
i

Exploring Evolution Strategies for Reinforcement

Learning in the Obstacle Tower Environment

Julian Kuypers

Dissertation presented as partial requirement for obtaining the

Master’s degree in Data Science & Advanced Analytics

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

Exploring Evolution Strategies for Reinforcement Learning in the Obstacle Tower

Environment

by

Julian Kuypers

Dissertation presented as partial requirement for obtaining the Master’s degree in Data

Science & Advanced Analytics

Advisor / Co Advisor: Mauro Castelli

Co Advisor: Illya Bakurov

 July 2021

iii

ABSTRACT

In 2017 OpenAI demonstrated that it was possible to train an AI agent by using Evolution

Strategies (ES), and that the results rivaled standard Reinforcement Learning (RL) techniques

on modern benchmarks. Their research effectively showed that Evolution Strategies is a viable

alternative to traditional Reinforcement Learning techniques, and that it bypasses many of

Reinforcement Learning’s inconveniences, notably the use of backpropagation.

The Obstacle Tower environment aims to set a new Reinforcement Learning

benchmark by challenging Artificial Intelligence (AI) agents to traverse 3-Dimensional

procedurally generated levels using a real-time 3-Dimensional physics system. The

environment tests an agent’s ability to generalize by requiring it to optimize aspects that are

common in many Reinforcement Learning environments, but rarely combined in the same

environment: vision, planning, and control.

In this research, the original implementation of OpenAI’s Evolution Strategies

algorithm was applied for the first time to the Obstacle Tower environment to assess how well

it performs in a more complex environment, where the agent’s generalization ability is critical.

Additionally, in the interest of exploring Evolution Strategies in this environment, common

Genetic Algorithm selection and mutation techniques were developed and applied to try and

improve the performance of the original Evolution Strategies implementation. Crossover

techniques were not explored during this research, as they are rarely applied in Evolution

Strategies. The results show that although the basic implementation of Evolution Strategies

does not perform well in the complex Obstacle Tower environment, it is possible to improve

its performance by applying different evolution methods borrowed from Genetic Algorithm

(GA), which are algorithms belonging to the same family as Evolution Strategies.

iv

KEYWORDS

deep reinforcement learning; evolution strategies; genetic algorithm; obstacle Tower;

obstacle Tower Challenge; unity; neuroevolution; reinforcement learning benchmark.

v

INDEX

1. Introduction .. 1

2. Literature review .. 4

2.1. Reinforcement Learning .. 4

2.1. Evolutionary Strategies ... 6

 2.2. The Obstacle Tower Environment ... 8

3. Methodology .. 15

 3.1. Neural Network... 15

 3.2. Distributed System ... 19

 3.2. Evolution Strategies .. 22

4. Experiments ... 27

5. Results and discussion .. 30

6. Conclusions ... 37

7. Limitations and recommendations for future works ... 39

8. Bibliography .. 41

9. Appendix.. 45

10. Annexes……..51

vi

LIST OF FIGURES

Figure 1. - Examples of agent's perspective in the Obstacle Tower environment 9

Figure 2. - Examples of floor layouts from the Obstacle Tower environment 9

Figure 3. - Convolutional Neural Network Architecture Diagram 17

Figure 4. - RLlib Training Cycle…………………………………………………………………………………….21

Figure 5. - Mean episodic reward for all three mutation techniques with Select N Best selection

 ... 30

Figure 6. - Maximum episodic reward for all three mutation techniques with Select N Best

selection .. 30

Figure 7. - Mean episodic reward for all three mutation techniques with Roulette Wheel

selection .. 30

Figure 8. - Maximum episodic reward for all three mutation techniques with Roulette Wheel

selection .. 30

vii

LIST OF TABLES

Table 1. - Parameters of the Convolutional Neural Network used for this research……17

Table 2. - Ray project API .. 19

Table 3. - Parameters used during experiments… .. 27

Table 4. - Total Number of environment steps taken during ES training 32

Table 5. - Baseline results from the Obstacle Tower paper .. 33

viii

LIST OF ABBREVIATIONS AND ACRONYMS

2D/3D 2-Dimensional / 3-Dimensional

AI Artificial Intelligence

CNN Convolutional Neural Network

DRL Deep Reinforcement Learning

ES Evolutionary Strategies

FC Fully Connected

FFCNN Feed-Forward Convolutional Neural Network

GA Genetic Algorithms

ML Machine Learning

NES Natural Evolution Strategies

OT Obstacle Tower

PPO Proximal Policy Optimization

RL Reinforcement Learning

RNB Rainbow (algorithm)

1

1. INTRODUCTION

From Atari games to Doom and Dota 2, Deep Reinforcement Learning (DRL) is considered the

go-to technique to solve end-to-end learning from high-dimensional raw pixel images [Mnih

et al., 2015]. The recent successes of Google DeepMind’s AlphaStar [Vinyals et al., 2019],

where an agent has reached the human level of grandmaster in the real-time strategy game

of StarCraft II much sooner than was initially anticipated, and AlphaGo [Silver et al. 2016],

which beat Lee Sedol1 in the game Go in 2015, have garnered a great deal of interest in DRL

and many advances have been made in recent years to solve more complex environments.

Feed-forward Convolutional Neural Networks (FFCNN) using basic policy gradient

methods or value based gradient methods have proven to be effective at solving 2-

dimensional (2D) environments such as the ones found in the Atari games [Mnih et al., 2016].

The central goal of a Reinforcement Learning (RL) application is to learn a policy, which

is a mapping from the state of the environment to a choice of action, that yields effective

performance over time. In their 2017 paper, OpenAI proved it was possible to train an Artificial

Intelligence (AI) agent by using Evolutionary Strategies (ES) [Salimans et al., 2016], a type of

Neuroevolution algorithm2, is a type of black-box optimization algorithm that relies on

selecting and perturbing (“mutating”) individuals as an optimization strategy. ES can be

understood as a simplified version Genetic Algorithms (GA), where crossover and eventually

elitism are omitted. With this paper, they have demonstrated that it is possible to learn a

policy using ES, and that this policy achieves results comparable to those of traditional RL

1 Lee Sedol is a former South Korean professional Go player, at the time of playing agains AlphaGo, he

was ranked second in the international rankings.
2 Neuroevolution is a machine learning technique that applies evolutionary algorithms to construct artificial

neural networks, taking inspiration from the evolution of biological nervous systems in nature.

2

techniques while overcoming many of RL’s inconveniences, dispelling the common belief that

ES methods are impossible to apply to high dimensional problems [Schaul et al., 2011].

In 2019, game development company Unity Technologies created the Obstacle Tower

(OT) environment; a procedurally generated RL environment that combines platforming-style

gameplay with puzzles and was designed to be a new benchmark for learning agents in the

areas of computer vision, locomotion skills, high-level planning, and generalization [Juliani et

al., 2019].

In this research, we applied the original implementation of the ES method used by

OpenAI to the Obstacle Tower environment for the first time to assess how well it performs in

a more complex environment, where the agent’s generalization ability is critical. Additionally,

we explored some GA selection and mutation techniques to see if we can improve the

performance of the original ES implementation. Crossover techniques were not explored

during this research as they are more difficult to implement when working in distributed

systems, and because the complexity of applying crossover techniques to neural network

weights falls outside of the scope of this research. Furthermore, they were not implemented

in OpenAI’s 2017 research.

 The agents in this study are represented by a small Convolutional Neural Network

(CNN) with two convolution layers, no pooling layers, and no backpropagation. Two selection

methods had been implemented; Select N Best, and the popular Fitness

Proportionate/Roulette Wheel Selection. In addition to the mutation technique implemented

by OpenAI, where small amounts of Gaussian noise are added to the parameters of the Neural

Network, two more techniques were implemented, random mutation and decaying mutation.

Multiple experiments were run to evaluate ES’s performance, and to assess whether

the GA selection and mutation techniques were able to improve on that performance. The

3

results of the experiments of this research are compared to the OT benchmark results

obtained by Juliani et al. [16] in their paper introducing the environment.

4

2. LITERATURE REVIEW

2.1 Reinforcement Learning

Reinforcement Learning refers to the study of how an agent can interact with its environment

to learn a policy which maximizes expected cumulative rewards for a task. It is one of three

basic learning paradigms in Machine Learning (ML) alongside supervised learning, where

training data is labelled, and unsupervised learning, where data is not labelled, and the model

finds hidden patterns in the data. The history of RL is a vast and long, with artificial applications

of trial-and-error learning dating back to the 1950s and 1960s [Minsky, 1961]. Recently, RL has

undergone a renaissance due to promising results in areas such as playing Go [Silver et al.

2016], beating competitive players in video games like StarCraft II [Vinyals et al., 2019],

controlling continuous robotics systems [Lillicrap et al. 2015], and autonomous driving

[Stavens et al., 2012]. The abundance and accessibility of learning environments from libraries

like Gym [Brockman et al., 2016] and the Arcade Learning Environment [Bellemare et al., 2013;

Mnih et al. 2013] have further fueled this growth in attention and development. While many

policies, model architectures, reward systems, and learning strategies have been developed

over the course of RL’s history, there are five constant essential elements to each RL problem:

The Agent. The program controlling the object of concern [41] (e.g. a robot, a video

game character).

The Environment. This defines the outside world programmatically. Everything the

agent(s) interacts with is part of the environment. It’s built for the agent to make it

seem like a real-world case. It’s needed to prove the performance of an agent, meaning

if it will do well once implemented in a real-world application [41].

5

The Action. A move made by the agent, which causes a status change in the

environment.

The Reward(s). The evaluation of an action, which can be positive or negative. The

reward Rₜ is a scalar feedback signal which indicates how well the agent is doing at step

time t.

