phone, so that I can work remotely.

US 5.2
As an IoT user, I want to be able to access and view my dashboards on a mobile
phone, even if I do not have an internet connection.

Figure 3.5: Local database for mobile application (Offline Synchronization).

3.3 Information Architecture Organization and Assembling

The remaining steps when creating an architecture are organization and assembling.

For these, following an architecture canvas yields faster development times; a common

understanding; and it eases the architecture assessment. Outsystems used to provide a

framework, 4-Layer Canvas (4LC), but it is now obsolete.

First, one needs to organize the application’s key concepts on the canvas and review

those concepts. Important aspects to keep in mind at this stage are: a good architecture

should not be based on technical concepts; strongly connected concepts should be joined;

concepts that are too different should not be joined; recommended patterns should be

used and one should not encapsulate in excess, as it contributes to a poor service abstrac-

tion, making it harder to manage dependencies.

When designing an architecture, an iteration occurs between identifying concepts

and defining modules (Figure 3.6). Outsystems, mentions that it “is a continuous process

(...) as a solution evolves and new concepts and needs emerge (...)” [41].

1. Identify Concepts 2. Define Modules

ARCHITECTURE ITERATION

Figure 3.6: Architecture Iteration (Adapted from [41])

25

CHAPTER 3. ARCHITECTURE

The different architecture layers will be used [41]:

• End-User, which are business interfaces, processes and logic that provide the fea-

tures available to end-users. Reuses core and library components;

• Core Business, isolating components around business concepts, shared by differ-

ent end-user modules. The components can be: core entities; change operations;

business logic and asynchronous data processing;

• Library, with highly reusable components that may encapsulate services and pro-

tocols from external providers split by functional groups.

Some rules worth mention are: first, there can not be any upward references. This

means that, for instance, a Library module can not consume a Core module. Finally,

there should not exist any circular reference, so that publish a module A will require

publishing a module B and publishing a module B will require publishing the former.

For this thesis, the Outsystems naming conventions will be used, so that each module has

a name related to its functionality. Starting with the Library modules, there will be an

IoTWeb_Th and IoTMobile_Th that will contain the theme and all of the Cascade Style Sheets

(CSS) rules, for the web and mobile applications, respectively, as well as an IoTWeb_Pat

and an IoTMobile_Pat, that will contain reusable UI patterns for the layout, both web and

mobile. In the future, in this layer, there can also be included some integration services,

for instance, to consume REST services.

Moving on to the Core modules, those will use the suffixes Core Services (CS) and Mo-

bile Core Services (MCS), containing public entities and actions, where the latter are

specific to the mobile use cases. For the CS, the modules are Devices_CS; Locations_CS and

DashboardConfiguration_CS. The first one will contain all of the database entities and actions

(namely, Create, Read, Update and Delete (CRUD) actions) regarding IoT devices; the

second has the same for locations and the latter, for creating and configuring a dashboard.

Additionally, for the mobile application, Dashboard_Config_MCS will also be included. The

need for this module relies on the fact that a mobile device’s screen is smaller and, because

of that, specific configurations are required.

Also, there will be a module named Users_CS; Protocols_CS and, for this thesis, a

module named MQTT_CS. Any other protocols added in the future will also have a core

service module associated.

Once the complexity of this application increases, a portion of the CS modules may

become a Business Logic (BL) module.

Finally, regarding the End-User modules, there will be 2 modules: IoT_Web and IoT_Mo

bile, which will implement the end-user interfaces for the web and mobile applications,

respectively, for the user to interact with. Also, there will be a backoffice to manage

the database (mainly during tests). These modules will consume the core-business and

library modules mentioned a-priori.

26

3.3. INFORMATION ARCHITECTURE ORGANIZATION AND ASSEMBLING

The modules considered at this initial stage are shown in Figure 3.7, organized by

layer. Nevertheless, the reader must keep in mind that, if any improvements are required

in the future, changes can be done without much effort, although it is a good practice

to implement a good architecture from the beginning to avoid time consuming changes

in the future. It will be shown in Chapter 7 that this modular architecture allows to

develop for both the web and mobile applications at the same time. This decreases the

development times and eases code maintenance and bug-fixing, as a module is reused in

both applications. In Chapter 4, the developments are shown.

CORE	BUSINESSES

LIBRARY

IoT_Web

END-USER

IoT_Web_Th IoT_Mobile_Th

IoT_Web_Pat IoT_Mobile_Pat

Devices_CS

Locations_CS

Dashboard_Config_CS

Protocols_CS Users_CS

MQTT_CS

IoT_Mobile

IoT_Web_Backoffice

Dashboard_Config_MCS

Figure 3.7: Project Modules (Architecture).

27

C
h
a
p
t
e
r

4
Developments

After building the architecture, it was time to develop the Outsystems actions. This can

contain either CRUDs, screen or business logic and can be either server or client actions.

4.1 Locations Actions

A location is the physical place where a device will be located. For instance, in an agri-

culture use case, there may be several crops and each will contain its own devices. Thus,

each crop can be classified as a location. The locations’ actions that will be developed

(with its inputs and outputs) are shown in Table 4.1 and Table 4.2.

Table 4.1: Locations create or update actions.

(a) Location_CreateByName Action

Inputs
• Name

• UserId

• Description

• Color

• IsActive

• Photo

Outputs
• Error

• LocationId

(b) Location_Update Action

Inputs
• Location

• LocationDetail

• UserId

Output
• Error

29

CHAPTER 4. DEVELOPMENTS

In Figure 4.1, the Create and Update operations are shown. The Create action, Fig-

ure 4.1a, receives the Location data as input: name; description; color; status; an optional

photo; and the identifier of the creator user. To create a novel location, first, one checks

if the provided location name is not an empty string. If so, an aggregate will fetch a

single row with a Location with the same name as the provided location name. If there

is already a location with that name, an error is thrown and the Success value is set to

False, as well as an error message is defined. Otherwise, the Location is created and the

output LocationId is set with the output of the CreateLocation entity action. Furthermore,

the user that created the location is automatically assigned to the location, calling the

User_ToggleInLocation action. If no photo was provided, nothing more happens, otherwise,

the CreateLocationDetail entity action is called.

Furthermore, Location_Update contains the Location and LocationDetail entity records

as inputs. In this action (Figure 4.1b), after checking if the Location is not empty and

if a location with the same name and a different identifier already exists, the Location is

updated. After this, if there was a photo, previously, but no photo was provided now, the

old photo is deleted.

4.2 Location-User and Device Actions

As shown in Table 4.2, 2 actions were developed to add or remove users and devices

to or from locations, respectively. Due to the fact that both actions are similar, only

the Devices_ToggleInLocation implementation in Outsystems is presented in Figure 4.2.

First, an aggregate fetches the Device inner joined with the Location, where Location.Id =

↪→ LocationId (to check if the location exists) and left joined with the Device_Location (to

check if the device is already active in any location). If the aggregate is empty, this means

that either the location or the device were not found and an error is thrown. Otherwise,

the device is added as non-installed and the IsAdd variable is set to True. If the latter is set

to False, then the sensor is removed if it is not in a different location. When an error is

thrown, the error message is either logged and/or shown to the user.

Table 4.2: Actions to add or remove devices and users to/from locations.

(a) Device_ToggleInLocation Action

Inputs
• DeviceId

• LocationId

• IsAdd

• UserId

Outputs
• Error

• DeviceLocationId

(b) User_ToggleInLocation Action

Inputs
• UserId

• LocationId

• IsAdd

• CurrentUserId

Output
• Error

• LocationUserId

30

4.2. LOCATION-USER AND DEVICE ACTIONS

(a) (b)

Figure 4.1: Locations Create or Update Actions.

31

CHAPTER 4. DEVELOPMENTS

Figure 4.2: Outsystems action to either add or remove sensor to/from a location.

4.3 Locations List Screen

This screen has an aggregate to fetch all Locations left joined with both User_Location and

LocationDetail. It only fetches records where the User_Location’s user is the one in session.

Next, a data action to get the Location’s details is refreshed whenever the user clicks on

a location item on the screen list. This action (Figure 4.3) receives the SelectedLocationId

↪→ and the ClickedItemId as inputs. It saves the provided location identifier on a screen

variable and then refreshes the data action. After storing location identifier and fetching

the devices and users associated with that location, through 2 different aggregates, the

resulting filtered data is appended to outputs that will be used on the screen, in tags as

seen in Figure 7.3c).

32

4.4. LOCATIONS DETAIL SCREEN

Figure 4.3: OnLocationListItemClick Client Action (Location List Screen).

4.4 Locations Detail Screen

When clicking on the buttons “Edit” or “Add Location”, on Locations List screen, the user

is redirected to the screen detail, where he can edit or create a new location.

The action to save a location is shown in Figure 4.4. First, it is verified if the form

is valid. Moreover, a server action is called. If this action results in an error, an error

message is shown to the user. Otherwise, a success message is shown. In case a new

Location is created, the Location identifier is updated.

Next, follows the client actions to add or remove a device to/from a location. These

are shown in Figure 4.5a and Figure 4.5b, respectively.

Starting with the the action to remove devices from a location, as it is simpler, it calls

the server action Device_ToggleInLocation, already explained above (review Figure 4.2) to

update the database. If there are no errors, the position of the sensor in the Tags list is

found, after which, that device is appended to the dropdown list variable and removed

from the respecitve Tags list.

The client action to add a device to a location (Figure 4.5a) starts by verifying if

the plus Icon was pressed. If so, the sensor identifier of the sensor selected on the

dropdown is stored in a local variable. Otherwise, the same server action as before

(Device_ToggleInLocation), is called and a similar procedure is followed. If there are no

errors, the index of the sensor in the dropdown list is found, after which, that sensor is

appended to the Tags list and removed from the SearchDropdown list variable. A success

message is shown to the user.

33

CHAPTER 4. DEVELOPMENTS

Figure 4.4: OnLocationSaveClick Outsystems Client Action (Location Detail screen).

At last, the screen has logic to decide which parts of the screen to show or to en-

able. For instance, If widgets are used to decide whether to show the lists with the

sensors/actuators/users tags or to show messages saying that the information is not avail-

able; Expressions are used to vary the information shown on the labels; the DropdownSearch

is disabled in case the location does not exist yet and the “Add” link is enabled if a lo-

cation exists and if there is a device/user selected on the respective DropdownSearch. The

latter can be observed in Section 7.4, Figure 7.4 where the “plus” Icon is disabled, as there

is no device selected on the respective DropdownSearch. Furthermore, roles are taken into

account, for instance, to decide whether to show the link to add/remove users.

4.5 Devices Actions

The requirements for the devices can be inferred from Table 3.3, but in sum are: create

and install a device on the platform; choose its protocol; assign that device to a location

and be able to set its configuration parameters. The actions developed to create or update

devices, with its inputs and outputs are depicted in Table 4.3 and its implementation is

shown in Figure 4.6.

34

4.5. DEVICES ACTIONS

(a) (b)

Figure 4.5: Outsytems client actions to add (a) or remove (b) devices from a location.

35

CHAPTER 4. DEVELOPMENTS

Table 4.3: Actions to create or update devices.

(a) Device_CreateOrUpdate Action

Inputs
• Device_In

• UserId

• CommunicationsData

Outputs
• Error

• DeviceId

• CommunicationsDataId

(b) Device_IsValid Action

Inputs
• Device_In

Output
• Error

(a) (b)

Figure 4.6: Actions to create, update and assess a device.

36

4.6. DEVICES LIST SCREEN

Starting with the action to validate a device (Figure 4.6b), it starts by verifying if the

status is invalid, which happens if the input Device has either no Name or no Description and,

at the same time, the provided status is different than PendingInstallation. The opposite

is also verified: if the device has both a Name and a Description and, at the same time, the

provided status is PendingInstallation. Next, it is assessed it there is a Device that has the

same Name, but a different identifier of the input Device. If this happens, it means that

there is already a different device with the same name registered on the DB. An error is

thrown if any of this conditions is met.

The action to create or update a Device, in Figure 4.6a, starts by verifying if it is

valid, by using the action explained previously. If is is valid, a novel Device is created or

updated on the database. Next, using the DeviceId and the CommunicationsData provided

on the action input, the MQTTTopic_CreateOrUpdate action is called to create or update the

communications data. The actions related to the protocols are explained in Section 4.10.

If there are no errors, both the Device and CommunicationsData identifiers are returned.

There are 2 Devices-related screens, the Device List and Device Detail. Screenshots

of these can be seen in Chapter 7, Section 7.4, Figure 7.4.

4.6 Devices List Screen

To present the devices, this screen contains a table with its name, status and location

as columns. The source of the table is an aggregate with the Device left joined with a

Device_Location, inner joined with Device status and the Device_Location is left joined with

the Location. Moreover, this aggregate can be filtered, either by location (selected through

a dropdown input populated by a different aggregate), or by device name (searched by

inserting text in an input). Both the selected location and the search text are saved in

session variables. This way, if the user goes to another screen and returns later, his search

preferences will remain. These session variables are used inside the aggregate to filter it

and every time each of the filter parameters changes, a client action is called to refresh

the aggregate, which will then refresh the table on the screen. By clicking on the “Create

Device” button or on the device name, on the table, the user is redirected to the Device

details, to create or update a device, respectively.

4.7 Devices Detail Screen

This screen has 2 aggregates, to fetch the Device details given the input DeviceId, left joined

with the Device_Location and CommunicationsData and the locations, as one can change a

device location through a dropdown input; and has one data action, shown in Figure 4.7a,

which will get all transducers associated with the device. If no device identifier exists,

the data action does nothing. Otherwise it will fetch the transducers associated with the

device. Next, a filter will separate the sensors from actuators and both will be appended

to 2 different outputs of the server action.

37

CHAPTER 4. DEVELOPMENTS

The screen contains two lists that show the sensors and actuators separated and is possible

to remove those by clicking on an “x” icon. The action to remove a transducer is shown

in Figure 4.8a Otherwise, if the lists are not populated, they show a message such as “No

sensors added to this device.”. An OnAfterFetch event for the aggregate that fetches the

device is used to assign the status of the device and of the toggle widget on the screen.

This action is shown in Figure 4.7b. To add a device, after filling all of the form details,

the action in Figure 4.8b is called and the device is saved.

(a) (b)

Figure 4.7: Action (a) to fetch the transducers and (b) after fetching the device.

38

4.8. TRANSDUCERS ACTIONS

(a) (b)

Figure 4.8: Actions with (a) to remove a transducer and (b) to add a device.

4.8 Transducers Actions

It is possible to associate Transducers to a Device by clicking on the “Add Transducer”

button, which will open a popup. The actions to assess and create or update a transducer,

with its inputs and outputs are shown in Table 4.4.

Regarding the action to validate a Transducer, seen in Figure 4.9b, it starts with an

aggregate that will fetch a Device where the identifier will be the same as the one in the

Transducer input record. The Device is left joined with a Transducer to see if the Device

already has a different Transducer with the same Name and JSONIdentifier associated. The

Device is also left joined with the ValueType and TransducerValueType. If conditions are then

used to verify if these types are valid, if the device exists and if there is already another

transducer with the same details as the one being added.

