
Nuno Filipe Estêvão Gomes

Bachelor in Computer Science and Engineering

A Semantic Consistency Model to Reduce
Coordination in Replicated Systems

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Carla Ferreira, Associate Professor,
NOVA University of Lisbon

Examination Committee

Chairperson: Prof. Miguel Goulão, FCT/UNL
Raporteur: Prof. João Barreto, IST/UL

Member: Prof.ª Carla Ferreira, FCT/UNL

December, 2020

A Semantic Consistency Model to Reduce Coordination in Replicated Systems

Copyright © Nuno Filipe Estêvão Gomes, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my family. Thank you all.

Acknowledgements

I would like to start by thanking my advisor Prof. Carla for giving me the opportunity to

work on this dissertation, to guide me since day one, and always be available, not only

in the conception and development of the work but also for the help provided in the

very important and exhaustive reviewing of the writing of the dissertation. I also want to

thank my co-adviser André for his help in the elaboration phase of this dissertation, in

which the help provided was crucial to reach what we achieved. This work was partially

supported by the project PTDC/CCI-INF/32081/2017 - 2, to which I would like to thank

for the grants given.

Additionally, I would like to thank all the FCT teachers I have had over the five years,

as well as all the colleagues who have always accompanied me, who were so important so

that I could come this far.

Finally, I dedicate this work to my family, in special to my parents and brother, who

have given me the opportunity to study away from home, who have always been there,

and for everything they have done for me all over the years. You are the best.

vii

Abstract

Large-scale distributed applications need to be available and responsive to satisfy millions

of users, which can be achieved by having data geo-replicated in multiple replicas.

However, a partitioned system cannot sustain availability and consistency at fully.

The usage of weak consistency models might lead to data integrity violations, triggered

by problematic concurrent updates, such as selling twice the last ticket on a flight com-

pany service. To overcome possible conflicts, programmers might opt to apply strong

consistency, which guarantees a total order between operations, while preserving data

integrity. Nevertheless, the illusion of being a non-replicated system affects its availabil-

ity. In contrast, weaker notions might be used, such as eventual consistency, that boosts

responsiveness, as operations are executed directly at the source replica and their effects

are propagated to remote replicas in the background. However, this approach might put

data integrity at risk. Current protocols that preserve invariants rely on, at least, causal

consistency, a consistency model that maintains causal dependencies between operations.

In this dissertation, we propose a protocol that includes a semantic consistency model.

This consistency model stands between eventual consistency and causal consistency. We

guarantee better performance comparing with causal consistency, and ensure data in-

tegrity. Through semantic analysis, relying on the static analysis tool CISE3, we manage

to limit the maximum number of dependencies that each operation will have. To sup-

port the protocol, we developed a communication algorithm in a cluster. Additionally,

we present an architecture that uses Akka, an actor-based middleware in which actors

communicate by exchanging messages. This architecture adopts the publish/subscribe

pattern and includes data persistence. We also consider the stability of operations, as well

as a dynamic cluster environment, ensuring the convergence of the replicated state. Fi-

nally, we perform an experimental evaluation regarding the performance of the algorithm

using standard case studies. The evaluation confirms that by relying on semantic anal-

ysis, the system requires less coordination between the replicas than causal consistency,

ensuring data integrity.

Keywords: distributed systems, replication, synchronization, consistency, concurrency,

invariants, semantic analysis, causality

ix

x

Resumo

Aplicações distribuídas em larga escala necessitam de estar disponíveis e de serem res-

ponsivas para satisfazer milhões de utilizadores, o que pode ser alcançado através da

geo-replicação dos dados em múltiplas réplicas.

No entanto, um sistema particionado não consegue garantir disponibilidade e consis-

tência na sua totalidade. O uso de modelos de consistência fraca pode levar a violações da

integridade dos dados, originadas por escritas concorrentes problemáticas. Para superar

possíveis conflitos, os programadores podem optar por aplicar modelos de consistência

forte, originando uma ordem total das operações, assegurando a integridade dos dados.

Em contrapartida, podem ser utilizadas noções mais fracas, como a consistência eventual,

que aumenta a capacidade de resposta, uma vez que as operações são executadas direta-

mente na réplica de origem e os seus efeitos são propagados para réplicas remotas. No

entanto, esta abordagem pode colocar em risco a integridade dos dados. Os protocolos

existentes que preservam as invariantes dependem, pelo menos, da consistência causal,

um modelo de consistência que mantém as dependências causais entre operações.

Nesta dissertação propomos um protocolo que inclui um modelo de consistência se-

mântica. Este modelo situa-se entre a consistência eventual e a consistência causal. Garan-

timos um melhor desempenho em comparação com a consistência causal, e asseguramos

a integridade dos dados. Através de uma análise semântica, obtida através da ferramenta

de análise estática CISE3, conseguimos limitar o número de dependências de cada ope-

ração. Para suportar o protocolo, desenvolvemos um algoritmo de comunicação entre

um aglomerado de réplicas. Adicionalmente, apresentamos uma arquitetura que utiliza

Akka, um middleware baseado em atores que trocam mensagens entre si. Esta arquitetura

utiliza o padrão publish/subscribe e inclui a persistência dos dados. Consideramos também

a estabilidade das operações, bem como um ambiente dinâmico de réplicas, assegurando

a convergência do estado. Por último, apresentamos a avaliação do desempenho do algo-

ritmo desenvolvido, que confirma que a análise semântica das operações requer menos

coordenação entre as réplicas que a consistência causal.

Palavras-chave: sistemas distribuídos, replicação, sincronização, consistência, concorrên-

cia, invariantes, análise semântica, causalidade

xi

xii

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Proposed Solution . 2

1.4 Document Structure . 3

2 Background 5

2.1 ACID Properties in Transactions . 5

2.2 Replication . 6

2.3 CAP Theorem . 7

2.4 Consistency Models . 7

2.5 CRDTs . 8

2.6 Operations Conflicts and Dependencies 10

2.6.1 Case Study: Courseware . 10

2.6.2 Conflicts . 11

2.6.3 Dependencies . 12

2.7 Program Specification . 12

2.8 Causality Tracking . 14

2.8.1 Logical Clocks . 15

2.8.2 Vector Clocks . 15

3 Related Work 19

3.1 Hamsaz . 19

3.1.1 Non-Blocking Protocol . 19

3.1.2 Blocking Protocol . 21

3.1.3 Dependency Tacking Protocol . 22

3.2 Indigo . 22

3.3 IPA . 24

3.4 Predictive Treaties . 24

xiii

CONTENTS

3.5 Join Model . 25

3.6 Conclusions . 27

4 Design and Implementation 29

4.1 Core Algorithm . 29

4.1.1 Dependencies Construction . 32

4.1.1.1 Graph Construction . 32

4.1.1.2 Build Dependencies . 33

4.2 Architecture . 33

4.2.1 Akka . 34

4.2.1.1 Cluster Publish/Subscribe 37

4.2.1.2 Akka Persistence . 38

4.2.2 Summary . 39

5 Dynamic Cluster 41

5.1 Assumptions . 41

5.2 Message Passing . 41

5.3 Stability Check . 42

5.4 Dynamic Cluster Environment . 43

5.4.1 Two-Phase Joining . 43

5.4.1.1 Optimization . 46

6 Evaluation 49

6.1 Configuration . 49

6.2 Evaluation Results . 51

7 Conclusion 59

7.1 Contributions . 61

7.2 Future Work . 62

Bibliography 63

xiv

List of Figures

2.1 Conflict Graph ([23]) . 10

2.2 Dependency Graph ([23]) . 10

2.3 Message exchange between three replicas. Circles represent events. 14

2.4 Message exchange using Lamport timestamps. 15

2.5 Message exchange using classic vector clocks. 17

3.1 Hamsaz non-blocking synchronization protocol ([23]). 20

3.2 Hamsaz blocking synchronization protocol ([23]). 21

3.3 Default mapping from invariants to reservations ([6]) 23

4.1 Courseware graph construction. 32

4.2 Akka actor architecture. 35

4.3 Hierarchical structure of actor systems in Akka. 36

4.4 Topic-based publish/subscribe architecture. 37

4.5 Akka persistence architecture. 38

4.6 Recovery mode: snapshot as a set of events. 39

4.7 Architecture diagram. 40

5.1 Two-phase joining diagram. 45

5.2 Two-phase joining diagram with optimization. 47

6.1 Synthetic dependency graph. 49

6.2 Results of the courseware application, considering different latency intervals. 54

6.3 Results of the synthetic application, considering different latency intervals. . 55

xv

List of Tables

2.1 Courseware application specification. 11

6.1 Consistency model configuration. 50

6.2 Simulation of different distances between clients. 50

6.3 Courseware application: distribution of operations. 52

6.4 Synthetic application: distribution of operations. 52

6.5 Results estimation of the synthetic application, relying on a linear trendline

equation. 56

6.6 Growth rate of semantic consistency from an application with two to five

dependencies. 57

xvii

C
h
a
p
t
e
r

1
Introduction

This initial chapter introduces the context of the dissertation and discusses the motiva-

tion behind it. Also, we present the proposed solution and outline the skeleton of the

remaining document.

1.1 Context

Most of the applications or services currently in use, provided on the Internet, have the

purpose of reaching thousands or millions of users. These applications are expected to be

always functioning properly, i.e., without failures and highly available, not having delays,

so they can offer the best user experience in terms of performance. This idea is feasible

if they are distributed, relying on geo-replicated storage systems, containing numerous

replicas scattered across the globe, considered to be replicated and fault-tolerant [7, 8].