The Policy. The algorithm used by the agent to decide its actions. This can be seen as

the strategy to accumulate the most rewards over time that the agent learns during

training.

There are two broad classes for RL methods, each defined by how the model performs

its optimization: model-based and model-free. Model-based RL uses experience to construct

an internal model of the transitions and immediate outcomes in the environment. Appropriate

actions are then chosen by searching or planning in this world model [41]. This is a statistically

efficient way to use experience, as each morsel of information from the environment can be

stored in a statistically faithful and computationally manipulable way. Model-free RL, on the

other hand, uses experience to learn directly one or both of two simpler quantities (state/

action values or policies) which can achieve the same optimal behaviour but without

estimation or use of a world model [Dayan et al., 2008]. We can think of model-free algorithms

as trial-and-error methods; the agent explores the environment and learns from outcomes of

the actions directly, without constructing an internal mode. Both RL classes have benefits and

drawbacks, and the performance of each class on different RL problems and environments is

still an active field of research in RL [Brunnbauer et al., 2021]. Appendix 1. presents OpenAI’s

non-exhaustive, but useful taxonomy of modern RL algorithms.

6

2.2 Evolution Strategies

Evolution Strategies is a class of black box optimization algorithms that are heuristic search

procedures inspired by natural evolution: At every iteration (“generation”), a population of

parameter vectors (genotypes” or “chromosomes”), is perturbed (“mutated”) and their

objective function value (“fitness”) is evaluated. The highest scoring parameter vectors are

then recombined to form the population for the next generation, and this procedure is

iterated until the objective is fully optimized [Wierstra et al., 2008].

ES is relatively easy to implement and scale; Running on a computing cluster of 80

machines and 1,440 CPU cores, OpenAI’s implementation was able to train a 3D MuJoCo3

humanoid walker in only 10 minutes (A3C4 on 32 cores takes about 10 hours). Using 720 cores

they could also obtain comparable performance to A3C on Atari while cutting down the

training time from 1 day to 1 hour [Salimans et al., 2017].

Salimans et al. [28] highlights multiple advantages that ES enjoys over RL algorithms:

No need for backpropagation. ES only requires the forward pass of the policy and does

not require backpropagation (or value function estimation), which makes the code

shorter and between 2-3 times faster in practice. On memory-constrained systems, it

is also not necessary to keep a record of the episodes for a later update. There is also

no need to worry about exploding gradients in RNNs. Lastly, one can explore a much

larger function class of policies, including networks that are not differentiable (such as

3 MuJoCo is a game where the goal is to make three-dimensional bipedal robot walk forward as fast as

possible, without falling over. The environment is available in OpenAI’s Gym toolkit.
4 Asynchronous Advantage Actor Critic (A3C) is a RL algorithm that uses asynchronous gradient descent

for optimization of deep neural network controllers. It was presented by Mnih et al. in their 2016 paper

“Asynchronous Methods for Deep Reinforcement Learning”, where it surpassed the state-of-the-art algorithms in

2D and 3D environments. https://arxiv.org/abs/1602.01783

7

in binary networks), or ones that include complex modules (e.g. pathfinding, or various

optimization layers).

Highly parallelizable. ES only requires workers to communicate a few scalars between

each other, while in RL it is necessary to synchronize entire parameter vectors (which

can be millions of numbers). As a result, they observed linear speedups in their

experiments as we added on the order of thousands of CPU cores to the optimization.

Higher robustness. Several hyperparameters that are difficult to set in RL

implementations are side-stepped in ES. For example, RL is not “scale-free”, so one can

achieve very different learning outcomes (including a complete failure) with different

settings of the frame-skip hyperparameter in Atari [Braylan et al., 2005]. They showed

in their work that ES works about equally well with any frame-skip.

Structured exploration. Some RL algorithms (especially policy gradients) initialize with

random policies, which often manifests as random jitter on spot for a long time. This

effect is mitigated in Q-Learning due to epsilon-greedy policies5, where the max

operation can cause the agents to perform some consistent action for a while (e.g.

holding down a left arrow). This is more likely to do something in a game than if the

agent jitters on spot, as is the case with policy gradients. Similar to Q-learning, ES does

not suffer from these problems because one can use deterministic policies and achieve

consistent exploration.

Credit assignment over long time scales. By studying both ES and RL gradient

estimators mathematically one can see that ES is an attractive choice especially when

5 Q-Learning, short for Quality-Learning, is an off-policy (and model-free) algorithm, meaning it

approximates the optimal action-value function, independent of the policy. During training, Q-learning algorithms

build and populate a table (“Q-table”) storing state-action pairs, the algorithm then consults this table to estimate

the best possible action during inference. As a result, Q-learning due to greedy action selection, the algorithm

usually selects the next action with the best estimated reward, which can prevent it from taking the longer, more

rewarding path, making it a short-sighted algorithm.

8

the number of time steps in an episode is long, where actions have long lasting effects,

or if no good value function estimates are available.

Conversely, they also found some challenges to applying ES in practice. One core problem is

that for ES to work, adding noise in parameters must lead to different outcomes to obtain

some gradient signal. As they elaborate on in their paper, the use of virtual batch

normalization6 [Salimans et al., 2016] can help alleviate this problem, but further work on

effectively parameterizing neural networks to have variable behaviors as a function of noise

is necessary. As an example of a related difficulty, they found that in Atari’s Montezuma’s

Revenge7, one is very unlikely to get the key in the first level with a random network, while

this is occasionally possible with random actions.

2.3 The Obstacle Tower Environment

The Obstacle Tower environment is a procedurally generated RL environment, meaning the

environment is generated with some randomness and is never the same twice. It was

developed by game development platform Unity and uses the ML-Agents Toolkit [Juliani et

al., 2019]. It can run on the Mac, Windows, and Linux platforms, and can be controlled via the

6 Virtual Batch normalization (VBN), also known as virtual batch norm) is a method used to make artificial

neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling.

It is similar to batch normalization, except that each example is normalized based on the statistics collected on a

reference batch of examples that are chosen once and fixed at the start of training, and on itself, instead of the

statistics of several examples belonging to the same mini-batch.
7 Montezuma’s Revenge is an Atari game available in the Arcade Learning Environment that is notoriously

difficult to beat with RL due to its sparsely distributed rewards. See Annexes 1. and 2. For DeepMind and

OpenAI’s models’ performance on the game.

9

OpenAI Gym interface for easy integration with existing DRL training frameworks [Brockman

et al., 2016].

Episode Dynamics

The Obstacle Tower environment consists of up to 100 floors, with the agent starting on floor

zero. All floors of the environment are treated as a single finite episode in the RL context. Each

floor contains at least a starting and ending room. Each room can contain a puzzle to solve,

enemies to defeat, obstacles to evade, or a key to open a locked door. The layout of the floors

and the contents of the rooms within each floor becomes more complex at higher floors in

the Obstacle Tower, providing a natural curriculum for learning agents. Within an episode, it

is only possible for the agent to go to higher floors of the environment, and not to return to

lower floors. The episode terminates when the agent collides with a hazard such as a pit or

enemy, when the timer runs out, or when the agent arrives at the top floor of the

environment. The timer is set at the beginning of the episode and completing floors as well as

Figure 1. Examples of agent's perspective in the Obstacle Tower environment.

Figure 2. Examples of floor layouts from the Obstacle Tower environment.

10

collecting blue time orbs increase the time left to the agent. In this way a successful agent

must learn a behavior which is a tradeoff between collecting orbs and quickly completing

floors of the tower in order to arrive at the higher floors before the timer ends. The reward

function is a mix of sparse and dense rewards; with sparse rewards, the rewards in the

environment are sparsely distributed, meaning that there are only a few states in the state

space that return a reward, whereas with dense rewards, every transition in the environment

is associated with a reward, which can be positive or negative. In the OT environment, the

agent is given a positive reward of +1 for completing a floor of the tower (sparse), and a reward

of +0.1 for opening a door, solving puzzles, or picking up a key (dense). The environment’s

authors describe this reward function as a mix between sparse and dense reward [Juliani et

al., 2019], but in reality, they are two different sparse rewards, as the positive reward +0.1 is

not associated with every change of state, but rather with a change of state involving a

specific, sparsely distributed, state.

Observation Space

The observation space of the agent consists of two types of information. The first type of

observation is a rendered pixel image of the environment from a third person perspective.

This image is rendered in 168 × 168 RGB and can be downscaled to 84 × 84. The second type

of observation is a vector of auxiliary variables which describe relevant, non-visual information

about the state of the environment. The elements which make up this auxiliary vector are the

number of keys agent is in possession of, as well as the time left in the episode.

11

Action Space

The action space of the agent is multi-discrete, meaning that it consists of a set of smaller

discrete action spaces, of which the union corresponds to a single action in the environment.

These subspaces are as follows: forward/backward/no-operation movement, left/right/no-

operation movement, clockwise/counterclockwise rotation of the camera/no-operation, and

no-operation/jump. They also provide a version of the environment with this action space

flattened into a single choice between one of 54 possible actions, whose size corresponds to

the product of the sizes of all the sub-spaces in the multi-discrete case.

The Obstacle Tower Environment as a Benchmark

Obstacle Tower was developed specifically to overcome the limitations of previous game-

based AI benchmarks, offering a broad and deep challenge, the solving of which would imply

a major advancement in reinforcement learning. In brief, the features of Obstacle Tower

outline by Juliani et al. [16] are:

High visual fidelity. The environment is rendered in 3D using real-time lighting and

shadows, along with much more detailed textures and models than previous

benchmarks. See Fig 1. for examples of the agent’s perspective.

Procedurally generated floors and rooms. Navigating the game requires both

dexterity and planning, and the floors within the environment are procedurally

generated, making generalization a requirement to perform well during evaluation.