39

CHAPTER 4. DEVELOPMENTS

Table 4.4: Actions to add or remove devices and users to/from locations.

(a) Transducer_CreateOrUpdate Action

Inputs
• Transducer_In

• UserId

• Unit

Output
• Error

(b) Transducer_IsValid Action

Inputs
• Transducer_In

• Unit

Output
• Error

If none of these conditions fails, the chosen Unit is also assessed. Moving on to the create

or update action, in Figure 4.9a, it uses the previous action to verify if the Transducer is

valid. If there are no errors with the Unit and with the Transducer, the latter is created or

updated.

4.9 Transducer Block

The popup that allows to add and edit transducers contains a block (for encapsulation

and maintenance reasons). It receives the DeviceId and the TransducerId as inputs, as well

as 3 aggregates. The first will fetch the Transducer given the block input. Finally, the units

and the value types (boolean or decimal) will be retrieved by the remaining 2 aggregates.

By filling in the details, the action shown in Figure 4.10a is triggered which, if the form

details are valid will create the transducer and associate it with the device. An event is

sent to the Device Details screen, which will refresh the data action shown previously in

Figure 4.7a, on the event handler. The way to insert a unit is by starting to type a unit

on the input, which will prompt a dropdown with already existing units that match the

typed one. By selecting one of the units, the action in Figure 4.10b is called, which will

assign the selected unit to the unit label input, as well as the unit name input. If the

typed unit does not exist yet, a novel one is created. Finally, by clicking on the “x” icon,

an event is sent to the parent, which will then toggle the boolean variable that controls

the popup visibility.

4.10 Communications Data

The entity communications data was the way found to assure future extensibility of

the IoT applications to other protocols (note that only MQTT will be tested in this thesis).

This is because it contains an In and Out address for data received in Outsystems or in

the device, respectively. These two parameters will most likely be a constant for every

communication protocol implemented in the future. In MQTT these addresses will be

the topic, but for TCP/IP, for instance, these will be IP:port.

40

4.10. COMMUNICATIONS DATA

(a) (b)

Figure 4.9: Actions to (a) add a transducer and (b), validate its details.

41

CHAPTER 4. DEVELOPMENTS

(a) (b)

Figure 4.10: Actions to (a) add a transducer (b) to react to the user typing a unit label on
the input.

42

4.11. MESSAGE PAYLOAD REGISTRATION

The developed actions’ inputs and outputs is shown in Table 4.5 and its implementation

in Outsystems can be seen in Figures 4.11a and 4.11b. Starting with the action to validate

the addresses, in Figure 4.11b, for MQTT, it will simply verify if both topics start with

the character “/” and if they are not empty. If so, no errors are returned. The action to

create or update CommunicationsData in Figure 4.11a starts by using the previous action to

validate the addresses. If no errors are found, it verifies if the provided Device identifier

is NullIdentifier(). If so, this means that a novel device with a novel topic exist and

so, a new PendingInstallation Device is created calling the action shown in Figure 4.6a.

Next, an aggregate is executed to fetch CommunicationsData left joined with a Device. The

aggregate’s filter condition assures that the addresses match the input ones and the join

condition, that the Device is different than the one provided in the action’s input, but the

same as between both tables in the aggregate’s join. Finally, if the topic already exists

for a different device, an error is thrown, otherwise, the CommunicationsData is created or

updated. The resulting identifier is returned by the action.

Table 4.5: Communications data actions.

(a) CommunicationsData_CreateOrUpdate

Inputs
• Topic_In

• UserId

• Topic_Out

• DeviceId

Outputs
• Error

• CommunicationsDataId

(b) CommunicationsData_IsValid

Inputs
• Topic_In

• Topic_Out

Output
• Error

4.11 Message Payload Registration

Now that both locations, devices, transducers and communications data actions are devel-

oped, its time to register the transducer’s measurements. The developed actions’ inputs

and outputs are shown in Table 4.6 and its implementation is depicted in Figure 4.12.

Due to the fact that sometimes, data can be received with unknown topics, after which,

a Device is created with the status “Pending Installation”, this device has no associated

transducers and so, the transducers data has to be temporarily stored until the device’s

information is completed and the status becomes Active. Since the information is stored

in a temporary table, it can be handled later, asynchronously.

For that, a heavy timer was built and is shown in Figure 4.13a. A heavy timer differs

from a regular timer in the sense that it can handle high amounts of data and because

of that, the risks of it timing out or throwing errors are higher. Because of that, some

considerations should be made on the code [42].

43

CHAPTER 4. DEVELOPMENTS

(a) (b)

Figure 4.11: Actions to (a) create or update and (b) assess communications data.

Table 4.6: Actions to register message payloads.

(a) TransducerPayload_Register Action

Inputs
• TransducerPay-

load
• DeviceId

Output
• Error

(b) DevicePayload_Register Action

Inputs
• JSON

• Topic_In

Output
• Error

44

4.11. MESSAGE PAYLOAD REGISTRATION

(a) (b)

Figure 4.12: Actions to (a) register the transducer payload and (b) register a device mes-
sage payload.

45

CHAPTER 4. DEVELOPMENTS

Firstly, the time out of the timer is stored in a DateTime variable. Next, a Boolean site

property is verifyed to assess if one can proceed. This site property was created because,

if a timer keeps throwing errors, it never stops scheduling new executions to try again.

This might cause the DB to fill up. Moreover, one verifies if the timer is close to the

timeout stored in the beginning. If so, the timer is woke again and the timeout is reset.

Otherwise, the code proceeds forward. In this case, all the measurements are retrieved

from the temporary table, with its transducers and timestamp. The Aggregate will only

fetch 50 records at a time, in order to process data in small batches. If there are records

returned by the Aggregate, the measurements are registered and a flag is set on the

temporary table indicating that the record was already processed. After processing the

50 records, the code returns to the CloseToTimeout If and the process repeats. When there

are no measurements, another timer is waken up (see Figure 4.13b), which will execute

an SQL query to bulk delete the processed records from the temporary table.

4.12 Dashboard Actions

The inputs and outputs of the actions to create or update and validate a dashboard can

be seen in Table 4.7. Given that the validation action ends up being repetitive, only the

create or update action will be shown. It is depicted in Figure 4.14a and is relatively

simple to understand without further explanations. The action in Figure 4.14b sets a

location as default which will make it be the one shown to a user when he opens the

application.

Table 4.7: Actions related to dashboards.

(a) Dasboard_CreateOrUpdate

Inputs
• Dashboard

• UserId

Output
• Error

• DashboardId

(b) Dashboard_IsValid

Inputs
• Dashboard

Output
• Error

(c) Dashboard_SetAsDefault

Inputs
• Dashboard

Output
• Error

4.13 Dashboard Detail Screen

This screen is relatively simple and contains an input with the DashboardId which will then

used to obtain that dashboard. It also contains an aggregate to fetch all locations, which

will populate the dropdown. The action to fetch a dashboard is shown in Figure 4.15 and

will simple validate the Form and call the CRUD action.

46

4.13. DASHBOARD DETAIL SCREEN

(a) (b)

Figure 4.13: Timer actions to store transducer payloads temporarily, while its devices are
on the “Pending Installation” status.

47

CHAPTER 4. DEVELOPMENTS

(a) (b)

Figure 4.14: Action to (a) create or update dashboard and (b) to set dashboard as default.

4.14 Dashboard Main Screen

The main screen in this application contains 3 aggregates to fetch the cards in the dash-

board (ordered by the order attribute); to retrieve the chosen dashboard where the user

identifier equals GetUserId() and inner joined with a Dashboard, Location and left joined

with a DashboardImage. Finally, the last aggregate will fetch the user details, such as the

name (to present it on the screen).

The addition of a novel card consists of a simple append operation to the result of

the GetCards aggregate. Moreover, an OnAfterFetch event is used for the GetChosenDashboard

aggregate to refresh the GetCards aggregate to get the cards associated with the chosen

dashboard.

To cope with the rearranging of cards, an event is associated with the OnDragEnd of the

component shown in Chapter 5, so that the behaviour caused by the moving of cards

gets saved on the server (by calling the RearangeCards action). This action is shown in

Figure 4.16a, where the Javascript snippet is depicted in Listing 4.1.

48

4.14. DASHBOARD MAIN SCREEN

Figure 4.15: Action to save a dashboard.

Listing 4.1: Javascript to return the card identifiers.

1 var cardsList = "";

2 document.querySelectorAll("[data-card-id]").forEach(

3 function(element) {

4 cardsList += element.getAttribute("data-card-id") + ",";

5 }

6);

7 $parameters.CardIdsList = cardsList;

Given that the Dashboards are composed by a set of cards, it makes sense to divide

their layout into a grid. Each card can then occupy a set number of cells in that grid, thus

making the creation of templates as simple as distributing the cards, one after the other,

through the grid.

To achieve this behaviour we made use of CSS Grid which allows developers to define

a two dimensional grid on a web page and place all the HTML elements on the desired

cells. Elements can span over multiple columns or rows, and we can even specify in

which specific part of the grid a certain element should be, as well as leave cells empty.

The functioning of the grid can be understood in Figure 4.17, where it can be seen how

different card sizes occupy a different amount of cells on the grid.

49

CHAPTER 4. DEVELOPMENTS

(a) (b)

Figure 4.16: On Drag End event handler for the drag and drop component on (a) and
action to manage popups on (b).

Figure 4.17: CSS Grid to display dashboard cards.

50

4.14. DASHBOARD MAIN SCREEN

In Outsystems there is already a block that makes use of CSS Grid, making it possible

to display a list of Outsystems entities in a grid fashion, so it makes total sense to use this

block to display out list of cards. However there is a limitation with the use of this block,

as it doesn’t allow the developers to specify that an element occupies more than one cell.

Since this something the needed for our application, we needed to find a way to allow

the user to specify cards with more columns or rows, and still be able to use the ready

made grid Outsystems component. The solution for this problem was in creating some

CSS classes, that would make use of the grid-row and grid-column attributes. These CSS

Grid attributes allow the user to define the number of vertical or horizontal spaces in the

grid that an element occupies. They also can be used to define in which cell the element

should start. For our purposes the following classes where created:

Listing 4.2: CSS Grid classes to allow cards with different sizes.

1 .span-2x2 {

2 grid-column: span 2;

3 grid-row: span 2;

4 }

5

6 .span-2x4 {

7 grid-column: span 4;

8 grid-row: span 2;

9 }

These two classes, when applied to the elements on our list (with Javascript injection,

seen in Figure 4.18 and Listing 4.3) will make them occupy 2 rows and 2 or 4 columns

respectively. Elements without any of these classes will then occupy a single cell.

Figure 4.18: Action to add the CSS class to the card.

51

CHAPTER 4. DEVELOPMENTS

Listing 4.3: Javascript to add CSS classes to cards.

1 var card = document.getElementById($parameters.WrapperId).parentElement;

2 var cssClass = "span-" + ($parameters.CardSize === 1 ? "1x1" : "2x" + (

↪→ $parameters.CardSize === 2 ? "2" : "4"));

3 card.classList.add(cssClass);

With this solution, one can have the best of both worlds. On the one hand we can

reuse an Outsystems component that will also have the best compatibility, and on the

other, we can still keep the customization of the card sizes.

4.15 Card Actions

The inputs and outputs for the card-related actions are shown on Table 4.8. The create or

update action, as well as the validation one are very similiar to the ones already explained

in this document. For that reason, only the action to update the order of that card (order

in which the card will be shown on a dashboard) will be shown: Figure 4.19. This action

will simply get the card from the database and update its order attribute.

Table 4.8: Actions related to dashboard cards.

(a) Card_CreateOrUpdate

Inputs
• Card

• UserId

Output
• Error

• CardId

(b) Card_IsValid

Inputs
• Card

Output
• Error

(c) Card_UpdateOrder

Inputs
• CardId

• Order

Output
• Error

4.16 Card Blocks

To ensure encapsulation and avoid to repeat code, 6 different blocks were created. One

generic, containing details such as the title and an if that will include the other 5 blocks

depending on the card type (eg. Spline or Table). Then, each card will fetch the necessary

data, accordingly. Also, an on parameters change event is used to react to novel data

incoming via MQTT via the action HiveSubscribe_Val. For the cards containing actuator

data, the function HivePublish from the MQTT component was used to send data to the

broker upon clicking on a “Send” button.

There is another block to add or edit a card, but, since it is similar to the add/edit

transducer, its logic will not be explained.

52

4.17. OFFLINE SYNCHRONIZATION

Figure 4.19: Action to change the order of a card in a dashboard.

4.17 Offline Synchronization

To showcase the native mobile application and its capabilities, data from the server was

syncronized with the local storage. There are several patterns that can be chosen depend-

ing on the use case of the application (if internet failure may happen frequently or not, if

read-only or read-write, the size of the data to be synced...).

In this thesis, large amounts of data may be needed to be synchronized at once and

only read capabilities are required, since the user should not be able to create dashboards,

add devices, etc, while offline. On the other hand, every time a device becomes online,

it is important to synchronize the data on the server with the device, so that the user,

although is not able to act upon it on the application, can see the transducers data in

offline mode. The Read-Only Data Optimized [43], so that the server contains the data

that may change over time (master-data), and synchronization will be used to retrieve the

transducers data in a read-only and optimized way (as the name of the pattern suggests).

This is because the transducers’ data might be large in size and optimization is of most

importance to avoid to drain the battery and consume mobile data. The way this pattern

works is by storing the timestamp of the last synchronization and only retrieve data after

it. As it is important not to occupy more storage than required, only data from transducers

associated with dashboards should be on the device and if a transducer is deactivated or

removed from a dashboard, its data should be deleted from the device.

The Offline Data Sync action is shown in Figure 4.20. This action is triggered by calling

another action, Trigger Offline Data Sync, which will execute the former asynchronously.

53

CHAPTER 4. DEVELOPMENTS

This way, the application is not locked by this action and the user experience is better as

the data is synchronized in the background. To know the stage of the synchronization,

events are triggered on the layout block. They can be used to show a loading or to prompt

the user to inform him that the synchronization is complete, had an error, or is in progress.

Firstly, on the action, the timestamp of the last synchronization is retrieved and is used

as input for the Server Data Sync action, below. This action has as output the transducer’s

data to delete and to create; and the cards; dashboards; chosen dashboard and chosen

dashboard image (only this one to not consume too much storage) associated with the

user create them. This behaviour can be seen in the action on Figure 4.20. In the end, the

Sync Properties timestamp is updated with the most current server timestamp.

Figure 4.20: OfflineDataSync action, to perform the offline data synchronization.

Moving on to the Server Data Sync, this action, as the name suggests, is a server action

that will fetch the data to be synchronized locally. For registered users only, this action

will start by storing the current timestamp and fetch the Dashboards left joined with the

ChosenDashboard, DashboardImage, Location and Location_User. After this, if there were results,

they will be appended to a local dashboard list, where the Server Id will be the Id from

the aggregate. Then, the identifiers will be appended to a string, comma separated, to be

used as input in an SQL query, shown in Listing 4.4.

54

4.17. OFFLINE SYNCHRONIZATION

Listing 4.4: SQL query to fetch cards in given dashboards.

