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ABSTRACT 

In 2017 OpenAI demonstrated that it was possible to train an AI agent by using Evolution 

Strategies (ES), and that the results rivaled standard Reinforcement Learning (RL) techniques 

on modern benchmarks. Their research effectively showed that Evolution Strategies is a viable 

alternative to traditional Reinforcement Learning techniques, and that it bypasses many of 

Reinforcement Learning’s inconveniences, notably the use of backpropagation.  

The Obstacle Tower environment aims to set a new Reinforcement Learning 

benchmark by challenging Artificial Intelligence (AI) agents to traverse 3-Dimensional 

procedurally generated levels using a real-time 3-Dimensional physics system. The 

environment tests an agent’s ability to generalize by requiring it to optimize aspects that are 

common in many Reinforcement Learning environments, but rarely combined in the same 

environment: vision, planning, and control.   

In this research, the original implementation of OpenAI’s Evolution Strategies 

algorithm was applied for the first time to the Obstacle Tower environment to assess how well 

it performs in a more complex environment, where the agent’s generalization ability is critical. 

Additionally, in the interest of exploring Evolution Strategies in this environment, common 

Genetic Algorithm selection and mutation techniques were developed and applied to try and 

improve the performance of the original Evolution Strategies implementation. Crossover 

techniques were not explored during this research, as they are rarely applied in Evolution 

Strategies. The results show that although the basic implementation of Evolution Strategies 

does not perform well in the complex Obstacle Tower environment, it is possible to improve 

its performance by applying different evolution methods borrowed from Genetic Algorithm 

(GA), which are algorithms belonging to the same family as Evolution Strategies. 
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1. INTRODUCTION 

 

From Atari games to Doom and Dota 2, Deep Reinforcement Learning (DRL) is considered the 

go-to technique to solve end-to-end learning from high-dimensional raw pixel images [Mnih 

et al., 2015]. The recent successes of Google DeepMind’s AlphaStar [Vinyals et al., 2019], 

where an agent has reached the human level of grandmaster in the real-time strategy game 

of StarCraft II much sooner than was initially anticipated, and AlphaGo [Silver et al. 2016], 

which beat Lee Sedol1 in the game Go in 2015, have garnered a great deal of interest in DRL 

and many advances have been made in recent years to solve more complex environments. 

Feed-forward Convolutional Neural Networks (FFCNN) using basic policy gradient 

methods or value based gradient methods have proven to be effective at solving 2-

dimensional (2D) environments such as the ones found in the Atari games [Mnih et al., 2016].  

The central goal of a Reinforcement Learning (RL) application is to learn a policy, which 

is a mapping from the state of the environment to a choice of action, that yields effective 

performance over time. In their 2017 paper, OpenAI proved it was possible to train an Artificial 

Intelligence (AI) agent by using Evolutionary Strategies (ES) [Salimans et al., 2016], a type of 

Neuroevolution algorithm2, is a type of black-box optimization algorithm that relies on 

selecting and perturbing (“mutating”) individuals as an optimization strategy. ES can be 

understood as a simplified version Genetic Algorithms (GA), where crossover and eventually 

elitism are omitted. With this paper, they have demonstrated that it is possible to learn a 

policy using ES, and that this policy achieves results comparable to those of traditional RL 

 
1 Lee Sedol is a former South Korean professional Go player, at the time of playing agains AlphaGo, he 

was ranked second in the international rankings. 
2 Neuroevolution is a machine learning technique that applies evolutionary algorithms to construct artificial 

neural networks, taking inspiration from the evolution of biological nervous systems in nature. 
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techniques while overcoming many of RL’s inconveniences, dispelling the common belief that 

ES methods are impossible to apply to high dimensional problems [Schaul et al., 2011].  

In 2019, game development company Unity Technologies created the Obstacle Tower 

(OT) environment; a procedurally generated RL environment that combines platforming-style 

gameplay with puzzles and was designed to be a new benchmark for learning agents in the 

areas of computer vision, locomotion skills, high-level planning, and generalization [Juliani et 

al., 2019].  

In this research, we applied the original implementation of the ES method used by 

OpenAI to the Obstacle Tower environment for the first time to assess how well it performs in 

a more complex environment, where the agent’s generalization ability is critical. Additionally, 

we explored some GA selection and mutation techniques to see if we can improve the 

performance of the original ES implementation. Crossover techniques were not explored 

during this research as they are more difficult to implement when working in distributed 

systems, and because the complexity of applying crossover techniques to neural network 

weights falls outside of the scope of this research. Furthermore, they were not implemented 

in OpenAI’s 2017 research. 

 The agents in this study are represented by a small Convolutional Neural Network 

(CNN) with two convolution layers, no pooling layers, and no backpropagation. Two selection 

methods had been implemented; Select N Best, and the popular Fitness 

Proportionate/Roulette Wheel Selection. In addition to the mutation technique implemented 

by OpenAI, where small amounts of Gaussian noise are added to the parameters of the Neural 

Network, two more techniques were implemented, random mutation and decaying mutation.  

Multiple experiments were run to evaluate ES’s performance, and to assess whether 

the GA selection and mutation techniques were able to improve on that performance. The 
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results of the experiments of this research are compared to the OT benchmark results 

obtained by Juliani et al. [16] in their paper introducing the environment. 
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2. LITERATURE REVIEW 

2.1 Reinforcement Learning 

Reinforcement Learning refers to the study of how an agent can interact with its environment 

to learn a policy which maximizes expected cumulative rewards for a task. It is one of three 

basic learning paradigms in Machine Learning (ML) alongside supervised learning, where 

training data is labelled, and unsupervised learning, where data is not labelled, and the model 

finds hidden patterns in the data. The history of RL is a vast and long, with artificial applications 

of trial-and-error learning dating back to the 1950s and 1960s [Minsky, 1961]. Recently, RL has 

undergone a renaissance due to promising results in areas such as playing Go [Silver et al. 

2016], beating competitive players in video games like StarCraft II [Vinyals et al., 2019], 

controlling continuous robotics systems [Lillicrap et al. 2015], and autonomous driving 

[Stavens et al., 2012]. The abundance and accessibility of learning environments from libraries 

like Gym [Brockman et al., 2016] and the Arcade Learning Environment [Bellemare et al., 2013; 

Mnih et al. 2013] have further fueled this growth in attention and development. While many 

policies, model architectures, reward systems, and learning strategies have been developed 

over the course of RL’s history, there are five constant essential elements to each RL problem: 

The Agent. The program controlling the object of concern [41] (e.g. a robot, a video 

game character). 

The Environment. This defines the outside world programmatically. Everything the 

agent(s) interacts with is part of the environment. It’s built for the agent to make it 

seem like a real-world case. It’s needed to prove the performance of an agent, meaning 

if it will do well once implemented in a real-world application [41]. 
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The Action. A move made by the agent, which causes a status change in the 

environment. 

The Reward(s). The evaluation of an action, which can be positive or negative. The 

reward Rₜ is a scalar feedback signal which indicates how well the agent is doing at step 

time t. 

The Policy. The algorithm used by the agent to decide its actions. This can be seen as 

the strategy to accumulate the most rewards over time that the agent learns during 

training. 

 

There are two broad classes for RL methods, each defined by how the model performs 

its optimization: model-based and model-free. Model-based RL uses experience to construct 

an internal model of the transitions and immediate outcomes in the environment. Appropriate 

actions are then chosen by searching or planning in this world model [41]. This is a statistically 

efficient way to use experience, as each morsel of information from the environment can be 

stored in a statistically faithful and computationally manipulable way. Model-free RL, on the 

other hand, uses experience to learn directly one or both of two simpler quantities (state/ 

action values or policies) which can achieve the same optimal behaviour but without 

estimation or use of a world model [Dayan et al., 2008]. We can think of model-free algorithms 

as trial-and-error methods; the agent explores the environment and learns from outcomes of 

the actions directly, without constructing an internal mode. Both RL classes have benefits and 

drawbacks, and the performance of each class on different RL problems and environments is 

still an active field of research in RL [Brunnbauer et al., 2021]. Appendix 1. presents OpenAI’s 

non-exhaustive, but useful taxonomy of modern RL algorithms. 
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2.2 Evolution Strategies 

Evolution Strategies is a class of black box optimization algorithms that are heuristic search 

procedures inspired by natural evolution: At every iteration (“generation”), a population of 

parameter vectors (genotypes” or “chromosomes”), is perturbed (“mutated”) and their 

objective function value (“fitness”) is evaluated. The highest scoring parameter vectors are 

then recombined to form the population for the next generation, and this procedure is 

iterated until the objective is fully optimized [Wierstra et al., 2008]. 