See Fig 2. for examples of floor layouts of various levels of the Obstacle Tower.

Physics-driven interactions. The movement of the agent and other objects within the

environment are controlled by a real-time 3D physics system.

12

Procedurally generated visuals. There are multiple levels of variation in the

environment, including the textures, lighting conditions, and object geometry.

Therefore, agents must be able to generalize their understanding of objects’

appearance.

The Obstacle Tower environment is designed to provide a meaningful challenge to current

and future AI agents, specifically those trained using the pixels-to-control approach. Juliani et

al. [16] describes four axes of challenge that this environment provides: vision, control,

planning, and generalization. While various other environments and benchmarks have been

used to provide difficult challenges for AI agents, this is to the best of our knowledge the first

benchmark which combines all such axes of complexity.

Vision. The primary observation available to agents within the Obstacle Tower is a

rendered RGB image. Obstacle Tower contains high-fidelity real-time lighting, complex

3D shapes, and high-resolution textures. Furthermore, the floors in the environment

are rendered in one of multiple different visual themes, such as Ancient or Industrial.

These visual themes were chosen to provide a large amount of variation in the

textures, colors, and 3D models that the agent would encounter. With the combination

of high-fidelity visuals and increased visual variation, models with much greater

representational capacity than those used in A3C [Mnih et al., 2016] or DQN [Mnih et

al., 2015] will be needed to perform well in the environment.

Generalization & Vision. Humans can easily understand that two different doors seen

under different lighting conditions are still doors; general-purpose agents should have

similar abilities. However, this is not the case; in many cases agents trained under one

set of visual conditions, and then tested on even a slightly different visual conditions

perform much worse at the same task [Huang et al., 2017]. The procedural lighting and

13

visual appearance of floors within the Obstacle Tower means that agents will need to

be able to generalize to new visual appearances which they may never have directly

experienced before.

Control. An agent in Obstacle Tower must be able to navigate through multiple rooms

and floors. Each of these rooms can contain multiple possible obstacles, enemies, and

moving platforms, all of which require fine-tuned control over the agent’s movement.

Floors of the environment can also contain puzzle rooms, which involve the physical

manipulation of objects within the room to unlock doors to other rooms on the floor.

While the action space of the agent is discrete, the environment itself uses continuous

metrics for the position and velocity of objects, making the state space extremely large.

We expect that for agents to perform well on these sub-tasks, the ability to model and

predict the results of the agents’ actions within the environment will be of benefit.

Generalization & Control. The layout of the rooms on every floor are different on each

instance of the Obstacle Tower; as such, it is expected that methods which are

designed to exploit determinism of the training environment, such as Brute [Machado

et al., 2017] and Go-Explore [Ecoffet, 2018] will perform poorly on the test set of

environments. It is also the case that within a single instance of a Tower, there are

elements of the environment which contain stochastic behavior, such as the

movement of platforms and enemies.

Planning. Depending on the difficulty of the floor, some floors of the Obstacle Tower

require reasoning over multiple dependencies to arrive at the end room. For example,

some rooms cannot be accessed without a key that can only be obtained in rooms

sometimes very far from the door they open. In these cases, planning is required to

ensure the agent takes the most efficient path between rooms.

14

Generalization & Planning. Due to the procedural generation of each floor layout

within the Obstacle Tower, it is not possible to re-use a single high-level plan between

floors. It is likewise not possible to re-use plans between environment instances, as the

layout of each floor is determined by the environment’s generation seed. Because of

this, planning methods which require computationally expensive state discovery

phases are likely not able to generalize to unseen floor layouts.

15

3. METHODOLOGY

3.1 Neural Network

In DRL, the AI agents are represented by Deep Neural Networks. While there are many suitable

network architectures to choose from, ranging from basic to very complex, we have opted for

a feed-forward Convolutional Neural Network (FFCNN); these networks have a proven track

record for automatically detecting significant features without any human supervision

[Alzubaidi et al., 2021] and performing well in pixel-to-control problems [Mnih et al., 2016].

Given the agent’s dependance on visual information in the Obstacle Tower environment, the

same model architecture as the one used by Salimans et al. [28] and Mnih et al. [25] was

adopted for this research.

 A Convolutional Neural Network (CNN) is a kind of neural network that is able to

extract features from data with convolution structures. Often used to solve image processing,

classification, and segmentation problems, CNNs use convolution layers to preserve the

relationship between pixels by learning image features using small squares of input data. The

outputs of the convolution layers summarize the presence of features in the input image, also

called feature maps. Each convolutional layer contains a series of filters known as

convolutional kernels. The filter is a matrix of integers that are used on a subset of the input

pixel values, the same size as the kernel. Each pixel is multiplied by the corresponding value

in the kernel, then the result is summed up for a single value for simplicity representing a grid

cell, like a pixel, in the output channel/feature map. This architecture gives CNNs advantages

over more classical neural networks; neurons are only connected to a small number of

neurons from the previous layer instead of all of them which effectively reduces the

parameters and speeds up convergence, and a group of connections can share the same

16

weights, which reduced parameters further [Li et al., 2020]. A problem with the convolution

layer outputs, or feature maps, is that they can be sensitive to the location of the features in

the input (e.g. an object being on the right or left side of the image). One approach to mitigate

this sensitivity is to down sample the feature maps in order to make them more robust to

changes in the position of the feature in the image. This robustness to positional variations is

referred to as translation invariance and means that the CNN would be able to identify an

object regardless of its position in the image (Appendix 2.). Pooling layers, commonly placed

in-between successive convolution layers, provide an approach to down sampling feature

maps by summarizing the presence of features in patches of the feature map. In addition to

progressively reducing the representation size of the input images, Pooling layers also reduce

the number of parameters, and hence also control overfitting8. Two common pooling

methods are Average pooling and Max pooling that summarize the average presence of a

feature and the most activated presence of a feature respectively. As mentioned previously,

each neuron only receives input from a small local region, or kernel, of the pixels in the input

image, unlike a neural network where all the neurons are fully connected. This is the concept

of local connectivity, which helps us understand another powerful mechanism that allow CNNs

to reduce the number of parameters, and in turn increase translation invariance [Gu et al.,

2017]: Parameter Sharing (or weight sharing). With Parameter Sharing, all the neurons in the

kernel are constrained to use the same weights and biases. It stems from the assumption that

if one feature is useful to compute at some position (e.g. (x, y)), then it should be useful to

compute at a different position (e.g (x2, y2)).

8 Overfitting occurs when a machine learning model achieves a good fit (i.e good predictions) on the training

data but does not generalize well on unseen data. In other words, the model has learned patterns that are specific

to the training data and not relevant to the dataset as whole.

17

The CNN used for this research project was developed in PyTorch and is comprised of

two convolutional layers; the first convolution layer has an input size of 3 and an output size

of 16 with a kernel size of 8 and a stride of 4. It expects an input image of size 84 x 84, which

is the size of the downscaled image from the Obstacle Tower. The second convolution layer

has an input size of 16 and an output size of 32 with a kernel size of 4 and a stride of 2. Between

Figure 3. Convolutional Neural Network Architecture Diagram

Table 1. Parameters of the Convolutional Neural Network used for this research.

18

each convolutional layer and all of the subsequent fully connected layers we apply a Rectified

Linear Unit activation function (ReLU) to the inputs; ReLU will output the input directly if it is

positive, otherwise, it will output zero. The outputs of the second convolutional layer are

flattened into a fully connected layer with dimensions 1 x 2592 and passed through a fully

connected layer with dimensions 1 x 256. Finally, the outputs of the last activation function

are sent to the output layer; a fully context layer with the number of possible outputs equal

to the number of possible actions, in the case 54. Figure 3. shows the CNN architecture

diagram for the model used in this research, and Table 1. shows the parameters of the CNN.

An alternative diagram, following the AlexNet style, can be found in Appendix 3. This CNN

implementation was used throughout all experiments, with no changes applied to it.

Pooling layers, which are often used in CNNs to down sample feature maps by

summarizing the presence of features in patches of the feature map, or to pool the activations

over the entire activation map in the case of Global Pooling Layers [Christlein et al., 2019],

were no included in this research’s CNN architecture for the following reasons: the goal of this

research is to explore the performance of ES in a complex environment. As such, it makes

sense that the baseline performance of ES should be evaluated using a rudimentary

implementation of a CNN, one without the addition of the CNN architecture components that

serve to improve the model’s performance. Furthermore, it has been shown that max pooling

layers can be replaced by a convolutional layer with increased stride without loss in accuracy

on several image recognition benchmarks [Springenberg et al., 2015], and that CNNs without

pooling layers after the convolution layer can achieve an accuracy equivalent that that of

GoogleNet, VGG16, and AlexNet [Howard et al., 2017].

19

3.2 Distributed System

Name Description

futures = f.remote(args)

Execute function f remotely. f.remote() can take objects or futures as
inputs and returns one or more futures. This is non-blocking.

objects = ray.get(futures)

Return the values associated with one or more futures. This is blocking.

ready_futures = ray.wait(futures, k, timeout)

Return the futures whose corresponding tasks have completed as soon
as either k have completed or the timeout expires.

actor = Class.remote(args)
futures = actor.method.remote(args)

Instantiate class Class as a remote actor and return a handle to it. Call a
method on the remote actor and return one or more futures. Both are
non-blocking.