However, high availability comes with a trade-off: consistency. As stated in the CAP

theorem [19] (detailed in Chapter 2), a partitioned system cannot fully sustain both

availability and consistency. Instead, it is necessary to choose the most appropriate one

regarding the application needs.

To preserve data integrity in all replicas, synchronization is required between them,

increasing transaction’s communication latency and, consequently, decreasing perfor-

mance. Programmers can follow several approaches when it comes to consistency, such

as strong or weak consistency models.

On one hand, opting for weaker assumptions guarantees that updates are propagated

asynchronously, executed directly at the source replica, and then propagated in the back-

ground, ensuring availability, i.e., boost responsiveness [6, 15, 51, 52]. Nonetheless,

application correctness might become vulnerable since replicas’ state may diverge, and

invariants might not be preserved due to the execution of concurrent operations that can

1

CHAPTER 1. INTRODUCTION

lead to data integrity violations. These violations occur if concurrent operations conflict,

and/or have dependencies, i.e., operations that do not commute are propagated and exe-

cuted in a different order. For instance, consider a bank application, where the primary

operations are deposits and withdrawals, and the invariant states that the balance should

always be non-negative. If both Alice and Bob share the same bank account, whose bal-

ance is 100 euros, and both perform concurrent withdrawals of 60 euros, it will result in

a negative balance, thus breaking the invariant.

In contrast, strong consistency guarantees convergence and data integrity because it

requires a total order of operations in all replicas [5, 6, 8]. Although this allows them

to converge to the same state, the system’s availability is affected. The reason is that it

requires frequent synchronization. Additionally, instead of applying a single model to

the whole application, the architect of the system may choose to apply weak or strong

models for each operation [6, 8, 27]. Those that, in concurrency, do not conflict with other

operations, can be executed immediately, while others require synchronization.

1.2 Motivation

A replicated system cannot sustain both availability and consistency, as it was mentioned

earlier, so some systems rely on weak consistency models to increase availability. How-

ever, the correctness of these systems can be affected. In contrast, previous works have

proposed applying different consistency models to different operations. Even so, pro-

grammers have to reason on the effects of each operation to determine those that need

synchronization, which is difficult.

Current protocols for weakly consistent geo-replicated databases that ensure global

invariants, which are conditions that should be true throughout the program life cycle,

either rely on causality or have a global synchronization point. The main challenge is

to find a balance between availability and consistency, where programmers do not have

to worry about problematic concurrent updates, ensuring data integrity preservation, as

well as defining a non-blocking synchronization point among replicas.

1.3 Proposed Solution

In this dissertation, we aim to propose a synchronization protocol that reduces synchro-

nization effort and relieves the programmer from reasoning about possible problems

related to operations that are executed concurrently over a geo-replicated database.

The protocol relies on CISE3 [42], a static analysis tool. Based on an application speci-

fication, the tool identifies which operations are problematic when executed concurrently,

that is, may not preserve the integrity invariant. The tool also provides the causal rela-

tionship between operations. If operation A is causally dependent on operation B, then

the execution of B must precede the execution of A. Otherwise, integrity invariant may

also be broken. The protocol will receive as input a set of conflicting operations and a set

2

1.4. DOCUMENT STRUCTURE

of causal dependencies between them. In many solutions presented in the literature, the

programmer, besides reasoning about conflicting pairs of operations, also needs to define

a synchronization protocol that avoids or somehow prevents conflicts from happening.

In the bank application example, where clients can make deposits to an account and

withdrawals from, the integrity invariant states that the balance must be non-negative.

The withdraw operation conflicts with other withdrawals since the invariant might not

be maintained (e.g., both Alice and Bob share the same account and both withdraw the

total balance of that account, leaving it negative). A programmer may choose to disallow

two withdrawals from executing concurrently. However, it is not the best approach, as

withdrawals from different bank accounts are not problematic. In this scenario, the bank

account could be one of the parameters of the withdrawal operation.

In this sense, we intend to perform a semantic analysis of the operations, which in-

cludes parameter analysis, proposing a consistency model called Semantic Consistency.

Through this analysis, we can reduce and limit the maximum size of causal dependencies

that a specific operation has throughout the execution of the system. In case an operation

A has x dependencies, then the replica r1 that intends to execute A can only proceed with

the execution if it has previously executed the x dependencies. This notion is weaker than

the one provided by causal consistency. The reason is that, upon receiving the operation

A from a replica r2, it requires the execution of all the updates that occurred in r2 before

A, to apply A. Causal consistency defines a partial order between events or operations. We

intend to reduce this partial order while ensuring system correctness.

We seek to define a protocol in an abstract way, which includes the architecture to sup-

port the implementation that constitutes the semantic consistency model. Also, we want

to formally prove that the abstract solution works, ensuring data integrity preservation

in applications built on a geo-replicated setting, reducing coordination among replicas.

Additionally, the development of the concrete solution, developing an algorithm and its

implementation, and later its validation with certain case studies.

1.4 Document Structure

The rest of the document is organized as follows:

• Chapter 2 - Background: Provides useful concepts as a basis for understanding the

following chapters, with an emphasis on consistency models, replication, applica-

tion correctness, and causality tracking in a distributed system.

• Chapter 3 - Related Work: Presents related work on handling concurrent conflicts

and dependencies between operations. Moreover, features a join model regarding

the integration of new replicas in an asynchronous distributed system. Finally,

provides a brief conclusion of the chapter.

3

CHAPTER 1. INTRODUCTION

• Chapter 4 - Design and Implementation: This chapter gives an overview of the

implementation and the architecture that supports it. Also, introduces the con-

struction of the graph of dependencies using a semantic analysis provided by the

static analysis tool CISE3 [42].

• Chapter 5 - Dynamic Cluster: Upon an understanding of the architecture and the

implementation, this chapter covers how we implemented a dynamic environment

where new replicas join the cluster. It also explains the stabilization of operations

and how stability is handled in this scenario.

• Chapter 6 - Evaluation: Features an experimental evaluation of the performance of

the algorithm, comparing execution times, according to the number of operations

performed, latency, and consistency model, for two case studies.

• Chapter 7 - Conclusion: Finally, we discuss and summarize what was accomplished

in this dissertation and the conclusions we derive from our approach. Additionally,

we also list the contributions of the dissertation and discuss future work.

4

C
h
a
p
t
e
r

2
Background

In this chapter key concepts are presented for a better understanding of some notions used

throughout this thesis. Starting with main transaction’s properties, why replication is

important, the famous CAP theorem, following by a summary explanation about existing

consistency models, what are CRDTs and, lastly, events and properties that happen or

exist while executing operations concurrently.

2.1 ACID Properties in Transactions

A transaction is a set of instructions to be processed in a database management system,

that can manipulate data of a database. For example, it may change its contents in case

of writing operations or leaving it unmodified if it only reads. A transaction succeeds

if all its operations also succeed. Considering a single database, to maintain its consis-

tency every transaction that interacts with the latter must ensure data integrity. This

can be achieved if a transaction presents ACID properties, which stands for Atomicity,

Consistency, Isolation and Durability [41, 44]:

• Atomicity states that a transaction will commit successfully iff all single operations

succeed: "all or nothing rule".

• Consistency refers to the state of the database, meaning that before and after exe-

cuting a transaction, the database must preserve data integrity constraints.

• Isolation means that a transaction acts as being the only one executing, not having

the perception that other transactions might be executing concurrently.

• Durability consists in the preservation of the effects of a successfully committed

transaction, even if any failures occur afterward.

5

CHAPTER 2. BACKGROUND

In terms of implementation, concurrency control protocols are implemented to ensure

Atomicity and Isolation, using locking mechanisms [44]. The two-phase commit proto-

col (2PC) is an example of a concurrency control protocol that it’s used in distributed

databases to coordinate all participants on whether all can commit the transaction or

not [41]. Durability can be ensured using database backups, for instance.

2.2 Replication

When thinking about a distributed system we can imagine that it has multiple processes

in a distributed way, i.e., in different machines or, as we should say, replicas or nodes. Each

process is responsible for managing operations, and failures can arise. For this reason,

to ensure the system operates as expected despite possible failures, replication is used.

Communication between clients and replicas is accomplished exchanging messages [55].

The choice of how to replicate is influenced by several factors, such as the frequency

of the usage of the system, fault model involved, etc. There are several replication models

that can be used, two of them are synchronous and asynchronous models. While the

former is adopted in systems that provide strong consistency, the latter is used in weaker

consistency systems [55] (see Section 2.4 about consistency models).

In the synchronous model, an operation cannot execute immediately in a given

replica (source). Firstly, needs to synchronize with the others, then executes it. Well,

this can delay the performance due to higher latency that the client will experience. Total

order broadcast [56] technique is used to maintain a total order of all operations that are

propagated between replicas.

In contrast, from a client perspective, the asynchronous model presents as being

faster than the synchronous model, due to the immediate execution on the replica it

was requested. The result is presented to the client, while the propagation to other

replicas happens in background. Consequently, it can lead to inconsistent states, when

read operations present different results (see Section 2.4), and replicas take more time to

converge, compared with the synchronous model.