ES is relatively easy to implement and scale; Running on a computing cluster of 80 

machines and 1,440 CPU cores, OpenAI’s implementation was able to train a 3D MuJoCo3 

humanoid walker in only 10 minutes (A3C4 on 32 cores takes about 10 hours). Using 720 cores 

they could also obtain comparable performance to A3C on Atari while cutting down the 

training time from 1 day to 1 hour [Salimans et al., 2017]. 

Salimans et al. [28] highlights multiple advantages that ES enjoys over RL algorithms:  

No need for backpropagation. ES only requires the forward pass of the policy and does 

not require backpropagation (or value function estimation), which makes the code 

shorter and between 2-3 times faster in practice. On memory-constrained systems, it 

is also not necessary to keep a record of the episodes for a later update. There is also 

no need to worry about exploding gradients in RNNs. Lastly, one can explore a much 

larger function class of policies, including networks that are not differentiable (such as 

 
3 MuJoCo is a game where the goal is to make three-dimensional bipedal robot walk forward as fast as 

possible, without falling over. The environment is available in OpenAI’s Gym toolkit. 
4 Asynchronous Advantage Actor Critic (A3C) is a RL algorithm that uses asynchronous gradient descent 

for optimization of deep neural network controllers. It was presented by Mnih et al. in their 2016 paper 

“Asynchronous Methods for Deep Reinforcement Learning”, where it surpassed the state-of-the-art algorithms in 

2D and 3D environments. https://arxiv.org/abs/1602.01783 
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in binary networks), or ones that include complex modules (e.g. pathfinding, or various 

optimization layers). 

Highly parallelizable. ES only requires workers to communicate a few scalars between 

each other, while in RL it is necessary to synchronize entire parameter vectors (which 

can be millions of numbers). As a result, they observed linear speedups in their 

experiments as we added on the order of thousands of CPU cores to the optimization. 

Higher robustness. Several hyperparameters that are difficult to set in RL 

implementations are side-stepped in ES. For example, RL is not “scale-free”, so one can 

achieve very different learning outcomes (including a complete failure) with different 

settings of the frame-skip hyperparameter in Atari [Braylan et al., 2005]. They showed 

in their work that ES works about equally well with any frame-skip. 

Structured exploration. Some RL algorithms (especially policy gradients) initialize with 

random policies, which often manifests as random jitter on spot for a long time. This 

effect is mitigated in Q-Learning due to epsilon-greedy policies5, where the max 

operation can cause the agents to perform some consistent action for a while (e.g. 

holding down a left arrow). This is more likely to do something in a game than if the 

agent jitters on spot, as is the case with policy gradients. Similar to Q-learning, ES does 

not suffer from these problems because one can use deterministic policies and achieve 

consistent exploration. 

Credit assignment over long time scales. By studying both ES and RL gradient 

estimators mathematically one can see that ES is an attractive choice especially when 

 
5 Q-Learning, short for Quality-Learning, is an off-policy (and model-free) algorithm, meaning it 

approximates the optimal action-value function, independent of the policy. During training, Q-learning algorithms 

build and populate a table (“Q-table”) storing state-action pairs, the algorithm then consults this table to estimate 

the best possible action during inference. As a result, Q-learning due to greedy action selection, the algorithm 

usually selects the next action with the best estimated reward, which can prevent it from taking the longer, more 

rewarding path, making it a short-sighted algorithm. 
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the number of time steps in an episode is long, where actions have long lasting effects, 

or if no good value function estimates are available. 

Conversely, they also found some challenges to applying ES in practice. One core problem is 

that for ES to work, adding noise in parameters must lead to different outcomes to obtain 

some gradient signal. As they elaborate on in their paper, the use of virtual batch 

normalization6 [Salimans et al., 2016] can help alleviate this problem, but further work on 

effectively parameterizing neural networks to have variable behaviors as a function of noise 

is necessary. As an example of a related difficulty, they found that in Atari’s Montezuma’s 

Revenge7, one is very unlikely to get the key in the first level with a random network, while 

this is occasionally possible with random actions. 

 

2.3 The Obstacle Tower Environment 

The Obstacle Tower environment is a procedurally generated RL environment, meaning the 

environment is generated with some randomness and is never the same twice. It was 

developed by game development platform Unity and uses the ML-Agents Toolkit [Juliani et 

al., 2019]. It can run on the Mac, Windows, and Linux platforms, and can be controlled via the 

 
6 Virtual Batch normalization (VBN), also known as virtual batch norm) is a method used to make artificial 

neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling.  

It is similar to batch normalization, except that each example is normalized based on the statistics collected on a 

reference batch of examples that are chosen once and fixed at the start of training, and on itself, instead of the 

statistics of several examples belonging to the same mini-batch. 
7 Montezuma’s Revenge is an Atari game available in the Arcade Learning Environment that is notoriously 

difficult to beat with RL due to its sparsely distributed rewards. See Annexes 1. and 2. For DeepMind and 

OpenAI’s models’ performance on the game. 
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OpenAI Gym interface for easy integration with existing DRL training frameworks [Brockman 

et al., 2016]. 

 

 

Episode Dynamics  

The Obstacle Tower environment consists of up to 100 floors, with the agent starting on floor 

zero. All floors of the environment are treated as a single finite episode in the RL context. Each 

floor contains at least a starting and ending room. Each room can contain a puzzle to solve, 

enemies to defeat, obstacles to evade, or a key to open a locked door. The layout of the floors 

and the contents of the rooms within each floor becomes more complex at higher floors in 

the Obstacle Tower, providing a natural curriculum for learning agents. Within an episode, it 

is only possible for the agent to go to higher floors of the environment, and not to return to 

lower floors. The episode terminates when the agent collides with a hazard such as a pit or 

enemy, when the timer runs out, or when the agent arrives at the top floor of the 

environment. The timer is set at the beginning of the episode and completing floors as well as 

Figure 1. Examples of agent's perspective in the Obstacle Tower environment. 

Figure 2. Examples of floor layouts from the Obstacle Tower environment. 
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collecting blue time orbs increase the time left to the agent. In this way a successful agent 

must learn a behavior which is a tradeoff between collecting orbs and quickly completing 

floors of the tower in order to arrive at the higher floors before the timer ends. The reward 

function is a mix of sparse and dense rewards; with sparse rewards, the rewards in the 

environment are sparsely distributed, meaning that there are only a few states in the state 

space that return a reward, whereas with dense rewards, every transition in the environment 

is associated with a reward, which can be positive or negative. In the OT environment, the 

agent is given a positive reward of +1 for completing a floor of the tower (sparse), and a reward 

of +0.1 for opening a door, solving puzzles, or picking up a key (dense). The environment’s 

authors describe this reward function as a mix between sparse and dense reward [Juliani et 

al., 2019], but in reality, they are two different sparse rewards, as the positive reward +0.1 is 

not associated with every change of state, but rather with a change of state involving a 

specific, sparsely distributed, state. 

 

Observation Space 

The observation space of the agent consists of two types of information. The first type of 

observation is a rendered pixel image of the environment from a third person perspective. 

This image is rendered in 168 × 168 RGB and can be downscaled to 84 × 84. The second type 

of observation is a vector of auxiliary variables which describe relevant, non-visual information 

about the state of the environment. The elements which make up this auxiliary vector are the 

number of keys agent is in possession of, as well as the time left in the episode.  
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Action Space  

The action space of the agent is multi-discrete, meaning that it consists of a set of smaller 

discrete action spaces, of which the union corresponds to a single action in the environment. 

These subspaces are as follows: forward/backward/no-operation movement, left/right/no-

operation movement, clockwise/counterclockwise rotation of the camera/no-operation, and 

no-operation/jump. They also provide a version of the environment with this action space 

flattened into a single choice between one of 54 possible actions, whose size corresponds to 

the product of the sizes of all the sub-spaces in the multi-discrete case. 

 

The Obstacle Tower Environment as a Benchmark 

Obstacle Tower was developed specifically to overcome the limitations of previous game-

based AI benchmarks, offering a broad and deep challenge, the solving of which would imply 

a major advancement in reinforcement learning. In brief, the features of Obstacle Tower 

outline by Juliani et al. [16] are: 

High visual fidelity. The environment is rendered in 3D using real-time lighting and 

shadows, along with much more detailed textures and models than previous 

benchmarks. See Fig 1. for examples of the agent’s perspective. 

