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ABSTRACT 

The insurance market is highly competitive. To stay in line with other companies in today's world, it is 

not enough for a company to have the best price. The most important move now is to make a 

personalized offer to each client. Insurance companies have an enormous amount of data that can be 

used to understand their customers better. What do they want? What offer would attract new clients, 

and what offer would keep existing customers from leaving? The project aims to classify customers’ 

profiles based on their individual preferences in motor insurance. 
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1. INTRODUCTION 

This report is a result of a 9-months internship at Grupo Ageas Portugal. The project took place from 

September 2019 to June 2020. 

Grupo Ageas Portugal is one of the biggest and well-known insurance companies in Portugal. 

Initially, the internship project was about creating a customer classification for a joint project of Ageas 

and Millennium BCP. The first month of work was dedicated to meetings with relevant stakeholders 

and gathering information about the new application. However, after a few weeks, it became clear 

that the launching of the application was postponed for an undefined period.  

After analyzing projects in the company and doing research about them, a new project was defined. 

Ageas offers different insurance products. This project is focused on motor insurance.  

Motor Insurance is a kind of insurance policy that covers vehicles from potential risks. In Portugal, 

motor insurance is mandatory. Therefore, whenever a person buys any car, vehicle insurance is equally 

valuable and essential. 

The biggest challenge for insurance companies is retaining existing customers and getting car owners 

to obtain motor insurance from their company. A customer can easily switch from one insurer to 

another. The competition will be won by the one who has a personalized offer with the best price for 

each client.  

Considering the business needs and available data, the main objective of this project was to make 

classification of motor insurance customers profiles based on their preferences in packages and 

combination of coverages. 

This report is divided into two parts. The first part provides a Literature Review of classification 

algorithms studied during the project and other topics used to obtain the results. The second part 

contains a description of the process used to build a classification model for car insurance clients. 
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2. LITERATURE REVIEW 

2.1. DATA MINING PROCESS 

In order to perform data mining analysis, there are standard data mining processes that can be 

followed during the project. Two most popular ones are CRISP-DM and SEMMA.  

2.1.1. CRISP-DM 

A cross-industry standard process for data mining known as CRISP-DM is an analytics model that 

describes the data science lifecycle. (Chapman, et al., 1999) The first version of this model, CRISP-DM 

1.0, was published in 1999. 

This process contains six steps that form a cycle. 

 
Figure 2.1 - CRISP-DM1 Process 

 

1. Business understanding. The first phase is focused on understanding the project from a 

business perspective. Based on this, the data mining problem is defined, and a project 

plan is created. 

2. Data understanding. This phase starts with data gathering and continues with data 

exploration. During this step, data findings can be discovered, and some data quality 

problems can be understood. This information is a basis for the next step. 

3. Data preparation. This phase covers all data manipulations and changes needed to build 

the final dataset. It includes data cleaning, variable transformation, variable selection, 

creation of new variables. 

                                                           
1 Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R. (1999, 2000). CRISP-DM 1.0.  
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4. Modeling. In this step, suitable machine learning models are tested as well as their 

parameters. 

5. Evaluation. During this phase, the model chosen in the previous step is being tested, and 

the results are analyzed. If the model shows good results, a business decision is made 

either to use this model or not at the end of this step. 

6. Deployment. This phase is what differentiates the academic and business projects. In 

business, model creation is not the last step. The model is generally useless if it cannot 

be deployed. During this phase, various teams in the company work together to bring 

the model to life. 

2.1.2. SEMMA 

The SEMMA model  is specific to SAS. According to SAS Institute, data mining is the process of Sampling, 

Exploring, Modifying, Modeling, and Assessing large amounts of data to uncover previously unknown 

patterns which can be utilized as a business advantage (SAS Institute, 2017).  

This model contains all the steps needed to perform a data mining process in any industry. 

1. Sampling. Splitting the data into train, validation, and test datasets.  

2. Exploring. Data exploration to get the main findings, discover trends, anomalies, and 

relationships. 

3. Modifying. Creation, selection, and transformation of variables to change the dataset. 

4. Modeling. Applying Machine Learning models to find a combination of data that reliably 

predicts a desired outcome. 

5. Assessing. Evaluation of the results of the finding from the data mining process. 

 

Figure 2.2 - SEMMA Process 
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2.2. TOOLS AND TECHNOLOGY 

SAS is software developed by SAS Institute. This tool is used widely for data management, data 

mining, business intelligence, and machine learning. 

There are various tools that SAS Institute offers for data analytics. In this project, SAS Enterprise 

Guide and SAS Enterprise Miner are two tools that were used on each step.  

2.2.1. SAS Enterprise Guide 

SAS Enterprise Guide is a point-and-click, menu- and wizard-driven tool that helps users analyze data 

and publish their results (SAS Institute, 2017). This tool allows users to manage and join multiple 

datasets to perform data analysis.  