There are also two other strategies for replication: operations-based and state-based

replication [51]. Using operations-based (or active) replication, the state in all replicas

is continuously updated, so the probability of losing updates is low. The source replica

(where the request was made) propagates the operations’ effects to other replicas, which

will then execute them so that all can share the same state. On the other hand, working

with state-based (or passive) replication, the state of the source replica is propagated

rather than operations. Then receivers have to merge their state with the one received, to

prevent loss of operations’ effects.

6

2.3. CAP THEOREM

2.3 CAP Theorem

The CAP (Consistency, Availability, Partition-tolerance) theorem [19] refers that only two

of the three following characteristics can be fully ensured in a distributed system:

• Strong consistency: All clients observe the same data at a specific point of time.

This is achievable if a total order on all operations is defined in all replicas. When-

ever a write operation succeeds in one replica, it must be replicated in the others

right away. This type of consistency will be explained in detail in Section 2.4.

• Availability: Reaching availability requires the system to remain always up. While

making a request, a response is eventually received, even if one or more replicas are

not responding.

• Partition-tolerance: The network is divided in different partitions. This property

states that the system continues executing operations despite failures that might

take place between any partitions.

Consequently, a distributed system can be categorized as follows: CP (Consistent and

Partition-tolerant), CA (Consistent and Available) or AP (Available and Partition-tolerant).

Having partitions is crucial to improve responsiveness in a geo-replicated system [7].

Thus, Partition-tolerance is unavoidable, which means most systems are either CP or AP.

2.4 Consistency Models

For a programmer, reasoning about which type of consistency to choose from is not

straightforward. While one can think "Let’s use strong consistency and ignore all concurrency
problems", other can state "We can use weak consistency and hope that everything goes as
expected". These are two different points of view, covering both extremes when it comes

to consistency models.

Strong consistency is the most strict type of consistency. Nevertheless, it makes easy

to reason about the evolution of the system, since all replicas will have the same state,

as if only one replica existed. However, replicas will require more time to coordinate.

Warranties [38], homeostasis protocol [49] and predictive treaties [39], focus on applica-

tions that are built on top of strongly consistent systems, suggesting a way to increase

performance (discussed in Chapter 3).

Linearizability and Serializability are two of the models that serve strong consistency.

Linearizability reasons about single operations (e.g., reads or writes). Writes should

appear to take effect right away at some point in time between its invocation and its

response [2]. Serializability refers to the Isolation property in ACID (see Section 2.1).

Serializability guarantees that a concurrent execution of multiple transactions, commonly

containing read and write operations, is equivalent to some serial execution of the trans-

actions, i.e., as if each transaction executed in sequential order, leading to the same final

7

CHAPTER 2. BACKGROUND

result. A serializable execution of a set of transactions will preserve application correct-

ness if every single operation also preserves it [2].

Not all operations require strong consistency to achieve system’s correctness, con-

cretely commutative operations, which can be reordered between different nodes, increas-

ing performance (e.g., two operations, A and B, executing concurrently; A depends on B,

which means they don’t commute either, so effects of B must be executed before A). This

is where weak consistency models enter.

Eventual consistency is the weakest consistency model. It guarantees availability

without a total order of operations between replicas. When a replica receives a request to

execute a particular operation, it first executes it, then presents the result to the client and

finally, propagates the effect to all other replicas. If clients stop making write requests,

all replicas will eventually receive all operations’ effects and converge to the same state.

As previously stated, the fact that eventual consistency does not maintain a total order

between operations can be a problem, due to the lack of commutativity between con-

current operations, which may lead to inconsistencies [7, 15]. The eventual consistency

model became popular due to Dynamo [16], a highly available key-value storage system

developed by Amazon, which despite having multiple replicas, operations are executed

by contacting only a few of them.

Another weak model is causal consistency. Unlike eventual consistency, there are

no guarantees that, if no more write operations appear, all replicas will converge to the

same state. Nevertheless, ensures that reads will follow causality between writes: "if one

event "influences" a subsequent operation, a client cannot observe the second without

the first" [4]. It ensures causal order of operations, but not total order, which may lead

to integrity violation. Previous work, such as RedBlue consistency [27], and Indigo [6], a

middleware library that guarantees the preservation of invariants by reasoning in which

operations that require coordination and using locking mechanisms to avoid conflicts,

requires causality, and Hamsaz [23], a tool that analysis a replicated object and establishes

an order between conflicting operations and dependencies, proposes a way to decrease it

(discussed in detail in Chapter 3).

Also, some states that it’s important to combine consistency models, called hybrid

consistency [6, 8, 27]: the programmer may choose which operations should request

weaker or stronger consistency, depending on the consequences of its concurrent execu-

tion, i.e., the possibility of leading to inconsistent states.

2.5 CRDTs

Ensuring consistency and availability is difficult, as mentioned in the CAP theorem (see

Section 2.3). A highly available system should adopt the eventual consistency model

(discussed in Section 2.4) to reduce network latency, executing operations on arrival

and propagating their effects in the background. However, it does not guarantee data

integrity, since conflicts may occur if problematic operations are executed in concurrency.

8

2.5. CRDTS

It is very difficult for the programmer to reason about problematic concurrent operations.

In this manner, Shapiro et al. [52] proposed a data type called Conflict-free Replicated

Data Type (CRDT), intended to be used in large-scale distributed applications, in which

updates do not require synchronization between replicas to be executed and remain

responsive even with potential network failures or high network latency. CRDTs are

mutable objects replicated and interconnected by an asynchronous network, which can

partition and recover [52].

CRDTs provide, at least, eventual consistency: a set of replicas that have executed

the same set of updates eventually reach the same state (converge). Additionally, they

provide a stronger notion called strong eventual consistency (SEC) [52], which ensures

state convergence and solves conflicts through the use of mathematical properties such

as commutativity (e.g., in a replicated counter, the state converges because increment

and decrement operations commute [52]) or set theory (e.g., merging sets: merging the

sets {1,2} and {2,3}, results in the set {1,2,3}). Each CRDT provides mainly two kinds of

operations: read and update. They are executed at the source replica, but only the update

operation needs to be eventually propagated to other replicas since it modifies the object

state. Consequently, conflicts may arise, but CRDTs can resolve conflicts by adopting

a conflict resolution policy while merging replicas’ states. For instance, consider a set

of integers, with addElement and removeElement operations. These operations do not

commute when the element is the same, thus conflicting when executed in concurrency.

A CRDT can use several concurrency semantics, such as add-wins (in which the addition

wins over the removal) or rem-wins (in which the removal wins over the addition) [52].

Next, two of the most popular types of CRDTs are presented:

• State-based CRDTs or Convergent Replicated Data Types (CvRDT) follows the

properties of passive replication, described in Section 2.2. This type of CRDT is

inefficient for large states, due to the size of the messages that need to be propagated.

• Operation-based CRDTs or Commutative Replicated Data Types (CmRDT) fol-

lows the properties of active replication, described in Section 2.2. This type of

CRDT is useful when all concurrent updates are commutative.

A simple example of the usage of these types of CRDTs is a replicated counter, which

can be incremented, decremented and its value queried. If a state-based CRDT is used,

then the state has to be propagated by the source replica and merged at receiving replicas.

In this scenario, the merge operation of the CRDT could be a max function (an increment-

only counter was considered), that returns the maximum value between the local state and

the remote state. An operation-based CRDT would be much easier to specify since both

update operations (increment and decrement) commute. Propagating only the effects of

the operations would guarantee to achieve the correct final state.

9

CHAPTER 2. BACKGROUND

2.6 Operations Conflicts and Dependencies

A replica, upon a request to execute a single operation, will only continue if the pre-

condition is satisfied and the invariant is preserved. When multiple operations are exe-

cuted concurrently, in a way that each preserves the invariant, the merge of the operations

after propagation might break it and, consequently, applications’ correctness is compro-

mised. Well, this occurs due to conflicts, which are common in geo-replicated applications

that are built on top of weak consistency models.

To help to reason about those events, a set of standard case studies has been used in the

literature, such as the courseware application case study. Next, it is shown a description

of the specification of that standard example, adopted from Indigo [6] and Hamsaz [23].

This section ends with some examples of conflicts and dependencies, using the provided

case study.

2.6.1 Case Study: Courseware

The courseware example [6, 23] has been used to illustrate and assist in understanding

how a replicated object behaves when executed in concurrency.

A courseware replicated object is composed as follows:

1. A database state that has three different relations of sets: students, courses and

enrollments (between students and courses).

2. An invariant that states that if a specific student or course exists in the enrollment

relation, then it should also exist in the students and courses relations, respectively.

3. A set of methods: register(student) and addCourse(course) to register a new

student and course, respectively; deleteCourse(course) to delete a course; en-

roll(student,course) to enroll a student in a course; and query to obtain object’s

state [23].

Note that students and enrollments cannot be deleted and operation’s arguments are

integer identifiers. Table 2.1 shows the requirements and effects of executing a given

operation.

Figure 2.1: Conflict Graph ([23]) Figure 2.2: Dependency Graph ([23])

10

2.6. OPERATIONS CONFLICTS AND DEPENDENCIES

Table 2.1: Courseware application specification.

Operation Pre-condition Post-condition

register(student) Id must be non-negative.
The given student exists in
the students’ set.

addCourse(course) Id must be non-negative.
The given course exists in
the courses’ set.

enroll(student,course)
The given student is regis-
tered and the course exists.

A tuple with the given stu-
dent and course exists in
the enrollments’ set.

deleteCourse(course)

The given course exists
and has no students en-
rolled in it.