One of the advantages of ES over traditional RL techniques is the ability to parallelize the

training of the algorithm. To take advantage of this parallelization ability, a distributed system

needed to be developed; Ray, a general-purpose cluster-computing framework that enables

simulation, training, and serving for RL applications, was used to perform the experiments of

this research. Ray runs on top of a Kubernetes cluster, where it models an application as a

graph of dependent tasks that evolves during execution. There are two important Ray

concepts to understand before discussing the framework’s benefits and the implementation

of the distributed system: Tasks and Actors. A Task represents the execution of a remote

function on a stateless9 worker. When a remote function is invoked, a future representing the

result of the task is returned immediately. Futures can be retrieved using ray.get() and passed

as arguments into other remote functions without waiting for their result. This allows the user

to express parallelism while capturing data dependencies. Table 2 shows how Ray implements

functions for its tasks and actors in its API. Remote functions operate on immutable objects

and are expected to be stateless and side-effect free: their outputs are determined solely by

9 A stateless server/worker does not store data on the host. It processes requests based only on information

relayed with each request and doesn’t rely on information from earlier requests.

Table 2. Ray project API

20

their inputs. This implies idempotence, which simplifies fault tolerance through function re-

execution on failure [Moritz et al., 2018]. An Actor represents a stateful10 computation. Each

actor exposes methods that can be invoked remotely and are executed serially. A method

execution is similar to a task, in that it executes remotely and returns a future, but differs in

that it executes on a stateful worker. A handle to an actor can be passed to other actors or

tasks, making it possible for them to invoke methods on that actor. Appendix 4. presents some

of the trade-offs between Tasks and Actors presented by Moritz et al. [26].

For this research, the distributed system was built using a Kubernetes cluster and RLlib,

a distributed-RL library that is part of the open-source Ray project. RLlib provides scalable and

reusable software primitives for RL and aims to standardize the training of RL algorithms that

tend to otherwise have highly irregular computation patterns [Liang et al., 2018]. It is

important to note that at the time of this research, RLlib does not have any stable or highly

configurable components for ES and that custom components were developed for this

research. These components will be discussed in a later paragraph. The distributed system

was deployed Google Cloud Platform (GCP), where the cluster nodes ran on GCP’s High-CPU

machines, specifically n1-highcpu-96 machines, which are ideal for tasks that require a

moderate increase of vCPUs relative to memory, making them well suited for ES. The n1-

highcpu-96 machine has 96 vCPUs and 86.4 Gb of memory.

While most RL environments available in OpenAI’s Gym library can run in headless

mode, meaning they do not require a computer monitor to work, the Obstacle Tower

environment does not. To be able to run the Obstacle Tower environment on the cluster,

additional libraries needed to be installed on the head and worker nodes of the cluster, which

10 A stateful server requires some type of storage capacity. Requests are processed and stored, so that the

server can keep the state.

21

were running on headless servers; Xvfb, a Linux package used to create display servers, was

used to be able to run the Obstacle Tower environment on the head and worker nodes. The

cluster configuration file can be found in Appendix 5.

RLlib has released components for many state-of-the-art RL algorithms, including ES.

However, their ES components are still a work in progress and were not suited for the OT

environment, which behaves slightly differently to the standardized OpenAI Gym

environments. Furthermore, their ES components didn’t allow for different selection and

mutation techniques. As such, custom components were developed for this research, notably

as custom Trainer class to be hosted on the Actor, or Head, node; this class orchestrates the

workers, or Ray Tasks, and performs the ES selection based on the results returned by the

Tasks/Workers. This class also evaluates the Workers to find the elite of each step, or

generation. A custom Worker class was also developed for this research; this class initializes

Figure 4. RLlib Training Cycle.

22

and xvfb server so that the OT environment can run in headless mode, starts the OT

environment, loads the agent, could performs the mutation method specified for the

experiment, and evaluates how well the agent performs in the environment. It then returns

the results back to the Trainer class/Actor so that it can perform the selection and build the

population for the next generation. The interactions between the Trainer and Worker classes

for each generation, or training step, are show in Figure 4. Code snippets for the custom

Trainer and Worker class can be found in Appendices 6. and 7.

3.3 Evolution Strategies

The version of ES that was used by OpenAI belongs to the class of Natural Evolution Strategies

(NES) [Wierstra et al., 2008], and has been replicated for this research. Additionally, some

common selection and mutation techniques borrowed from Genetic Algorithms (GA), another

class of Evolutionary Algorithms, have been implemented to try and improve ES’s

performance.

Like ES, GAs are a search heuristic that are inspired by Charles Darwin’s theory of

natural evolution. These algorithms reflect the process of natural selection where the fittest

individuals are selected for reproduction in order to produce offspring for the next generation.

Though they are difficult to distinguish, the main discernable difference between GAs and ES

is that GA applies crossovers between individuals in their population to share genetic

information between them, while ES mainly focusses on selecting individuals and applying

mutations to them, though it seems the terms can almost be used interchangeable nowadays.

A basic genetic algorithm would be going through the following five phases:

Initialize a population. The process begins by creating a set of individuals, called a

population, that each represent a solution to the problem you are trying to solve. The

23

population has a fixed size, and an individual solution is characterized by a set of

parameters, called genes, which are joined to form a chromosome. In the context of

GAs, an individual weight of the neural network would be considered a gene, and the

ensemble of all the parameters of the network would be considered the chromosome.

Evaluate the fitness. The fitness of each solution in the population is calculated using

a fitness function. Here we determine how well an individual solves the problem at

hand. In the Obstacle Tower environment, the fitness of the individual is measured by

the maximum number of floors the agent can reach.

Selection. Individuals are selected for variation based on their fitness scores.

Generally, individuals with a higher fitness have a bigger chance of being selected for

variation, although some selection methods allow for “weaker” individuals to be

selected as well.

Crossover. Mimicking the natural sex reproduction mechanism, the intuition behind

crossover is that by combining certain traits from two or more already fit individuals,

the offspring will be even “fitter” since it will possibly inherit the best traits from each

of its parents [Câmara, 2015]. The intention is to create a larger offspring pool of ideally

greater fitness and to converge towards an optimum. Crossovers are rarely found in

ES, where the tendency is to focus on selection and mutation mechanism but is an

integral part of GAs.

Mutation. For some of the offspring, mutations can occur, where small variations such

as adding noise are applied to some or all or some of their genes. The main goal of

mutation is to maintain diversity in the population and to provide a mechanism for

escaping a local optimum, thus avoiding early convergence.

24

Repeat steps 2. through 5. until the stopping criteria is met. These steps are repeated

until the population has converged, or a stopping criterion has been met; for example,

a desired fitness score has been reached, or a maximum number of generations has

been reached.

There is a concept in GAs called Elitism, where the most fit individual in a population gets a

guaranteed place in the next generation, generally without undergoing mutation (it can still

be duplicated in the next population and undergo mutation). Although Elitism is not

traditionally used in ES, but rather in GA, it was implemented in this research.

Pseudocode

3.4 The Obstacle Tower Environment

The open-source OT environment is available for download11 for Linux, Mac, and Windows.

The environment version used for this research is v3.1, and requires Python +3.6, the Unity

ML-Agents +0.10 and the OpenAI Gym Python packages. Although changes were made to

the environment to be able to reduce the action space, these changes were not applied used

during the experiments due to time and budget constraints. The following action space

reductions were inspired by Kanervisto et al. [18]:

11 https://github.com/Unity-Technologies/obstacle-tower-env

START

Initialize a population

REPEAT:

 Fitness Evaluation + Save Elite

 Selection

 Crossover (optional for ES)

 Mutation

UNTIL specified stopping criteria has been met

STOP

https://github.com/Unity-Technologies/obstacle-tower-env

25

 Full. All actions are possible (i.e. 54 possible discrete actions).

Minimal. The only allowed actions are moving forward, turning left, and turning

right.

 Backward. Same as Minimal, but with the additional option of moving backward.

Strafe. Same as Backward, but with the additional options of strafing (i.e moving

sideways) left and right.

Always Forward. The player always moves forward, all other actions are possible

except staying in place and going backward.

As a reminder, these reduced action space options were implemented in the OT environment

but were not tested during the experiments. All experiments are run with the Full action

space, which is the original action space provided by the Juliani et al. [16] and the one they

used in their benchmarks.

 No other parameters or functionalities were added to the OT environment, and the

environment parameters that were used for all experiments are detailed in Table 3. under the

Experiments section of this paper.

 In order to reproduce the experiments of this research, it is important to be aware of

the evaluation criteria outlined by the Juliani et al. [16]. They provide thee possible evaluation

schemes that aim at making the performance on agents in the OT environment as

reproducible and interpretable as possible:

No Generalization. It is possible to evaluate the performance of an agent on a single,

fixed version of the OT. In this case they recommend explicitly reporting that the

evaluation was performed on a fixed version of the OT, and reporting performance on

five random seeds of the dynamics of the agent. These seeds can be provided on

26

environment reset and condition the random number generator used to generate the

tower definition.

Weak Generalization. Agents should be trained on a fixed set of 100 seeds for the

environment configurations. They should then be tested on a held-out set of five

randomly selected tower configuration seeds not in the training set. Each should be

evaluated five times using different random seeds for the dynamics of the agent (initial

weights of the policy and/or value network(s)).

 Strong Generalization. In addition to the requirements for weak generalization,

agents should be tested on a held-out visual theme which is separate from the ones

on which it was trained. In their paper, Juliani et al. [16] trained on the Ancient and

Moorish themes, and test on the Industrial theme.

Because the OT environment is designed to test the generalization ability of agents, Juliani et

al. [16] recommend evaluating agents using the latter two methods. For this research, all

experiments were evaluated using the Weak Generalization scheme and the results will only

be compared to the Weak Generalization benchmark results published by Juliani et al. [16].

27

4. EXPERIMENTS

The focus of this work is on selection and mutation techniques. Crossover techniques were

not explored during this research, as they are rarely applied in ES and are more of GA

technique [Dianati et al., 2002], and were not explored in the original paper published by

Salimans et al. [28] either. Furthermore, as crossover techniques are more difficult to

implement when working in distributed systems, and because the complexity of applying

crossover techniques to neural network weights falls outside of the scope of this research.