SAS EG makes it easy to join multiple data sources and visualize this process providing an intuitive 

process flow. 

The most significant advantage of SAS Enterprise Guide is that it allows users to use code or a “point 

and click” interface to manipulate data. 

2.2.2. SAS Enterprise Miner 

SAS Enterprise Miner is one of the most common data mining software tools (Nisbet, Elder & Miner, 

2009). It is a tool for analytical professionals who analyze big volumes of data and apply advanced 

analytics techniques.  

SAS EM visualizes the process of data mining through the five-step SAS SEMMA model, described in 

the previous chapter. Users select the needed tab from the toolbar to build a process flow and drag 

and drop them, connecting with nodes. It supports several algorithms, such as neural networks, 

regression, decision trees, and others. 

One of the advantages of SAS EM is that this tool allows users to understand key relationships and 

develop models clearly and quickly by using an intuitive interface. 

SAS Enterprise Miner is a universal tool and can be used in different industries. 
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2.3. DATA MINING TECHNIQUES 

Data mining is a process of discovering patterns and findings in data sets. It is also known as knowledge 

discovery in databases (Han, 1996). The knowledge extracted from historical data helps users make 

predictions. These techniques are widely used in business to make data-driven decisions. 

Data mining techniques were established as the result of a research and product development process 

(Rygielski et al., 2002). Data mining began with the initial storage of data on computers and has 

progressed with improvements in data access to the point where users can now navigate through data 

in real-time. 

Some of the most used data mining techniques are classification, clustering, regression, association 

rules, outlier detection, prediction, visualization (Ramageri, 2010). 

The ones that were used in this project are: 

▪ Data cleaning and preparation. In the data mining process, cleaning and preparing data 

is crucial. Raw data must be cleansed and structured before it can be used in various 

analytic ways. Several parts of data modeling, transformation, data migration, and 

aggregation are applied in data cleaning and preparation. Recognizing the basic features 

and attributes of data is crucial in identifying the optimal use of data. 

▪ Tracking patterns. Pattern recognition is the following data mining approach. It entails 

recognizing and tracking data patterns to make conclusions regarding business 

outcomes.  

▪ Outlier detection. It helps to detect anomalies in the dataset, treat them and improve 

the results of future work with this data.  

▪ Classification. Classification data mining techniques are used to examine the data 

attributes from various sources. After determining the key properties of these data 

kinds, they can be categorized or classified. It is used to understand data and separate 

it into different classes for future use.  

▪ Prediction. It is one of the essential features of data mining. Prediction works by 

analyzing the trends from the historical data and extending them into the future. Thus, 

it gives insights about patterns that can appear in the future. 

▪ Visualization. Data visualization is one of the underestimated data mining techniques. It 

provides insights from the data based on visual impressions that people can see. 

Nowadays, data visualization can be interactive and more descriptive than simple 

numbers in the table. 
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2.4. CLASSIFICATION PROBLEM 

Classification problems occur in different aspects of life and have two meanings (Michie et al., 1994). 

First, a set of observations may be given to identify classes or clusters in the data. Second, there already 

can be defined classes, and the goal is to describe a rule that explains existing classification. In machine 

learning, the first one is known as unsupervised learning, and the second is supervised learning.  

In this project, the multiclass classification problem was solved by means of supervised learning. 

As explained previously, in machine learning, classification is a problem of defining to which class a 

new observation belongs. When there are more than two classes to identify, the problem is called 

multiclass classification. Normally, one observation is assumed to belong to one class label, and the 

class labels are independent (Silva-Palacios, et al., 2017). 

 

2.5.  MACHINE LEARNING CLASSIFICATION MODELS 

In this project, supervised learning was used to solve the multiclass classification problem. Unlike 

unsupervised learning, where the target is unknown, data has a predefined target variable in 

supervised learning. 

A wide range of algorithms is available for a classification problem, each with its advantages and 

disadvantages. Unfortunately, none of the algorithms can solve all the challenges of supervised 

learning.  

For this project, a business decision was made to use artificial neural networks, decision trees, gradient 

boosting, and random forest algorithms. 

 

2.5.1. Artificial Neural Network 

Artificial Neural Network is a machine learning algorithm created based on the knowledge of the brain: 

neurons are connected to other neurons, and it creates a network (Mitchel, 1997). 

ANN is a massively parallel combination of basic processing units that can learn from the environment 

and store the learning in its connections (Haykin, 1999).  

This algorithm is called a black box method since studying its structure will not give any understanding 

of the insights about the results. 

Figure 2.3 illustrates a simple artificial neural network. Before building a neural network, the network 

topology has to be defined. The topology of the network describes the number of neurons and layers 

in the model. 