1 SELECT @NullIdentifier

2 , {Card}.[Id]

3 , {Card}.[CardTypeId]

4 , {Card}.[CardSizeId]

5 , {Card}.[Color]

6 , {Card}.[Title]

7 , {Card}.[IsSensor]

8 , {Unit}.[UnitLabel]

9 , {Unit}.[Name]

10 , {Transducer}.[Id]

11 , {Card}.[DashboardId]

12 , {Card}.[Order]

13 , {Device_Location}.[IsActive]

14 , CASE WHEN {Transducer}.[TransducerValueTypeId] = @DecimalValueTypeId THEN 1

↪→ ELSE 0 END

15

16 FROM {Card}

17 INNER JOIN {Transducer}

18 ON {Transducer}.[Id] = {Card}.[TransducerId]

19 INNER JOIN {Device}

20 ON {Transducer}.[DeviceId] = {Device}.[Id]

21 INNER JOIN {Device_Location}

22 ON {Device_Location}.[DeviceId] = {Device}.[Id]

23 LEFT JOIN {Unit}

24 ON {Transducer}.[UnitId] = {Unit}.[Id]

25

26 WHERE {Card}.[DashboardId] IN (@QueryIN)

The cards are then separated between active and inactive and between its data types

and appended to the respective output variables, where the inactive ones will be removed

in the OfflineDataSync action. Two similar SQL queries are used to retrieve the boolean

and decimal measurements which are, again, appended to outputs to be be used in the

client sync action.

55

CHAPTER 4. DEVELOPMENTS

Figure 4.21: Server Data Sync Action

56

C
h
a
p
t
e
r

5
SortableJS Component

One of the functionalities available on the IoT platform is the possibility for users to

create different dashboards and personalize them. For instance, rearranging the order

of the different cards on a template is useful, so that the most important information

appears first. Essentially, cards, containing plots; tables; numerical values; among others,

can be moved around to improve efficiency.

To achieve this, some sort of drag and drop behaviour to rearrange cards is the most

viable option, UX-wise. Furthermore, as Low-Code is being used, there might already

exist a Forge1 component that provides drag and drop functionality. The requirements of

this component are: capability with the React library, as this technology is being used, as

well as the option to save the novel order of the cards and to, given a wrapper (dashboard),

to change the order of its childs (cards). After some research, it was found that there was

no React component that did this. Therefore, a novel drag and drop component was

created and published on the Outsystems Forge. By creating a component, one will make

a contribution to the developers’ community, since other users will be able to download

and reuse this component.

The Drag and Drop (DnD) API was taken into account, avoiding using complex JQuery

code, but HTML5 native functionalities instead, with its 7 events that may occur when

dragging and dropping an element [44]: dragstart, when the user starts dragging an

object; dragenter, when the draggable object enters a target element (meaning that a

drop is allowed); dragover, when a draggable element is over a drop area; dragleave,

when a draggable object leaves a target element; drag, that fires constantly when a drag

and drop operation is in place; drop, fired at the end of the drag and drop operation (this

is where one receives the data sent by the draggable element); dragend, fired when the

user releases the mouse after dropping an object.

1https://www.outsystems.com/forge/

57

https://www.outsystems.com/forge/

CHAPTER 5. SORTABLEJS COMPONENT

5.1 SortableJS Library

After some research, a library called SortableJS2 was found. There are several reasons to

justify the choice for this library, such as the use of pure Javascript as well as the native

HTML5 DnD API and does not uses JQuery at all, or other libraries [45] (being more

lightweight). Other than this, whereas other libraries do not allow the use of dynamic

lists, this library allows that [45], which is a requirement for this thesis, since there will

be personalizable dashboards (lists), where cards (items) can be added/remove dynami-

cally, according to the users’ preferences and project requirements. Thirdly, whereas the

HTML5 DnD does not support touch devices, the SortableJS overcame this problem by

obtaining a link to an element by coordinates, after which, that element is cloned and

moved after. The setInterval function is also used to check if that element is under the

finger every 100 ms [45].

The summed-up functionalities of the SortableJS library are, according to [45], and

later, to [46], as follows:

• The ability to sort both vertical and horizontal lists;

• The possibility to set the elements to be sorted (CSS selector);

• The ability to have different “drag and drop groups”;

• The possibility to configure groups, eg., to allow items from the list A and B to be

moved to C and to deny items to be dragged between A and B.

• The possibility to set what element(s) can be dragged;

• The possibility to add a class to the moved element;

• The existence of onAdd; onUpdate; and onRemove events;

• The list can change dynamically (possibility to edit, add and delete elements);

• The possibility to add animations when moving items;

• Scroll improvements, were it is now possible to scroll a list first if it was in overflow.

There is now a property to enable auto-scrolling; the how much close to the border

one must be to activate scrolling; and the scrolling speed;

• It is possible to disable sorting.

2https://github.com/SortableJS/Sortable

58

https://github.com/SortableJS/Sortable

5.2. DEVELOPMENT

5.2 Development

Now that the main functionalities of this library were mentioned, its time to implement

this library in Outsystems and create a reusable component, which will then be published

in the Outsystems Forge. First, its important to define what is a component. According to

[47], it “is a reusable object that speeds up application creation and delivery (...) It should

be easy to use and understand, and the focus should be main or common use cases”. In

this case, a library component will be created, containing encapsulated Javascript code

(inside blocks and actions).

The first step is to install the library (npm install sortablejs --save) to access its mini-

mized Javascript code. After that, one needs to create a new module on the Outsystems

environment and initialize a Reactive web application. Forst, the theme and the default

screens/WBs were removed, since they are not required. Next, a new WB was created

and the MIT License of the library was included. Following, a new Javascript script was

added to the module, called SortableJS, and inside it, the minimized library Javascript

code mentioned a-priori was added. After studying the library and inspecting several of

its demos ([45], [46], [48], [49], [50]), it was seen that the library received a “parent” to be

initialized, after which, all of its children could be moved around - dragged and dropped.

With this in mind, a new Web Block was created, also named SortableJS.

It is now required to enable this block to be reused in several applications, by several

users, with different types of items: list items; table rows; containers, among others. For

that, an Outsystems widget called placeholder was introduced on the WB. The objective

of this widget is to allow different other widgets and components to be placed inside it,

upon the initialization of the web block. For instance, if a container was inserted inside

the placeholder, what one would see after using the developer tools to inspect the code

would be a <div></div>. With this in mind, if a list with (...) were to

be inserted inside the placeholder, the intended behaviour would be for to be

the parent, with its childs, (...). The solution found is for the wrapper to be

specified with a CSS-selector (see Listing 5.1) where a CSS query selector was required to

select the list wrapper.

Listing 5.1: Drag and Drop Forge Component Javascript Code (initial version).

1 var wrapper = document.querySelector($parameters.WrapperQuerySelector); // eg. "div >

↪→ p"

2

3 if (wrapper)

4 Sortable.create(wrapper, $parameters.OptionsJSON);

5 else

6 console.log("There was an error retrieving wrapper!");

The problem with this solution was that the options JSON was not being recognized,

as it was not being serialized. The final solution is depicted in Listing 5.3.

59

CHAPTER 5. SORTABLEJS COMPONENT

Listing 5.2: SortableJS Outsystems component JSON input example.

1 {

2 group: "name", // or { name: "...", pull: [true, false, 'clone', array], put: [true

↪→ , false, array] }

3 sort: true, // sorting inside list

4 delay: 0, // time in milliseconds to define when the sorting should start

5 (...)

6 }

Listing 5.3: Drag and Drop Forge Component Javascript Code (final version).

1 function merge(dest, src) {

2 for(var key in src) {

3 dest[key] = src[key];

4 }

5 return dest;

6 }

7

8 function onDragEnd(e){

9 var itemEl = {

10 'from': e.from.getAttribute('data-list-id'), // previous list

11 'to': e.to.getAttribute('data-list-id'), // target list

12 'oldIndex': e.oldIndex, // element's old index within old parent

13 'newIndex': e.newIndex, // element's new index within new parent

14 }

15

16 $actions.TriggerOnDragEnd(JSON.stringify(itemEl));

17 }

18

19 var list_wrapper = document.querySelector($parameters.WrapperQuerySelector), // eg.

↪→ "div > p"

20 options = JSON5.parse($parameters.OptionsJSON),

21 event = {

22 onEnd: function (e) {

23 onDragEnd(e);

24 }

25 };

26 options = merge(options, event);

27

28 if (list_wrapper){

29 list_wrapper.setAttribute('data-list-id', $parameters.ListName);

30 Sortable.create(list_wrapper, options);

31 }

32 else

33 console.log("There was an error retrieving wrapper!");

60

5.2. DEVELOPMENT

Some improves were done in Listing 5.3. The first and most important can be seen in

line 20 and that is the JSON parsing. Next, for the user to be able to see the changes that

the drag and drop operations caused in an Outsystems variable, the JSON input can now

also include an event function. This was what was done from rows 8 to 14 and 21 to 26.

It can be seen that a new function, merge(dest, src) was created to append the event to

the remaining JSON input. Furthermore, the solution in onDragEnd(e) is also quite elegant.

Its different steps are explained below:

1. The OnDragEndElement structure was created. It contained two Text attributes for the

target and previous drag and drop operation’s list identifiers, To and From; and two

Long Integers for their indexes, OldIndex and NewIndex, respectively;

2. An OnDragEnd event was created for the SortableJSList WB, containing variable of

type of the aforementioned structure as input;

3. A client action was also created on the Outsystems WB that receives a JSON input

of the type of OnDragEndElement and inside the action, this JSON is deserialized onto

the structure and the event mentioned a-priori is triggered, sending the variable

received as an input on the action.

What remains unknown is when is the client action called, to trigger the event. The

answer relies in Listing 5.3 rows 8 to 14, where the client action JSON input is built,

and the action is called. This action is shown in Figure 5.1, where the JSON data from

the event in Listing 5.3 is deserialized to an Outsystems structure and sent via an event,

so that it can be accessed on the screen/WB were the SortableJS placeholder is being

referenced in. The structure and JSON contain information about the sender and receiver

wrappers, To and From, as well as the old and new index, which can be associated with

either list.

Figure 5.1: OnDragEnd SortableJS event handler Outsystems action.

61

C
h
a
p
t
e
r

6
Prototype

After building the platform in both web and mobile versions, the applications need to

be fed with data. As this is an IoT-related thesis, the data is provided from an Arduino,

which will communicate with the platform through MQTT.

6.1 Arduino WiFi Module Configuration

For the Arduino to connect to a wireless network through the 802.11 protocol, the WiFi

module ESP8266 ESP-01 will be used. It’s range of operation is approximately 91 m; the

operating voltage is 3.3 V (VCC); and it contains two serial communication pins: RX and

TX. Given the aforementioned operating voltage, a voltage divider is required to cope

with the 5 V of the Arduino, to lower it to the 3.3 V of the ESP module. So, a 2 kΩ resistor

will connect to GND and 1 kΩ will connect the EN (enable) pin to VCC. The circuit ended

up as depicted in Figure 6.1. In Figure 6.1, the ESP-01 pins are the following: the top-left

one is the TX; below the latter, is the EN; at the bottom is VCC; at the right of VCC is RX;

and at the top of the RX pin is the GND pin.

After connecting the Arduino to the module, it is required to assess if the later is

working and at which baudrate. For that, a code snippet that included the SoftwareSerial

library was uploaded to the Arduino. The ESP-01 comes pre-installed with AT firmware,

which means that the module can be programmed using AT commands [51]. The Arduino

RX and TX pins were set when creating the SoftwareSerial instance. The first step is to

open the serial monitor on the Arduino IDE and send the AT command “AT” which “(...)

will check if the module is connected properly and its functioning, the module will reply

with an acknowledgment” [51]. However, this is not what happened, since no acknowl-

edgement was received. Given this, the baudrate of the SoftwareSerial was changed from

9600 bps to 115200 bps. The test was repeated and the aknowledgment was received.

63

CHAPTER 6. PROTOTYPE

Figure 6.1: Arduino’s ESP8266 ESP-01 schematic. (designed in fritzing.org)

The SoftwareSerial library that will further be used only works with the 9600 bps bau-

drate. Therefore, another AT command is required: “AT+UART_DEF=9600,8,1,0,0”,

which will change the default ESP-01 baudrate to 9600 bps. The baudrate of the Software-

Serial was changed again to 9600 bps and the aknowledgment was received upon sending

the command “AT”. The module is ready to be used.

It is now time to implement the code that will be used to connect the Arduino to a

network and send/receive data through the MQTT protocol. The developed code can be

seen in the Listing C, in Appendix C. The most important things to notice at this mo-

ment in the aforementioned listing is that the SoftwareSerial, WifiEsp and PubSubClient

libraries are being used. The first, was already used previously and it is required to allow

the use of other Arduino’s digital pins using software, in this case, the pins 2 and 3 as the

Arduino’s RX and TX, respectively. On the other hand, the WifiEsp library, as the name

indicates, allows the Arduino to connect to the Internet. For this library, it is required to

indicate the network Service Set Identifier (SSID), as well as the password. Next, the ESP

module will be initialized and attempt to connect to the Access Point (AP).

When first testing the code, some problems arised, as the serial monitor showed a

message saying “»> TIMEOUT »> (...) Warning: Unsupported firmware. Connecting to

AP”. What followed this message was the ESP attempting to connect to the AP unsuc-

cessfully. After doing some research, it was found out that the firmware version was not

supported by the WiFiEsp library. To flash the module, the solution relies on changing

the connections as shown in Figure 6.2.

The only ESP-01 pin that is now being used, but was not yet mentioned a-priori is the

GPIO0, which is a general input/output pin. Next, a software called ESP8266 Flasher

was downloaded, as well as a new firmware .bin-file. On the downloaded software, the

.bin-file was uploaded and the Arduino’s COM port selected. After this, by clicking on the

Download button, the novel firmware will be written on the ESP module. By repeating

the test of trying to connect to the AP, it was now successful.

64

fritzing.org

6.2. INTEGRATION WITH THE MQTT PROTOCOL

Figure 6.2: Arduino’s ESP8266 ESP-01 schematic to flash new firmware.
(designed in fritzing.org)

Finally, the PubSubClient library provides a client to publish/subscribe messages

through the MQTT protocol. Therefore, the first required steps are to provide the MQTT

server url; port; username; and password. Those were previously retrieved, upon the

creation of the server instance. Next, the server parameters will be set on the client’s

instance and the module will attempt to connect to the broker. By uploading the code

to the Arduino, one could confirm that the connection was successful, by verifying the

output on the Serial Monitor.

The next step is to confirm if data can already be sent and received from/on the

Arduino, respectively. For that, after creating the connection, one can subscribe a topic

called “inTopic” and publish a topic called “outTopic”. By using a chrome extension

called MQTT Lens, it is possible to verify if the message are being well sent/received.

After some minor bug corrections, this was indeed the case.

6.2 Integration with the MQTT Protocol

The first thing one needs is an MQTT broker. For this, CloudMQTT1 was used, as it

has a free plan. After creating the broker instance, one needs to save the server url; the

username; the password; and the port. These are required for both the device and the

IoT platform to connect with the broker.