The given course no longer
exists in the courses’ set.

2.6.2 Conflicts

Figure 2.1 presents the conflict graph of the courseware: addCourse(c) conflicts with

deleteCourse(c) and deleteCourse(c) conflicts with enroll(s,c).

Consider that the set of students has a student s and the set of courses has a course

c. A request for deleting a course c arrives at replica r1 and another request to enroll

a student S in the same course arrives at replica r2. The pre-condition in both replicas

holds since both student and course exists. If the two requests are executed without

synchronization, propagated to other replicas and executed on arrival, the state of the

replicas will diverge. Moreover, the invariant is not preserved since the student S will be

enrolled in a non-existing course.

Now consider that the set of courses is empty. Replica r1 receives a request to add a

course c and executes it; right after, receives another request to delete the course c and

also executes it. Concurrently, a request to add the course c arrives at replica r2 and it is

executed. The pre-conditions in all requests hold. If the effects of the operations executed

in r1 and r2 are propagated, what happens to the course c? A conflict resolution must be

defined to decide whether the addition prevails over the removal or vice-versa. CRDTs

can be used for this purpose (see Section 2.5).

It is important to emphasize that no conflicts arise if the parameters of the operations

are different. For this reason, we can state that the conflict graph is only applied when

the added course is the same as the one being concurrently deleted. The same approach

applies when enrolling a particular student in a different course than the one being

concurrently removed.

11

CHAPTER 2. BACKGROUND

2.6.3 Dependencies

In Figure 2.2 is presented the dependency oriented graph of the courseware application,

where the execution of the operation enroll(s,c) needs that both the course c and

the student s are registered in the system. Commutativity is a property used to verify

dependency relations, that is if swapping the order of the operations, results in different

outcomes.

Consider three replicas: r1, r2 and r3. A request arrives at replica r1 to perform

the enrollment operation: enroll(s,c). Concurrently, replica r2 receives and executes

the effects of a previous operation that was already executed in r1: the addition of the

course c. Later, r3 receives both operations’ effects. If it applies the enrollment before

the addition of the course, then data integrity is not preserved, because these operations

do not commute. Thus, the effects of enroll(s,c) should be applied after the effects of

addCourse(c).

2.7 Program Specification

As discussed before, building distributed applications is difficult. Traditional approaches

to verify the correctness of an application include monitoring runtime behavior to verify

implementation problems (e.g., debugging), writing unit tests (JUnit, for instance) and

evaluating tests coverage. These approaches stand for dynamic verification, which is

done at runtime. However, detecting all possible errors is not straightforward and it

might be almost an impossible task to write tests for every possible case scenario.

Alternatively, static verification may be used, since it verifies at compile time by

analyzing the source code. When writing a program, we need to reason about its state,

i.e., assert which conditions are satisfied before the program starts, and assert those in

which the final state results. The former assert is called a pre-condition and the latter a

post-condition, that can be applied in methods and represented as a Hoare triple [22]:

{ P re } P rogram { P ost }

Along with them, we need to define class invariants, that behave as global assertions and

must remain true throughout the program life cycle, from the moment it is instantiated.

This whole idea stands for a correctness methodology, used in object-oriented languages,

known as Design by Contract [13]. In the context of databases, invariants are the rules

that must be maintained, such as data constraints.

The specification of an application is achieved through the use of a specification lan-

guage, making use of the static verification approach explained earlier, such as Dafny,

developed by Microsoft [43], or WhyML, put into practice on Why3 platform [42]. The

ambition of specification languages is to prove application correctness, i.e., the imple-

mentation is correct regarding a specification.

12

2.7. PROGRAM SPECIFICATION

Static analysis tools, such as CISE3 [42], analyze the specification of an application

and define which operations are problematic under concurrency (i.e. conflicts between

operations), as well as their dependencies. Static analysis tools reason on when synchro-

nization should be introduced to preserve application correctness, that is, preserving

integrity invariants. The input of the protocol that will be elaborated in this dissertation

will receive as input a set of operations’ conflicts and their dependencies, provided by

these static analysis tools, more specifically CISE3 [42]. Through a parameter analysis,

the tool provides the causal relationship between operations. We call parameter depen-
dency and name dependency to the causal relationship between operations that are related

by parameter and name, respectively, which will be explained in detail in Section 4.1.1.

CISE3 [42], a plugin for the Why3 framework [42] implements a proof rule that main-

tains integrity invariants. The programmer needs to provide the application specification,

i.e. the pre and post conditions, as well as the global invariants. The proof is modular,

i.e., is able to reason about the behavior of one operation at a time [46]. It assumes causal

consistency by default and allows the programmer to specify, using a conflict relation,

which pairs of operations are problematic, by the means of tokens. For instance, in the

bank application example, the conflict relation could be used to require synchronization

for any pairs of concurrent withdrawals; a set of tokens would be associated with these

withdrawals, preventing from executing without synchronization, relying on strong con-

sistency. If an operation is requested to update a certain resource and another operation

already has the token associated, its execution is prevented [46]. The tool contemplates a

proof rule with three proof obligations:

1. Safety analysis: verifies if any single operation executed without concurrency main-

tains the invariant.

2. Commutativity analysis: checks if every pair of operations commute, i.e., if chang-

ing their order of execution leads to the same state.

3. Stability analysis: verifies if every precondition of each operation is stable under

the effects of all other concurrent operations.

If all rules are satisfied, the invariant is guaranteed to be preserved in every possible

execution. If Why3 is not able to prove any assertion in the program, then the correctness

is not guaranteed, and it presents a counterexample.

Still related to the specification part, it would be interesting, as future work, to develop

a specification of the protocol and its correctness properties in TLA+ [25], using TLC

model checker [25] to validate the protocol. TLA+ is a specification language, developed

by Leslie Lamport, used to design, model and verify concurrent and distributed systems.

13

CHAPTER 2. BACKGROUND

Figure 2.3: Message exchange between three replicas. Circles represent events.

2.8 Causality Tracking

Causality is an essential concept in asynchronous distributed systems, that is, in a set

of replicas that do not share the same global memory and that communicate through

message passing. Typically, the sending and receiving of messages, as well as the change

of state in a replica, are also called events [10]. For any two events, i and j, it is necessary

to recognize whether i causally relates to j and vice versa. In case j is causally dependent

on i, then it is said that the execution of j cannot occur without the execution of i [10, 21].

Another property that is verified is that if the events are not causally related, then they

are said to be concurrent.

These notions are defined in the happened before relationship [26], a partial order

between events, proposed by Leslie Lamport in 1978. The event i can be the cause of

event j, or as the relationship defines, i happened before j (denoted i→ j). If the events i
and j occur in the same replica, then the event i is executed first. In case they originate in

different replicas, the replica where j occurs must previously know the event i by another

replica. In both cases, we can outline a path from one event to the other. As an example,

following Figure 2.3, we can state that there is a path from x1 to z2, i.e., x1→ z2. Another

property that is verified is the transitivity between events: as x1→ z2 and z2→ x3, then

x1→ x3. When we can’t outline a path, we say that the events are concurrent: y2 ‖ z3 or

y2 ‖ x3, for instance.

Formally, for two events, i and j, the happened before relationship translates into the

following conditions[26]:

• If i is the cause of j, then i→ j;

• If i→ j and j→ k, then i→ k (transitivity);

• If we cannot relate the events, then we say that they are concurrent: i 9 j and j 9 i,
or simply, i ‖ j.

14

2.8. CAUSALITY TRACKING

Figure 2.4: Message exchange using Lamport timestamps.

2.8.1 Logical Clocks

Each replica in a distributed system holds its clock, and not all share the same physical

clock. In other words, they are not precisely synchronized with each other, and there is no

way to sort events using a shared global clock. Therefore, logical clocks are used to sort

events and, consequently, as a mechanism for determining causality. They can capture

the happened before relationship by assigning a timestamp to each event that occurs in a

replica. This timestamp is a counter, which corresponds to a non-negative integer, and

its value increases monotonically.

Lamport [26] proposed the first logical clock implementation, typically known as

Lamport timestamp. Each replica holds a local integer variable Ci , the logical clock or

counter, which initially has the value 0. When an event occurs:

(a) If it occurs locally (a tick event), the counter is incremented by 1: Ci = Ci + 1;

(b) In the case of sending a message, it attaches the value of the counter;

(c) If the event occurs in a replica j, a replica i upon receiving the message, the counter

modifies as follows: Ci = max(Ci ,Cj) + 1;

Following Figure 2.4, where for each event, we attach the respective timestamp, we

can confirm the previous properties: (a) in replica r1, from event x1 to x2 the counter

increased by 1; (b) the propagation of the message includes the attached timestamp; and

(c) the counter in replica r1 results in 5 since Cr1(x4) = max(3,4) + 1 = 5.

In this algorithm, if i→ j, then Cr(i) < Cr(j). However, the opposite does not hold due

to potential concurrent events. In Figure 2.4, Cr1(x3) < Cr3(z3), however, asserting that

x3→ z3 is false. To satisfy this condition vector clocks were proposed.

2.8.2 Vector Clocks

Vector clocks were initially proposed by Fidge [18] and Mattern [40]. These clocks are

widely used to track causality in causally consistent systems.

15

CHAPTER 2. BACKGROUND

Figure 2.5: Message exchange using classic vector clocks.