Each layer of NN consists of neurons. The first layer is an input layer. The next layer is a hidden layer, 

and the last layer is the output layer. The connections between layers are called weights, and each 

neuron's value is multiplied by the value of each weight. The value of the connections is the only 

value that can be changed during the learning step. 
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To transform an input signal from each neuron, an activation function is applied. It combines inputs 

into a single output to be used by the next layer.  

The Neural Network algorithm can work with incomplete data and, after finishing the training, can 

make predictions quite fast. But, on the other hand, it is a black box algorithm which means that it is 

difficult to interpret the results; and this algorithm can be time-consuming during the training step.  

 

Figure 2.3 - Representation of Artificial Neural Network 

 

2.5.2. Decision trees 

Decision trees are one of the most popular algorithms due to their applicability in different fields. 

The decision tree classifier is considered a multistage decision making (Safavian, & Landgrebe, 1991). 

The idea behind a multistage approach is breaking a big complex decision into a combination of several 

simple decisions; and this way to get the final solution. 

This series of simple decision rules that a decision trees model produces can be easily understood and 

interpreted by people since it can be expressed in words (Berry & Linoff, 2009). 

Decision trees models start from the root node and go to leaf nodes, classifying data. In between, there 

are decision nodes. Decision nodes have branches and are used to make a decision. Leaf nodes are the 

output of the decision. A decision tree asks a question and splits this tree into subtrees based on the 

answer. 

A decision trees model is always shown upside down and starts with its root, the first decision node. 
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This algorithm doesn’t require treating missing values or feature selection on the data preparation 

step. It has a clear and intuitive visualization and can be easily explained. Decision trees can also be 

easily explained in words that make them suitable for various business cases. 

 

 

Figure 2.4 - An example of a decision tree 
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2.5.3. Random Forest 

Random Forest is based on ensemble learning. It contains classification or regression trees (Breiman 

et al., 1984). These trees are trained on datasets created by random resampling on the initial dataset. 

In addition to this, this algorithm also chooses a random selection of features (Nagpal, 2017). 

The algorithm takes the results from each tree, and, based on the votes of predictions, it predicts the 

final output. This technique leads to higher accuracy than a simple decision trees model and prevents 

overfitting. 

Figure 2.5 illustrates a random forest algorithm process. 

 

 

Figure 2.5 - Representation of a random forest 

 

The same as the decision trees algorithm, random forest automatically applies feature selection. This 

algorithm is highly accurate and unlikely to overfit since it is based on the average results of individual 

decision trees. It can be used for both regression and classification problems. On the other hand, 

random forest is computationally more expensive, and the interpretation of the results is not as easy 

as a simple decision tree. 

2.5.4. Gradient Boosting 

The ensemble algorithms like random forests rely on simple averaging of models in them. The boosting 

method is based on a different strategy of ensembling. The idea behind boosting is to add a new weak 

basic model at each iteration and to train it considering all the errors in the model learned so far 

(Natekin &Knoll, 2013). The Gradient Boosting algorithm can be used for both classification and 

regression problems. 

The most used implementation of gradient boosting is using decision trees (Dorogush et al., 2018). 

Gradient Boosting algorithm requires minimum data preprocessing, same as decision trees. And 

considering its implementation, it provides a more accurate prediction. On the other hand, this 
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algorithm is very computationally expensive, and it tends to overfit.  Compared to a single decision 

tree, it is much harder to interpret a gradient boosting model results. 

 

Figure 2.6 - Representation of Single Decision Tree VS Gradient Boosted Trees (Silipo, 2020) 

 

2.6.  MODEL PERFORMANCE EVALUATION 

The process of evaluating the performance of a machine learning algorithm is important to select the 

model that shows the best results. 

As a performance measure in this project, the F1 Score was used. The reason for this is an imbalanced 

dataset. 

A confusion matrix is a table used to describe the performance of a classification model (Goutte, C., 

Gaussier, E., 2005). 

 Predicted class 

Actual Class 

 Class = Positive Class = Negative 

Class = Positive True Positive False Negative 

Class = Negative False Positive True Negative 

 

Table 2.1 - Confusion Matrix 

▪ True Positive. Correctly predicted positive values. It means that the actual class and the 

predicted class are the same. 

▪ True Negative. Correctly predicted negative values. 
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▪ False Positive. Incorrect prediction. It occurs when the actual class is NEGATIVE, and the 

predicted class is POSITIVE. 

▪ False Negative. Incorrect prediction. When the actual class is POSITIVE, and the 

predicted class is NEGATIVE. 

Precision shows what proportion of predicted POSITIVE is actually POSITIVE.  

Precision = TP ÷ (TP + FP) 

Recall shows what proportion of actual POSITIVE is correctly classified. 