Next, an MQTT client is required. The Forge (presented in Section 2.4.3) has an MQTT

client component available with both a web2 and mobile3 MQTT client versions. These

allow to connect/disconnect to a broker; publish to a topic; and subscribe a topic. The

aforementioned component (its web version) can then be used in an Outsystems web

application for it to be always working as an MQTT Client, being connected to the broker

and subscribing to its topics, as well as store data in the Outsystems database. This client,

however, will not be using the React technology, but the traditional web instead, as the

forge component is not compatible with React.

1https://www.cloudmqtt.com/
2https://www.outsystems.com/forge/component-overview/1174/mqtt-web-client
3https://www.outsystems.com/forge/component-overview/1944/mqtt-mobile-client

65

fritzing.org
https://www.cloudmqtt.com/
https://www.outsystems.com/forge/component-overview/1174/mqtt-web-client
https://www.outsystems.com/forge/component-overview/1944/mqtt-mobile-client

CHAPTER 6. PROTOTYPE

First, a web screen was created with a Preparation that calls the action hiveConnect to

connect to the MQTT broker server upon giving following details: Host; Port; ClientId;

Username; Password; Timeout; and if it is using the SSL certificate. Also, the WB mqttJS/

↪→ HiveMQ was included to load the Javascript library of the MQTT client. By doing some

debug on the browser’s console, one could verify that the connection was not being suc-

cessful - the broker was not being found. This was because a browser only supports MQTT

over websockets. After doing some research, it was found that it was required to change

the port, previously with the number 1xxxx, replacing it with the websockets’ port, chang-

ing the first digit to 3, becoming 3xxxx. By repeating the tests on the Javascript console,

one could see that the connection was now successful.

Moreover, another WB, mqttJS/SubscribeEvent, is required, as well as to provide the

topic to subscribe, the Quality of Service (QOS), and the handler (Outsystems action) as

inputs. Also, as seen in Listing 6.2, a list named queue was declared. This variable can

be accessed in the scope of the screen and the need for it relies on the fact that mqttJS/

↪→ SubscribeEvent works via synchronous callbacks, which means that data can be lost, as

incoming data might not be processed if another message is being handled at the time.

Therefore, a callback has to be as fast as possible and by using this variable, the data is

appended to a stack, temporarily, and handled later. In Figure 6.3 it is possible to see

the Preparation that will connect with the message broker (Figure 6.3a) and the action

to add transducers’ messages to the stack every time a novel MQTT message arrives

(Figure 6.3b). Listing 6.1 contains the callback script that will be executed every time a

new message arrives at the client. This snippet will append the message content (topic;

timestamp and payload) to the queue declared on the screen. After this, a hidden link will

be clicked, which will call the action seen in Figure 6.3a. The snippet in Listing 6.2 also

clicks on this hidden link every 3 hours, assuring that every message is handled. The

action that is called when the hidden link is clicked, named “WriteInDatabase”, is shown

in Figure 6.4. It starts by retrieving the last message from a screen input and split it

into topic; timestamp and payload. An action from the Device_CS module is then called,

which will assess the information and write it onto the database. All of the developments

in this section were included in the MQTT_CS module.

Listing 6.1: Javascript snippet to write payload in database.

1 console.log('Topic Received');

2 queue.push('"+EncodeJavaScript(mqttMessage.topic)+"'+ ':' + '" + EncodeJavaScript

↪→ (mqttMessage.timestamp) + "' + ':' + '" + EncodeJavaScript(

↪→ mqttMessage.payload) + "');

3 console.log('Queue: ' + queue);

4 document.getElementById('" + WriteInDatabaseLink.Id + "').click();

66

6.3. PROTOTYPE SCHEMATICS

(a) (b) a

Figure 6.3: MQTT Client actions with (a) containing the screen Preparation that will
connect with the MQTT message broker and (b), to insert transducer’s data onto the stack
“queue” via Javascript.

Listing 6.2: Javascript script included in client’s web page.

1 <script>

2 var queue = [];

3 var intervalID = window.setInterval(writePendingData, 10800000);

4

5 function writePendingData() {

6 document.getElementById('" + WriteInDatabaseLink.Id + "').click();

7 }

8 </script>

Regarding Figure 6.4, firstly, the message data is retrieved from the queue with the

snippet depicted in Figure 6.3. In the same snippet, the date is inserted in an auxiliar in-

put. After this, one can access the variable through the input. Next, the topic; timestamp

and message payload are split and sent to an action in the Device_CS module, which

allows this action to be reused in all protocols modules to be developed in the future. The

action is shown in Figure 4.13, in Section 4.11. After this, the input variable is emptied

and the hidden link is clicked again to assure that no message is left unprocessed.

Listing 6.3: Javascript snippet to retrieve message data from queue.

1 if(queue.length != 0)

2 document.getElementById('" + MessageInput.Id + "').value = queue.shift();

6.3 Prototype Schematics

In this section, sensors and actuators are connected to an Arduino to showcase the devices

and transducers utility. Without further ado, Figure 6.5 shows the designed schematic.

67

CHAPTER 6. PROTOTYPE

Figure 6.4: Action to write MQTT message content in the database.

Figure 6.5: Hardware to showcase devices and transducers’ platform usage.
(designed in fritzing.org)

68

fritzing.org

6.3. PROTOTYPE SCHEMATICS

The transducers are separated into 3 virtual devices (in 2 different locations), as shown

in Table 6.2 and Table 6.1. Each button sends a boolean simulating the activation/deactiva-

tion of something, such as a water pump. To measure the air humidity and temperature,

the DHT11 sensor was used. Moreover, [52] the soil moisture sensor is connected to an

amplifier/Analog-Digital (AD) circuit which is then connected to the Arduino. The VCC

of the amplifier is connected to 3.3V and the analog data pin is connected to the A0 pin,

on the Arduino. The amplifier pin that is not connected is the digital pin, which is not

being used as one is only interested in getting analog data. The Light-Emitting Diode

(LED)s are considered actuators, that can be turned on/off. With them, one can observe

an actuator’s status being changed from the platform. Moreover, a piezo speaker will

function as an alarm and can be actuated from the platform as well. A Light Dependent

Resistor (LDR) is used to retrieve luminosity values from the environment.

Table 6.1: Transducers in Location (T).

Device A

Transducer Type MQTT Topic (in/out)

Piezo Speaker Actuator
← /outsystems/piezo
→ /device/piezo

LDR (Photoresistor) Sensor
← /outsystems/ldr
→ /device/ldr

Button (3) Actuator
← /outsystems/button3
→ /device/button3

Button (4) Actuator
← /outsystems/button4
→ /device/button4

69

CHAPTER 6. PROTOTYPE

Table 6.2: Transducers in Location (L).

Device B

Transducer Type MQTT Topic (in/out)

Moisture Sensor Sensor
← /outsystems/moisture
→ /device/moisture

Button (1) Actuator
← /outsystems/button1
→ /device/button1

2 LEDs (1) Actuator
← /outsystems/leds1
→ /device/leds1

RGB LEDs Actuator
← /outsystems/rgb
→ /device/rgb

Device C

Transducer Type MQTT Topic (in/out)

DHT11 (Temperature) Sensor
← /outsystems/dht11/temperature
→ /device/moisture/dht11/temperature

DHT11 (Air Humidity) Sensor
← /outsystems/dht11/humidity
→ /device/moisture/dht11/humidity

3 LEDs (2) Actuator
← /outsystems/leds2
→ /device/leds2

Button (2) Actuator
← /outsystems/button2
→ /device/button2

70

C
h
a
p
t
e
r

7
Validations

The current chapter has the purpose of proving that this dissertation’s thesis’ IoT platform

is indeed doable using a LCS to develop it. The multiple functionalities of the applica-

tions, both web and mobile, will be showcased and validated. The chapter is structured as

follows: in Section 7.1, a use-case scenario to test the IoT applications, related to agricul-

ture will be introduced and its usefulness, shown; in Section 7.2, the users’ functionalities

will be depicted; Section 7.3 shows the features related to locations; in Section 7.4, some

devices will be added to those locations; finally, in Section 7.5, the dashboard funcionali-

tites will be demonstrated; in Section 7.6, the Forge component, SortableJS is also shown

being used and further, the success of its implementation, discussed; Section 7.7 shows

the success of the offline synchronization capabilities on the mobile application; final

discussions regarding the overall success of this thesis will take place in Section 7.8.

7.1 Precision Agriculture Use Case

After developing the IoT platform, it is important to showcase a real life scenario, solv-

ing today’s problems. In this sense, as the world’s population has been increasing over

the past few years, with no signs of stopping, better solutions for the use and sharing of

natural resources are required, so that sustainability can be achieved [53]. One of these

solutions relies on optimizing agriculture (one of the world’s most important industries as

it is present in roughly 34% of the total land area of the planet [54]), since the aforemen-

tioned resource-demands are causing the growth of industrial farming and consequently,

scarcity of natural resources, negatively impacting the nature (habitat loss and degrada-

tion) and the societies’ well-being. Optimizing agriculture leads to the concept of PA,

also known as smart farming.

71

CHAPTER 7. VALIDATIONS

PA is defined by Plumb [55] as “(...) a management strategy that uses information

technologies to bring data from multiple sources to bear on decisions associated with

crop production (...)”. In other words, PA is a method in which farmers optimize the

amount of fertilizers, pesticides, water [56], and others, in targeted areas to maximize

the crop yield and quality, and to minimize pests, diseases and waste of resources. This

means that different regions of a field may be dealt with in different ways since they

present different characteristics with respect to the soil, sun exposure, irrigation, among

others.

One of the ways to increase the production and, simultaneously, decrease the man-

power relies in IoT, so that farmers can keep track of the state of their fields, create

dashboards, optimized to different fields and users and manage the field remotely.

For the following sections, it may be assumed that the users of the IoT application,

such as farmers or supervisors, can have little to no experience with the use of web or

mobile (IoT) applications. An administrator will be responsible to manage teams and

associate those with roles and locations and device administrators can create devices.

7.2 Teams

To test the users’ USs seen in Section 3.2.1, the administrator will create some users on

the web platform. In Figure 7.1, a screen allows to visualize users (if the Users tab is

selected), search them by name and filter them by group, as well as to change the roles

of users within the screen. By clicking on a user, a popup will open, allowing to edit the

user and add him to groups. Another tab in the same screen, in Figure 7.2, allows to list

groups and change the roles of those groups. By clicking on the group, a popup will open

to edit the group and add users to this group.

Figure 7.1: Users list screen to manage users and its roles.

72

7.3. LOCATIONS

Figure 7.2: Groups list screen to manage groups and its roles.

7.3 Locations

Regarding locations, Figure 7.3 depicts the list screen, where a list containing the several

locations associated with a user can be seen. If the user selects a location, on the left, a

summary of that location is shown on the right. An example of this behaviour is shown

for the “Tomatoes Crop Test”. The reader can see that the user “Daniel” is also assigned to

this location. Also, by clicking on the “Edit” button, the user can edit a selected location.

The list of locations, as in Figure 7.3a, Figure 7.3b and Figure 7.3c, contains the title, a

photo (if exists) and a short description. If the user clicks on a location, more information

is shown, such as the sensors, actuators and users assigned to the location.

Either by clicking on the “Add Location” or the “Edit” button, the user will be lead to

the screen shown in Figure 7.3d: the location detail screen. This screen receives as input

the Location identifier which will be NullIdentifier() in the case of the first button. In this

screen, it is possible to add, both devices and users to the location. In this case, the device

“Heater” was added and it can be removed by clicking on the “x” icon. Furthermore, as

no device is currently selected on the Dropdown, the icon to add novel devices is disabled.

In contrast, this icon is enabled below, to add an user, “Daniel”. You can see that the user

“Andreia Martins” is already assigned to this location. Finally, for the color associated

with a location for personalization and UX purposes, a component for the color picker,

seen in Figure 7.3e, was included1. It is possible to see this information saved and shown

on the list in Figure 7.4a, where an icon with this color is shown to ease the identification

of devices by its location.

1https://www.outsystems.com/forge/component-overview/9116/hi-input-color

73

https://www.outsystems.com/forge/component-overview/9116/hi-input-color

CHAPTER 7. VALIDATIONS

(a) (b)

(c)

(d) (e)

Figure 7.3: Locations’ list with (a) no location selected, (b) in mobile, (c) showing a
location detail upon selection on the list and the locations detail screen with (d), the
screen and (e), to add a color to the location.

74

7.4. DEVICES AND TRANSDUCERS

7.4 Devices and Transducers

Upon receiving data on the MQTT client, the client will try to register those measure-

ments. In simple terms, there are three possible outcomes: the first, where the device and

transducer exist, where the measurements are registered on the database, associated with

the transducer; the second, where the device exists and the transducer is not found, for

the provided MQTT topic and payload and the latter, where neither the device, nor the

transducer are found for a given topic and JSONIdentifier on the payload. For these two

cases, the measurements are stored in a temporary table and only upon the transducer

registration, these measurements are registered, per-se, which means that only then, they

could be seen in the platform. Also, if the device associated with a topic and message

does not exist, the system will automatically create those.

These 3 cases where tested and so, 2 devices were created (one of them with missing

transducers). Also a third device not registered on the platform was used for tests, but

its messages started being received. The behaviour, as expected, is seen in Figure 7.4a,

where a device received data, but given that it was not on the system, it was created

with the “Pending Installation” status. By opening it, one can see its details, complete

its details, activate the device and add its transducers. After doing this, it was seen that

the measurements on the temporary table were transfered and are now registered. The

same happened to the devices with missing transducers. Data corresponding to Inactive

devices was discarded, as expected as well. It is also possible to see that, on the list in

Figure 7.4a, the locations’ icons have the same color as the one selected when creating

the location. This eases the user to find devices more easily. The filters were also tested

and are working as expected. It is possible to filter by location by selecting one on the

Dropdown and to filter by name.

Finally, clicking on the “Create Device” button, as well as clicking on the device name,

on the list, will redirect the user to the device’s detail screen (Figure 7.4b), to create and

edit devices, respectively, as well as add or remove transducers to it. In Figure 7.4b, it is

possible to see a portion of this detail screen. In Figure 7.4c, the modal that allows to add

a transducer to a device can be seen and was also tested and prooved to be functioning

correctly.

7.5 Dashboard

One of the main contributions of this thesis is the fact that the platform allows the user to

create several dashboards. This is done by clicking on the plus sign on the bottom right

corner of the screen, that will provide the option to add a novel dashboard or change a

dashboard, in case no dashboard exists yet (Figure 7.5a). In case there is no dashboard

selected/created by the user, the user can take a shortcut and click on the button in the

center of the screen (Figure 7.5b).

75

CHAPTER 7. VALIDATIONS

(a)

(b)

(c)

Figure 7.4: Devices screens with (a) the list of devices and (b), its details and (c), with the
modal to add a transducer to a device.

76

7.5. DASHBOARD

Both buttons, in case no dashboard exists yet, will open the screen visible in Figure 7.5c,

which allows to create a dashboard by providing its name, a location, a description and,

if available, a photography that may ease the identification of the dashboard. After doing

this, one can choose dashboards by choosing the corresponding option on the plus sing

in the bottom right corner, or by clicking on the “change” icon in the top right corner,

alongside the title and location Tag. This will open the modal depicted in Figure 7.5d,

which presents a gallery with the different dashboard options. By clicking on one, that

dashboard becomes the predefined by that user. All of this was tested and is working as

expected.