Procedurally generated floors and rooms.  Navigating the game requires both 

dexterity and planning, and the floors within the environment are procedurally 

generated, making generalization a requirement to perform well during evaluation. 

See Fig 2. for examples of floor layouts of various levels of the Obstacle Tower.  

Physics-driven interactions. The movement of the agent and other objects within the 

environment are controlled by a real-time 3D physics system.  
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Procedurally generated visuals. There are multiple levels of variation in the 

environment, including the textures, lighting conditions, and object geometry. 

Therefore, agents must be able to generalize their understanding of objects’ 

appearance. 

The Obstacle Tower environment is designed to provide a meaningful challenge to current 

and future AI agents, specifically those trained using the pixels-to-control approach. Juliani et 

al. [16] describes four axes of challenge that this environment provides: vision, control, 

planning, and generalization. While various other environments and benchmarks have been 

used to provide difficult challenges for AI agents, this is to the best of our knowledge the first 

benchmark which combines all such axes of complexity.  

Vision. The primary observation available to agents within the Obstacle Tower is a 

rendered RGB image. Obstacle Tower contains high-fidelity real-time lighting, complex 

3D shapes, and high-resolution textures. Furthermore, the floors in the environment 

are rendered in one of multiple different visual themes, such as Ancient or Industrial. 

These visual themes were chosen to provide a large amount of variation in the 

textures, colors, and 3D models that the agent would encounter. With the combination 

of high-fidelity visuals and increased visual variation, models with much greater 

representational capacity than those used in A3C [Mnih et al., 2016] or DQN [Mnih et 

al., 2015] will be needed to perform well in the environment.  

Generalization & Vision. Humans can easily understand that two different doors seen 

under different lighting conditions are still doors; general-purpose agents should have 

similar abilities. However, this is not the case; in many cases agents trained under one 

set of visual conditions, and then tested on even a slightly different visual conditions 

perform much worse at the same task [Huang et al., 2017]. The procedural lighting and 
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visual appearance of floors within the Obstacle Tower means that agents will need to 

be able to generalize to new visual appearances which they may never have directly 

experienced before.  

Control. An agent in Obstacle Tower must be able to navigate through multiple rooms 

and floors. Each of these rooms can contain multiple possible obstacles, enemies, and 

moving platforms, all of which require fine-tuned control over the agent’s movement. 

Floors of the environment can also contain puzzle rooms, which involve the physical 

manipulation of objects within the room to unlock doors to other rooms on the floor. 

While the action space of the agent is discrete, the environment itself uses continuous 

metrics for the position and velocity of objects, making the state space extremely large. 

We expect that for agents to perform well on these sub-tasks, the ability to model and 

predict the results of the agents’ actions within the environment will be of benefit.  

Generalization & Control. The layout of the rooms on every floor are different on each 

instance of the Obstacle Tower; as such, it is expected that methods which are 

designed to exploit determinism of the training environment, such as Brute [Machado 

et al., 2017] and Go-Explore [Ecoffet, 2018] will perform poorly on the test set of 

environments. It is also the case that within a single instance of a Tower, there are 

elements of the environment which contain stochastic behavior, such as the 

movement of platforms and enemies.  

Planning. Depending on the difficulty of the floor, some floors of the Obstacle Tower 

require reasoning over multiple dependencies to arrive at the end room. For example, 

some rooms cannot be accessed without a key that can only be obtained in rooms 

sometimes very far from the door they open. In these cases, planning is required to 

ensure the agent takes the most efficient path between rooms.  
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Generalization & Planning. Due to the procedural generation of each floor layout 

within the Obstacle Tower, it is not possible to re-use a single high-level plan between 

floors. It is likewise not possible to re-use plans between environment instances, as the 

layout of each floor is determined by the environment’s generation seed. Because of 

this, planning methods which require computationally expensive state discovery 

phases are likely not able to generalize to unseen floor layouts. 
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3. METHODOLOGY 

3.1 Neural Network 

In DRL, the AI agents are represented by Deep Neural Networks. While there are many suitable 

network architectures to choose from, ranging from basic to very complex, we have opted for 

a feed-forward Convolutional Neural Network (FFCNN); these networks have a proven track 

record for automatically detecting significant features without any human supervision 

[Alzubaidi et al., 2021] and performing well in pixel-to-control problems [Mnih et al., 2016]. 

Given the agent’s dependance on visual information in the Obstacle Tower environment, the 

same model architecture as the one used by Salimans et al.  [28] and Mnih et al. [25] was 

adopted for this research. 

 A Convolutional Neural Network (CNN) is a kind of neural network that is able to 

extract features from data with convolution structures. Often used to solve image processing, 

classification, and segmentation problems, CNNs use convolution layers to preserve the 

relationship between pixels by learning image features using small squares of input data. The 

outputs of the convolution layers summarize the presence of features in the input image, also 

called feature maps. Each convolutional layer contains a series of filters known as 

convolutional kernels. The filter is a matrix of integers that are used on a subset of the input 

pixel values, the same size as the kernel. Each pixel is multiplied by the corresponding value 

in the kernel, then the result is summed up for a single value for simplicity representing a grid 

cell, like a pixel, in the output channel/feature map. This architecture gives CNNs advantages 

over more classical neural networks; neurons are only connected to a small number of 

neurons from the previous layer instead of all of them which effectively reduces the 

parameters and speeds up convergence, and a group of connections can share the same 
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weights, which reduced parameters further [Li et al., 2020]. A problem with the convolution 

layer outputs, or feature maps, is that they can be sensitive to the location of the features in 

the input (e.g. an object being on the right or left side of the image). One approach to mitigate 

this sensitivity is to down sample the feature maps in order to make them more robust to 

changes in the position of the feature in the image. This robustness to positional variations is 

referred to as translation invariance and means that the CNN would be able to identify an 

object regardless of its position in the image (Appendix 2.). Pooling layers, commonly placed 

in-between successive convolution layers, provide an approach to down sampling feature 

maps by summarizing the presence of features in patches of the feature map. In addition to 

progressively reducing the representation size of the input images, Pooling layers also reduce 

the number of parameters, and hence also control overfitting8.  Two common pooling 

methods are Average pooling and Max pooling that summarize the average presence of a 

feature and the most activated presence of a feature respectively. As mentioned previously, 

each neuron only receives input from a small local region, or kernel, of the pixels in the input 

image, unlike a neural network where all the neurons are fully connected. This is the concept 

of local connectivity, which helps us understand another powerful mechanism that allow CNNs 

to reduce the number of parameters, and in turn increase translation invariance [Gu et al., 

2017]: Parameter Sharing (or weight sharing). With Parameter Sharing, all the neurons in the 

kernel are constrained to use the same weights and biases. It stems from the assumption that 

if one feature is useful to compute at some position (e.g. (x, y)), then it should be useful to 

compute at a different position (e.g (x2, y2)). 

 

 
8 Overfitting occurs when a machine learning model achieves a good fit (i.e good predictions) on the training 

data but does not generalize well on unseen data. In other words, the model has learned patterns that are specific 

to the training data and not relevant to the dataset as whole. 
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The CNN used for this research project was developed in PyTorch and is comprised of 

two convolutional layers; the first convolution layer has an input size of 3 and an output size 

of 16 with a kernel size of 8 and a stride of 4. It expects an input image of size 84 x 84, which 

is the size of the downscaled image from the Obstacle Tower. The second convolution layer 

has an input size of 16 and an output size of 32 with a kernel size of 4 and a stride of 2. Between 

Figure 3. Convolutional Neural Network Architecture Diagram  

Table 1. Parameters of the Convolutional Neural Network used for this research. 
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each convolutional layer and all of the subsequent fully connected layers we apply a Rectified 

Linear Unit activation function (ReLU) to the inputs; ReLU will output the input directly if it is 

positive, otherwise, it will output zero. The outputs of the second convolutional layer are 

flattened into a fully connected layer with dimensions 1 x 2592 and passed through a fully 

connected layer with dimensions 1 x 256. Finally, the outputs of the last activation function 

are sent to the output layer; a fully context layer with the number of possible outputs equal 

to the number of possible actions, in the case 54. Figure 3. shows the CNN architecture 

diagram for the model used in this research, and Table 1. shows the parameters of the CNN.  

An alternative diagram, following the AlexNet style, can be found in Appendix 3. This CNN 

implementation was used throughout all experiments, with no changes applied to it. 