Recall = TP ÷ (TP + FN) 

F1 Score = 2 × (Precision × Recall) ÷ (Precision + Recall) 

To calculate F1 Score for a multiclass classification problem, it is needed to take the average from the 

F1 Score for all classes. But in the case of an imbalanced dataset, it is recommended to use Weighted 

F1 Score.  

To calculate Weighted F1, multiply the F1 Score by the number of observations in each class, sum them 

up, and divide by the total number of observations in the dataset. 

The closer F1 Score to 1, the better is the model performance. 
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3. METHODOLOGY 

3.1. OVERVIEW 

Several different methodologies are available to use for a data mining project. 

For this business case, CRISP-DM seemed like a more suitable methodology. The reason for that is that 

it contains the “Business understanding” step, a crucial step in a data mining project.  

Therefore, CRISP-DM methodology was chosen to use with a few adjustments. 

 Sep Oct Nov Dec Jan Feb Mar Apr May Jun 

Onboarding Challenge 
          

          

Business Understanding 
& Kick-off Presentation 

         

         

Data Exploration and 
Preparation 

        

         

Modeling 
        

         

Presenting Findings & 
Deploying Model 

         

          

Setup performance 
monitoring and define 

recommendations 

          

         

Extending knowledge to 
future projects 

     

     

 

Table 3.1 - Project Timeline. The color shows actual time; Grey shows initially planned time 

Table 3.1 shows the roadmap of the project with a brief description based on the CRISP-DM 

methodology. Initially, the timeline was different, but some steps took more time than was planned 

as going on with the project. For example, the most time-consuming phase was data exploration and 

preparation, and the Modeling phase coincided with the beginning of Covid-19 and took longer than 

expected. 
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3.2. BUSINESS UNDERSTANDING 

The first step of CRISP-DM methodology is business understanding. 

Due to the complexity of motor insurance, it was essential to understand how this business works and 

the needs of the relevant stakeholders. 

After onboarding meetings, one of the most critical problems was identified. This car insurance is sold 

through managers at the bank, so what would be the best-personalized combination of coverages that 

they can offer to each client?  

During the Business understanding phase, the project objective and scope were defined. 

Objective: 

▪ Make a classification of car insurance customers’ profiles based on their preferences in 

packages and combination of coverages using an advanced machine learning 

classification model. 

Scope: 

▪ Identify target classes based on combinations of insurance packages and coverages. 

▪ Identify important variables through analyzing existing and creating new features. 

▪ Apply different classification models and choose one with the best performance. 

▪ Describe rules and patterns for each class. 

▪ Deploy the model. 

It was also important to understand what tools are used in the company. The most used tools are SAS 

Enterprise Guide and SAS Enterprise Miner. These two tools were chosen for this project since all the 

needed data is stored in the database connected to them. 

During this phase, some potential business obstacles were identified. 

Challenges: 

▪ Car insurance is obligatory to have. Hence does it mean that customers buy the cheapest 

option with mandatory coverages? 

▪ The product’s price is higher than competitors’. Is there a significant variety of 

combination of packages and coverages, or do customers prefer to buy just the cheapest 

one? 
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3.3.  DATA UNDERSTANDING 

Since classification modeling had not been performed in the company before, it was necessary to 

understand available data sources and variables. 

3.3.1. Data Sources 

The main challenge of this part was that not all the relevant data was available to use for modeling. 

The reason for this is the relationship between the insurance company and the partner bank. Due to 

GDPR, the bank was no longer able to share the data with the company even though these clients were 

the company’s clients.  

Given these circumstances, there were 487 variables collected from 5 available tables. 

▪ Coverage table. Data related to each policy on the coverage level: emission date, 

renovation date, changes over time. 

▪ Object table. Variables related to the packages: entry date, changes over time, 

premiums, car-related variables. 

▪ Simulation table. Data was collected during the simulation process offline and online. 

Contains car and customer-related variables. 

▪ Policy characteristics. The table contains all actual data about each policy and each 

customer. 

▪ Analytical Base table. Variables that describe customers and their relationships with the 

company. Include all historical data about each customer. 

For this project, only the customers with specific characteristics were used. 

Figure 3.1 shows the universe of the clients and the process of selecting the final observations.  

 
Figure 3.1 - Data universe and selection of the final observations 
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In the end, the final dataset contained 22 056 observations before the data preparation step.  All 

variables were aggregated into one table at the customer level.  

3.3.2. Main Findings 

After gathering the data, a simple data exploration analysis was performed. The figures below illustrate 

the main findings that were the most interesting for the business. 

Among all the clients top 3 car brands are Renault, Peugeot, and Opel.  

 

Figure 3.2 - Popularity of car brands 

 

The majority of customers are new, but the distribution presented in Figure 3.3 proves that clients 

tend to stay with the company for years. 

 

Figure 3.3 - Distribution of years as customers 
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The most exciting and important finding is the age of the clients. Young people tend not to buy this 

product. The project manager explained it with the higher price for the policy and mentioned that the 

company targets people older than 35. 