Each replica maintains a vector VC of the size equal to the number of existing repli-

cas. Each index of this vector, which starts at 0, contains the counter associated with a

particular replica. When an event occurs:

(a) If it occurs locally, for a replica i, the counter corresponding to its index in the vector

is incremented: VCi[i] = VCi[i] + 1;

(b) When propagating a message, it attaches the current version of the vector;

(c) Upon receiving a message m, a replica i increments its counter by 1, such as in (a).

Also, updates each index in the vector according to what it has received. For each

counter, it updates according to the maximum between what it had in its vector and

what it received: VCi = max(VCi[k],VCm[k]),∀k ∈ 1, ...,n ∧k , i, being n the number

of replicas.

Consider two replicas: i and j. When comparing vector clocks, the following proper-

ties are defined [48]:

(a) VCi ≤ VCj ⇐⇒ ∀x : VCi[x] ≤ VCj [x]

(b) VCi < VCj ⇐⇒ VCi ≤ VCj ∧ ∃x : VCi[x] < VCj [x]

(c) VCi ‖ VCj ⇐⇒ ¬(VCi < VCj)∧¬(VCj < VCi)

Relating to the happened before relationship, given two events x and y [18]:

x→ y ⇐⇒ VC(x) < VC(y)

Figure 2.5 serves as an example to validate the previous properties. For instance:

x2→ z3 since 0 < 3 x49 z3 since 4 > 2

x3 ‖ y2 since VCr1(x3)[0] > VCr2(y2)[0] and VCr2(y2)[1] > VCr1(x3)[1]

16

2.8. CAUSALITY TRACKING

Unlike using Lamport timestamps, where x3 → z3 because Cr1(x3) < Cr3(z3), us-

ing vector clocks we can verify that x3 9 z3, i.e., x3 ‖ z3 since VCr1(x3) ≮ VCr3(z3) and

VCr3(z3) ≮ VCr1(x3).

However, there are some drawbacks associated with vector clocks. As in Figure 2.5,

besides each replica keeps a vector of the size of the existing replicas. Also, it is necessary

to broadcast the vector in each message. Well, this vector grows linearly according to the

number of replicas, making this approach unfeasible since there is an increased overhead

in the network. Some proposals to reduce this overhead in asynchronous systems include

increasing the counter only in events considered relevant, such as write operations [1,

24, 48]. Or to broadcast only the clock differences since the last one that was sent to the

target replica [21, 48, 50, 53, 54]. However, it is usually necessary to keep the vector size

n, being n the number of replicas. Recently, it was proposed an approach that holds the

clock as a single prime number [24, 47]. Although only one number is broadcast over the

network, which is beneficial, this number grows rapidly, which can cause overflow and

requires extra computations to reset the clock.

17

C
h
a
p
t
e
r

3
Related Work

This chapter mainly discusses different approaches regarding the balance of synchroniza-

tion and availability in distributed systems. It presents related work on how to handle

concurrent conflicting operations and their dependencies.

3.1 Hamsaz

Houshmand et al. [23] implemented a tool called Hamsaz, whose goal is to automatically

build a correct replicated object that preserves data integrity and avoids unnecessary

synchronization [23].

Hamsaz’s system model is based on a sufficient condition called well-coordination,

which states that conflicting and dependent operations require synchronization and

causality, respectively. It presents a static analysis that, given the specification of a system,

includes an object definition containing the state type and the system’s invariant. Then,

a SMT solver is used to define which pairs of operations conflict, as well as their depen-

dencies [23]. Then, the results of the static analysis are used to instantiate the protocols:

non-blocking or blocking synchronization protocols, that will be explained next. The

protocols can be built on systems that use eventual consistency, causal consistency, and

strong consistency [23]. Both protocols do not consider operations’ dependencies. The

courseware case study (described in Section 2.6.1) is used to describe how the protocols

operate.

3.1.1 Non-Blocking Protocol

The non-blocking protocol considers that the failure of one replica does not affect the

progression of the remaining replicas. It defines two protocols: the total order broadcast

(TOB) protocol [56], ensuring that messages are always delivered in a given order in all

19

CHAPTER 3. RELATED WORK

replicas, and the reliable broadcast, which guarantees that propagated messages are al-

ways delivered to remote replicas. The TOB protocol could lead to deadlocks, preventing

the system from progressing, so alternatively it is possible to use a variant of the TOB

protocol called multi total order broadcast (MTOB). The difference between them is that

TOB propagates individual messages, while MTOB propagates sequences of messages.

The implementation of the non-blocking protocol uses cliques of the conflicting graph.

A clique is a subset of vertices of a non-directed graph such that every two distinct vertices

are adjacent. Operations pertaining to the same clique should synchronize. Using the

conflict graph of the courseware application illustrated in Figure 2.1, the cliques are cl1
= {deleteCourse, addCourse} and cl2 = {deleteCourse, enrollment}. These cliques are

also maximal cliques: a clique is maximal if it is not a subset of a larger clique. The

operation to delete a course is in multiple cliques, so a call to this operation must be

totally ordered with respect to calls for each of those cliques. The call is broadcast to all

MTOB instances and executed only when it is ordered and delivered by all of them [23].

Queues are used to this effect, meaning that a call can be executed only when it appears

at the head of the queues of all MTOBs that is broadcast to [23].

The non-blocking protocol is instantiated with the set of cliques Cl, and each clique

cl has a queue q and an instance of an MTOB object mtob.

The symbols ↓ and ↑ show requests to and responses from the protocols. Events to the
main protocol are shown above and events to the sub-protocols are shown below the

horizontal time line. The symbols 1O and 2O represent events of the first and second TOB
sub-protocols respectively. Blocks show the execution of method calls.

Figure 3.1: Hamsaz non-blocking synchronization protocol ([23]).

Figure 3.1 presents an example with three concurrent executions in replicas r1, r2
and r3, respectively: add a course c, enroll a student s in the course c and delete the

course c. All of this operations belong to a clique, so all are broadcast to its respective

clique’s mtob instance (e.g., call to add the course belongs to cl1, so it is broadcast to

mtob1). Note that in r3, Figure 3.1 shows the delete call only broadcasting to mtob1, but it

broadcasts to both mtob1 and mtob2, since the delete appears in both cliques. Each mtob

20

3.1. HAMSAZ

instance decides which order the respective clique operations should be delivered. Since

the delete operation appears in several cliques, if it appears first in mtob1 instance, then

it will also appear first in mtob2 instance. In the example, is considered that mtob1 first

has the addition and mtob2 first has the enrollment, so the delete operation appears last

in both mtob instances. Since the addition and the enrollment operations commute, they

can be delivered in an arbitrary order, that’s why the order in r1 and r2 is the opposite.

Meanwhile, in r2, mtob1 delivers the addition and the replica executes it. Then, it delivers

the delete operation, but since this operation belongs to more than one clique and it is not

at the head of the queue q2 (because r2 has not yet executed the enrollment operation), it

broadcasts to mtob2 requesting the delete operation. Still in r2, mtob2 delivers first the

enrollment, which was at the head of its queue and the replica executes it. Now the delete

operation can be executed since it appears at the head of both queues.

3.1.2 Blocking Protocol

Unlike the previous protocol, the blocking protocol prevents the system from progressing

when failures arise. Also, not all operations that are adjacent in the courseware conflict

graph (illustrated in Figure 2.1) require synchronization.

It starts by calculating the minimum vertex cover of the conflict graph. A vertex cover

is a subset of vertices of the graph, such that for every existing edge in the graph, at least

one of its endpoints is in the subset. The minimum vertex cover is the smaller-sized vertex

cover [23].

The symbols ↓ and ↑ show requests to and responses from the protocols. Diagonal
arrows show message transmission.

Figure 3.2: Hamsaz blocking synchronization protocol ([23]).

In the courseware conflict graph, the minimum vertex cover is the delete operation,

being the only operation that requires synchronization to be executed. The replica where

the call to delete is requested acts as if it was a leader since if it fails, stops other replicas

from progressing. A call to the delete method requires that the replicas block, waiting

for the operations that are adjacent in the minimum vertex cover to be executed (add and

enrollment operations). When replicas are blocked, they broadcast previous updates so

21

CHAPTER 3. RELATED WORK

the system can progress. When the delete operation is finally executed, the replicas are

no longer blocked.

Figure 3.2 presents a similar example to the one seen in the non-blocking protocol, as

it has the same number of replicas and the operations executed in concurrency are also

the same. In replicas r1 and r3, operations are directly executed and broadcast. Following

what was explained earlier, in replica r2 the delete operation belongs to the minimum

vertex cover, so before it can be executed in the replicas, they have to execute the add

and enrollment operations before the delete. After the delete is executed, the replicas are

unblocked.

3.1.3 Dependency Tacking Protocol

In both non-blocking and blocking protocols, method calls were assumed to be indepen-

dent [23]. The dependency-tacking protocol is used to track dependencies. It states that

if a method call has dependencies, "they should be tracked at the originating node and

broadcast together with the call" [23]. It requires causality: receiving replicas should

apply the call only after its dependencies are applied.

For ensuring dependencies between methods, conflicting pairs of methods can be

ignored, since every pair of conflicting calls have the same order across replicas, so their

dependencies are implicitly preserved [23]. It uses a protocol called inverse atomic protocol,
where replicas have to agree on whether a call to a method can be committed. The decision

is to abort if all replicas vote for abort, or commit otherwise. If a replica decides that the

method’s call is permissible (i.e., the invariant is preserved before the method’s execution

and is also preserved after it) then it votes to commit, along with the dependencies of that

call. If any replica receives the abort decision, the call is aborted; otherwise, it waits for

the dependent methods to arrive [23].