(a) (b) (c)

(d)

Figure 7.5: Dashboard initial screens with (a), no dashboard selected, (b), the buttons with
dashboard options, (c), with the dashboard detail screen to edit and create dashboards
and (d), the screen to change dashboards.

77

CHAPTER 7. VALIDATIONS

Upon selecting a dashboard, if there are no cards associated with that dashboard yet,

the screen in Figure 7.6a will be shown and, either by clicking on the “Add Card” in

the center or via the plus icon on the bottom, the user will be able to open a modal to

add cards: Figure 7.6b. In this modal, it is possible to select the card title, add the card

transducer and select the type of card, through a Dropdown. The size of the card is chosen

via a ButtonGroup and the color uses the same component as in when creating locations.

This color will be used on the border of the cards, to easily identify them.

(a)

(b)

Figure 7.6: Screens to add a card to dashboard in web application with (a), an empty
dashboard, where the central button provides easy access to (b), the modal to add and
edit a dashboard card.

78

7.5. DASHBOARD

Finally, a dashboard can be seen in the Figure 7.7, where several cards, with different

types and sizes were added. First, an spline plot can be seen in both a 2× 2 and 2× 4 size

(when hovering above the plot with the mouse, it is possible to see its values in that point:

the border of the balloon also has the same color as the card); next, a switch, that allows

to change the status of the water pump; next, 3 cards displaying the last recorded value of

3 different transducers; in addition, a table in a 2× 2 card, containing some temperature

values (from the dht_11 transducer); finally, a card to send values via MQTT. In this case,

a temperature is being sent. By clicking on the title of the card, it is possible to edit the

card. Also, it is possible to remove the card in the same place. Furthermore, it is possible

to rearrange the cards order.

Figure 7.7: Dashboard with cards in the Lettuces Field location. The cards can be added,
removed and rearranged.

79

CHAPTER 7. VALIDATIONS

7.6 Components

As said several times in this document, the SortableJS was an Outystems component that

can be used anywhere and in any application, web or mobile. This thesis allowed to test

it, both in web and mobile, showcasing that, although it is based on the HTML DnD API,

it supports touch, as seen in Figure 7.8a, where a card is being moved around in a mobile

device, by using touch. Both in the web and mobile applications, it is only possible to

move the cards when clicking on the icon in the top right corner of the cards, depicted

in Figure 7.8b. The mouse cursor changes from pointer to a grabbing hand, indicating

that it is now possible to grab and move the card. It was tested if the configuration upon

rearranging the cards was saved by refreshing the page. This was indeed the case.

(a) (b)

Figure 7.8: Drag and drop with the SortableJS component with (a), a card being dragged
in a mobile/touch device and (b) with the icon containing the CSS class indicated in the
SortableJS JSON options to allow the icon to be the grabbable area.

This component is already published2, currently having a total of 91 downloads and

13 people following the component, meaning that they will be notified every time the

component receives updates. I have also received messages from users reporting bugs and

requesting some guidance on how to use the component, which confirms that the compo-

nent is being used by the Outsystems community. Based on the community feedback, I

have managed to correct some errors, namely where the JSON was not being parsed in

the Javascript.

Also, the demonstration3 can be tried on a browser. A screenshot of the developed

demonstration is shown (Figure 7.9), where one can drag and drop elements from one

list to another and inside the same list and also, see the output of the events being shown

below.

2https://www.outsystems.com/forge/component-overview/8045/sortablejs
3https://joao-p-de-lopes.outsystemscloud.com/SortableJS_Demo/Demo?_ts=

637296747936438250

80

https://www.outsystems.com/forge/component-overview/8045/sortablejs
https://joao-p-de-lopes.outsystemscloud.com/SortableJS_Demo/Demo?_ts=637296747936438250
https://joao-p-de-lopes.outsystemscloud.com/SortableJS_Demo/Demo?_ts=637296747936438250

7.6. COMPONENTS

Figure 7.9: DraggableJS Forge Component Demonstration.

It is important to keep in mind that this component is not specific to IoT, as it can

be used in any aplication, from commercial large projects, to the smallest ones. The

published demonstration is a great example, as it has no IoT associations. It is simply

made of two generic lists. Furthermore, a key aspect and contribution of this component

is that it was, at least at the time and as of my knowledge, the first React DnD component

in the Outsystems Forge and it was simple to use. The user only needs to drop the

placeholder on a screen/WB and its childs inside it. Moreover, this component is having

an impact on the community, as it is already being used by other developers worldwide

and change requests have been made by them. Finally, an article related to this component

was written and published4.

Also, as it was seen in Chapter 4, it was important for this thesis to showcase the

mobile capabilities of a mobile device, compared to a web browser. In this sense, one

type of component that can be built for mobile devices is a plugin, which would wrap

up a Cordova plugin and make use of the mobile device’s hardware, such as its location,

gyroscope, bluetooth, camera, among others.

So it was thought of an IoT plugin need, yet not developed in Outsystems, such as

barcodes and QR-codes, that can be used in IoT for process and control optimization

in Business-to-Business (B2B) [57], as these codes can provide information about a prod-

uct or its manufacturer [57]. For instance, they can be used for tracking reasons [57] -

to control a delivery chain. As there are already some Forge plugins that can read these

codes using the phone camera, it was decided to develop a plugin to interact with the

scanners in Zebra5 devices. These devices are widely used to track products and its

embedded scanners are quicker than the traditional camera.

4https://medium.com/noesis-low-code-solutions/drag-n-drop-in-outsystems-the-recipe-
4ac8c6104f46

5https://www.zebra.com/us/en.html

81

https://medium.com/noesis-low-code-solutions/drag-n-drop-in-outsystems-the-recipe-
4ac8c6104f46
https://www.zebra.com/us/en.html

CHAPTER 7. VALIDATIONS

The component that was developed is already available for download in the Outsys-

tems Forge6. It communicates with the device hardware via Android intents and makes

use of the code presented in [58]. More details about the implementation of this plugin

wrapper are shown in Appendix A. This component is also already being used in differ-

ent developers, worldwide. The component developed in this thesis is also being used

by one of the biggest retail chains in the Iberian Peninsula. The component has had 55

downloads and 7 people following it and I have also been contacted by people using this

component. A demonstration with this component is also available in the component

download page.

Just to reinforce, although these were developed specifically for IoT applications, these

components are generic and may be used in any application.

7.7 Offline Synchronization

To validate the offline synchronization on the mobile application, one just had to simply

open the application and verify that data was being displayed. This is confirmation since

the data on the dashboard screen is being shown from the device’s data storage and if this

data is being shown, it means it was stored successfully.

Nonetheless, debug was done to verify, step-by-step, if this data is being stored as

intended, as well as every time de device becomes online, a login is done and on the

application resume (which happens when the user opens the application from the ap-

plication’s drawer). The dashboard as seen in a mobile device is shown in Figure 7.10.

It looks similar to the web application but this is a completely different application in

a completely different module. Although it is reusing most of the logic used in the web

application.

7.8 Discussion

At the end of this chapter, it is possible to say that Low-Code allowed to increase the

development speed and, at the same time, to decrease the probability of errors and in

the future, to ease the addition of new features and maintenance. Some of the contri-

butions were: two components (drag and drop and barcode reader); MQTT integration;

mechanisms to maintain the database clean; devices, locations, users and dashboards

maintenance; the possibilities to customize the dashboard.

Both components are already being used by the community and the published article

will only contribute to widen the usage. The simplicity of the drag and drop component,

its wide versatility and the fact that it is touch-compatible make it a useful component

in DnD applications.

6https://www.outsystems.com/forge/component-overview/6328/zebra-datawedge-connector-
-plugin

82

https://www.outsystems.com/forge/component-overview/6328/zebra-datawedge-connector-
-plugin

7.8. DISCUSSION

Figure 7.10: Mobile application dashboard.

In addition, the IoT platform is stable and all of the predicted functionalities were

developed with success. An estimated amount of two weeks was given to tune and bug

fixing, which allowed to conclude the platform developments with success. Also, com-

paring the development times between the web application (built first) and the mobile

application, it was possible to confirm that the modular architecture decreased devel-

opment times when reusing the logic in the mobile application. Also, when a bug was

found, most of the times, it was only required to replace it in one place.

Finally, and in my personal opinion as someone whom has been working with Outsys-

tems for almost 2 years, the traditional web development approach takes considerably

longer. Also, the fact that the mobile developments are so similar to the web developments

when using React, the development effort is lower. The Outsytems platform optimizes the

developments and so, not only are applications built faster, they are also built better. In

case there are some limitations on the platform, it is still possible to combine Outsystems

with Javascript, CSS and .Net extensions. Other than the component article7, a scientific

article is also under development.

7https://medium.com/noesis-low-code-solutions/drag-n-drop-in-outsystems-the-recipe-
4ac8c6104f46

83

https://medium.com/noesis-low-code-solutions/drag-n-drop-in-outsystems-the-recipe-
4ac8c6104f46

C
h
a
p
t
e
r

8
Conclusions and Future Work

At the end of this thesis, it is possible to say that the main objectives were achieved.

An IoT platform was built using a Low-Code platform, showcasing the versatility of these

kind of platforms and its promising future.

One of the goals was to show that the modular architecture could, in addition to

the use of a low-code development platform, accelerate the developments in great extent.

Although it was not possible to measure developments at all times, the mobile application

was built in a week, whereas the web application took approximately 8 weeks. Not

only the reuse of code due to the architecture accelerated developments, but also, in

my opinion, developing using low-code platforms is unequivocally faster comparing

with more “traditional” approaches. The web developments took longer simply because

the CS-modules’ actions were developed simultaneously with the application per-se. In

the future, the development times when using Outsystems and similar platforms might be

even faster given that novel components that intend to help the developer solve problems

are published every day. Also, Outsystems optimizes the code in the background, for

instance, an Aggregate resulting SQL-query only fetches the data being used. Like this,

there are plenty other improvements. The same happens with security, with Outsystems

handling some common security threats automatically.

One of the main objectives of this thesis was to build a customizable dashboard and

that objective was fulfilled, as well as a component was published and can now be down-

loaded and used by the Outsystems community. The ease of use of this component is one

of the main advantages. A demonstration of this component is available online, where it

is possible to drag and drop elements from one list to another, as well as the component

was tested on the mobile application and it was confirmed that it can be used in touch

devices as well.

85

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Also, a barcode/qrcode reader was developed and is compatible with the Zebra devices.

This component was tested, both in my personal device (with a common camera), as well

as with a Zebra TC20, which contains an integrated reader, with a physical button on the

device, which can be used with the developed plugin to trigger the “scanning”. Moreover,

the developed mobile application reproduces all of the web application’s functionalities,

as well as it adds local storage so that, for instance, a farmer, can use the application and

visualize data on the dashboards without a connection to the internet, which is likely to

happen in agriculture environments, as an example. Also, sometimes, heavy data had to

be processed and this was handled elegantly, using heavy timers and light BPTs and BPTs.

Mechanisms were also used to avoid errors, data loss and timeouts.

There is always space for improvements. First and foremost, the MQTT topics should

include some authentication properties on the payload message JSON. Security is of most

importance in IoT applications and, although Outsytems takes care of some of the threats,

there is always more that can be done. Furthermore, more types of cards can be built,

such as dials, gauge meters, radio buttons, custom HTML, as well as more types of plots

can be added and more than one data series can be added to the plots. There should also

be possible to range the measurements, both in plots and in tables. Also, a feature that

should be added is the possibility to schedule events and tasks, for instance, turn on the

water pump when the humidity is below a certain threshold, or send a notification/email

whenever this threshold is hit. Continuing, a component named Data Grid1 could be

used to visualize the transducers’ data in a different way. More components could also be

developed or used in order to implement artificial intelligence and machine learning on

the platform, as these concepts are often related with IoT. Additionally, an MQTT React

component should be developed in Outsystems to replace the used one (in Traditional

Web). This would allow asynchronous calls and, generally, a better handling of parallel

incoming MQTT data. This component would also make possible to show data changing

in real time on the developed dashboard. Again, this component could be used by the

community in the future. In terms of database, the concept of company could be included,

where each company has it’s own users and teams. More protocols should also be added

in the future, as well as more widgets and more personalization.

Nowadays, Outsystems is relatively expensive and the trial version was used to de-

velop this work. Nevertheless, as Hendriks states, “This improvement in efficiency en-

ables the idea of continuous integration by being able to produce a business application

in matter of weeks instead of months.” [29], regarding model-based platforms and so, one

can only hope that eventually, low-code becomes more accessible and affordable, so that

progress in several fields, such as IoT could be achieved faster than before.

A scientific article is currently under development and another one was already pub-

lished2.

1https://www.outsystems.com/forge/component-overview/5554/data-grid-web
2https://medium.com/noesis-low-code-solutions/drag-n-drop-in-outsystems-the-recipe-

4ac8c6104f46

86

https://www.outsystems.com/forge/component-overview/5554/data-grid-web
https://medium.com/noesis-low-code-solutions/drag-n-drop-in-outsystems-the-recipe-
4ac8c6104f46

Bibliography

[1] Technology is moving faster than ever before — here’s how businesses are keeping up.

https://www.businessinsider.com/sc/how- businesses- keep- up- with-

technology?sr_source=lift_facebook. Accessed: 31-10-2020.

[2] D. Michels. Measuring Your Organization’s Ability To Change, July, 2020. https:

/ / www . forbes . com / sites / davidmichels / 2020 / 07 / 27 / measuring - your -

organizations-ability-to-change/?sh=554c26f85466. Accessed: 31-10-2020.

[3] S. Madakam, R Ramaswamy, and S. Tripathi. “Internet of Things (IoT): A literature

review.” In: Journal of Computer and Communications 3.05 (2015), p. 164.

[4] The future of IoT: 10 predictions about the Internet of Things. https://us.norton.
com/internetsecurity-iot-5-predictions-for-the-future-of-iot.html.

Accessed: 08-09-2020.

[5] I. Yaniv Iarovici Marketing Director of Industrial and W. D. Edge. Top 10 IoT
Use Cases | July, 2020. https://www.iotevolutionworld.com/iot/articles/

446032-top-10-iot-use-cases.htm. Accessed: 08-09-2020.

[6] Low-Code Is the Future - OutSystems Named a Leader in the 2019 Gartner Magic
Quadrant for Enterprise Low-Code Application Platforms. https://www.prnewswire.
com/in/news- releases/low- code- is- the- future- outsystems- named- a-

leader-in-the-2019-gartner-magic-quadrant-for-enterprise-low-code-

application-platforms-868871260.html. Accessed: 26-09-2020.

[7] Dashboards. https://www.gartner.com/it-glossary/dashboard. Accessed:

22-07-2019.

[8] IoT Dashboards – Attributes, Advantages, & Examples. https://ubidots.com/blog/
iot-dashboards/. Accessed: 25-07-2019.

[9] ThingsBoard Open-source IoT Platform. https://thingsboard.io. Accessed: 26-

07-2019.