 

Figure 3.4 - Age distribution 

 

3.3.3.  Target definition 

The target definition is the most critical step for this project because the target variable needed to be 

created based on existing variables. 

It was decided to identify classes as combinations between packages and additional coverages that 

customers can have. 

Customers can choose from three packages: Mini, Extra, Top, and extra thirteen coverages. Some of 

the coverages are available by default, some are optional, and some are unavailable in a specific 

package.  

The main challenge of this step was to get from this complex approach with different combinations to 

a well-defined target. 

The first step in defining classes was splitting each package into a tree that shows the distribution of 

policies between coverages.  

In these trees, coverages are located depending on the number of policies that have them. Thus, the 

more popular the coverage, the closer it is to the root of the tree. 

This approach was helpful to understand: 

▪ Difference between customers who prefer each package; 

▪ Number of policies per each package; 

▪ Cut points for each package  

At the end of this step, twenty-seven classes were defined. 
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Figure A2 in Appendix describes the graphic representation of this process. 

The second step was to decrease the number of classes using the business approach.  

Based on the product knowledge of the main stakeholders, Target 1 was defined, consisting of 11 

classes split based on combinations of coverages for each package. 

Table 3.2 shows the final classes defined after two steps of target creation. 

 

Package Class Coverages 

Extra 

Class 1 ASB + QIV 

Class 2 ASB + Mini 

Class 3 AST + QIV 

Class 4 AST 

Top 

Class 5 CCC + VDS + VAV + (FDN or ADV) 

Class 6 CCC + (VDS or VAV) 

Class 7 rest 

Class 8 CRO + VDS + VAV + (FDN or ADV) 

Class 9 CRO + (VDS or VAV) 

Class 10 rest 

Mini Class 11 rest 

 

Table 3.2 - Target 1 Description 

 

Since the beginning of the target definition step, it became clear that this project is not the same as 

most machine learning projects. Therefore, as well as testing different models and parameters and 

choosing the best one, it was necessary to define one target that would be equally good from both an 

analytical and business perspective.  

The first defined target contained too many classes. As a result, the dataset was unbalanced, and most 

classes were not different. In order to achieve results that could be useful for business, it was needed 

to combine classes in different ways. 
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Figure 3.5 - Proportion of each class in the target variable 

 

After a conversation with a product manager, 20 target variables were defined that contained different 

combinations of all classes.  

A detailed table with all target variables can be found in Appendix A3. 
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3.4.  DATA PREPARATION 

In order to have a successful model, data preparation has to be performed. Data preparation is the 

process of manipulating data into a form that can be used for the following analysis.  

This step was the most time-consuming of the whole project. 

 

3.4.1. Missing values  

Since the dataset was not big compared to other projects in the company, it was important not to lose 

any observations and to treat missing values. 

There weren’t a lot of variables with missing values. Based on the analysis and opinion of the 

stakeholders, for numeric variables, such as the age of a driver, the tree method was used. And for 

interval variables related to premiums paid, the mean method was used. 

 

3.4.2. Outlier Handling  

Outliers are values that are extremely large or extremely small. Some Machine Learning models are 

outlier sensitive; therefore, it was necessary to treat outliers in the dataset. 

SAS Enterprise Miner has a feature to detect and handle outliers. 

After the analysis and discussions with the stakeholders, Standard deviation from the Mean with a 

threshold equal to three was chosen as a limit method for outlier handling. 

 

3.4.3.  New variables 

Sometimes during the data exploration and preparation, it gets clear that some variables cannot be 

used in the modeling process as they are. But, on the other hand, these variables can still be used to 

create new variables. 

Based on the customers’ historical data, four new variables related to motor insurance were created.  

▪ Who had an active policy at the moment of purchase of a new one: 

a. Cannibalization: customers who canceled the policy one month before renewal 

and three months after purchasing the policy. 

b. Has a policy now: who has an active policy and issued a new one (no cancellation 

of old policy for at least more than three months after purchase) 

▪ Who never had a policy before. 

▪ Who canceled more than one month before issuing a new policy. 
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Figure 3.6 - Proportion of new variables in the dataset 

 

Based on the historical data of the clients with other insurance in the company, three new variables 

were created: 

▪ Customers who have one other type of insurance (LOB) with the company 

▪ Customers who have more than one type of insurance (LOB) with the company 

▪ Customers who don’t have any other type of insurance (LOB) with the company except 

motor insurance. 

 

 

 
Figure 3.7 - Proportion of new variables in the dataset 

 

3.4.4. Variable transformation  

Transforming the variables before modeling can improve the predictive power of the models since 

transformations can cut off the noise. In this project, the Box-Cox transformation was used. 
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3.4.5.  Variable selection  

The variable selection step can improve the model's performance since it removes variables that are 

not relevant. In this project, the Decision Tree was chosen as a variable selection method. 