Parameter Program Value

Generations – The maximum number of generations, in RL terms this would be the

training step. This is the stopping criteria of the algorithm; when the maximum

generation is reached, the algorithm stops training.

ES 85

Population Size - The number of individuals, or agents, in the population. A

population of the specified size is initialized at the beginning of training, and the

population size remains constant throughout the training process.

ES 200

Number of selected individuals – The number of individuals, or agents, that are

selected to recreate the population at each generation. As the population is constant,

some of the selected individuals may appear twice in the population (except during

the initialization of the population at the start of training, where all individuals are

unique).

ES 30

Maximum Timesteps per Episode – The maximum number of steps an agent is

allowed to take during an episode, or generation. It is possible for the agent to exit

the environment earlier if another exit condition is met (e.g., the agent won before

using its maximum timesteps).

ES 3500

Mutation Power – The amount of perturbation applied to the parameter during

mutation.

ES 0.005

Mutation Probability – The probability of mutation occurring. This is evaluated at

each generation for each individual, or agent, before it enters the OT environment.

ES 0.6

Number of Workers – Number of Kubernetes nodes, or CPUs, available to Worker

tasks.

ES 94

Greyscale – Turn images into greyscale (1 x 128 x 128) instead of RGB (3 x 128 x 128). OT False

Retro – Downscale images from 128 x 128 to 84 x 84. OT True

Realtime Mode – Show the agent traversing the environment in real-time speed. OT True

Table 3. Parameters used during experiments.

28

All experiments used the parameters specified in Table 3, except for the mutation

power, which could change due to the nature of the mutation techniques that were being

used.

Selection Methods

Two selection methods were implemented and tested for this research; the first is the basic

ES selection used by OpenAI, and the second is a popular GA selection method:

Select N Best Individuals. In this selection method, individuals were ranked according

to their fitness scores. The N highest ranking individuals were selected to re-create the

population, where N is an exogenous parameter representing the number of selected

individuals.

Fitness Proportionate Selection. Also called Roulette Wheel Selection, is a stochastic

selection method, where the probability for selection of an individual is proportional

to its fitness. This selection method gets its name from real-world roulette wheels that

can be found in casinos, the only distinction is that the slots are not all the same size;

instead, their size, and thus their probability of being selected, is proportional to their

fitness score. This means that any individual has a chance of being selected, with fitter

individuals having a higher probability of being selected.

Mutations

All mutations had the following parameters: a starting mutation power of 0.005, and a

mutation probability of 0.6. All experiments were also run with a linearly decreasing mutation

probability, where the mutation probability decreases with each generation.

Gaussian Mutation. Referred to as Simple mutation for the remainder of this research.

If the individual is selected for mutation, some noise is added to the genes, or weights

of that individual. The added noise is equal to a randomly selected weight value from

29

a normal distribution with a mean of 0 and a variance of 1, multiplied by the mutation

power. This is the mutation technique that was applied in the paper published by

OpenAI.

Random Mutation. This mutation is similar to the Simple Mutation, the only difference

being that the mutation power is randomized to a uniform power between 0 and the

defined mutation power of 0.005.

Decaying Mutation. The goal of this mutation technique is to linearly reduce the

mutation power as the number of generations increases. Adding even small amounts

of noise to the weights of the neural networks (i.e the individual solutions) can

dramatically change the way they behave; the goal of this mutation technique is to

reduce the amount of noise added to the weights as the population converges. This

means earlier generations will have higher degrees of noise added, whereas later

generations will have much smaller degrees of noise added.

30

5. RESULTS AND DISCUSSION

We are interested in analyzing the mean episodic rewards and maximum episodic rewards of

the experiments; the mean episodic rewards will give us insights into whether the population

was evolving as expected and whether the population hit a plateau at some point during its

evolution. The maximum episodic reward will allow us to assess the performance of the elite

of each generation and determine whether a plateau was reached at a certain reward level. It

is particularly important to analyze for performance plateaus in the OT environment, as they

can indicate the introduction of a new game mechanic that the agents are unable to

Figure 5. The mean episodic reward for all three mutation

techniques with Select N Best selection.
Figure 6. The mean episodic reward for all three mutation

techniques with Roulette Wheel/Fitness Proportionate selection.

Figure 7. The maximum episodic reward for all three

mutation techniques with Select N Best selection.
Fig 8. The maximum episodic reward for all three mutation

techniques with Roulette Wheel/Fitness Proportionate selection.

31

overcome; in the baseline results published by the team behind the Obstacle Tower

environment, they found that with the weak generalization evaluation criteria (i.e. where

agents are trained on a fixed set of 100 seeds), the agents were plateauing at the 5th floor,

which is the floor where a locked doors mechanic was introduced [Juliani et al., 2019]. Solving

this mechanic required the model to have a long-term memory mechanism, which their

models did not have.

 The results of the experiments are organized in a way that makes it easy to compare

the mean and maximum episodic rewards for both selection and all three mutation methods:

Figures 5. and 6. compare the mean episodic rewards for the Simple/Gaussian (green),

Random (orange), and Decaying (blue) mutation methods under the Select N Best (figure 5.)

and Roulette Wheel (figure 6.) selection methods. Figures 7. and 8. compare the maximum

episodic rewards for the same mutation and selection methods. The y-axis shows the rewards,

while the x-axis shows the generation at which the reward was obtained. As a reminder, we

used the OT environment’s default reward configuration, where the agent receives a sparse

reward of +1 for completing a floor of the tower, and a dense reward of +0.1 for opening

doors, solving puzzles, or picking up keys.

Figures 5. And 6. show that the selection and mutation techniques facilitate evolution

and that the average fitness scores of the populations increases with each generation. For

both selection methods, the Decaying and Random mutations performed better on average

than the Simple mutation. Figure 5. Shows that Select N Best, the selection method where the

top performers are selected to build the next generation, has a steadier incline, and showcases

higher average rewards than the Roulette Wheel selection (figure 6.), which seems to plateau

around generation 50 for each mutation method. Looking at Table 5., which shows the results

of the baseline models published by Juliani et al. [16], we see that with the Select N Best

32

selection method, all three mutation methods achieve the same mean episodic reward as

their Proximal Policy Optimization12 (PPO) algorithm, with the Random mutation achieving a

higher mean episodic reward of 1.15. This is not the case for the Roulette Wheel selection;

only the Random mutation method achieves a mean episodic reward of 0.8 around the 42nd

generation before dropping below the PPO score. It is important to note that in order to

achieve the results published in Table 5., Juliani et al. [16] trained their PPO and Rainbow13

(RNB) models sessions spanning 20 million environment steps, which is significantly more that

the number steps performed for this research (see Table 4.). As the mean episodic reward for

the mutation methods under the Select N Best selection method do not seem to be plateauing

(figure 5.), it is plausible that their mean episodic scores would have increased if they were to

take up to 20 million steps. In the future, it would be interesting to increase the number of

generations or the number of agents for the three mutation methods under the Select N Best

selection method. The graph for the mean episodic rewards of PPO and RNB at different

evaluation criteria published by Juliani et al. [16] is available in Appendix 8.

12 Proximal Policy Optimization (PPO) is a RL algorithm belonging to the family of policy gradient methods

for reinforcement learning, which alternate between sampling data through interaction with the environment
and optimizing a "surrogate" objective function using stochastic gradient ascent [Schulman et al., 2017].

13 DeepMind’s Rainbow algorithm is the combination of six independent improvements on the Deep Q-

Learning (DQN) algorithm. In their 2017 paper, Hessel, M. et al. [38] demonstrated that combining the Double Q-
Learning, Prioritized Replay, Dueling Networks, Multi-Step Learning, Distributional RL, and Noisy Nets techniques
into one DQN algorithm outperformed the state-of-the-art RL algorithms on the Atari 2600 benchmark.

Mutation Method Select N Best Roulette Wheel

Simple 12 019 911 11 261 466

Random 12 261 356 11 824 878

Decaying 12 235 011 11 759 863

Table 4. Total number of environment steps after the maximum number of generations was reached (i.e stopping

criteria)

33

Figures 7. and 8. reveal that the Roulette Wheel selection outperforms the Select N

Best selection in terms of achieving the highest episodic score. Figure 8. shows that the

Decaying mutation combined with the Roulette Wheel selection achieves the highest scores,

however it is difficult to attribute the agents’ performance to the mutation function, as the

figure shows that the highest score is achieved early in the evolution, at a point where the

mutation power would still be very close to the one applied with the Simple mutation. This

makes it difficult to single out any mutation technique as being more effective at producing

better offspring. The success of the Decaying mutation function can more likely be attributed

to randomness; similar to how the OpenAI researchers found that even a random network can

get good results, the success of the decaying mutation technique can likely be attributed to a

lucky initialization of the network weights.

It is clear from figures 7. and 8. that the elite agents (i.e. the agent with the highest

episodic score at every generation) are plateauing very early in the evolution and that for all

selection and mutation methods the elites stagnate on the second floor; only the Decaying

mutation with Roulette Wheel selection reaches the 4th and even the 6th floor but plateaus 3rd

floor. The few spikes in figures 7. and 8. can likely be attributed to luck and randomness, as

the early floors of the OT environment are relatively straightforward; the there are no traps

Model Mean Episodic Reward Number of Environment Steps

Proximal Policy Optimization (PPO) 0.8 20 000 000

Rainbow (RNB) 3.4 20 000 000

Human 15.6 -

Table 5. Baseline results from the Obstacle Tower paper comparing PPO, Rainbow (Dopamine), and

human performance reported as the mean of the number of floors solved in a single episode under “weak

generalization” evaluation criteria.