Pooling layers, which are often used in CNNs to down sample feature maps by 

summarizing the presence of features in patches of the feature map, or to pool the activations 

over the entire activation map in the case of Global Pooling Layers [Christlein et al., 2019], 

were no included in this research’s CNN architecture for the following reasons: the goal of this 

research is to explore the performance of ES in a complex environment. As such, it makes 

sense that the baseline performance of ES should be evaluated using a rudimentary 

implementation of a CNN, one without the addition of the CNN architecture components that 

serve to improve the model’s performance. Furthermore, it has been shown that max pooling 

layers can be replaced by a convolutional layer with increased stride without loss in accuracy 

on several image recognition benchmarks [Springenberg et al., 2015], and that CNNs without 

pooling layers after the convolution layer can achieve an accuracy equivalent that that of 

GoogleNet, VGG16, and AlexNet [Howard et al., 2017].  
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3.2 Distributed System 

Name Description 
 

futures = f.remote(args) 
 

Execute function f remotely. f.remote() can take objects or futures as 
inputs and returns one or more futures. This is non-blocking. 
 

objects = ray.get(futures) 
 

Return the values associated with one or more futures. This is blocking. 
 

ready_futures = ray.wait(futures, k, timeout) 
 

Return the futures whose corresponding tasks have completed as soon 
as either k have completed or the timeout expires. 
 

actor = Class.remote(args)  
futures = actor.method.remote(args) 
 

Instantiate class Class as a remote actor and return a handle to it. Call a 
method on the remote actor and return one or more futures. Both are 
non-blocking. 
 

 

One of the advantages of ES over traditional RL techniques is the ability to parallelize the 

training of the algorithm. To take advantage of this parallelization ability, a distributed system 

needed to be developed; Ray, a general-purpose cluster-computing framework that enables 

simulation, training, and serving for RL applications, was used to perform the experiments of 

this research. Ray runs on top of a Kubernetes cluster, where it models an application as a 

graph of dependent tasks that evolves during execution. There are two important Ray 

concepts to understand before discussing the framework’s benefits and the implementation 

of the distributed system: Tasks and Actors. A Task represents the execution of a remote 

function on a stateless9 worker. When a remote function is invoked, a future representing the 

result of the task is returned immediately. Futures can be retrieved using ray.get() and passed 

as arguments into other remote functions without waiting for their result. This allows the user 

to express parallelism while capturing data dependencies. Table 2 shows how Ray implements 

functions for its tasks and actors in its API. Remote functions operate on immutable objects 

and are expected to be stateless and side-effect free: their outputs are determined solely by 

 
9 A stateless server/worker does not store data on the host. It processes requests based only on information 

relayed with each request and doesn’t rely on information from earlier requests. 

Table 2. Ray project API 
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their inputs. This implies idempotence, which simplifies fault tolerance through function re-

execution on failure [Moritz et al., 2018]. An Actor represents a stateful10 computation. Each 

actor exposes methods that can be invoked remotely and are executed serially. A method 

execution is similar to a task, in that it executes remotely and returns a future, but differs in 

that it executes on a stateful worker. A handle to an actor can be passed to other actors or 

tasks, making it possible for them to invoke methods on that actor. Appendix 4. presents some 

of the trade-offs between Tasks and Actors presented by Moritz et al. [26]. 

For this research, the distributed system was built using a Kubernetes cluster and RLlib, 

a distributed-RL library that is part of the open-source Ray project. RLlib provides scalable and 

reusable software primitives for RL and aims to standardize the training of RL algorithms that 

tend to otherwise have highly irregular computation patterns [Liang et al., 2018]. It is 

important to note that at the time of this research, RLlib does not have any stable or highly 

configurable components for ES and that custom components were developed for this 

research. These components will be discussed in a later paragraph. The distributed system 

was deployed Google Cloud Platform (GCP), where the cluster nodes ran on GCP’s High-CPU 

machines, specifically n1-highcpu-96 machines, which are ideal for tasks that require a 

moderate increase of vCPUs relative to memory, making them well suited for ES. The n1-

highcpu-96 machine has 96 vCPUs and 86.4 Gb of memory.  

While most RL environments available in OpenAI’s Gym library can run in headless 

mode, meaning they do not require a computer monitor to work, the Obstacle Tower 

environment does not. To be able to run the Obstacle Tower environment on the cluster, 

additional libraries needed to be installed on the head and worker nodes of the cluster, which 

 
10 A stateful server requires some type of storage capacity. Requests are processed and stored, so that the 

server can keep the state. 
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were running on headless servers; Xvfb, a Linux package used to create display servers, was 

used to be able to run the Obstacle Tower environment on the head and worker nodes. The 

cluster configuration file can be found in Appendix 5. 

 

 

 

RLlib has released components for many state-of-the-art RL algorithms, including ES. 

However, their ES components are still a work in progress and were not suited for the OT 

environment, which behaves slightly differently to the standardized OpenAI Gym 

environments. Furthermore, their ES components didn’t allow for different selection and 

mutation techniques. As such, custom components were developed for this research, notably 

as custom Trainer class to be hosted on the Actor, or Head, node; this class orchestrates the 

workers, or Ray Tasks, and performs the ES selection based on the results returned by the 

Tasks/Workers. This class also evaluates the Workers to find the elite of each step, or 

generation. A custom Worker class was also developed for this research; this class initializes 

Figure 4. RLlib Training Cycle. 
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and xvfb server so that the OT environment can run in headless mode, starts the OT 

environment, loads the agent, could performs the mutation method specified for the 

experiment, and evaluates how well the agent performs in the environment. It then returns 

the results back to the Trainer class/Actor so that it can perform the selection and build the 

population for the next generation. The interactions between the Trainer and Worker classes 

for each generation, or training step, are show in Figure 4. Code snippets for the custom 

Trainer and Worker class can be found in Appendices 6. and 7. 

 

3.3 Evolution Strategies 

The version of ES that was used by OpenAI belongs to the class of Natural Evolution Strategies 

(NES) [Wierstra et al., 2008], and has been replicated for this research. Additionally, some 

common selection and mutation techniques borrowed from Genetic Algorithms (GA), another 

class of Evolutionary Algorithms, have been implemented to try and improve ES’s 

performance.  

Like ES, GAs are a search heuristic that are inspired by Charles Darwin’s theory of 

natural evolution. These algorithms reflect the process of natural selection where the fittest 

individuals are selected for reproduction in order to produce offspring for the next generation. 

Though they are difficult to distinguish, the main discernable difference between GAs and ES 

is that GA applies crossovers between individuals in their population to share genetic 

information between them, while ES mainly focusses on selecting individuals and applying 

mutations to them, though it seems the terms can almost be used interchangeable nowadays. 

A basic genetic algorithm would be going through the following five phases: 

Initialize a population. The process begins by creating a set of individuals, called a 

population, that each represent a solution to the problem you are trying to solve. The 
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population has a fixed size, and an individual solution is characterized by a set of 

parameters, called genes, which are joined to form a chromosome. In the context of 

GAs, an individual weight of the neural network would be considered a gene, and the 

ensemble of all the parameters of the network would be considered the chromosome.  

Evaluate the fitness. The fitness of each solution in the population is calculated using 

a fitness function. Here we determine how well an individual solves the problem at 

hand. In the Obstacle Tower environment, the fitness of the individual is measured by 

the maximum number of floors the agent can reach. 

Selection. Individuals are selected for variation based on their fitness scores. 

Generally, individuals with a higher fitness have a bigger chance of being selected for 

variation, although some selection methods allow for “weaker” individuals to be 

selected as well. 

Crossover. Mimicking the natural sex reproduction mechanism, the intuition behind 

crossover is that by combining certain traits from two or more already fit individuals, 

the offspring will be even “fitter” since it will possibly inherit the best traits from each 

of its parents [Câmara, 2015]. The intention is to create a larger offspring pool of ideally 

greater fitness and to converge towards an optimum. Crossovers are rarely found in 

ES, where the tendency is to focus on selection and mutation mechanism but is an 

integral part of GAs. 

Mutation. For some of the offspring, mutations can occur, where small variations such 

as adding noise are applied to some or all or some of their genes. The main goal of 

mutation is to maintain diversity in the population and to provide a mechanism for 

escaping a local optimum, thus avoiding early convergence. 
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Repeat steps 2. through 5. until the stopping criteria is met. These steps are repeated 

until the population has converged, or a stopping criterion has been met; for example, 

a desired fitness score has been reached, or a maximum number of generations has 

been reached. 