3.2 Indigo

Balegas et al. [6] developed Indigo, a middleware system that supports explicit consis-

tency. In explicit consistency, the programmer specifies application invariants, allowing

different replicas to reorder the execution of operations (as long as the invariants are

preserved), and also ensures that every state transition preserves the invariant [6]. It

builds on a causally consistent storage system and it is based on the following three-step

methodology:

1. Performs a static analysis to identify which operations can break the invariant when

executed concurrently. It is used an algorithm divided into three functions: (i) self-
conflicting: operations that conflict with themselves (using the same or different

arguments); (ii) opposing: if the operations have opposite post-conditions; and (iii)

conflict: if the operations break the invariant.

22

3.2. INDIGO

2. The programmer chooses between two techniques to coordinate conflicting opera-

tions efficiently: invariant-repair or violation-avoidance. The invariant-repair states

that conflicting operations are allowed to execute and then conflict resolution poli-

cies are applied, such as add-wins or rem-wins, relying on CRDTs (see Section 2.5).

The violation-avoidance technique extends reservations approaches, such as war-

ranties [38], by restricting concurrency sufficiently not to violate the invariant. Sum-

marily, a replica synchronizes to pre-allocate the permission to execute a set of

future updates without synchronization, thanks to the reservation [6].

3. The application code is adapted to have calls to the middleware library, in order to

use one of the mechanisms chosen in the previous step.

The violation-avoidance technique considers a range of reservations, as illustrated in

Figure 3.3. A certain reservation is associated for each invariant type. Indigo maintains

an instance for each reservation type, which includes the information about the rights

assigned to each replica.

Figure 3.3: Default mapping from invariants to reservations ([6])

The multi-level lock reservation provides the following rights: (i) shared forbid (gives

the shared right to prevent some operation to occur); (ii) shared allow (gives the shared

right to allow some operation to occur); (iii) exclusive allow (gives the exclusive right to

execute some operation) [6]. When a replica has one of these rights, no other replica may

contain rights of another type (forbid or allow). The exclusive allow right is useful when

an operation conflicts with itself. A replica can give its right to another replica. In case of

being the only replica with rights, it can change the type of right and give it to itself or

to another replica. In addition, a right can be revoked from the local replica [6]. In the

courseware example (described in Section 2.6.1), considering an execution with concur-

rent enroll and deleteCourse operations: to execute the delete it is necessary to obtain

the shared allow right on the reservation for deleteCourse; to execute the enrollment it

is necessary to obtain the shared forbid on the reservation for deleteCourse.

The multi-level mask reservation it is used for a disjunction invariant. When a sin-

gle condition of the disjunction invariant obtains a shared allow right, one of the other

conditions should obtain a shared forbid right [6].

The escrow reservation it is used for numeric invariants of the form x ≥ k. It allows

x − k rights to decrement without synchronization, which can be divided among the

23

CHAPTER 3. RELATED WORK

replicas. If a replica requests to decrement n times then n rights are required; if a replica

does not have enough rights then the system will try to obtain them from other replicas;

if it is not possible then the operation fails [6].

The partition lock reservation "allows a replica to obtain an exclusive lock on a interval

of real values. Replicas can obtain locks on multiple intervals" [6], but no two intervals

overlap.

3.3 IPA

IPA [5] presents an approach to preserve application invariants, under weak consistency,

without synchronization on the execution of concurrent updates. Proposes a methodology

called compensations, intended to modify applications to automatically prevent invari-

ant violations, through touch operations [5]. Compensations are only used for numeric

invariants (e.g., the total number of flight tickets can not be exceeded). The approach

uses conflict resolution policies to modify operations’ semantics. Moreover, it assumes

that the programmer is able to choose a conflict resolution policy, relying on CRDTs [5]

(described in Section 2.5). The touch operation does not require synchronization during

the execution of operations, and if no conflicting operations are executed, the additional

(touch) operations have no observable effect on the database state [5]. To help in the

process of detecting problematic concurrent executions, a static analysis is used. Addi-

tionally, it is also used to search for modifications that prevent invariant violations [5].

In some cases, it is difficult to prevent having an observable effect. For instance, it is not

possible to prevent flight overbooking [5].

In general, IPA presents a conflict repair approach that changes the semantics of the

operations. Operations are propagated with extra actions if concurrent updates do not

preserve the system’s invariant. For instance, in the courseware application (described

in Section 2.6.1), an example of a problematic concurrent execution is the enrollment of

a student s in a course c and the removal of the course c. If replicas do not synchronize,

the invariant is violated. Using the conflict repair, the invariant violation can be repaired

after it is detected, by either (i) removing the new enrollment; or (ii) restoring the course

c, depending on the conflict resolution adopted. If the chosen repair involves restoring

the course, then the operation that removes the course is propagated with an extra action:

the removal does not take effect.

3.4 Predictive Treaties

Magrino et al. [39] proposed a mechanism called predictive treaties, that guarantees

strong consistency with reduced synchronization by predicting future updates based on

previous ones. It follows previous work on warranties [38] and homeostasis [49], in a way

that increases performance.

24

3.5. JOIN MODEL

Predictive treaties predict computations based on logical predicates over system state [39].

For instance, for a deterministic computation f (x) that produces a value y, the correspond-

ing predicate f (x) = y holds. Also, as long as x remains the same, the value of y can be

cached and reused, since the result is always the same [39]. The approach uses estima-

tions to determine until when a predicate will be ensured. In this manner, metrics are

used to measure the "distance" until the predicate is no longer preserved and predicts

how this distance will change [39]. The metrics allow the predictive treaties to be:

• Time-dependent, reasoning on how the system state changes with time. For in-

stance, if the function f (x) calculates the amount of stock in a warehouse, a pre-

dictive treaty might guarantee the inequality f (x) > 100 − 5t, where t represents

elapsed time in minutes [39].

• Hierarchical, where lower-level treaties may be grouped to imply a higher-level

treaty [39]. When a low-level treaty is set in the local state of a replica, local updates

do not need to be synchronized, not invalidating local treaties. Thus, higher-level

treaties can be applied locally without synchronization. Using a hierarchical struc-

ture, distributed synchronization tends to involve a certain group of nodes [39].

It is costly to create and maintain objects that represent metrics and predicates. To

reduce them, a mechanism called stipulated commit was introduced, which allows the

programmer to propose updates, which are only applied if they do not violate any treaty.

Predictive treaties are useful in applications such as the voting application exam-

ple [39]. In this example, there are two candidates, a and b run to win the election; there

are two voting stations, nodes s1 and s2, which receive calls for the operations vote(a),

vote(b) and winning_candidate(). Voting operations increments by one value the to-

tal votes. At any moment, every node should know who is the winning candidate. For

instance, if the candidate a is winning by a considerable number of votes, the nodes do

not need synchronization to know which candidate is winning. However, if the number

of votes of both candidates is close, then synchronization is necessary. A predictive treaty

defines predicates and metrics to decide whether the number of votes in both candidates

are near to one another: the system takes into account the minimum number of votes that

can invalidate the global predicate: if the candidate a is the winning candidate, the global

predicate is (a1− b1) + (a2− b2) > 0, being a1 the total number of votes on candidate a in

node s1.

3.5 Join Model

In an asynchronous distributed system, it is difficult to reason and implement a dynamic

environment where new replicas or nodes join a cluster.

25

CHAPTER 3. RELATED WORK

Bauwens et al. [11] define a join model in which replicas dynamically join the cluster.

They use operation-based CRDTs built on top of a Reliable Causal Broadcast middle-

ware [14], adapting the notion of causal stability of Baquero et al. [9]. Note that an

operation is stable if and only if all replicas acknowledge that operation.

They assume (i) a correct state of the replicas before receiving any join request, (ii)

if failures arise, the replicas eventually recover, (iii) there is no loss or duplication of

messages, and (iv) the middleware uses acks to ensure message processing.

Regarding the join model [11], initially, the new replica N sends a join request to

one of the existing replicas in the cluster. Suppose that the replica that receives the join

request has an identifier J. Replica J is responsible for accepting the request, providing N
with its knowledge of the cluster. This knowledge includes the location of each existing

replica. Then, replica N connects with the other replicas and adds each one of them to

its list of known replicas. However, N is already able to start receiving messages, which

will have to buffer and will only be able to apply them after receiving a replicated state

from J. Replica N requests the state to J after connecting to all replicas and, as soon as it

receives the state, N can apply the messages that were buffered.

They also discuss how they manage concurrent joins. Consider that two replicas, N1
and N2, intend to join the cluster. They perform the same procedure just described. As

they join concurrently, N1 may not be aware that N2 also wants to join, and vice versa. For

this purpose, one of the existing replicas has to interconnect them. Only after having full

knowledge of the network they can request the state. It is said that a replica is prepared

when it has applied a replicated state and is connected to all other replicas.

Lastly, they present their approach regarding causal stability in a dynamic environ-

ment:

• The replica J receives the join request and sends the state to the new replica N. If

this state contains a stable operation that originated in J, then as it is already stable

does not need further treatment. If it contains an operation that is not stable, then J
has to wait for N to inform that it has already applied the operation, so that N can

contribute to the stability.