34

or keys to collect, only a few orbs that increase the remaining time but do not reward the

agent. As such, even with a random set of moves, an agent could reach the second floor.

What we learn from the graphs is that the application of ES works in the Obstacle

Tower; figures 5. and 6. show that at every generation the population mean episodic reward

increases. This means that on average, the individual agents in the population become better

even when perturbations are applied to their parameters (i.e. mutation). However, figures 7.

and 8. make it clear that the agents are unable to evolve beyond a certain performance level

very early in their evolution. This can be attributed to many things, all of which are speculative

at this point:

Evolution Parameters - The mutation power could be too high or too low, which would

over-perturb or under-perturb the parameters of the model; over-perturbation would

cause the lose the policy it had learned up until that point, while under-perturbation would

not change the parameters enough for the model to learn something new. The frequency

of mutations occurring during the evolution (i.e. the mutation probability) could have been

too high or too low; perturbing agent parameters too often or not enough could prevent

them from learning correctly. Perhaps it also does not make sense to blindly apply

mutations to the entirety of the neural network parameters; it would be interesting to

study the application of more targeted perturbations. The population size for these

experiments was quite small (85) due to the limited number of workers/CPUs (96)

available compared the 1000s of CPUs that were used by OpenAI in their 2017 research.

Our assumption is that increasing the population size would yield better results. Finally,

due to budgetary constraints, the number of generations was limited to 80. However, it is

clear from figure 5. that the agents had not yet reached a plateau with regards to the mean

episodic reward for all three mutation methods under the Select N Best selection method;

35

perhaps that with more generations, the mean episodic rewards would have continued to

increase under those parameters.

Environment Parameters – There are a number of built-in environment parameters that

could be tested, such as using the greyscale flag to convert the images to greyscale format

(1 x 128 x 128) or turning off the retro flag so that the images would be full-size (3 x 128 x

128) instead of downscaled (3 x 84 x 84). Furthermore, customizations could have been

applied to the action space and the reward functions: the actions space could have been

reduced with certain moves being removed from the action space (such as jumping or

turning left and right) to facilitate training [Kanervisto et al., 2020], while the reward

function could have been made more complex by giving negative rewards to repeating the

same actions multiple times in a row.

Model Architecture – For this research, a basic implementation of a CNN with only two

convolution layers and no pooling layers was used. While such a neural network

architecture could make sense for simpler 2D and 3D games, it was expected that it would

not perform well in a complex environment like the OT where the agent is expected to

have a long-term memory, precise motor skills, and the ability to identify objects from

pixels in constantly changing backgrounds and environments. Perhaps adding components

that have proven to be effective at solving these problems to the model would increase

the agents’ performances, increasing the number of convolution layers as well as including

pooling layers between them could help the agent distinguish between details of the

environment more accurately.

Finally, it would be interesting to apply more mutation and selection techniques, as well

as implementing GA crossover techniques to study their effect on performance. While there

were plans to develop and experiment with more selection and mutation techniques, budget

36

constraints for this research have made it so that we have had to limit ourselves to the ones

presented in the paper.

37

6. CONCLUSIONS

It was not possible to achieve the baseline results published in the original Obstacle Tower

paper [Juliani et al., 2019] with a basic implementation of ES. In this research we have

demonstrated that a basic implementation of ES struggles to evolve in a procedurally

generated environment where the agent must be able to generalize and have some form of

memory. However, this does not mean that ES cannot be improved to perform better in such

environments; the results of the roulette wheel selection combined with the decaying

mutation show that it is possible to improve the performance of a basic implementation ES in

this complex environment. However, the results of this combination can likely be attributed

to a lucky random initialization, as it achieves this high score very early in its evolution, at a

point where there is hardly any distinction in the application of the decaying mutation or the

simple mutation.

 The results obtained don’t allow us to conclusively say that we were able to improve

on the performance of the basic ES implementation; for both selection techniques and all

mutation techniques, the agents seem to stagnate close to their initial fitness scores, leading

us to believe that they are not in fact learning and only achieve slightly higher rewards from

time to time entirely by chance.

To conclude, we were not able to obtain any significant results when applying OpenAI’s

ES implementation to the Obstacle Tower environment, nor were we able to definitively

improve on their ES implementation by applying new selection and mutation techniques taken

from GAs. However, this does not mean that it is impossible for ES to perform well in complex

3D environments; there are many techniques, model architectures, and environment changes

that can have not been explored during this research and that can potentially give better

38

insights on how to improve ES’s performance in complex 3D environments. This study can

serve as a benchmark for future researchers who are interested in exploring the application

of ES to complex 3D environments.

The initial goal of this research, which was to test ES’ generalization ability by

evaluating its performance in a complex 3D environment, and to assess the performance of a

number of selection and mutation methods borrowed from GA, was achieved. While ES did

not outperform the benchmarks on the OT environment presented by Juliani et al. [16], it

achieved mean episodic rewards that were on par with their PPO benchmarks, as did the

suggested mutation methods under Select N Best selection. This was the first time that ES was

applied to the Obstacle Tower environment, and this research can serve as a benchmark for

the performance of evolutionary algorithms as alternatives to RL in the Obstacle Tower

environment.

39

7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

In the future, it would be interesting to study the impact that crossover techniques could have

on ES’s performance, as sharing genetic information between two fit parents is a key

mechanism to ensure convergence in GAs. Some consideration will need to be given as to how

these crossovers would affect the individuals, as the individuals are comprised of model

weights and the smallest changes to these weight values can completely change the agent’s

performance. Staying in the realm of GAs, it would also be interesting to further explore

traditional as well as more cutting-edge selection and mutation techniques, as the ones that

were implemented for this research were very basic, and not what could be considered state-

of-the-art [Abdoun et al., 2012]. Again, for the mutation techniques it will be important to

consider how the mutation affects the weights of the model; perhaps it would make sense to

only mutate targeted parameters of the model instead of blindly applying the mutation to all

parameters like it was done in this study.

Using more complex Neural Network architectures that have some form of memory

and that are better suited for vision tasks would perhaps perform better than the basic CNN

that was used for this research. When completing the Obstacle Tower Challenge, which was a

challenge issued by Unity when they first release the environment, the top performer used a

stack of Deep Neural Networks (DNN), where the different models had different roles, such as

classifying objects in the game and controlling movement. Regarding the CNN used for this

research, it was expected that this basic implementation with only two convolution layers and

no pooling layers would yield mediocre results; adding more convolution layers with pooling

layers between them would likely improve the model’s capacity to distinguish important items

(keys, doors, orbs) more accurately and perform better in a 3D environment like the OT.

40

Finally, there are changes to the environment, or the way the agent interacts with the

environment, that can be applied in order to increase performance. For this research, changes

were made to the environment to minimize the action space. Unfortunately, these methods

were not tested due to budgetary constraints. Using greyscale instead of RGB images could

also help the agent identify with its surroundings better and changing to reward function to

include more densely distributed rewards can potentially help the agent learn to navigate the

environment more effectively. Most of the suggested improvements in this section were not

tested due to time and budget constraints, as mentioned previously. However, given the work

that has already been delivered for this paper, most of the suggestions above could be easily

implemented in future research.

41

8. BIBLIOGRAPHY

[1] Abdoun, O., et al. “Analyzing the Performance of Mutation Operators to Solve the

Travelling Salesman Problem.” ArXiv:1203.3099 [Cs], (2012). arXiv.org,

http://arxiv.org/abs/1203.3099.

[2] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. “Review of deep learning: concepts,

CNN architectures, challenges, applications, future directions”. J Big Data 8, 53

(2021). https://doi.org/10.1186/s40537-021-00444-8

[3] Bellemare, M. G., et al. “The Arcade Learning Environment: An Evaluation Platform

for General Agents.” Journal of Artificial Intelligence Research, vol. 47, (2013), pp.

253–79. arXiv.org, doi:10.1613/jair.3912.

[4] Booth, J. “PPO Dash: Improving Generalization in Deep Reinforcement

Learning.” ArXiv:1907.06704 [Cs], (2019). arXiv.org,

http://arxiv.org/abs/1907.06704.

[5] Braylan A., Hollenbeck M., Meyerson E., Miikkulainen R., et al. “Frame skip is a

powerful parameter for learning to play Atari”. AAAI workshop, (2015). UTexas,

http://nn.cs.utexas.edu/downloads/papers/braylan.aaai15.pdf

[6] Brockman, G., et al. “OpenAI Gym.” ArXiv:1606.01540 [Cs], (2016). arXiv.org,

http://arxiv.org/abs/1606.01540.

[7] Brunnbauer, A., et al. “Model-Based versus Model-Free Deep Reinforcement

Learning for Autonomous Racing Cars.” ArXiv:2103.04909 [Cs], (2021). arXiv.org,

http://arxiv.org/abs/2103.04909.

[8] Câmara, D. “Evolution and Evolutionary Algorithms.” Bio-Inspired Networking,

Elsevier, (2015), pp. 1–30. DOI.org (Crossref), doi:10.1016/B978-1-78548-021-

8.50001-6

[9] Christlein, V., et al. “Deep Generalized Max Pooling.” ArXiv:1908.05040 [Cs],

(2019). arXiv.org, http://arxiv.org/abs/1908.05040.

[10] Dayan, P., Niv, Y. “Reinforcement Learning: The Good, The Bad and The

Ugly.” Current Opinion in Neurobiology, vol. 18, no. 2, (2008), pp. 185–96. DOI.org

(Crossref), doi:10.1016/j.conb.2008.08.003.

https://doi.org/10.1186/s40537-021-00444-8
http://arxiv.org/abs/1907.06704
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1908.05040

42

[11] Dianati, M., Song, I., Treiber, M. ”An Introduction to Genetic Algorithms and

Evolution.” ceas3.uc.edu, (2002). University of Cincinnati

https://static.aminer.org/pdf/PDF/000/304/974/multi_population_evolution_stra

tegies_for_structural_image_analysis.pdf

[12] Ecoffet, A. “Montezuma’s Revenge Solved by Go-Explore, a New Algorithm for

Hard-Exploration Problems (Sets Records on Pitfall, Too).” Uber Engineering Blog,

(2018), https://eng.uber.com/go-explore/.