The most important variables are presented below in the modeling part 3.5 table 3.4 

 

3.5.  MODELING 

3.5.1. Dataset Preparation 

During the modeling step, four algorithms suitable for multiclass classification were employed: Neural 

Network, Random Forest, Gradient Boosting, and Decision tree. 

Before applying any of the models, the data went through some transformation. 

▪ Partition. Data was split into test and validation datasets (80/20 ratio) 

▪ Variable selection 

▪ Variable transformation 

▪ Decision weights for an imbalanced dataset 

 

In the end, there were eight baselines with different parameters. 

 

 Baseline 
1 

Baseline 
2 

Baseline 
3 

Baseline 
4 

Baseline 
5 

Baseline 
6 

Baseline 
7 

Baseline 
8 

Variable 
Transformation No Yes No Yes No Yes No Yes 

Variable 
Selection 

Yes No No Yes Yes No No Yes 

Decision 
Weights 

Yes Yes Yes Yes No No No No 

 

Table 3.3 - Baselines Description 

 

3.5.2. Parameters tuning 

For each model, a parameter tuning process was applied.  
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3.5.2.1. Decision Trees 

Maximum Depth — specifies the maximum number of generations of nodes in the decision tree. The 

parameters tested: 6, 7, 8, 9.  

To split interval variables, p-value was used. 

To split nominal variables, Entropy was used. 

 

3.5.2.2. Random Forest 

Number of variables specifies the number of input variables to consider splitting on in a node. The 

parameters tested: 6, 7, 8, 9, 10 

Number of trees specifies the number of trees in the forest. Tested: 800, 900, 1000, 1200, 1500 

 

3.5.2.3. Gradient Boosting 

Interaction depth specifies how many splits the model has to perform on a tree. Tested: 8, 9, 10, 12 

Number of trees in the model: 700, 1000, 1200, 1500 

Shrinkage is used to specify how much to reduce the prediction of each tree. Tested:  0.01, 0.03, 

0.05, 0.07, 0.09, 0.11 

Minimum observations in a node in the model: 10, 20, 30 

 

3.5.2.4. Neural Network 

Number of hidden layers: 0, 1, 2, 3. 

 

3.5.3. Results 

Due to the imbalance of the dataset, the Weighted F1 Score was selected to measure the performance 

of each model. 
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Figure 3.8 - F1 Score, % of the best combinations of parameters for each model 

 

As seen in Figure 3.8, there was not much variability between the models; they showed almost the 

same results.  

In the end, the model with the best performance was Random Forest with Trees = 800, Variables = 8, 

and Baseline 5 with the F1 Score = 72.6 

Results for each model and baseline can be found in Appendix B2. 

The Random Forest model is not needed to use variable selection since the algorithm chooses them 

itself. The most important variables are presented in Table 3.4. 

 

Variables describing a car Variables describing customers 

Car Age Other LOBs 

Car brand Driver Age 

Vehicle Potential Segment Id 

Vehicle Cylinder Unsuccess Sales Campaign 

Number of doors Segment 

 Number of active car policies 

 Number of LOBs ever 

 

Table 3.4 - Variables used for the final Model 

There are 13 variables. The proportion of variables describing cars and variables related to customers 

are 46% to 54%.  
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3.5.4. Target selection 

As mentioned above, one of the biggest challenges during this project was to define the target and 

split the dataset into classes that would be meaningful from both analytical and business perspectives.  

Figure 3.9 shows F1 Scores for most defined and tested targets and the number of classes in each 

target. So naturally, the more classes were in the target, the wider variety of clients were there. But in 

the end, it was necessary to make a trade-off between analytics and business. 

 
Figure 3.9 - Graphical representation of the number of classes and F1 Score for each Target Variable 

 

The best performance was shown by Target 11, Target 14, and Target 20. The difference between them 

was the splitting method and the number of classes. 

As shown in Figure 3.9, the target with the best performance was Target 14, with the best F1 Score 

equal to 84.5%. Even though it made sense from the analytical point of view to choose this target 

variable, from the business point of view, this target variable doesn’t have much meaning since it only 

contains two classes, and there is no distinction between packages. 

 

Target 14 

Package Class Coverages 

Extra + 
Mini 

Class1 All 

 Top Class2 All 
Table 3.5 - Target 14 Description 

After meeting with the stakeholders, Target 20 was chosen as the most reasonable for this project 

from analytical and business perspectives. 



25 

 

 

Target 20 

Package Class Coverages 

Extra Class 1 (ASB or AST) + QIV 

 Class 2 (ASB or AST) & Mini + ODV + Class11 

Top Class 3 All 

Table 3.6 - Final Target Description 

 

3.6.  EVALUATION 

In order to validate the model, backtesting has been performed. It was applied to historical data from 

December 2019 until the middle of May 2020. 