There is a concept in GAs called Elitism, where the most fit individual in a population gets a 

guaranteed place in the next generation, generally without undergoing mutation (it can still 

be duplicated in the next population and undergo mutation). Although Elitism is not 

traditionally used in ES, but rather in GA, it was implemented in this research. 

 

Pseudocode 

 

 

 

 

 

 

3.4 The Obstacle Tower Environment 

The open-source OT environment is available for download11 for Linux, Mac, and Windows. 

The environment version used for this research is v3.1, and requires Python +3.6, the Unity 

ML-Agents +0.10 and the OpenAI Gym Python packages. Although changes were made to 

the environment to be able to reduce the action space, these changes were not applied used 

during the experiments due to time and budget constraints. The following action space 

reductions were inspired by Kanervisto et al. [18]: 

 
11 https://github.com/Unity-Technologies/obstacle-tower-env 

START 

Initialize a population 

REPEAT:

 Fitness Evaluation + Save Elite 

 Selection 

 Crossover (optional for ES) 

 Mutation 

UNTIL specified stopping criteria has been met 

STOP 

 

https://github.com/Unity-Technologies/obstacle-tower-env
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 Full. All actions are possible (i.e. 54 possible discrete actions). 

Minimal. The only allowed actions are moving forward, turning left, and turning 

right. 

 Backward. Same as Minimal, but with the additional option of moving backward. 

Strafe. Same as Backward, but with the additional options of strafing (i.e moving 

sideways) left and right. 

Always Forward. The player always moves forward, all other actions are possible 

except staying in place and going backward. 

As a reminder, these reduced action space options were implemented in the OT environment 

but were not tested during the experiments. All experiments are run with the Full action 

space, which is the original action space provided by the Juliani et al. [16] and the one they 

used in their benchmarks. 

 No other parameters or functionalities were added to the OT environment, and the 

environment parameters that were used for all experiments are detailed in Table 3. under the 

Experiments section of this paper. 

 In order to reproduce the experiments of this research, it is important to be aware of 

the evaluation criteria outlined by the Juliani et al. [16]. They provide thee possible evaluation 

schemes that aim at making the performance on agents in the OT environment as 

reproducible and interpretable as possible: 

No Generalization. It is possible to evaluate the performance of an agent on a single, 

fixed version of the OT. In this case they recommend explicitly reporting that the 

evaluation was performed on a fixed version of the OT, and reporting performance on 

five random seeds of the dynamics of the agent. These seeds can be provided on 
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environment reset and condition the random number generator used to generate the 

tower definition.  

Weak Generalization. Agents should be trained on a fixed set of 100 seeds for the 

environment configurations. They should then be tested on a held-out set of five 

randomly selected tower configuration seeds not in the training set. Each should be 

evaluated five times using different random seeds for the dynamics of the agent (initial 

weights of the policy and/or value network(s)). 

 Strong Generalization. In addition to the requirements for weak generalization, 

agents should be tested on a held-out visual theme which is separate from the ones 

on which it was trained. In their paper, Juliani et al. [16] trained on the Ancient and 

Moorish themes, and test on the Industrial theme. 

 

Because the OT environment is designed to test the generalization ability of agents, Juliani et 

al. [16] recommend evaluating agents using the latter two methods. For this research, all 

experiments were evaluated using the Weak Generalization scheme and the results will only 

be compared to the Weak Generalization benchmark results published by Juliani et al. [16]. 
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4. EXPERIMENTS 

 

The focus of this work is on selection and mutation techniques. Crossover techniques were 

not explored during this research, as they are rarely applied in ES and are more of GA 

technique [Dianati et al., 2002], and were not explored in the original paper published by 

Salimans et al. [28] either. Furthermore, as crossover techniques are more difficult to 

implement when working in distributed systems, and because the complexity of applying 

crossover techniques to neural network weights falls outside of the scope of this research. 

Parameter Program Value 

Generations – The maximum number of generations, in RL terms this would be the 

training step. This is the stopping criteria of the algorithm; when the maximum 

generation is reached, the algorithm stops training. 

ES 85 

Population Size - The number of individuals, or agents, in the population. A 

population of the specified size is initialized at the beginning of training, and the 

population size remains constant throughout the training process. 

ES 200 

Number of selected individuals – The number of individuals, or agents, that are 

selected to recreate the population at each generation. As the population is constant, 

some of the selected individuals may appear twice in the population (except during 

the initialization of the population at the start of training, where all individuals are 

unique). 

ES 30 

Maximum Timesteps per Episode – The maximum number of steps an agent is 

allowed to take during an episode, or generation. It is possible for the agent to exit 

the environment earlier if another exit condition is met (e.g., the agent won before 

using its maximum timesteps). 

ES 3500 

Mutation Power – The amount of perturbation applied to the parameter during 

mutation. 

ES 0.005 

Mutation Probability – The probability of mutation occurring. This is evaluated at 

each generation for each individual, or agent, before it enters the OT environment. 

ES 0.6 

Number of Workers – Number of Kubernetes nodes, or CPUs, available to Worker 

tasks. 

ES 94 

Greyscale – Turn images into greyscale (1 x 128 x 128) instead of RGB (3 x 128 x 128). OT False 

Retro – Downscale images from 128 x 128 to 84 x 84. OT True 

Realtime Mode – Show the agent traversing the environment in real-time speed. OT True 

Table 3. Parameters used during experiments. 
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All experiments used the parameters specified in Table 3, except for the mutation 

power, which could change due to the nature of the mutation techniques that were being 

used. 

Selection Methods 

Two selection methods were implemented and tested for this research; the first is the basic 

ES selection used by OpenAI, and the second is a popular GA selection method: 

Select N Best Individuals. In this selection method, individuals were ranked according 

to their fitness scores. The N highest ranking individuals were selected to re-create the 

population, where N is an exogenous parameter representing the number of selected 

individuals. 

Fitness Proportionate Selection. Also called Roulette Wheel Selection, is a stochastic 

selection method, where the probability for selection of an individual is proportional 

to its fitness. This selection method gets its name from real-world roulette wheels that 

can be found in casinos, the only distinction is that the slots are not all the same size; 

instead, their size, and thus their probability of being selected, is proportional to their 

fitness score. This means that any individual has a chance of being selected, with fitter 

individuals having a higher probability of being selected. 

Mutations 

All mutations had the following parameters: a starting mutation power of 0.005, and a 

mutation probability of 0.6. All experiments were also run with a linearly decreasing mutation 

probability, where the mutation probability decreases with each generation. 

Gaussian Mutation. Referred to as Simple mutation for the remainder of this research. 

If the individual is selected for mutation, some noise is added to the genes, or weights 

of that individual. The added noise is equal to a randomly selected weight value from 
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a normal distribution with a mean of 0 and a variance of 1, multiplied by the mutation 

power. This is the mutation technique that was applied in the paper published by 

OpenAI. 

Random Mutation. This mutation is similar to the Simple Mutation, the only difference 

being that the mutation power is randomized to a uniform power between 0 and the 

defined mutation power of 0.005.  

Decaying Mutation. The goal of this mutation technique is to linearly reduce the 

mutation power as the number of generations increases. Adding even small amounts 

of noise to the weights of the neural networks (i.e the individual solutions) can 

dramatically change the way they behave; the goal of this mutation technique is to 

reduce the amount of noise added to the weights as the population converges. This 

means earlier generations will have higher degrees of noise added, whereas later 

generations will have much smaller degrees of noise added. 
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5. RESULTS AND DISCUSSION 

 

 

 

We are interested in analyzing the mean episodic rewards and maximum episodic rewards of 

the experiments; the mean episodic rewards will give us insights into whether the population 

was evolving as expected and whether the population hit a plateau at some point during its 

evolution. The maximum episodic reward will allow us to assess the performance of the elite 

of each generation and determine whether a plateau was reached at a certain reward level. It 

is particularly important to analyze for performance plateaus in the OT environment, as they 

can indicate the introduction of a new game mechanic that the agents are unable to 

Figure 5. The mean episodic reward for all three mutation 

techniques with Select N Best selection. 
Figure 6. The mean episodic reward for all three mutation 

techniques with Roulette Wheel/Fitness Proportionate selection. 

Figure 7. The maximum episodic reward for all three 

mutation techniques with Select N Best selection. 
Fig 8. The maximum episodic reward for all three mutation 

techniques with Roulette Wheel/Fitness Proportionate selection. 
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overcome; in the baseline results published by the team behind the Obstacle Tower 

environment, they found that with the weak generalization evaluation criteria (i.e. where 

agents are trained on a fixed set of 100 seeds), the agents were plateauing at the 5th floor, 

which is the floor where a locked doors mechanic was introduced [Juliani et al., 2019]. Solving 

this mechanic required the model to have a long-term memory mechanism, which their 

models did not have. 