• For operations that originate in N, if N is still not prepared, then it buffers the

operations. As soon as it receives and applies the replicated state, then it can treat

the operations as if it were a "regular node".

• Finally, in the case of operations that originate neither in replica J or N but in a

replica A, if A already knows that N exists, then A has to wait for N to send an ack

to stabilize the operation. If replica A is unaware of N, the join request from N to J
and the operation that originated in A are concurrent. In this case, the cluster has

to synchronize so that A recognizes that N exists. For this, J has to inform A about

the new replica. Then the operation will be included in the state that J will send to

N.

26

3.6. CONCLUSIONS

3.6 Conclusions

In this section, we will present a brief conclusion regarding the related work discussed.

Predictive treaties involve an extremely complex process, as the definition of treaties

includes the definition of metrics and predicates. IPA has no synchronization, so it

uses eventual consistency, but the associated cost is that it changes the semantics of the

operations since operations are no longer what the programmer has defined because they

are propagated with extra actions. Indigo relies on causal consistency, which demands

synchronization effort. In Hamsaz, the blocking protocol blocks replicas, as they wait

for certain operations to arrive and exploit synchronization. On the other hand, the non-

blocking protocol, despite ensuring the progression of the system, relies on an abstract

layer to preserve data integrity, ending up having a global synchronization point. Hamsaz

relies on a hybrid consistency model if we consider both protocols. The blocking protocol

stands on stronger notions where replicas need synchronization, while the non-blocking

protocol relies on weaker notions, such as causal consistency.

Regarding the join model, it has several similarities with what we will present in

Chapter 5. However, replicas are not required to know the location of all other replicas in

the network since it would be necessary to maintain a data structure with the identifica-

tion of all replicas. Consequently, we abstract the fact that the new replica has to request

its joining and the state to a particular replica. Another aspect is related to persistence,

where they only mention the internal state of the replica. Well, having the data persisted

in a database helps us to avoid attaching stable operations in the state that is sent to the

new replica. In the internal state, we only keep information about the operations until

they stabilize.

27

C
h
a
p
t
e
r

4
Design and Implementation

The following chapter focuses on the developed algorithm, in which numerous iterations

have been carried out, from a sequential implementation to a thread-based approach

using persistence, relying on Akka [29].

It covers a thorough presentation of the algorithm design. First of all, we will provide

a detailed description of the core algorithm, which addresses the most relevant functions.

Next, we will describe and illustrate the internal architecture of the Akka modules we

adopted. Finally, we present an overview of our architecture, which is the support to

comprehend Chapter 5.

4.1 Core Algorithm

The algorithm behind Semantic Consistency requires a dependency graph, which is built

in advance using the output from CISE3 [42], a static analysis tool, previously addressed

in Section 1.3. The static analysis of the client application provides dependencies among

operations, including parameter analysis. A client application provides a set of operations

or methods. These contain a list of parameters or no parameters at all. As part of the

algorithm, we consider a cluster, i.e. a group of replicas, which communicate reliably

with no message loss or duplication, and a replica does not fail.

Hereafter, the algorithm description is done together with the aid of Algorithm 1.

We defined some entities, namely a replica, an operation, and an origin. Each opera-

tion includes: (i) an origin, which is composed of the replica identifier and the counter

that the replica had while creating the operation; this field uniquely identifies the op-

eration; (ii) a name; (iii) a list of parameters, which can have arbitrary size and each

parameter can be of any type of object; (iv) and a set of dependencies related to the ori-

gins on which the operation is dependent. Each replica has an identifier and an operation

29

CHAPTER 4. DESIGN AND IMPLEMENTATION

counter. Additionally, it contains three maps (lines 1-6 of Algorithm 1):

1. Executed operations, which associates the origin with the corresponding executed

operation;

2. Pending operations, that track operations not executed, due to lack of dependencies;

3. And the mapping between operations names and their respective location in the

first map, which will help to build dependencies efficiently.

Algorithm 1 Core Algorithm −main functions

1: state:
2: replicaId

3: counter ∈ N
4: executedOps ∈ Origin→Operation
5: pendingOps ∈ Origin→ Set(Operation)
6: opNamesMapping ∈ String→ Set(Origin)

7: upon init:
8: counter ← 0
9: executedOps ← {}

10: pendingOps ← {}
11: opNamesMapping ← {}

12: function execute_local(opName, params) . operation name and parameters

13: deps ← build_dependencies(opName, params)
14: execute(opName, params) . execute operation with given name and parameters

15: counter++
16: origin ← Origin(id, counter)
17: op ← Operation(opName, params, origin, deps)
18: executedOps ← executedOps∪ {〈origin, op〉}
19: opNamesMapping[opName] ← opNamesMapping[opName] ∪ {origin} .

if list is empty, create new one

20: broadcast(op)

21: function receive_op(op) . an operation contains: origin, name, parameters and dependencies

22: safeToExecute ← true
23: for all origin ∈ op.deps do . find which dependency needs to be executed, if any

24: if not alreadyExecuted(origin) then
25: safeToExecute ← false . not safe; has to wait for an operation from origin to execute op

26: pendingOps ← pendingOps∪ {〈origin, op〉}
27: if safeToExecute then
28: execute_remote(op)
29: check_pending_ops(op.origin)

30: function execute_remote(op)

30

4.1. CORE ALGORITHM

31: execute(op.name, op.params) . execute operation with given name and parameters

32: counter←max(op.origin.counter, counter)+1 . update counter according to Lamport Timestamp

33: executedOps ← executedOps∪ {〈op.origin, op〉}
34: opNamesMapping[opName] ← opNamesMapping[opName] ∪ {op.origin} .

if list is empty, create new one

35: broadcast(op)

36: function check_pending_ops(origin)
37: pendings ← pendingOps[origin]
38: pendingOps ← pendingOps \ { origin }
39: for all op ∈ pendings do . try to execute all pending operations waiting for origin

40: if op.origin < pendingOps then . safe to execute if no other pending operation is waiting for origin

41: execute_remote(op)
42: check_pending_ops(op.origin)

43: procedure build_dependencies(opName, params)
44: deps ← {}
45: succs ← DependencyGraph.predecessors(opName)
46: for all edge ∈ succs do . an edge holds a list of pairs regarding the relation among parameters

47: opNameToSearch ← edge.destination.id .

an edge connects two nodes, which are operations

48: setOfOrigins ← opNamesMapping[opNameToSearch]

49: if | edge.index | == 0 then . extract origins

50: deps ← deps ∪ setOfOrigins
51: else . there are params to work with

52: for all pair ∈ edge.index do . index refers to the index in the list

53: paramToSearch ← params[pair.first]
54: found ← false

55: for all origin ∈ setOfOrigins do
56: op ← executedOps[origin]
57: if paramToSearch == op.params[pair.second] then
58: deps ← deps ∪ { origin }
59: found ← true

60: if ¬ found then . throw error if some dependency is missing

61: Throw_Error_Msg("Cannot execute local operation")
62: return deps

Upon initialization, the counter starts at 0, and the maps are empty (L7− 12).

The counter gets updated according to the Lamport timestamp (see Section 2.8.1). In

case of executing a local operation, the counter is incremented by one (L16); Otherwise, if

the replica receives a remote operation, the counter is set to the maximum value between

the local counter and the counter from the operation received (by accessing origin field),

plus one (L33).

31

CHAPTER 4. DESIGN AND IMPLEMENTATION

When a client application requests the execution of operation with a specified name

and a list of parameters (L13 − 21), the algorithm starts by building its dependencies

using the dependency graph (which will be explained in detail in the next section). It

verifies whether the execution is valid. If any dependent operation is absent, it rejects

the execution. In case it is validated, it increments the counter and adds the operation to

executedOps and opNamesMappings. And finally, broadcasts the operation.

Upon receiving an operation from a remote replica (L22− 30), the initial step is to en-

sure that it meets its dependencies (L24−27). Assuming it meets (L28−30), the execution

proceeds (L31 − 36) and checks whether there is any pending operation to be executed,

regarding operation origin (L37 − 43). The verification of pending operations is only

performed in case the replica receives remote operations. A pending operation waits for

dependencies that have not yet arrived. For instance, enroll(s1,c1) is pending in the

replica since student s1 has not yet arrived. As soon as the student arrives, the algorithm

triggers the execution of the enrollment. Note that 1) the replica executes all operations

to which the student s1 is the only dependency left to arrive; 2) the student s1 exists in

the cluster (i.e., all replicas have student s1 in their internal state), and the enrollment

is sound since at least some other replica already has it on its internal state. Also, it is

noteworthy to emphasize the recursive call on line 43: the arrival of an operation that

was pending might trigger multiple executions of other pending operations.

4.1.1 Dependencies Construction

Next, we present the dependency graph design, which is the key to understand how we

build dependencies, as well as a brief description following the algorithm.

4.1.1.1 Graph Construction

Section 2.6 depicts the graph of dependencies of the courseware application. We men-

tioned that the enrollment operation is not dependent on all student and course registra-

tions. Therefore, we can gather the results of the static analysis tool CISE3 [42], which

provides the dependencies between operations, including parameter analysis, and build

the graph appropriately.

Figure 4.1: Courseware graph construction.

As shown in Figure 4.1, the dependency relationship between enroll and addCourse

consists of the parameter with index 1 of the former operation and index 0 of the latter.

32

4.2. ARCHITECTURE

In case there is no pair on the edge label, the operation name drives the relationship.