The backtesting on the historical data had the F1 Score = 72.3, which is only 0.3, smaller than Test F1 

Score. 

The dataset for backtesting includes customers who opened a motor policy during a period of COVID-

19 quarantine. People were forced to stay at home; therefore, it was assumed that customers' 

behavior changed. 

In the end, it was decided to perform backtesting on three datasets: 

▪ Data before COVID-19, from December 2019 until February 2020 

▪ Data during Covid-19, from March 2020 until the middle of May 2020 

▪ Total dataset including observations from December 2019 until middle May 2020. 

As a result, it showed that the first test group performed a little better than the two others, although 

the results of all three datasets were very similar.  

Figure 3.10 presents the final evaluation results of the model. 
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Figure 3.10 - F1 Score of train, validation and test datasets, % 

 

 

3.7.  DEPLOYMENT 

Deployment is the next logical step that is following the evaluation of the model.  

This project has four ways of implementing it in the company. 

▪ Previous simulations: to score the data available from previous simulations. 

▪ Winback: using the model on the data of customers who once had a policy with the 

company but canceled. 

▪ Simulation process: Use model insights to define rules for package recommendation 

during simulation in real-time. 

▪ Digital: Implementing the model during simulation in digital products. 

During the period of the project, the final model was prepared for deployment. However, the next 

step, exploring the possibilities of deployment with stakeholders, was not started due to COVID-19 

complications.  
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4. CONCLUSIONS 

This report describes the process of solving a multiclass classification problem.   

The project started with a business understanding where the main objectives were identified. 

The next step was data understanding. The data was collected from different data sources, and the 

target variable was identified. Based on the business and data analysis, the initial target was 

regrouped, and in the end, there were 20 target variables identified. Each target variable contains a 

different number of classes based on various combinations of packages and coverages of motor 

insurance. Therefore, it was essential to understand which target has the best performance and 

makes the most sense for business. 

The following step was data preparation, during which data was cleaned, and new variables were 

manually created. Before starting the modeling part, it was also important to make variable 

transformation and variable selection to get better results during the next part. 

The main part of this project was modeling. Four models were tested to solve the multiclass 

classification problem. F1 Score was chosen as a performance measure. The model with the biggest 

F1 score is Random Forest. The last task to do was to select the target that was a compromise 

between business and analytics. In the end, it was decided to use the target with three classes. 

The next step after modeling is always evaluation. During this step, it was proven that the chosen 

model shows the same results on the test dataset, despite the influence of the Covid-19 lockdown 

that happened during the period of this project. 

Finally, four methods of deployment were developed, and the model was prepared for future 

implementation. 
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5. LIMITATIONS, RECOMMENDATIONS FOR FUTURE WORK, AND MAIN 

LEARNING 

5.1.  LIMITATIONS AND RECOMMENDATIONS 

During the project, some limitations were identified and listed below, along with recommendations 

for future work: 

▪ Not all relevant variables were available to use during the project for different reasons. 

Therefore, the recommendation here is to use other variables that can be relevant for 

the model. These variables can be created using information from other sources (for 

example, customer-related variables: family units, other insurance products) or 

obtained from the partner bank in anonymized form. 

▪ The data set was imbalanced, so other balancing methods can be applied—for example, 

resampling. Instead of creating one perfect target variable and making the number of 

classes smaller, it would be interesting to use other balancing methods and make a 

comparison. 

▪ In order to gather as much data as possible, information about offline and online 

simulations was used together. In the future, it would be interesting to compare these 

two in order to understand if online behavior is different from offline. 

5.2.  MAIN LEARNINGS 

After working on the project, a few main learnings were made: 

▪ Planning. It is crucial to have more time for each step of the project if something goes 

wrong. Split one big task into small ones and define deadlines for them. 

▪ Finding a compromise between data science & business. Of course, academic 

knowledge is important, but there should be a balance between business and 

technology. 

▪ Asking for help. Don’t be afraid to ask for help, don’t try to deal with everything if the 

project gets stuck or there are doubts. 
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7. APPENDIX A. DATASET 

A1. PACKAGES AND COVERAGES 

Coverage Abbr Mini Extra Top 

Third party liability RCV ✓ ✓ ✓ 

Travel Assistance ASB/AST Base Base or Total Base or Total 

Legal Protection PTJ ✓ ✓ ✓ 

Vehicle Occupants ODV Optional ✓ ✓ 

Isolated Breakage of Glass QIV X Optional ✓ 

Crash, Collision, Roll-Over CCC/CRO X X ✓ 

Fire, Lightning Strike, Explosion IRE X Optional ✓ 

Theft or Robbery FRB X Optional ✓ 

Natural Phenomena FDN X Optional Optional 

Acts of Vandalism ADV X X Optional 

Replacement Vehicle - Accident VDS X Optional Optional 

Replacement Vehicle - Breakdown VAV X Optional Optional 

Baggage BAG X X Optional 

Pack Relax PMU Optional Optional Optional 

Pack Vintage PSR Optional Optional Optional 

Pack Prestige PPE Optional Optional Optional 
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A2. DEFINING CLASSES 