 The results of the experiments are organized in a way that makes it easy to compare 

the mean and maximum episodic rewards for both selection and all three mutation methods: 

Figures 5. and 6. compare the mean episodic rewards for the Simple/Gaussian (green), 

Random (orange), and Decaying (blue) mutation methods under the Select N Best (figure 5.) 

and Roulette Wheel (figure 6.) selection methods. Figures 7. and 8. compare the maximum 

episodic rewards for the same mutation and selection methods. The y-axis shows the rewards, 

while the x-axis shows the generation at which the reward was obtained. As a reminder, we 

used the OT environment’s default reward configuration, where the agent receives a sparse 

reward of +1 for completing a floor of the tower, and a dense reward of +0.1 for opening 

doors, solving puzzles, or picking up keys.  

Figures 5. And 6. show that the selection and mutation techniques facilitate evolution 

and that the average fitness scores of the populations increases with each generation. For 

both selection methods, the Decaying and Random mutations performed better on average 

than the Simple mutation. Figure 5. Shows that Select N Best, the selection method where the 

top performers are selected to build the next generation, has a steadier incline, and showcases 

higher average rewards than the Roulette Wheel selection (figure 6.), which seems to plateau 

around generation 50 for each mutation method. Looking at Table 5., which shows the results 

of the baseline models published by Juliani et al. [16], we see that with the Select N Best 
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selection method, all three mutation methods achieve the same mean episodic reward as 

their Proximal Policy Optimization12 (PPO) algorithm, with the Random mutation achieving a 

higher mean episodic reward of 1.15. This is not the case for the Roulette Wheel selection; 

only the Random mutation method achieves a mean episodic reward of 0.8 around the 42nd 

generation before dropping below the PPO score. It is important to note that in order to 

achieve the results published in Table 5., Juliani et al. [16] trained their PPO and Rainbow13 

(RNB) models sessions spanning 20 million environment steps, which is significantly more that 

the number steps performed for this research (see Table 4.). As the mean episodic reward for 

the mutation methods under the Select N Best selection method do not seem to be plateauing 

(figure 5.), it is plausible that their mean episodic scores would have increased if they were to 

take up to 20 million steps. In the future, it would be interesting to increase the number of 

generations or the number of agents for the three mutation methods under the Select N Best 

selection method. The graph for the mean episodic rewards of PPO and RNB at different 

evaluation criteria published by Juliani et al. [16] is available in Appendix 8. 

 

 

 
12 Proximal Policy Optimization (PPO) is a RL algorithm belonging to the family of policy gradient methods 

for reinforcement learning, which alternate between sampling data through interaction with the environment 
and optimizing a "surrogate" objective function using stochastic gradient ascent [Schulman et al., 2017]. 

 
13 DeepMind’s Rainbow algorithm is the combination of six independent improvements on the Deep Q-

Learning (DQN) algorithm. In their 2017 paper, Hessel, M. et al. [38] demonstrated that combining the Double Q-
Learning, Prioritized Replay, Dueling Networks, Multi-Step Learning, Distributional RL, and Noisy Nets techniques 
into one DQN algorithm outperformed the state-of-the-art RL algorithms on the Atari 2600 benchmark. 

Mutation Method Select N Best Roulette Wheel 

Simple 12 019 911 11 261 466 

Random 12 261 356 11 824 878 

Decaying 12 235 011 11 759 863 

Table 4. Total number of environment steps after the maximum number of generations was reached (i.e stopping 

criteria) 
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Figures 7. and 8. reveal that the Roulette Wheel selection outperforms the Select N 

Best selection in terms of achieving the highest episodic score. Figure 8. shows that the 

Decaying mutation combined with the Roulette Wheel selection achieves the highest scores, 

however it is difficult to attribute the agents’ performance to the mutation function, as the 

figure shows that the highest score is achieved early in the evolution, at a point where the 

mutation power would still be very close to the one applied with the Simple mutation. This 

makes it difficult to single out any mutation technique as being more effective at producing 

better offspring. The success of the Decaying mutation function can more likely be attributed 

to randomness; similar to how the OpenAI researchers found that even a random network can 

get good results, the success of the decaying mutation technique can likely be attributed to a 

lucky initialization of the network weights.  

It is clear from figures 7. and 8. that the elite agents (i.e. the agent with the highest 

episodic score at every generation) are plateauing very early in the evolution and that for all 

selection and mutation methods the elites stagnate on the second floor; only the Decaying 

mutation with Roulette Wheel selection reaches the 4th and even the 6th floor but plateaus 3rd 

floor. The few spikes in figures 7. and 8. can likely be attributed to luck and randomness, as 

the early floors of the OT environment are relatively straightforward; the there are no traps 

Model Mean Episodic Reward Number of Environment Steps 

Proximal Policy Optimization (PPO) 0.8 20 000 000 

Rainbow (RNB) 3.4 20 000 000 

Human 15.6 - 

Table 5. Baseline results from the Obstacle Tower paper comparing PPO, Rainbow (Dopamine), and 

human performance reported as the mean of the number of floors solved in a single episode under “weak 

generalization” evaluation criteria. 
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or keys to collect, only a few orbs that increase the remaining time but do not reward the 

agent. As such, even with a random set of moves, an agent could reach the second floor. 

What we learn from the graphs is that the application of ES works in the Obstacle 

Tower; figures 5. and 6. show that at every generation the population mean episodic reward 

increases. This means that on average, the individual agents in the population become better 

even when perturbations are applied to their parameters (i.e. mutation). However, figures 7. 

and 8. make it clear that the agents are unable to evolve beyond a certain performance level 

very early in their evolution. This can be attributed to many things, all of which are speculative 

at this point: 

Evolution Parameters - The mutation power could be too high or too low, which would 

over-perturb or under-perturb the parameters of the model; over-perturbation would 

cause the lose the policy it had learned up until that point, while under-perturbation would 

not change the parameters enough for the model to learn something new. The frequency 

of mutations occurring during the evolution (i.e. the mutation probability) could have been 

too high or too low; perturbing agent parameters too often or not enough could prevent 

them from learning correctly. Perhaps it also does not make sense to blindly apply 

mutations to the entirety of the neural network parameters; it would be interesting to 

study the application of more targeted perturbations. The population size for these 

experiments was quite small (85) due to the limited number of workers/CPUs (96) 

available compared the 1000s of CPUs that were used by OpenAI in their 2017 research. 

Our assumption is that increasing the population size would yield better results. Finally, 

due to budgetary constraints, the number of generations was limited to 80. However, it is 

clear from figure 5. that the agents had not yet reached a plateau with regards to the mean 

episodic reward for all three mutation methods under the Select N Best selection method; 
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perhaps that with more generations, the mean episodic rewards would have continued to 

increase under those parameters. 

Environment Parameters – There are a number of built-in environment parameters that 

could be tested, such as using the greyscale flag to convert the images to greyscale format 

(1 x 128 x 128) or turning off the retro flag so that the images would be full-size (3 x 128 x 

128) instead of downscaled (3 x 84 x 84). Furthermore, customizations could have been 

applied to the action space and the reward functions: the actions space could have been 

reduced with certain moves being removed from the action space (such as jumping or 

turning left and right) to facilitate training [Kanervisto et al., 2020], while the reward 

function could have been made more complex by giving negative rewards to repeating the 

same actions multiple times in a row. 

Model Architecture – For this research, a basic implementation of a CNN with only two 

convolution layers and no pooling layers was used. While such a neural network 

architecture could make sense for simpler 2D and 3D games, it was expected that it would 

not perform well in a complex environment like the OT where the agent is expected to 

have a long-term memory, precise motor skills, and the ability to identify objects from 

pixels in constantly changing backgrounds and environments. Perhaps adding components 

that have proven to be effective at solving these problems to the model would increase 

the agents’ performances, increasing the number of convolution layers as well as including 

pooling layers between them could help the agent distinguish between details of the 

environment more accurately. 