[10] E. N. Bitencourt and W. P. dos Anjos. IoT Centralization and Management Applying
ThingsBoard Platform. Häme University of Applied Sciences - HAMK, University

Centre-Hämeenlinna, Smart Services Research Unit, 2018.

[11] IoT Standards and Protocols. https : / / www . postscapes . com / internet - of -

things-protocols/. Accessed: 17-08-2019.

87

https://www.businessinsider.com/sc/how-businesses-keep-up-with-technology?sr_source=lift_facebook
https://www.businessinsider.com/sc/how-businesses-keep-up-with-technology?sr_source=lift_facebook
https://www.forbes.com/sites/davidmichels/2020/07/27/measuring-your-organizations-ability-to-change/?sh=554c26f85466
https://www.forbes.com/sites/davidmichels/2020/07/27/measuring-your-organizations-ability-to-change/?sh=554c26f85466
https://www.forbes.com/sites/davidmichels/2020/07/27/measuring-your-organizations-ability-to-change/?sh=554c26f85466
https://us.norton.com/internetsecurity-iot-5-predictions-for-the-future-of-iot.html
https://us.norton.com/internetsecurity-iot-5-predictions-for-the-future-of-iot.html
https://www.iotevolutionworld.com/iot/articles/446032-top-10-iot-use-cases.htm
https://www.iotevolutionworld.com/iot/articles/446032-top-10-iot-use-cases.htm
https://www.prnewswire.com/in/news-releases/low-code-is-the-future-outsystems-named-a-leader-in-the-2019-gartner-magic-quadrant-for-enterprise-low-code-application-platforms-868871260.html
https://www.prnewswire.com/in/news-releases/low-code-is-the-future-outsystems-named-a-leader-in-the-2019-gartner-magic-quadrant-for-enterprise-low-code-application-platforms-868871260.html
https://www.prnewswire.com/in/news-releases/low-code-is-the-future-outsystems-named-a-leader-in-the-2019-gartner-magic-quadrant-for-enterprise-low-code-application-platforms-868871260.html
https://www.prnewswire.com/in/news-releases/low-code-is-the-future-outsystems-named-a-leader-in-the-2019-gartner-magic-quadrant-for-enterprise-low-code-application-platforms-868871260.html
https://www.gartner.com/it-glossary/dashboard
https://ubidots.com/blog/iot-dashboards/
https://ubidots.com/blog/iot-dashboards/
https://thingsboard.io
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/

BIBLIOGRAPHY

[12] Examining 5 IEEE Protocols – ZigBee, WiFi, Bluetooth, BLE, and WiMax. https:

//www.iotforall.com/ieee-protocols-zigbee-wifi-bluetooth-ble-wimax/.

Accessed: 10-08-2019.

[13] How Does WiFi Work? – 8 Things You Didn’t Know About Wifi. https://www.

iotforall.com/how-does-wifi-work/. Accessed: 10-08-2019.

[14] How Mesh Networking Will Make IoT Real. https://hackernoon.com/how-mesh-
networking-will-make-iot-real-b5b88baab63b. Accessed: 15-08-2019.

[15] How Do Cellular Networks Work for IoT? https://www.iotforall.com/cellular-
connectivity-iot-overview/. Accessed: 11-09-2019.

[16] What Is LoRa? A Technical Breakdown. https://www.link-labs.com/blog/what-

is-lora. Accessed: 05-09-2019.

[17] Sigfox: A cellular network, just for Things. https://www.nickdecooman.com/blog/
sigfox-a-cellular-network-just-for-things. Accessed: 11-09-2019.

[18] SigFox for M2M & IoT. https : / / www . electronics - notes . com / articles /

connectivity / sigfox / what - is - sigfox - basics - m2m - iot . php. Accessed:

11-09-2019.

[19] MQTT and HTTP : Comparison between two IoT Protocols. https://iotdunia.com/
mqtt-and-http/. Accessed: 12-09-2019.

[20] Internet of Things: Battle of The Protocols (HTTP vs. Websockets vs. MQTT). https:
//www.linkedin.com/pulse/internet-things-http-vs-websockets-mqtt-

ronak-singh-cspo/. Accessed: 12-09-2019.

[21] MQTT and DDS for M2M: Disparate Approaches to the Internet of Things. https://
www.rti.com/blog/mqtt-dds-m2m-protocol-internet-of-things/. Accessed:

26-08-2019.

[22] Beginners Guide To The MQTT Protocol. http://www.steves-internet-guide.

com/mqtt/. Accessed: 12-09-2019.

[23] J. Vermillard. Introduction to CoAP, the REST protocol for M2M. 2013.

[24] Wireless Sensor Network Node with REST Advantages: CoAP Protocol. http://www.
wsnmagazine.com/wsn-coap-protocol/. Accessed: 31-08-2019.

[25] CoAP Protocol: Step-by-Step Guide. https://dzone.com/articles/coap-protocol-

step-by-step-guide. Accessed: 12-09-2019.

[26] JSON vs XML. https://www.educba.com/json-vs-xml/. Accessed: 14-09-2019.

[27] Low-Code Development Platforms. https://www.outsystems.com/low- code-

platforms/?utm_source=twitter&utm_medium=agorapulse&utm_campaign=

lowcodeplatforms&utm_content=lowcodelp-meta&utm_term=internal-out.

[28] Outsystems. What Is Low-Code? https://www.outsystems.com/blog/what-is-

low-code.html. Accessed: 20-05-2019.

88

https://www.iotforall.com/ieee-protocols-zigbee-wifi-bluetooth-ble-wimax/
https://www.iotforall.com/ieee-protocols-zigbee-wifi-bluetooth-ble-wimax/
https://www.iotforall.com/how-does-wifi-work/
https://www.iotforall.com/how-does-wifi-work/
https://hackernoon.com/how-mesh-networking-will-make-iot-real-b5b88baab63b
https://hackernoon.com/how-mesh-networking-will-make-iot-real-b5b88baab63b
https://www.iotforall.com/cellular-connectivity-iot-overview/
https://www.iotforall.com/cellular-connectivity-iot-overview/
https://www.link-labs.com/blog/what-is-lora
https://www.link-labs.com/blog/what-is-lora
https://www.nickdecooman.com/blog/sigfox-a-cellular-network-just-for-things
https://www.nickdecooman.com/blog/sigfox-a-cellular-network-just-for-things
https://www.electronics-notes.com/articles/connectivity/sigfox/what-is-sigfox-basics-m2m-iot.php
https://www.electronics-notes.com/articles/connectivity/sigfox/what-is-sigfox-basics-m2m-iot.php
https://iotdunia.com/mqtt-and-http/
https://iotdunia.com/mqtt-and-http/
https://www.linkedin.com/pulse/internet-things-http-vs-websockets-mqtt-ronak-singh-cspo/
https://www.linkedin.com/pulse/internet-things-http-vs-websockets-mqtt-ronak-singh-cspo/
https://www.linkedin.com/pulse/internet-things-http-vs-websockets-mqtt-ronak-singh-cspo/
https://www.rti.com/blog/mqtt-dds-m2m-protocol-internet-of-things/
https://www.rti.com/blog/mqtt-dds-m2m-protocol-internet-of-things/
http://www.steves-internet-guide.com/mqtt/
http://www.steves-internet-guide.com/mqtt/
http://www.wsnmagazine.com/wsn-coap-protocol/
http://www.wsnmagazine.com/wsn-coap-protocol/
https://dzone.com/articles/coap-protocol-step-by-step-guide
https://dzone.com/articles/coap-protocol-step-by-step-guide
https://www.educba.com/json-vs-xml/
https://www.outsystems.com/low-code-platforms/?utm_source=twitter&utm_medium=agorapulse&utm_campaign=lowcodeplatforms&utm_content=lowcodelp-meta&utm_term=internal-out
https://www.outsystems.com/low-code-platforms/?utm_source=twitter&utm_medium=agorapulse&utm_campaign=lowcodeplatforms&utm_content=lowcodelp-meta&utm_term=internal-out
https://www.outsystems.com/low-code-platforms/?utm_source=twitter&utm_medium=agorapulse&utm_campaign=lowcodeplatforms&utm_content=lowcodelp-meta&utm_term=internal-out
https://www.outsystems.com/blog/what-is-low-code.html
https://www.outsystems.com/blog/what-is-low-code.html

BIBLIOGRAPHY

[29] D. Hendriks. The selection process of model based platforms. Tech. rep. Radboud

Universiteit, 2017.

[30] Application Platform as a Service: What Is It Really? https://www.outsystems.com/
blog/posts/application-platform-as-a-service/. Accessed: 14-09-2019.

[31] F. J. G. Pereira. “The DS-Pnet modeling formalism for cyber-physical system devel-

opment.” In: (2017).

[32] Outsystems. Outsystems Overview - Introduction to the Course.

[33] R. Alves. Reactive Web Applications - The Next Generation of Web Apps. https:

//www.outsystems.com/blog/posts/reactive-web-applications/. Accessed:

27-09-2020.

[34] T. Simões. All You Need to Know About Reactive Web Applications. https://www.

outsystems.com/blog/posts/all-you-need-to-know-about-reactive-web/.

Accessed: 27-09-2020.

[35] Outsystems Documentation. Actions in Web Applications. https : / / success .

outsystems.com/Documentation/11/Developing_an_Application/Implement_

Application_Logic/Actions_in_Web_Applications. Accessed: 28-07-2019.

[36] Outsystems Documentation. Processes. https://success.outsystems.com/

Documentation/11/Developing_an_Application/Use_Processes_(BPT)/Processes.

Accessed: 10-09-2019.

[37] Outsystems Documentation. Extensions. https://success.outsystems.com/

Documentation/11/Extensibi.

[38] Outsystems Documentation. From architecture to development. https://success.
outsystems.com/Documentation/Best_Practices/Architecture/From_architecture_

to_development. Accessed: 21-03-2021.

[39] User Stories with Examples and Template. https://www.atlassian.com/agile/

project-management/user-stories. Accessed: 02-06-2020.

[40] D. Arnott. Using Personas for Writing User Stories. https://www.frontrowagile.
com/blog/posts/29-using-personas-for-writing-user-stories. Accessed:

05-10-2020.

[41] Outsystems Documentation. The 4 Layer Canvas. https://success.outsystems.
com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_

the_architecture_of_your_OutSystems_applications/01_The_4_Layer_

Canvas. Accessed: 04-06-2020.

[42] Lara Silva, OSQUAY, May 19. How to make sure a heavy timer doesn’t misbehave in
the Outsystems platform. https://www.osquay.com/knowledge-center/how-to-

make-sure-a-heavy-timer-doesnt-misbehave-in-the-outsystems-platform.

Accessed: 15-11-2020.

89

https://www.outsystems.com/blog/posts/application-platform-as-a-service/
https://www.outsystems.com/blog/posts/application-platform-as-a-service/
https://www.outsystems.com/blog/posts/reactive-web-applications/
https://www.outsystems.com/blog/posts/reactive-web-applications/
https://www.outsystems.com/blog/posts/all-you-need-to-know-about-reactive-web/
https://www.outsystems.com/blog/posts/all-you-need-to-know-about-reactive-web/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Processes_(BPT)/Processes
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Processes_(BPT)/Processes
https://success.outsystems.com/Documentation/11/Extensibi
https://success.outsystems.com/Documentation/11/Extensibi
https://success.outsystems.com/Documentation/Best_Practices/Architecture/From_architecture_to_development
https://success.outsystems.com/Documentation/Best_Practices/Architecture/From_architecture_to_development
https://success.outsystems.com/Documentation/Best_Practices/Architecture/From_architecture_to_development
https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://www.frontrowagile.com/blog/posts/29-using-personas-for-writing-user-stories
https://www.frontrowagile.com/blog/posts/29-using-personas-for-writing-user-stories
https://success.outsystems.com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_the_architecture_of_your_OutSystems_applications/01_The_4_Layer_Canvas
https://success.outsystems.com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_the_architecture_of_your_OutSystems_applications/01_The_4_Layer_Canvas
https://success.outsystems.com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_the_architecture_of_your_OutSystems_applications/01_The_4_Layer_Canvas
https://success.outsystems.com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_the_architecture_of_your_OutSystems_applications/01_The_4_Layer_Canvas
https://www.osquay.com/knowledge-center/how-to-make-sure-a-heavy-timer-doesnt-misbehave-in-the-outsystems-platform
https://www.osquay.com/knowledge-center/how-to-make-sure-a-heavy-timer-doesnt-misbehave-in-the-outsystems-platform

BIBLIOGRAPHY

[43] Outsystems Documentation. Read-Only Data Optimized | December, 2020. https:

//success.outsystems.com/Documentation/11/Developing_an_Application/

Use_Data/Offline/Offline_Data_Sync_Patterns/Read-Only_Data_Optimized.

Accessed: 20-02-2021.

[44] HTML5 - Drag drop. https://www.tutorialspoint.com/html5/html5_drag_

drop.htm. Accessed: 18-01-2019.

[45] Sorting with the help of HTML5 Drag’n’Drop API. https://github.com/SortableJS/
Sortable/wiki/Sorting-with-the-help-of-HTML5-Drag’n’Drop-API. Ac-

cessed: 21-04-2020.

[46] Sortable v1.0 — New capabilities. https://github.com/SortableJS/Sortable/

wiki/Sortable-v1.0-%E2%80%94-New-capabilities. Accessed: 21-03-2020.

[47] Outsystems Documentation. The Complete Guide to Creating Components. https:
//success.outsystems.com/Documentation/Best_Practices/The_Complete_

Guide_to_Creating_Components. Accessed: 22-03-2020.

[48] SortableJS - JavaScript library for reorderable drag-and-drop lists. http://sortablejs.
github.io/Sortable/. Accessed: 22-03-2020.

[49] Swap Thresholds and Direction. https://github.com/SortableJS/Sortable/

wiki/Swap-Thresholds-and-Direction. Accessed: 22-03-2020.

[50] Dragging Multiple Items in Sortable. https://github.com/SortableJS/Sortable/

wiki/Dragging-Multiple-Items-in-Sortable. Accessed: 22-03-2020.

[51] Get Started With ESP8266 Using "AT Commands"Via Arduino. https : / / www .

instructables.com/id/Get- Started- With- ESP8266- Using- AT- Commands-

Via-Ard/. Accessed: 31-12-2019.

[52] Arduino Soil Moisture Sensor. https://www.instructables.com/id/Arduino-

Soil-Moisture-Sensor/. Accessed: 21-07-2020.

[53] W. W. F. for Nature: Viera Ukropcova and S. Halevy. “Living Planet Report 2017 -

Appetite for Destruction.” In: (October, 2017).

[54] W. W. F. for Nature. “Living Planet Report 2016.” In: (2016).

[55] R. Plumb. “Precision agriculture in the 21st century: geospatial and informa-

tion technologies in crop management, Committee on Assessing Crop Yield: Site-

Specific Farming, Information Systems and Research Opportunities, Board on Agri-

culture, National Research Council, National Academy Press, Washington DC, USA

1997, xii+ 149 pp, price£ 32.95. ISBN 0-309-05893-7.” In: Pest Management Science
56.8 (2000), pp. 723–723.

[56] Precision Crop Management - Putting plants on a tailor-made diet. http://www.cema-
agri.org/page/3-precision-crop-management. Accessed: 13-08-2018.