A2.1. Package “Mini” 

 
A2.2. Package “Extra” 

 
A2.3. Package “Top” 
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A3. TARGET VARIABLES 

 

Class Package Target1 Classes 

Target 3 

Class1 Extra Class1 + Class3 

Class2  Class2 + Class4 

Class3 Top Class5 + Class6 

Class4  Class 7 

Class5  Class 8 + Class9 

Class6  Class10 

Class11 Mini Class11 

Target 4 

Class1 Extra Class1 + Class3 

Class2  Class2 + Class4 

Class3 Top All Classes 

Class11 Mini Class11 

 

Target 5 

Class1 Extra Class1 + Class3 

Class2  Class2 + Class4 

Class3 Top Class5 + Class7 

Class4  Class 6 + Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 6 

Class1 Extra Class1 + Class2  

Class2  Class3 + Class4 

Class3 Top Class5 + Class7 

 Class4  Class 6 + Class 8 + Class 9 + Class 10 

 Class11 Mini Class11 

Target 7 

Class1 Extra Class1 + Class2 + Class11 

Class2  Class3 + Class4 

Class3 Top Class5 + Class7 

   Class 6 + Class 8 + Class 9 + Class 10 

  Mini Class11 

Target 8 

Class1 Extra Class1 + Class2  Class4 

Class3  Class3 

Class2 Top Class5 + Class7 

Class4  Class 6 + Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 9 

Class1 Extra Class1 + Class2 

Class2  Class3+Class4 

Class3 Top Class5 + Class6 + Class7 

Class4  Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 10 
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Class1 Extra Class1 + Class2+Class4 

Class2  Class3 

Class3 Top Class5 + Class6 + Class7 

Class4  Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 11 

Class1 Extra All 

Class2 Top All 

Class11 Mini All 

Target 12 

Class1 Extra Class1 + Class3 

Class2  Class2+Class4 

Class3 Top Class5 + Class6 + Class7 

Class4  Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 13 

Class1 Extra Class1 + Class3 

Class2  Class2+Class4 

Class3 Top Class5 + Class6 + Class8 + Class9 

Class4  Class7 + Class 10 

Class11 Mini Class11 

Target 14 

Class1 Extra + Mini All 

Class2 Top All 

Target 15 

Class1 Extra Class1 + Class2 + Class4 

Class2  Class3 

Class3 Top Class5 + Class6 + Class7 

Class4  Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 16 

Class1 Extra Class1 + Class2 

Class2  Class3 + Class4 

Class3 Top Class5 + Class6 + Class8 + Class9 

Class4  Class7 + Class 10 

Class11 Mini Class11 

Target 17 

Class1 Extra All 

Class2 Top Class5 + Class6 + Class8 + Class9 

Class3  Class7 + Class 10 

Class11 Mini Class11 

Target 18 

Class1 Extra All 

Class2 Top Class5 + Class6 + Class7 

Class3  Class 8 + Class 9 + Class 10 

Class11 Mini Class11 

Target 19 

Class1 Extra Class1 + Class2 

Class2  Class3 + Class4 

Class3 Top All 

Class11 Mini Class11 

Target 20 

Class1 Extra Class1 + Class3 

Class2  Class2 + Class4 + Mini 

Class3 Top All Classes 
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8. APPENDIX B. MODELING 

B1. Data Baselines 

 Baseline 
1 

Baseline 
2 

Baseline 
3 

Baseline 
4 

Baseline 
5 

Baseline 
6 

Baseline 
7 

Baseline 
8 

Variable 
Transformation No Yes No Yes No Yes No Yes 

Variable 
Selection 

Yes No No Yes Yes No No Yes 

Decision 
Weights 

Yes Yes Yes Yes No No No No 

 

B2. Modeling Results 

 
Baseline 

1 
Baseline 

2 
Baseline 

3 
Baseline 

4 
Baseline 

5 
Baseline 

6 
Baseline 

7 
Baseline 

8 

Decision Tree 71.29 71.24 71.29 71.24 72.12 71.19 72.12 71.19 
Gradient Boosting 69.81 69.47 69.81 69.47 70.08 70.79 70.08 70.79 

Random Forest 70.25 68.95 71.19 69.48 72.60 71.08 71.92 71.82 
Neural Network 69.12 69.50 69.57 69.78 71.96 70.56 71.96 70.98 

 

 

 



Page | i  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