Finally, it would be interesting to apply more mutation and selection techniques, as well 

as implementing GA crossover techniques to study their effect on performance. While there 

were plans to develop and experiment with more selection and mutation techniques, budget 
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constraints for this research have made it so that we have had to limit ourselves to the ones 

presented in the paper.  
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6. CONCLUSIONS 

It was not possible to achieve the baseline results published in the original Obstacle Tower 

paper [Juliani et al., 2019] with a basic implementation of ES. In this research we have 

demonstrated that a basic implementation of ES struggles to evolve in a procedurally 

generated environment where the agent must be able to generalize and have some form of 

memory. However, this does not mean that ES cannot be improved to perform better in such 

environments; the results of the roulette wheel selection combined with the decaying 

mutation show that it is possible to improve the performance of a basic implementation ES in 

this complex environment. However, the results of this combination can likely be attributed 

to a lucky random initialization, as it achieves this high score very early in its evolution, at a 

point where there is hardly any distinction in the application of the decaying mutation or the 

simple mutation. 

 The results obtained don’t allow us to conclusively say that we were able to improve 

on the performance of the basic ES implementation; for both selection techniques and all 

mutation techniques, the agents seem to stagnate close to their initial fitness scores, leading 

us to believe that they are not in fact learning and only achieve slightly higher rewards from 

time to time entirely by chance. 

To conclude, we were not able to obtain any significant results when applying OpenAI’s 

ES implementation to the Obstacle Tower environment, nor were we able to definitively 

improve on their ES implementation by applying new selection and mutation techniques taken 

from GAs. However, this does not mean that it is impossible for ES to perform well in complex 

3D environments; there are many techniques, model architectures, and environment changes 

that can have not been explored during this research and that can potentially give better 
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insights on how to improve ES’s performance in complex 3D environments. This study can 

serve as a benchmark for future researchers who are interested in exploring the application 

of ES to complex 3D environments. 

The initial goal of this research, which was to test ES’ generalization ability by 

evaluating its performance in a complex 3D environment, and to assess the performance of a 

number of selection and mutation methods borrowed from GA, was achieved. While ES did 

not outperform the benchmarks on the OT environment presented by Juliani et al. [16], it 

achieved mean episodic rewards that were on par with their PPO benchmarks, as did the 

suggested mutation methods under Select N Best selection. This was the first time that ES was 

applied to the Obstacle Tower environment, and this research can serve as a benchmark for 

the performance of evolutionary algorithms as alternatives to RL in the Obstacle Tower 

environment. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

In the future, it would be interesting to study the impact that crossover techniques could have 

on ES’s performance, as sharing genetic information between two fit parents is a key 

mechanism to ensure convergence in GAs. Some consideration will need to be given as to how 

these crossovers would affect the individuals, as the individuals are comprised of model 

weights and the smallest changes to these weight values can completely change the agent’s 

performance. Staying in the realm of GAs, it would also be interesting to further explore 

traditional as well as more cutting-edge selection and mutation techniques, as the ones that 

were implemented for this research were very basic, and not what could be considered state-

of-the-art [Abdoun et al., 2012]. Again, for the mutation techniques it will be important to 

consider how the mutation affects the weights of the model; perhaps it would make sense to 

only mutate targeted parameters of the model instead of blindly applying the mutation to all 

parameters like it was done in this study.  

Using more complex Neural Network architectures that have some form of memory 

and that are better suited for vision tasks would perhaps perform better than the basic CNN 

that was used for this research. When completing the Obstacle Tower Challenge, which was a 

challenge issued by Unity when they first release the environment, the top performer used a 

stack of Deep Neural Networks (DNN), where the different models had different roles, such as 

classifying objects in the game and controlling movement. Regarding the CNN used for this 

research, it was expected that this basic implementation with only two convolution layers and 

no pooling layers would yield mediocre results; adding more convolution layers with pooling 

layers between them would likely improve the model’s capacity to distinguish important items 

(keys, doors, orbs) more accurately and perform better in a 3D environment like the OT.  
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Finally, there are changes to the environment, or the way the agent interacts with the 

environment, that can be applied in order to increase performance. For this research, changes 

were made to the environment to minimize the action space. Unfortunately, these methods 

were not tested due to budgetary constraints. Using greyscale instead of RGB images could 

also help the agent identify with its surroundings better and changing to reward function to 

include more densely distributed rewards can potentially help the agent learn to navigate the 

environment more effectively. Most of the suggested improvements in this section were not 

tested due to time and budget constraints, as mentioned previously. However, given the work 

that has already been delivered for this paper, most of the suggestions above could be easily 

implemented in future research.  
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9. APPENDIX 

 

 

 

 

 

 

 

 

 

 

Appendix 1. OpenAI’s non-exhaustive taxonomy of modern RL algorithms [36]. 

Appendix 2. Showing the Translation Invariance property; when the inputs are shifted towards the right, 

the representations are also shifted [37]. 
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Tasks (stateless) 
 

Actors (stateful) 

Fine-grained load balancing 
 

Coarse-grained load balancing 
 

Support for object locality 
 

Poor locality support 
 

High overhead for small updates 
 

Low overhead for small updates 
 

Efficient failure handling  
 

Overhead from checkpointing 
 

Appendix 4. Trade-offs between Tasks and Actors presented Moritz et al. [26]. 

 

Appendix 3. Alternative Convolutional Neural Network Architecture Diagram 
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cluster_name: obstacle-tower-cluster-rllib-v0 

 

min_workers: 0 

max_workers: 10 

upscaling_speed: 1.0 

provider: 

    type: gcp 

    region: europe-west4 

    availability_zone: europe-west4-c 

    project_id: obstacle-tower-gcp 

 

head_node: 

  machineType: n1-highcpu-96 #n1-standard-16 

  disks: 

    - boot: true 

      autoDelete: true 

      type: PERSISTENT 

      initializeParams: 

        diskSizeGb: 50 

        sourceImage: projects/deeplearning-platform-release/global/images/family/tf-1-13-cpu 

 

 

worker_nodes: 

  machineType: n1-highcpu-96 

  disks: 

    - boot: true 

      autoDelete: true 

      type: PERSISTENT 

      initializeParams: 

        diskSizeGb: 50 

        sourceImage: projects/deeplearning-platform-release/global/images/family/tf-1-13-cpu 

 

 

setup_commands: 

    - export DEBIAN_FRONTEND=noninteractive 

    - sudo apt-get update 

    - sudo apt install -y libgconf-2-4 

    - sudo apt install -y libsoup2.4 

    - sudo apt install -y xorg 

    - sudo apt-get install -y libxfont-dev 

    - sudo apt-get install -y xvfb 

    - wget https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh || true 

    - bash Anaconda3-5.0.1-Linux-x86_64.sh -b -p $HOME/anaconda3 || true 

    - echo 'export PATH="$HOME/anaconda3/bin:$PATH"' >> ~/.bashrc 

    - pip install --upgrade pip 

    - pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/latest/ray-0.9.0.dev0-cp36-cp36m-manylinux1_x86_64.whl 

    - pip install -U ray[dashboard]==1.1.0 
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from worker import Worker 

from selections import roulette_wheel_selection, select_n_best 

 

 

DEFAULT_CONFIG = with_common_config({ 

    "population_size": 85, #1000 

    "max_timesteps_per_episode": 1000, #2000 

    "max_evaluation_steps": 3, #2000 

    "number_elites": 20, 

    "mutation_power": 0.005, 

    "mutation_probability": 0.6, 

    "num_workers": 7, 

    "create_display": False, 

    "generations": 10, 

    "mutation_func": "simple", 

    "decreasing_mutation": False, 

    "action_space": 54, 

    "local_dir": "models/" 

}) 

 

class GATrainer(Trainer): 

    _name = "GA" 

    _default_config = DEFAULT_CONFIG 

 

    @override(Trainer) 

    def _init(self, config: TrainerConfigDict, env_creator: Callable[[EnvContext], EnvType]): 

 

        self._default_config = DEFAULT_CONFIG 

        self.config = config 

Appendix 5. Configuration file to deploy the Kubernetes cluster with Ray on Google Cloud Platform to 

run the experiments for this research (.YAML).  