90

https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read-Only_Data_Optimized
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read-Only_Data_Optimized
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read-Only_Data_Optimized
https://www.tutorialspoint.com/html5/html5_drag_drop.htm
https://www.tutorialspoint.com/html5/html5_drag_drop.htm
https://github.com/SortableJS/Sortable/wiki/Sorting-with-the-help-of-HTML5-Drag'n'Drop-API
https://github.com/SortableJS/Sortable/wiki/Sorting-with-the-help-of-HTML5-Drag'n'Drop-API
https://github.com/SortableJS/Sortable/wiki/Sortable-v1.0-%E2%80%94-New-capabilities
https://github.com/SortableJS/Sortable/wiki/Sortable-v1.0-%E2%80%94-New-capabilities
https://success.outsystems.com/Documentation/Best_Practices/The_Complete_Guide_to_Creating_Components
https://success.outsystems.com/Documentation/Best_Practices/The_Complete_Guide_to_Creating_Components
https://success.outsystems.com/Documentation/Best_Practices/The_Complete_Guide_to_Creating_Components
http://sortablejs.github.io/Sortable/
http://sortablejs.github.io/Sortable/
https://github.com/SortableJS/Sortable/wiki/Swap-Thresholds-and-Direction
https://github.com/SortableJS/Sortable/wiki/Swap-Thresholds-and-Direction
https://github.com/SortableJS/Sortable/wiki/Dragging-Multiple-Items-in-Sortable
https://github.com/SortableJS/Sortable/wiki/Dragging-Multiple-Items-in-Sortable
https://www.instructables.com/id/Get-Started-With-ESP8266-Using-AT-Commands-Via-Ard/
https://www.instructables.com/id/Get-Started-With-ESP8266-Using-AT-Commands-Via-Ard/
https://www.instructables.com/id/Get-Started-With-ESP8266-Using-AT-Commands-Via-Ard/
https://www.instructables.com/id/Arduino-Soil-Moisture-Sensor/
https://www.instructables.com/id/Arduino-Soil-Moisture-Sensor/
http://www.cema-agri.org/page/3-precision-crop-management
http://www.cema-agri.org/page/3-precision-crop-management

BIBLIOGRAPHY

[57] QR-Codes for Process and Control Optimization, November, 2019. https://blog.

quanos-service-solutions.com/en/expert-blog/qr-codes-for-process-

and-control-optimization. Accessed: 01-11-2020.

[58] Github repository from Darryn Campbell - DataWedge-Cordova-Sample - Under MIT
License. https://github.com/darryncampbell/DataWedge-Cordova-Sample.

Accessed: 02-11-2020.

[59] Outsystems Documentation. Using Cordova Plugins | October, 2020. https://

success.outsystems.com/Documentation/11/Extensibility_and_Integration/

Mobile_Plugins/Using_Cordova_Plugins. Accessed: 01-11-2020.

[60] Outsystems Documentation. Heavy Timers. https://www.outsystems.com/

learn/lesson/1749/heavy-timers. Accessed: 07-05-2020.

[61] Outsystems Documentation. Design Scalable Database Queueing Using Light Pro-
cesses. https://success.outsystems.com/Documentation/10/Developing_an_
Application/Use_Processes_(BPT)/Design_Scalable_Database_Queueing_

Using_Light_Processes. Accessed: 07-05-2020.

[62] Light BPT & Parallel Processing - Lightweight Multitasking - nextstep. https://pt.

slideshare.net/OutSystems/what-is-light-bpt-and-how-can-you-use-it-

for-parallel-processing. Accessed: 07-05-2020.

[63] Outsystems Documentation. Light Processes Under The Hood. https : / / www .

outsystems.com/forums/discussion/41063/light-processes-under-the-

hood/. Accessed: 07-05-2020.

91

https://blog.quanos-service-solutions.com/en/expert-blog/qr-codes-for-process-and-control-optimization
https://blog.quanos-service-solutions.com/en/expert-blog/qr-codes-for-process-and-control-optimization
https://blog.quanos-service-solutions.com/en/expert-blog/qr-codes-for-process-and-control-optimization
https://github.com/darryncampbell/DataWedge-Cordova-Sample
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Mobile_Plugins/Using_Cordova_Plugins
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Mobile_Plugins/Using_Cordova_Plugins
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Mobile_Plugins/Using_Cordova_Plugins
https://www.outsystems.com/learn/lesson/1749/heavy-timers
https://www.outsystems.com/learn/lesson/1749/heavy-timers
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Processes_(BPT)/Design_Scalable_Database_Queueing_Using_Light_Processes
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Processes_(BPT)/Design_Scalable_Database_Queueing_Using_Light_Processes
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Processes_(BPT)/Design_Scalable_Database_Queueing_Using_Light_Processes
https://pt.slideshare.net/OutSystems/what-is-light-bpt-and-how-can-you-use-it-for-parallel-processing
https://pt.slideshare.net/OutSystems/what-is-light-bpt-and-how-can-you-use-it-for-parallel-processing
https://pt.slideshare.net/OutSystems/what-is-light-bpt-and-how-can-you-use-it-for-parallel-processing
https://www.outsystems.com/forums/discussion/41063/light-processes-under-the-hood/
https://www.outsystems.com/forums/discussion/41063/light-processes-under-the-hood/
https://www.outsystems.com/forums/discussion/41063/light-processes-under-the-hood/

A
p
p
e
n
d
i
x

A
Zebra DataWedge Connector Plugin

As mentioned in Chapter 5, to showcase the mobile capabilities in Oustystems, a plugin

component wrapping the cordova plugin available in [58] was developed. The first thing

to do was to read the github repository thoroughly and ask the owner for permission to

use the code, as there was no available license at the time.

Outsystems-wise, a module was created. Then, the Common Plugin was also down-

loaded and used, in order to follow best practices. The following step was to reference

the cordova plugin by including the JSON identifier in the component’s Extensibility

Configuration, as seen in Listing A.1.

Listing A.1: Referencing the Cordova plugin.

1 {

2 "plugin":

3 {

4 "identifier": "com-darryncampbell-cordova-plugin-intent@1.3.0"

5 }

6 }

Before diving into the developments, it is important to mention that the cordova

plugin available in the repository in [58] interfaces with the scanner hardware via android

intents, communicating with an application named DataWedge, which is available in all

Zebra devices. With this plugin, it will be possible to interact with the scanner, both via

the physical buttons on the mobile device, or via buttons and links in an application.

According to the Outsystems best practices, its important to have an action to verify

if the plugin is available in the and return an IsAvailable Boolean with the result [59].

Listing A.2 verifies if the plugin is available. Moreover, since this component is only to

be used in Zebra devices, it is important to verify if that is indeed the case, by checking if

the application that will communicate with the component via intents is also available.

93

APPENDIX A. ZEBRA DATAWEDGE CONNECTOR PLUGIN

This is done through another plugin, AppAvailabilityPlugin, which will check for the

scheme "com.symbol.datawedge". Notice that for this component, it is also a good practice

to verify if it exists. All of this is shown in Figure A.1a.

The remaining actions will all make use of this first action, as seen in Figure A.1b,

since one does not want perform actions if the plugin is not available. When using

the plugin, it is required to register the broadcast receiver, allowing the DataWedge to

communicate with the application where the component is being used, by providing

its schema via input. Other configurations also took place, such as the profile name

previously defined in DataWedge, as well as a boolean that indicates if a sound is to be

played upon scanning a code.

A WB was created, containing 2 hidden text inputs and 2 hidden links. One of the

inputs was used to store the scanned barcode/QR-code, whereas the second stored the

number of available scanners detected in DataWedge, since external scanners can also be

connected. One of the hidden links will call an action, OnScanReceived, which will retrieve

the scanned barcode from the aforementioned input and send it through an Outsystems

event. The same is done with the other link, returning a boolean indicating if the scanner

is available (at least 1 detected scanner). Note that the identifiers of both the links and

the inputs are passed to the StartBroadcastReceiver Javascript node, as the inputs will be

populated from rows 109 to 124 in Listing A.3, as well as the links will be clicked inhere.

The StartBroadcastReceiver snippet is called upon the rendering of the WB, on the OnReady

action.

Furthermore, 4 more actions were included in the module. These are: DisableScanner

to avoid the scanner from being used accidentaly; ToggleSoftTrigger which will toggle the

scanner when this action is called; TriggerPress, which will keep scanning for as much

time as the user is pressing a button and UnregisterBroadcastReceiver, which should be

called to stop listening from intents, for example, on the OnDestroy event. These actions

will not be shown as they were also adapted from [58] and are simpler.

Listing A.2: Assessing if cordova plugin is available in the target module.

1 $parameters.IsAvailable = false;

2

3 if (typeof(window.plugins) !== 'undefined') {

4 $parameters.IsAvailable = typeof(window.plugins.intentShim) !== 'undefined';

5 }

94

.,

Listing A.3: Javascript snippet to register a broadcast receiver

1 function sendCommand(extraName, extraValue) {

2 var sendCommandResults = "false";

3 //console.log("Sending Command: " + extraName + ", " + JSON.stringify(extraValue)

↪→);

4 var broadcastExtras = {};

5 broadcastExtras[extraName] = extraValue;

6 broadcastExtras["SEND_RESULT"] = sendCommandResults;

7

8 window.plugins.intentShim.sendBroadcast({

9 action: "com.symbol.datawedge.api.ACTION",

10 extras: broadcastExtras

11 };

12 }

13

14 function datawedge63() {

15 /* (...) */

16 }

17

18 function datawedge64() {

19

20 /* (...) */

21 var profileConfig2 = {

22 "PROFILE_NAME": $parameters.ProfileName,

23 /* (...) */

24 };

25 sendCommand("com.symbol.datawedge.api.SET_CONFIG", profileConfig2);

26

27 var profileConfig3 = {

28 "PROFILE_NAME": $parameters.ProfileName,

29 /* (...) */

30 "decode_audio_feedback_uri": $parameters.BeepSound

31

32 };

33 sendCommand("com.symbol.datawedge.api.SET_CONFIG", profileConfig3);

34

35 setTimeout(function () {

36 sendCommand("com.symbol.datawedge.api.GET_ACTIVE_PROFILE", "");

37 }, 1000);

38 }

39

40 function registerBroadcastReceiver() {

41 window.plugins.intentShim.registerBroadcastReceiver({

42 filterActions: [

43 /* (...) */

44]

45 },

46 function (intent) {

95

APPENDIX A. ZEBRA DATAWEDGE CONNECTOR PLUGIN

47 /* (...) */

48

49 if (intent.extras.hasOwnProperty('

↪→ com.symbol.datawedge.api.RESULT_GET_VERSION_INFO'))

50 {

51 /* (...) */

52

53 }

54 else if (intent.extras.hasOwnProperty('

↪→ com.symbol.datawedge.api.RESULT_ENUMERATE_SCANNERS'))

55 {

56 // Return from our request to enumerate the available scanners

57 var enumeratedScannersObj = /* (...) */

58 var numberActiveScanners = enumeratedScannersObj.length;

59

60 document.getElementById($parameters.IsScannerActiveId).value =

↪→ numberActiveScanners;

61 document.getElementById($parameters.HiddenLinkHasScannersId).click();

62

63 }

64 else if (!intent.extras.hasOwnProperty('RESULT_INFO') && intent.extras["

↪→ com.symbol.datawedge.data_string"] != null)

65 {

66 document.getElementById($parameters.WidgetId).value = intent.extras["

↪→ com.symbol.datawedge.data_string"];

67 document.getElementById($parameters.HiddenLinkUponScanId).click();

68 //console.log("Scan: " + intent.extras["com.symbol.datawedge.data_string

↪→ "]);

69 }

70 }

71);

72 }

73

74 registerBroadcastReceiver();

75 // To determine version

76 sendCommand("com.symbol.datawedge.api.GET_VERSION_INFO", "");

77

78 /*

79 Adapted from 2019 Darryn Campbell https://github.com/darryncampbell/

↪→ DataWedge-Cordova-Sample/blob/master/LICENSE

80 MIT license available in: https://github.com/darryncampbell/DataWedge-Cordova-Sample/

↪→ blob/master/LICENSE

81 */

96

(a) (b)

Figure A.1: Zebra DataWedge Connector Plugin Outsystems actions with (a) to check
for the cordova plugin availability in the target module and (b) to register the broadcast
receiver.

97

A
p
p
e
n
d
i
x

B
Bootstraping Data

Due to the SARS-CoV-2 outbreak and resulting confinement, the laboratory material

became inaccessible for quite some time. For this reason, the strategy of uploading data

from an Excel file to the Outsystems platform took place. Those developments, although

were not planned, allow to show the reader some more functionalities of the Outsystems’

technology, namely, the use of timers, integrated with a Light Business Process Technology

(LBPT).

Before diving into the timers and LBPTs, first, one needs to generate data. For that,

a simple python script was written that would generate random sensor values, build

the JSON that would be received from an Arduino and save that data on an Excel file.

This script is depicted in Listing B.1.

Listing B.1: Python Script to generate devices and transducers’ data to an Excel file.

1 import xlsxwriter

2

3 from random import seed

4 from random import random

5

6 import datetime

7

8 def generate_transducer_value (transducer, is_sensor):

9 random_value = random()

10 if(is_sensor):

11 return "'" + str(random_value) + "'"

12 return "'" + str(random_value > 0.5) + "'"

13

14 def write_transceiver_JSON(transducer, value, timestamp):

15 return "{'transducer':'"+transducer+"','value':"+str(value)+", 'timestamp': '#"+

↪→ timestamp.strftime("%Y-%m-%d %H:%M:%S")+"#'},"

16

99

APPENDIX B. BOOTSTRAPING DATA

17 def bootstrap_device(device, timestamp, device_id, index):

18 JSON = "{'device':["

19 for transducer in device:

20 JSON+=write_transceiver_JSON(transducer, generate_transducer_value(transducer,

↪→ device[transducer]), timestamp)

21 # print(JSON)

22 JSON = JSON[:len(JSON)-1] + "]}"

23 transducers_data.write('B'+str(index), JSON)

24 transducers_data.write('C'+str(index), device_id)

25

26 # seed random number generator

27 seed(1)

28

29 # key: transducer; value: is_sensor

30 deviceA = {'moisture': True, 'button1': False, 'rgb': False, 'leds1': False}

31 deviceB = {'dht11_temp': True, 'dht11_humidity': True, 'leds2': False, 'button2':

↪→ False, 'potentiometer': True}

32 deviceC = {'piezo': False, 'leds3': False, 'ldr': True, 'button3': False, 'button4':

↪→ False}

33

34 devices = {'A': deviceA, 'B': deviceB, 'C': deviceC}

35

36 workbook = xlsxwriter.Workbook('python/transducers_data.xlsx')

37 transducers_data = workbook.add_worksheet('Transducers Data')

38

39 transducers_data.write('A1', 'Id')

40 transducers_data.write('B1', 'JSON')

41 transducers_data.write('C1', 'Device')

42

43 current_date = datetime.datetime.now()

44

45 # generate device data

46 for i in range(1,1000, 3):

47 index = i

48 for device in devices:

49 index+=1

50 bootstrap_device(devices[device], current_date, device, index)

51 current_date = current_date + datetime.timedelta(minutes = 15)

52

53 workbook.close()

Dividing the script into smaller snippets, in rows 8 − 12, a function called generate_

↪→ transducer_value will return a random decimal number in case the transducer is a

sensor, or a boolean value, otherwise. This value is used as input to a function called

write_transceiver_JSON to create a JSON object with the format in Listing B.2. The function

receives the transducer name, its value and a timestamp (current date time incremented

15 minutes within a loop (row 52)). Next, a function named bootstrap_device joins all of

the transducers (JSON objects into a JSON list, as shown in Listing B.3.