[13] Gu, J., et al. “Recent Advances in Convolutional Neural

Networks.” ArXiv:1512.07108 [Cs], (2017). arXiv.org,

http://arxiv.org/abs/1512.07108.

[14] Howard, A. G., et al. “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications.” ArXiv:1704.04861 [Cs], (2017). arXiv.org,

http://arxiv.org/abs/1704.04861.

[15] Huang, S., et al. “Adversarial Attacks on Neural Network Policies.”

ArXiv:1702.02284 [Cs, Stat], (2017). arXiv.org, http://arxiv.org/abs/1702.02284.

[16] Juliani, A., et al. “Obstacle Tower: A Generalization Challenge in Vision, Control,

and Planning.” ArXiv:1902.01378 [Cs], (2019). arXiv.org,

http://arxiv.org/abs/1902.01378.

[17] Juliani, A., et al. “Unity: A General Platform for Intelligent Agents.”

ArXiv:1809.02627 [Cs, Stat], (2020). arXiv.org, http://arxiv.org/abs/1809.02627.

[18] Kanervisto, A., et al. “Action Space Shaping in Deep Reinforcement

Learning.” ArXiv:2004.00980 [Cs], (2020). arXiv.org,

http://arxiv.org/abs/2004.00980.

[19] Li, Z., et al. “A Survey of Convolutional Neural Networks: Analysis, Applications,

and Prospects.” ArXiv:2004.02806 [Cs, Eess], (2020). arXiv.org,

http://arxiv.org/abs/2004.02806.

[20] Liang, E., et al. “RLlib: Abstractions for Distributed Reinforcement

Learning.” ArXiv:1712.09381 [Cs], (2018). arXiv.org,

http://arxiv.org/abs/1712.09381.

[21] Lillicrap, T. P., et al. “Continuous Control with Deep Reinforcement

Learning.” ArXiv:1509.02971 [Cs, Stat], (2019). arXiv.org,

http://arxiv.org/abs/1509.02971.

https://eng.uber.com/go-explore/
http://arxiv.org/abs/1902.01378
http://arxiv.org/abs/1809.02627
http://arxiv.org/abs/2004.02806
http://arxiv.org/abs/1712.09381

43

[22] Machado, M. C., et al. “Revisiting the Arcade Learning Environment: Evaluation

Protocols and Open Problems for General Agents.” ArXiv:1709.06009 [Cs], (2017).

arXiv.org, http://arxiv.org/abs/1709.06009.

[23] Minsky, M. "Steps toward Artificial Intelligence," in Proceedings of the IRE, vol. 49,

no. 1, pp. (1961), doi: 10.1109/JRPROC.1961.287775.

[24] Mnih, V., Kavukcuoglu, K., Silver, D. et al. “Human-level control through deep

reinforcement learning.” Nature 518, 529–533 (2015).

https://doi.org/10.1038/nature14236

[25] Mnih, V., et al. “Asynchronous Methods for Deep Reinforcement Learning.”

ArXiv:1602.01783 [Cs], (2016). arXiv.org, http://arxiv.org/abs/1602.01783.

[26] Moritz, P., et al. “Ray: A Distributed Framework for Emerging AI Applications.”

ArXiv:1712.05889 [Cs, Stat], (2018). arXiv.org, http://arxiv.org/abs/1712.05889.

[27] Pleines, M., et al. “Obstacle Tower Without Human Demonstrations: How Far a

Deep Feed-Forward Network Goes with Reinforcement Learning.”

ArXiv:2004.00567 [Cs, Stat], (2020). arXiv.org, http://arxiv.org/abs/2004.00567.

[28] Salimans, T., et al. “Evolution Strategies as a Scalable Alternative to Reinforcement

Learning.” ArXiv:1703.03864 [Cs, Stat], (2017). arXiv.org,

http://arxiv.org/abs/1703.03864.

[29] Salimans, T., et al. “Improved Techniques for Training GANs.” ArXiv:1606.03498

[Cs], June 2016. arXiv.org, http://arxiv.org/abs/1606.03498.

[30] Schaul, T., Glasmachers, T., Schmidhuber, J., et al. “High dimensions and heavy

tails for natural evolution strategies”. (2011). In Proceedings of the 13th annual

conference on Genetic and evolutionary computation, pages 845–852. ACM,

(2011).

[31] Silver, D., Huang, A., Maddison, C. et al. “Mastering the game of Go with deep

neural networks and tree search”. Nature 529, 484–489 (2016).

https://doi.org/10.1038/nature16961

[32] Springenberg, J. T., et al. “Striving for Simplicity: The All Convolutional

Net.” ArXiv:1412.6806 [Cs], 2015. arXiv.org, http://arxiv.org/abs/1412.6806.

[33] Stavens, D., Sebastian, T. “A Self-Supervised Terrain Roughness Estimator for Off-

Road Autonomous Driving.” ArXiv:1206.6872 [Cs], (2012). arXiv.org,

http://arxiv.org/abs/1206.6872.

http://arxiv.org/abs/1709.06009
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/2004.00567
http://arxiv.org/abs/1703.03864
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1412.6806

44

[34] Vinyals, O., Babuschkin, I., Czarnecki, W.M. et al. “Grandmaster level in StarCraft II

using multi-agent reinforcement learning”. Nature 575, 350–354 (2019).

https://doi.org/10.1038/s41586-019-1724-z

[35] Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J. et al. “Natural evolution

strategies. In Evolutionary Computation”. (2008). CEC 2008. (IEEE World Congress

on Computational Intelligence). IEEE Congress on, pages 3381–3387. IEEE, 2008.

[36] Part 2: Kinds of RL Algorithms — Spinning Up Documentation.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html. Accessed 8

Nov. 2021.

[37] Cheoi KJ., Choi H., Ko J.” Empirical Remarks on the Translational Equivariance of

Convolutional Layers”. (2020). Applied Sciences. 2020; 10(9):3161.

https://doi.org/10.3390/app10093161

[38] Hessel, Matteo, et al. “Rainbow: Combining Improvements in Deep Reinforcement

Learning.” ArXiv:1710.02298 [Cs], Oct. 2017. arXiv.org,

http://arxiv.org/abs/1710.02298.

[39] Schulman, John, et al. “Proximal Policy Optimization Algorithms.”

ArXiv:1707.06347 [Cs], Aug. 2017. arXiv.org, http://arxiv.org/abs/1707.06347.

[40] Hausknecht, Matthew, et al. “HyperNEAT-GGP: A HyperNEAT-Based Atari General

Game Player.” Proceedings of the 14th Annual Conference on Genetic and

Evolutionary Computation, Association for Computing Machinery, 2012, pp. 217–

24. ACM Digital Library, https://doi.org/10.1145/2330163.2330195.

[41] “Model-Based and Model-Free Reinforcement Learning - Pytennis Case Study.”

Neptune.Ai, 27 Nov. 2020, https://neptune.ai/blog/model-based-and-model-free-

reinforcement-learning-pytennis-case-study.

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.3390/app10093161
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/2330163.2330195

45

9. APPENDIX

Appendix 1. OpenAI’s non-exhaustive taxonomy of modern RL algorithms [36].

Appendix 2. Showing the Translation Invariance property; when the inputs are shifted towards the right,

the representations are also shifted [37].

46

Tasks (stateless)

Actors (stateful)

Fine-grained load balancing

Coarse-grained load balancing

Support for object locality

Poor locality support

High overhead for small updates

Low overhead for small updates

Efficient failure handling

Overhead from checkpointing

Appendix 4. Trade-offs between Tasks and Actors presented Moritz et al. [26].

Appendix 3. Alternative Convolutional Neural Network Architecture Diagram

47

cluster_name: obstacle-tower-cluster-rllib-v0

min_workers: 0

max_workers: 10

upscaling_speed: 1.0

provider:

 type: gcp

 region: europe-west4

 availability_zone: europe-west4-c

 project_id: obstacle-tower-gcp

head_node:

 machineType: n1-highcpu-96 #n1-standard-16

 disks:

 - boot: true

 autoDelete: true

 type: PERSISTENT

 initializeParams:

 diskSizeGb: 50

 sourceImage: projects/deeplearning-platform-release/global/images/family/tf-1-13-cpu

worker_nodes:

 machineType: n1-highcpu-96

 disks:

 - boot: true

 autoDelete: true

 type: PERSISTENT

 initializeParams:

 diskSizeGb: 50

 sourceImage: projects/deeplearning-platform-release/global/images/family/tf-1-13-cpu

setup_commands:

 - export DEBIAN_FRONTEND=noninteractive

 - sudo apt-get update

 - sudo apt install -y libgconf-2-4

 - sudo apt install -y libsoup2.4

 - sudo apt install -y xorg

 - sudo apt-get install -y libxfont-dev

 - sudo apt-get install -y xvfb

 - wget https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh || true

 - bash Anaconda3-5.0.1-Linux-x86_64.sh -b -p $HOME/anaconda3 || true

 - echo 'export PATH="$HOME/anaconda3/bin:$PATH"' >> ~/.bashrc

 - pip install --upgrade pip

 - pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/latest/ray-0.9.0.dev0-cp36-cp36m-manylinux1_x86_64.whl

 - pip install -U ray[dashboard]==1.1.0

48

from worker import Worker

from selections import roulette_wheel_selection, select_n_best

DEFAULT_CONFIG = with_common_config({

 "population_size": 85, #1000

 "max_timesteps_per_episode": 1000, #2000

 "max_evaluation_steps": 3, #2000

 "number_elites": 20,

 "mutation_power": 0.005,

 "mutation_probability": 0.6,

 "num_workers": 7,

 "create_display": False,

 "generations": 10,

 "mutation_func": "simple",

 "decreasing_mutation": False,

 "action_space": 54,

 "local_dir": "models/"

})

class GATrainer(Trainer):

 _name = "GA"

 _default_config = DEFAULT_CONFIG

 @override(Trainer)

 def _init(self, config: TrainerConfigDict, env_creator: Callable[[EnvContext], EnvType]):

 self._default_config = DEFAULT_CONFIG

 self.config = config

Appendix 5. Configuration file to deploy the Kubernetes cluster with Ray on Google Cloud Platform to

run the experiments for this research (.YAML).