 

Appendix 6. Source code for the custom Ray/RLlib Trainer class (GATrainer). 
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        self.generation = 0 

        self._workers = [ 

            Worker.remote(config, env_creator, idx + 1) 

            for idx in range(config["num_workers"]) 

        ] 

        self.episodes_total = 0 

        self.timesteps_total = 0 

        self.elites = [] 

        self.elite = None 

        self.highest_reward = 0 

        if self.config['decreasing_mutation']: 

            self.mutation_probs = np.round(np.linspace(self.config['mutation_probability'], 

                                                       0.01, self.config['generations']), 3) 

 

    @override(Trainer) 

    def step(self): 

        logging.basicConfig(level=logging.INFO) 

        worker_jobs = [] 

        for i in range(self.config['population_size']): 

            elite_id = i % self.config['number_elites'] 

            worker_id = i % self.config['num_workers'] 

            weights = self.elites[elite_id] if self.elites else None 

            worker_jobs += [self._workers[worker_id].evaluate.remote(weights=weights, mutate=True, record=False, 

                                                                     generation=self.generation, 

                                                                     mutation_probability=self.mutation_probs[self.generation])] 

 

        results = ray.get(worker_jobs) 

        elites = select_n_best(results, self.config['number_elites']) 

 

        self.elites = [] 

        for result_id in elites: 

            self.elites.append(results[result_id]['state_dict']) 

 

        rewards = [result['total_reward'] for result in results] 

        elite_index = np.argmax(rewards) 

 

        if results[elite_index]['total_reward'] >= self.highest_reward: 

            self.highest_reward = results[elite_index]['total_reward'] 

            self.elite = results[elite_index]['state_dict'] 

 

 

        self.timesteps_total += sum([result['timesteps_total'] for result in results]) 

        self.episodes_total += len(results) 

        self.generation += 1 

 

        return dict( 

            timesteps_total=self.timesteps_total, 

            episodes_total=self.episodes_total, 

            generation=self.generation, 

            train_reward_min=np.min(rewards), 

            train_reward_mean=np.mean(rewards), 

            train_reward_med=np.median(rewards), 

            train_reward_max=np.max(rewards), 

        ) 
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    def save_checkpoint(self, checkpoint_dir=None): 

        checkpoint_path = os.path.join(checkpoint_dir, "elite_model.pth") 

        torch.save(self.elite, checkpoint_path) 

        return checkpoint_dir 

 

 
from mutations import simple_mutation, decaying_mutation, random_mutation 

from model import ConvModel 

 

@ray.remote 

class Worker: 

    def __init__(self, 

                 config, 

                 env_creator, 

                 worker_index): 

        self.config = config 

 

        if config['create_display']: 

            self.display = Display(visible=0, size=(800, 600), backend="xvfb") 

            self.display.start() 

        env_context = EnvContext(config["env_config"] or {}, worker_index) 

        self.env = env_creator(env_context) 

        self.model = ConvModel((3, 84, 84), action_space=config['action_space']) 

 

        for param in self.model.parameters(): 

            param.requires_grad = False 

 

 

    def evaluate(self, weights, mutate, record, generation, mutation_probability): 

        if weights: 

            self.model.load_state_dict(weights) 

        else: 

            self.model.init_weights() 

        if mutate: 

            rand_val = np.random.rand() 

            if rand_val <= mutation_probability: 

                if self.config['mutation_func'] == 'simple': 

                    self.model = simple_mutation(model=self.model, mutation_power=self.config['mutation_power']) 

                elif self.config['mutation_func'] == 'decaying': 

                    self.model = decaying_mutation(model=self.model, mutation_power=self.config['mutation_power'], 

                                                     generation=generation, max_generations=self.config['generations']) 

                elif self.config['mutation_func'] == 'random': 

                    self.model = random_mutation(model=self.model, max_mutation_power=self.config['mutation_power']) 

                else: 

                    sys.exit() 

 

        obs = self.env.reset() 

 

        rewards = [] 

        for ts in range(self.config['max_timesteps_per_episode']): 

            obs = np.reshape(obs, (1, 3, 84, 84)) 

            torch_obs = torch.tensor(obs, dtype=torch.float) 

            action = self.model.determine_action(torch_obs) 

 

            obs, reward, done, info = self.env.step(action) 
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            rewards += [reward] 

 

 

            if (done): 

                break 

 

        weights = self.model.get_weights() 

        return { 

            'total_reward': sum(rewards), 

            'timesteps_total': ts, 

            'weights': weights, 

            'state_dict': self.model.state_dict(), 

        } 

 

 

 

 

 

 

 

 

Appendix 7. Source code for the customer Ray/RLlib Worker class (Worker). 

 

Appendix 8. Proximal Policy Optimization (PPO) and Rainbow (RNB) mean episodic rewards published 

as benchmark performances published by Juliani et al. [16]. 
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10. ANNEXES 

 

 

Annex 1. DeepMind's Deep Q Network's performance on Atari games vs. human performance [Mnih et al., 2015]. 
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Game DQN A3C FF, 1day HyperNEAT ES FF, 1hour A2C FF 

Amidar 133.4 283.9 184.4 112.0 548.2 

Assault 3332.3 3746.1 912.6 1673.9 2026.6 

Asterix 124.5 6723.0 2340.0 1440.0 3779.7 

Asteroids 697.1 3009.4 1694.0 1562.0 1733.4 

Atlantis 76108.0 772392.0 61260.0 1267410.0 2872644.8 

Bank Heist 176.3 946.0 214.0 225.0 724.1 

Battle Zone 17560.0 11340.0 36200.0 16600.0 8406.2 

Beam Rider 8672.4 13235.9 1412.8 744.0 4438.9 

Berzerk - 1433.4 1394.0 686.0 720.6 

Bowling 41.2 36.2 135.8 30.0 28.9 

Boxing 25.8 33.7 16.4 49.8 95.8 

Breakout 303.9 551.6 2.8 9.5 368.5 

Centipede 3773.1 3306.5 25275.2 7783.9 2773.3 

Chopper Command 3046.0 4669.0 3960.0 3710.0 1700.0 

Crazy Climber 50992.0 101624.0 0.0 26430.0 100034.4 

Demon Attack 12835.2 84997.5 14620.0 1166.5 23657.7 

Double Dunk 21.6 0.1 2.0 0.2 3.2 

Enduro 475.6 82.2 93.6 95.0 0.0 

Fishing Derby 2.3 13.6 49.8 49.0 33.9 

Freeway 25.8 0.1 29.0 31.0 0.0 

Frostbite 157.4 180.1 2260.0 370.0 266.6 

Gopher 2731.8 8442.8 364.0 582.0 6266.2 

Gravitar 216.5 269.5 370.0 805.0 256.2 

Ice Hockey 3.8 4.7 10.6 4.1 4.9 

Kangaroo 2696.0 106.0 800.0 11200.0 1357.6 

Krull 3864.0 8066.6 12601.4 8647.2 6411.5 

Montezuma’s Revenge 50.0 53.0 0.0 0.0 0.0 

Name This Game 5439.9 5614.0 6742.0 4503.0 5532.8 

Phoenix - 28181.8 1762.0 4041.0 14104.7 

Pit Fall - 123.0 0.0 0.0 8.2 

Pong 16.2 11.4 17.4 21.0 20.8 

Private Eye 298.2 194.4 10747.4 100.0 100.0 

Q*Bert 4589.8 13752.3 695.0 147.5 15758.6 

River Raid 4065.3 10001.2 2616.0 5009.0 9856.9 

Road Runner 9264.0 31769.0 3220.0 16590.0 33846.9 

Robotank 58.5 2.3 43.8 11.9 2.2 

Seaquest 2793.9 2300.2 716.0 1390.0 1763.7 

Skiing - 13700.0 7983.6 15442.5 15245.8 

Solaris - 1884.8 160.0 2090.0 2265.0 

Space Invaders 1449.7 2214.7 1251.0 678.5 951.9 

Star Gunner 34081.0 64393.0 2720.0 1470.0 40065.6 

Tennis 2.3 10.2 0.0 4.5 11.2 

Time Pilot 5640.0 5825.0 7340.0 4970.0 4637.5 

Tutankham 32.4 26.1 23.6 130.3 194.3 

Up and Down 3311.3 54525.4 43734.0 67974.0 75785.9 

Venture 54.0 19.0 0.0 760.0 0.0 

Video Pinball 20228.1 185852.6 0.0 22834.8 46470.1 

Wizard of Wor 246.0 5278.0 3360.0 3480.0 1587.5 

Yars Revenge - 7270.8 24096.4 16401.7 8963.5 

Zaxxon 831.0 2659.0 3000.0 6380.0 5.6 

 

 

Annex 2. From Salimans et al.[28]: Final results obtained using Evolution Strategies on Atari 2600 games 

(feedforward CNN policy, deterministic policy evaluation, averaged over 10 re-runs with up to 30 random 

initial no-ops), and compared to results for DQN and A3C from Mnih et al. [24] and HyperNEAT from 

Hausknecht et al. [40]. A2C is our synchronous variant of A3C, and its reported scores are obtained with 

320M training frames with the same evaluation setup as for the ES results. All methods were trained on 

raw pixel input. 
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