100

Listing B.2: Transducer JSON Object.

1 {

2 transducer : "dht11_humidity",

3 value : "54",

4 timestamp : "#2020-08-01 13:01:55#"

5 },

Listing B.3: Device JSON Object

1 {

2 device: [

3 {

4 transducer : "leds1",

5 value : "False",

6 timestamp : "#2020-08-01 02:01:55#"

7 },

8 {

9 transducer : "dht11_humidity",

10 value : "54",

11 timestamp : "#2020-08-01 13:01:55#"

12 },

13 (...)

14]}

The devices were defined from row 30 to 32 of Listing B.1 as key value lists, with the

key being the transducer identifier the value indicating if the device is a sensor. As this

device is received as input in the function, it can then be iterated. For each transducer

on the device, the write_transducer_JSON is called and its result appended to the JSON list.

This is then written on an Excel file, as shown in Figure B.1.

Figure B.1: Screenshot with bootstraped device data.

Once this is done, it is time to upload this data to the Outsystems platform. The first

step is to add the xlsx-file to the IoTDevices_CS module resources. After this, one needs

to have a way of storing this data on the Outsystems’ platform. For that, a novel entity

was created to store the temporary data retrieved from the resources’ file. This entity

simply has an Id and the JSON text field.

Next, a timer will be used to occasionally load the data from the xlsx-file to the tem-

porary table. The reason why a temporary table is used is because it is not a good practice

to process the data on a timer, as timeouts and errors may occur.

101

APPENDIX B. BOOTSTRAPING DATA

One way to cope with this is to use Heavy Timers [60], where a batch of data is

processed at a time, cached and, at the same time, the timer’s timeout is controlled and

when close to the timeout, the timer is waked up again to avoid unprocessed data. A

novel way to deal with the timeout issue is to use LBPTs. For performance reasons, it is

preferable to insert all of the xlsx-data at once on the Outsystems DB. For that reason,

the Forge (see Section 2.4.3) Component BulkInsert 1 was used.

The way LBPTs differ from the traditional BPTs is that the former do not require

tracking and, therefore, they run much faster [61]. Another difference is that LBPTs do

not allow Output parameters and Callback actions [62][63]. Other than event handling;

large scale batch processing; and replacing timers without schedule; LBPTs also are suited

for background processing [62][63] (the functionality that will be used in this case, to get

the data from the temporary table and do some background processing, namely send data

via MQTT). To transform a BPT into a light BPT, one needs to do the following [61]: create

an event triggered by a DB event, namely, when creating an entity record (the property

Expose Process Entity must be set to “No”); the process must be simple, only containing

one Automatic Activity and finally, on the Service Center (see Section 2.4.3), enable the

Light Process Execution on the module, after which, the module must be republished, so

that the changes take effect (a compilation message will confirm that the process is now

lightweight).

In this sense, an Automatic Activity was included in the Process flow, connecting to

the MQTT broker, fetching the temporary entity record associated with the process and

after, sending the retrieved JSON to the aforementioned broker. It is important to note

that, on the Automatic Activity (Figure B.2c), there is an action to connect to the MQTT

broker, after which the temporary table record is fetched, based on its Id, available on

the process scope; and, if there is no record on the table, one simply disconnects from the

broker; otherwise, the JSON is sent before disconnecting.

Also, on the Figure B.2a, where the timer logic is depicted, it is possible to see that an

Outsystems’ action called ExcelToRecordList is used to ease the convertion of an Excel file

to the temporary table’s record. For the Bulk Insert action, however, it was required to

convert the record list to an object, by using the Outsystems’ function ToObject.

1https://www.outsystems.com/forge/component-overview/1117/bulkinsert

102

https://www.outsystems.com/forge/component-overview/1117/bulkinsert

(a) (b) (c)

Figure B.2: Logic to load and send “sensors’ data” generated a-priori with (a) being the
timer logic to convert the excel data into the temporary entity record and further, bulk
insert it into the temporary table; (b) is the LBPT, with an Automatic Activity inside and
finally; (c) with the Automatic Activity that gets the record from the temporary table and
sends its JSON via MQTT. Note that the two assigns in c) are simply a trick to join the if
True branch with the hiveDisconnect action.

103

A
p
p
e
n
d
i
x

C
Prototype Embedded Code

The code depicted in Listing C was uploaded to the Arduino. This contains, both the code

to connect to the MQTT broker (review Section 6.2), but also, to retrieve sensor data and

send that data via MQTT and to retrieve messages to change the status of actuators. Only

the code for some transducers is depicted in Listing C.

Listing C: Arduino Embedded Code

1 #include <string.h>

2 #include <TimeLib.h>

3 #include <SoftwareSerial.h>

4 #include <PubSubClient.h>

5 #include <WiFiEspClient.h>

6 #include <WiFiEsp.h>

7 #include <dht11.h>

8

9 /*WiFi Connection*/

10 const char* ssid = "example_ssid";

11 const char* password = "example_password"; // WIFI network PASSWORD

12

13 /*MQTT*/

14 const char* mqttServer = "<SRVR>.<HOST>.com";

15 const int mqttPort = "<PORT>";

16 const char* mqttUser = "<USER>";

17 const char* mqttPassword = "<PWD>";

18

19 /****Transducers****/

20 String deviceA_decimal[1] = { "moisture" };

21 String deviceA_boolean[3] = { "button1", "rgb", "leds1" };

22 String deviceB_decimal[3] = { "dht11_temp", "dht11_humidity", "potentiometer" };

23 String deviceB_boolean[2] = { "led2", "button2" };

24 String deviceC_decimal[1] = { "ldr" };

105

APPENDIX C. PROTOTYPE EMBEDDED CODE

25 String deviceC_boolean[5] = { "piezo", "leds3", "button3", "button4" };

26

27 /*Time*/

28 #define TIME_HEADER "T" // Header tag for serial time sync message

29 #define TIME_REQUEST 7 // ASCII bell character requests a time sync message

30

31 void processSyncMessage() {

32 unsigned long pctime;

33 const unsigned long DEFAULT_TIME = 1357041600; // Jan 1 2013

34

35 if(Serial.find(TIME_HEADER)) {

36 pctime = Serial.parseInt();

37 if(pctime >= DEFAULT_TIME) { // check the integer is a valid time (greater than

↪→ Jan 1 2013)

38 setTime(pctime); // Sync Arduino clock to the time received on the serial port

39 }

40 }

41 }

42

43 time_t requestSync() {

44 Serial.write(TIME_REQUEST);

45 return 0; // the time will be sent later in response to serial mesg

46 }

47

48 String printDigits(int digits){

49 // utility function for digital clock display: prints preceding colon and leading 0

50 if(digits < 10)

51 return "0" + String(digits);

52 return String(digits);

53 }

54

55 String returnTimestamp() {

56 // digital clock display of the time

57 String timestamp = "#";

58 timestamp += year();

59 timestamp += "-";

60 timestamp += printDigits(month());

61 timestamp += "-";

62 timestamp += printDigits(day());

63 timestamp += " ";

64 timestamp += printDigits(hour());

65 timestamp += ":";

66 timestamp += printDigits(minute());

67 timestamp += ":";

68 timestamp += printDigits(second());

69 timestamp += "#";

70

71 return timestamp;

72 }

73

106

74 String returnJSON(String transducerName, String value) {

75

76 String json = "";

77 json += "{'transducer':'"+transducerName+"','value':'";

78 json += value;

79 json += "','timestamp':'"+returnTimestamp()+"'},";

80 delay(100);

81

82 return json;

83 }

84

85 /*ESP-01*/

86 WiFiEspClient espClient;

87 PubSubClient client(espClient);

88 SoftwareSerial soft(2, 3);

89 int status = WL_IDLE_STATUS;

90

91 /*Messages*/

92 unsigned long lastMsg = 0;

93 #define MSG_BUFFER_SIZE (400)

94 char msg[MSG_BUFFER_SIZE];

95 int value = 0;

96

97 /****Transducer Pins****/

98 int moisture_pin = A0;

99 int ldr_pin = A5;

100 int dht_pin = 5;

101 int led_pin = 4;

102 int led_pin_2 = 0;

103 int led_pin_3 = 1;

104 int rgb_pin = 10;

105 int buttons_pin = A3;

106 int potentiometer_pin = A1;

107 int piezo_speaker_pin = 6;

108 dht11 DHT11;

109

110 void InitWiFi(){

111

112 delay(10);

113

114 soft.begin(9600); // Initialize serial for ESP module

115 WiFi.init(&soft); // Initialize ESP module

116

117 Check for the presence of the shield

118 if (WiFi.status() == WL_NO_SHIELD) {

119 Serial.println("WiFi shield not present");

120 while (true);

121 }

122

123 Serial.println(F("Connecting to AP "));

107

APPENDIX C. PROTOTYPE EMBEDDED CODE

124 while (status != WL_CONNECTED) {

125 Serial.print(F("Attempting to connect to WPA SSID: "));

126 Serial.println(ssid);

127

128 // Connect to WPA/WPA2 network

129 status = WiFi.begin(ssid, password);

130 delay(500);

131 }

132 Serial.println(F("Connected to AP"));

133 }

134

135 /*********************************/

136 /******* Receive Topics *********/

137 /*********************************/

138

139 /*

140 * /outsystems

141 * /device

142 */

143

144 void callback(char* topic, byte* payload, unsigned int length) {

145 Serial.print("Message arrived [");

146 Serial.print(topic);

147 Serial.println("] ");

148 boolean IsValidTopic = false;

149

150 for(auto x : deviceA_decimal) {

151 Serial.println(x);

152 x.toCharArray(msg, MSG_BUFFER_SIZE);

153 IsValidTopic = IsValidTopic or strcmp(strcat("/device/", msg), topic) == 0;

154 if(IsValidTopic)

155 break;

156 }

157

158 /* A portion of the code was commented. */

159

160 }

161

162 void reconnect() {

163 Serial.println("Connecting to MQTT...");

164 if (client.connect("ESP8266Client", mqttUser, mqttPassword)) {

165 Serial.println("connected");

166 client.subscribe("inTopic");

167 } else {

168 Serial.print("failed with state ");

169 Serial.print(client.state());

170 delay(2000);

171 }

172 }

173

108

174 void setup() {

175 Serial.begin(9600);

176

177 setSyncProvider(requestSync); //set function to call when sync required

178 Serial.println("Waiting for sync message");

179 delay(1000);

180

181 /*********************************/

182 /******* Initialize Pins *********/

183 /*********************************/

184 pinMode(ldr_pin, INPUT);

185 /* A portion of the code was commented. */

186 pinMode(led_pin, OUTPUT);

187 /* A portion of the code was commented. */

188

189 InitWiFi();

190 client.setServer(mqttServer, mqttPort);

191 client.setCallback(callback);

192

193 for(unsigned int i = 0; i<4294967295; i++) {

194 snprintf (msg, MSG_BUFFER_SIZE, "%u", i);

195 client.publish("outTopic", msg);

196 }

197 }

198

199 void loop() {

200

201 if (Serial.available()) {

202 processSyncMessage();

203 }

204 if (timeStatus()!= timeNotSet) {

205 returnTimestamp();

206 }

207 delay(150);

208

209 if (!client.connected()) {

210 reconnect();

211 }

212 client.loop(); // This should be called regularly to allow the client to process

↪→ incoming messages and maintain its connection to the server.

213

214 /* A portion of the code was commented. */

215

216 /****************/

217 /*** Device 3 ***/

218 /****************/

219 /* (...) */

220 json = "{'device':[";

221

222 /*** Potentiometer (Sensor) ***/

109

APPENDIX C. PROTOTYPE EMBEDDED CODE

223 json += returnJSON("potentiometer", (String)analogRead(potentiometer_pin));

224

225 json += returnJSON("buttons1", (String)analogRead(buttons_pin));

226

227 json += returnJSON("ldr", (String)analogRead(ldr_pin));

228

229 json += returnJSON("leds1", "1");

230 json += returnJSON("leds2", "1");

231 json += returnJSON("leds3", "1");

232

233 digitalWrite(led_pin, HIGH);

234 digitalWrite(led_pin_2, HIGH);

235 digitalWrite(led_pin_3, HIGH);

236 delay(200);

237 digitalWrite(led_pin, LOW);

238 digitalWrite(led_pin_2, LOW);

239 digitalWrite(led_pin_3, LOW);

240

241 json += returnJSON("leds1", "0");

242 json += returnJSON("leds2", "0");

243 json += returnJSON("leds3", "0");

244

245 json += returnJSON("piezo", "1");

246 tone(piezo_speaker_pin, 1000); // Send 1KHz sound signal...

247 analogWrite(rgb_pin, 150);

248 delay(150); // ...for 1 sec

249 noTone(piezo_speaker_pin); // Stop sound...

250 analogWrite(rgb_pin, 0);

251 delay(150); // ...for 1sec

252 json += returnJSON("piezo", "0");

253 json += "]}";

254 //Serial.println(json);

255

256 json.toCharArray(msg,MSG_BUFFER_SIZE);

257 client.publish("device/deviceC", msg);

258 }

110

	Introduction
	Motivation
	Proposal
	Dissertation Structure

	Literature Review
	IoT Platforms
	IoT Protocols
	Communication/Transport Protocols
	Data Protocols
	Semantic Protocols

	Low-Code Development Platforms
	Outsystems Overview
	React vs. Traditional Web
	Service Studio
	Interface
	Logic
	Processes
	Data

	Service Center, LifeTime, Integration Studio and Forge

	Architecture
	Introduction
	User Stories and Database Design
	Users and Groups Management
	Devices and Locations Management
	Dashboard Configuration
	Mobile Application

	Information Architecture Organization and Assembling

	Developments
	Locations Actions
	Location-User and Device Actions
	Locations List Screen
	Locations Detail Screen
	Devices Actions
	Devices List Screen
	Devices Detail Screen
	Transducers Actions
	Transducer Block
	Communications Data
	Message Payload Registration
	Dashboard Actions
	Dashboard Detail Screen
	Dashboard Main Screen
	Card Actions
	Card Blocks
	Offline Synchronization

	SortableJS Component
	SortableJS Library
	Development

	Prototype
	Arduino WiFi Module Configuration
	Integration with the MQTT Protocol
	Prototype Schematics

	Validations
	Precision Agriculture Use Case
	Teams
	Locations
	Devices and Transducers
	Dashboard
	Components
	Offline Synchronization
	Discussion

	Conclusions and Future Work
	Bibliography
	Apêndices
	Zebra DataWedge Connector Plugin
	Bootstraping Data
	Prototype Embedded Code