Appendix 6. Source code for the custom Ray/RLlib Trainer class (GATrainer).

49

 self.generation = 0

 self._workers = [

 Worker.remote(config, env_creator, idx + 1)

 for idx in range(config["num_workers"])

]

 self.episodes_total = 0

 self.timesteps_total = 0

 self.elites = []

 self.elite = None

 self.highest_reward = 0

 if self.config['decreasing_mutation']:

 self.mutation_probs = np.round(np.linspace(self.config['mutation_probability'],

 0.01, self.config['generations']), 3)

 @override(Trainer)

 def step(self):

 logging.basicConfig(level=logging.INFO)

 worker_jobs = []

 for i in range(self.config['population_size']):

 elite_id = i % self.config['number_elites']

 worker_id = i % self.config['num_workers']

 weights = self.elites[elite_id] if self.elites else None

 worker_jobs += [self._workers[worker_id].evaluate.remote(weights=weights, mutate=True, record=False,

 generation=self.generation,

 mutation_probability=self.mutation_probs[self.generation])]

 results = ray.get(worker_jobs)

 elites = select_n_best(results, self.config['number_elites'])

 self.elites = []

 for result_id in elites:

 self.elites.append(results[result_id]['state_dict'])

 rewards = [result['total_reward'] for result in results]

 elite_index = np.argmax(rewards)

 if results[elite_index]['total_reward'] >= self.highest_reward:

 self.highest_reward = results[elite_index]['total_reward']

 self.elite = results[elite_index]['state_dict']

 self.timesteps_total += sum([result['timesteps_total'] for result in results])

 self.episodes_total += len(results)

 self.generation += 1

 return dict(

 timesteps_total=self.timesteps_total,

 episodes_total=self.episodes_total,

 generation=self.generation,

 train_reward_min=np.min(rewards),

 train_reward_mean=np.mean(rewards),

 train_reward_med=np.median(rewards),

 train_reward_max=np.max(rewards),

)

50

 def save_checkpoint(self, checkpoint_dir=None):

 checkpoint_path = os.path.join(checkpoint_dir, "elite_model.pth")

 torch.save(self.elite, checkpoint_path)

 return checkpoint_dir

from mutations import simple_mutation, decaying_mutation, random_mutation

from model import ConvModel

@ray.remote

class Worker:

 def __init__(self,

 config,

 env_creator,

 worker_index):

 self.config = config

 if config['create_display']:

 self.display = Display(visible=0, size=(800, 600), backend="xvfb")

 self.display.start()

 env_context = EnvContext(config["env_config"] or {}, worker_index)

 self.env = env_creator(env_context)

 self.model = ConvModel((3, 84, 84), action_space=config['action_space'])

 for param in self.model.parameters():

 param.requires_grad = False

 def evaluate(self, weights, mutate, record, generation, mutation_probability):

 if weights:

 self.model.load_state_dict(weights)

 else:

 self.model.init_weights()

 if mutate:

 rand_val = np.random.rand()

 if rand_val <= mutation_probability:

 if self.config['mutation_func'] == 'simple':

 self.model = simple_mutation(model=self.model, mutation_power=self.config['mutation_power'])

 elif self.config['mutation_func'] == 'decaying':

 self.model = decaying_mutation(model=self.model, mutation_power=self.config['mutation_power'],

 generation=generation, max_generations=self.config['generations'])

 elif self.config['mutation_func'] == 'random':

 self.model = random_mutation(model=self.model, max_mutation_power=self.config['mutation_power'])

 else:

 sys.exit()

 obs = self.env.reset()

 rewards = []

 for ts in range(self.config['max_timesteps_per_episode']):

 obs = np.reshape(obs, (1, 3, 84, 84))

 torch_obs = torch.tensor(obs, dtype=torch.float)

 action = self.model.determine_action(torch_obs)

 obs, reward, done, info = self.env.step(action)

51

 rewards += [reward]

 if (done):

 break

 weights = self.model.get_weights()

 return {

 'total_reward': sum(rewards),

 'timesteps_total': ts,

 'weights': weights,

 'state_dict': self.model.state_dict(),

 }

Appendix 7. Source code for the customer Ray/RLlib Worker class (Worker).

Appendix 8. Proximal Policy Optimization (PPO) and Rainbow (RNB) mean episodic rewards published

as benchmark performances published by Juliani et al. [16].

52

10. ANNEXES

Annex 1. DeepMind's Deep Q Network's performance on Atari games vs. human performance [Mnih et al., 2015].

53

Game DQN A3C FF, 1day HyperNEAT ES FF, 1hour A2C FF

Amidar 133.4 283.9 184.4 112.0 548.2

Assault 3332.3 3746.1 912.6 1673.9 2026.6

Asterix 124.5 6723.0 2340.0 1440.0 3779.7

Asteroids 697.1 3009.4 1694.0 1562.0 1733.4

Atlantis 76108.0 772392.0 61260.0 1267410.0 2872644.8

Bank Heist 176.3 946.0 214.0 225.0 724.1

Battle Zone 17560.0 11340.0 36200.0 16600.0 8406.2

Beam Rider 8672.4 13235.9 1412.8 744.0 4438.9

Berzerk - 1433.4 1394.0 686.0 720.6

Bowling 41.2 36.2 135.8 30.0 28.9

Boxing 25.8 33.7 16.4 49.8 95.8

Breakout 303.9 551.6 2.8 9.5 368.5

Centipede 3773.1 3306.5 25275.2 7783.9 2773.3

Chopper Command 3046.0 4669.0 3960.0 3710.0 1700.0

Crazy Climber 50992.0 101624.0 0.0 26430.0 100034.4

Demon Attack 12835.2 84997.5 14620.0 1166.5 23657.7

Double Dunk 21.6 0.1 2.0 0.2 3.2

Enduro 475.6 82.2 93.6 95.0 0.0

Fishing Derby 2.3 13.6 49.8 49.0 33.9

Freeway 25.8 0.1 29.0 31.0 0.0

Frostbite 157.4 180.1 2260.0 370.0 266.6

Gopher 2731.8 8442.8 364.0 582.0 6266.2

Gravitar 216.5 269.5 370.0 805.0 256.2

Ice Hockey 3.8 4.7 10.6 4.1 4.9

Kangaroo 2696.0 106.0 800.0 11200.0 1357.6

Krull 3864.0 8066.6 12601.4 8647.2 6411.5

Montezuma’s Revenge 50.0 53.0 0.0 0.0 0.0

Name This Game 5439.9 5614.0 6742.0 4503.0 5532.8

Phoenix - 28181.8 1762.0 4041.0 14104.7

Pit Fall - 123.0 0.0 0.0 8.2

Pong 16.2 11.4 17.4 21.0 20.8

Private Eye 298.2 194.4 10747.4 100.0 100.0

Q*Bert 4589.8 13752.3 695.0 147.5 15758.6

River Raid 4065.3 10001.2 2616.0 5009.0 9856.9

Road Runner 9264.0 31769.0 3220.0 16590.0 33846.9

Robotank 58.5 2.3 43.8 11.9 2.2

Seaquest 2793.9 2300.2 716.0 1390.0 1763.7

Skiing - 13700.0 7983.6 15442.5 15245.8

Solaris - 1884.8 160.0 2090.0 2265.0

Space Invaders 1449.7 2214.7 1251.0 678.5 951.9

Star Gunner 34081.0 64393.0 2720.0 1470.0 40065.6

Tennis 2.3 10.2 0.0 4.5 11.2

Time Pilot 5640.0 5825.0 7340.0 4970.0 4637.5

Tutankham 32.4 26.1 23.6 130.3 194.3

Up and Down 3311.3 54525.4 43734.0 67974.0 75785.9

Venture 54.0 19.0 0.0 760.0 0.0

Video Pinball 20228.1 185852.6 0.0 22834.8 46470.1

Wizard of Wor 246.0 5278.0 3360.0 3480.0 1587.5

Yars Revenge - 7270.8 24096.4 16401.7 8963.5

Zaxxon 831.0 2659.0 3000.0 6380.0 5.6

Annex 2. From Salimans et al.[28]: Final results obtained using Evolution Strategies on Atari 2600 games

(feedforward CNN policy, deterministic policy evaluation, averaged over 10 re-runs with up to 30 random

initial no-ops), and compared to results for DQN and A3C from Mnih et al. [24] and HyperNEAT from

Hausknecht et al. [40]. A2C is our synchronous variant of A3C, and its reported scores are obtained with

320M training frames with the same evaluation setup as for the ES results. All methods were trained on

raw pixel input.

Page | i

	1. Introduction
	2. Literature review
	3. Methodology
	4. EXPERIMENTS
	5. Results and discussion
	6. Conclusions
	7. Limitations and recommendations for future works
	8. Bibliography
	9. Appendix
	10. ANNEXES