For instance, enroll would be dependent on all startCourses that had occurred. Note

that startCourses is a hypothetical operation to present the case when the parameter
dependency does not apply.

Resorting to graph theory, we say that operation A is a predecessor of operation B

if there is an edge from A to B. In operations A and B, the edge is called the outgoing

and incoming edge, respectively. By our graph construction, we say that addCourse is a

predecessor of enroll. In terms of execution, enroll can only execute if the replica has

already executed all its predecessors.

To generalize, the construction of the new graph involves adding information on the

edges labels, namely the relationship between parameters, represented as a list of pairs

(< i, j >,< k,m >, . . .). The first integer corresponds to the parameter of the operation that

has the incoming edge, and the second to the parameter of the operation on the outgoing

edge.

4.1.1.2 Build Dependencies

The construction of causal dependencies is a decisive step in the execution of local opera-

tions. The replica prevents the execution in the absence of any dependency, guaranteeing

the preservation of application invariants.

Following the Algorithm 1 as from line 44, the procedure receives an operation name

and parameters and returns a set of origins. A call to the dependency graph is executed,

returning a set of operation’s predecessors (L46). These predecessors correspond to the

incoming edges, as illustrated in Figure 4.1. For each edge, if it lacks information, then

the existing relationship behaves as a name dependency. Thus, it stores all origins regard-

ing the predecessor (L50− 51). Otherwise, it is a parameter dependency and assesses each

of the pairs (L53− 60). For instance, following Figure 4.1, enroll has three predecessors,

which are its causal dependencies. If it lacks the addCourse with the same course (pa-
rameter dependency between parameter 1 of enroll and parameter 0 of addCourse), the

replica prevents its execution. As long as the replica state contains an operation with the

evaluated parameter, it complies with the dependency and proceeds to the next one.

4.2 Architecture

In this section, we will discuss the architectural details of the implemented synchroniza-

tion protocol. We used the Scala programming language 1, coupled with the use of the

Akka actor-based toolkit [29].

1See https://www.scala-lang.org/

33

https://www.scala-lang.org/

CHAPTER 4. DESIGN AND IMPLEMENTATION

4.2.1 Akka

In an early stage, we started by implementing the algorithm sequentially, using Scala. 1

Also, we have implemented some frequently used case studies in the literature: the

courseware described in Section 2.6.1, auctions [20, 23, 45], payroll [3, 23], and non-

negative counter [23, 51]. These case studies supported the verification and execution

of the algorithm. Eventually, we knew that we would have to adopt a thread-based

implementation, which would be closer to a real distributed application.

Multi-core CPUs are widespread, so we need to benefit from such processing power

to optimize the performance of our applications. Furthermore, a distributed application

should hold a considerable amount of users performing multiple read and write oper-

ations simultaneously. For that purpose, distributed systems run in a multi-machine

environment, operating simultaneously and sharing resources. Several processes can run

concurrently using threads, so it is essential to have concurrency control to avoid losing

updates or have inconsistent retrievals [12]. However, in practice, concurrency control

might attend extra concerns. For instance, the use of threads results in the need to acquire

locks to access and update shared variables. It may also be necessary to use concurrent

data structures, such as ConcurrentHashMap or BlockingQueue. In a distributed environ-

ment, where several machines have to coordinate, one could adopt distributed locks to

preserve integrity invariants, which is challenging to scale and presents high latency due

to intensive message interchange [37].

The actor model is a widely-used programming model that deals with concurrency

issues. It eschews the concern of applying low-level code, making the programmer more

focused on the main algorithm. The model is composed of a set of actors who exchange

messages asynchronously and cannot invoke each other’s methods or modify their fields.

Akka is an implementation of the actor model, which provides a set of open-source

libraries that allows the development of distributed and concurrent applications on the

Java Virtual Machine (JVM). Akka supports the usage of Scala since Scala compiles down

to JVM code.

As Figure 4.2 depicts, the following components form an actor in Akka:

• ActorRef - It forms the logical address or reference of the actor, whose purpose

is message passing. The ActorRef hides the actor’s instance, preventing access to

its methods and fields. Hence, the only way to communicate with an actor is by

sending messages;

• Mailbox - A message queue;

• Dispatcher - Handles enqueueing to and dequeuing messages from the mailbox.

Upon dequeuing, messages are processed by the actor, one at a time. It can also

schedule when to dequeue, for instance, to handle a message periodically.

34

4.2. ARCHITECTURE

Figure 4.2: Akka actor architecture.

• Actor API - The component we have to implement. It defines the actor’s behavior

when processing a message, which typically includes access and modification of the

actor’s internal state (data structures, for instance).

Each actor belongs to an ActorSystem: a hierarchical structure of actors organized as

a file directory:

• akka://systemName/user/parent/child, if it has actors on the local system, illus-

trated in Figure 4.3 (a);

• akka://systemName@127.0.0.1:123/user/parent/child, in case of actors being re-

mote, where 127.0.0.1:123 corresponds to the IP address localhost on port 123.

Figure 4.3 (b) depicts an example of a remote hierarchical structure.

In Akka, actors have a life cycle, which comprises their creation to their termination.

An actor termination is related to, for example, an exception thrown or a termination

message from the actor’s parent. Despite being terminated, Akka keeps the actor’s path,

which is the name of its logical address or reference. When it is started again or restarted,

it creates a new instance of the actor and reuses the actor path [28]. Also, there is a

special actor called deadletters to which messages whose receiver is an actor who has

terminated or does not exist are delivered [35].

35

CHAPTER 4. DESIGN AND IMPLEMENTATION

(a) Local actor system.

(b) Remote actor systems.

Figure 4.3: Hierarchical structure of actor systems in Akka.

36

4.2. ARCHITECTURE

4.2.1.1 Cluster Publish/Subscribe

Akka provides numerous modules. Two of them are Akka Remoting and Akka Cluster,

whereas the latter includes the former. Thus, the actors belonging to the cluster are

remote.

Akka Cluster provides the concept of "membership" in which there is a group of nodes

that know each other, i.e., that know the location of their neighbors on the network [33].

They establish communication and keep track of the status of each of their neighbors,

whether or not it is achievable, using the gossip protocol, based on a failure detection

mechanism [34]. Amazon’s Dynamo system [16] is the basis for the cluster membership

concept in Akka [34]. Moreover, the cluster contains a leader and seed nodes [34]. The

leader is usually the oldest node and responsible for propagating state changes to the

others, such as member joining and leaving. Seed nodes are the ones to which new nodes

communicate to join the cluster.

Figure 4.4: Topic-based publish/subscribe architecture.

Over the Akka Cluster core environment, Akka also provides the implementation

of a topic-based publish/subscribe paradigm [31]. Publish/subscribe [17], or pub/sub,

is an architectural pattern that operates as a messaging middleware, as illustrated in

Figure 4.4. It is used in highly available systems, providing a loosely coupled manner

of interaction [17]. It focuses on the broadcast of messages asynchronously between

publishers and subscribers regarding a topic. The events are produced independently

of the subscribers. Subscribers express interest in a given topic and receive notifications

whenever there is a publication involving it. Publishers are responsible for producing or

publishing messages. The architecture allows decoupling the sender from the receivers,

i.e., subscribers and publishers do not need to know the origin of the messages and who

will use those messages, respectively. Also, we consider that every replica actor in the

cluster can act as a publisher and a subscriber. Regarding the pub/sub abstraction, the

programmer defines which messages are published and received on a given topic while

37

CHAPTER 4. DESIGN AND IMPLEMENTATION

implementing the Actor API.

Internally, Akka uses an actor called DistributedPubSubMediator, who acts as a

mediator in the cluster, in which the established communication is eventually consis-

tent [31]. It is responsible for message passing from and to all other mediators. In our

case, all replicas initialize the mediator actor.

Our implementation benefits from the decoupling of actors in the cluster, in particular,

to determine the stability of operations. Typically, tracking causal stability implies the

usage of vector clocks, as described in Section 2.8. Each node or replica stores a vector with

the size of the existing replicas. Though there are techniques to prevent the transmission

of the entire vector over the network (see Section 2.8.2), the size of the broadcasted

messages grows according to the replicas size. On behalf of the algorithm, we do not

want to keep the reference of all nodes, neither an array with length equals the size of

existing replicas. We only need to keep an integer matching the size of the cluster, which

will be presented in detail in Chapter 5.

4.2.1.2 Akka Persistence

Another module that Akka features is Akka Persistence, which allows persisting data. An

actor ceases to be a regular actor and becomes a persistent actor, which has an internal

state and persisted data associated.

Figure 4.5: Akka persistence architecture.

As shown in Figure 4.5, a persistent actor receives commands and events. The former

corresponds to a message sent by other actors, and the latter associates a single state

change. If an actor starts and persists all its internal state changes, then the list of events

leads to the current state [32]. The entity that stores the events is called journal. Besides,

there is also another store, the snapshot store, which keeps the snapshots. A snapshot

stores the actor’s state at a particular moment.

Whenever an actor starts or restarts, initiates in a recovery mode, in which it receives

the last persisted snapshot and subsequent events, so that it can recover its state. In

Figure 4.6, let’s consider that the snapshot is unique, and it keeps the state at the moment

right after the register of the event 100. It is unnecessary to reproduce previous events,

but those after it. Once the recovery completes, the actor proceeds to the receiving mode,

in which it can receive and process commands.

38

4.2. ARCHITECTURE

Figure 4.6: Recovery mode: snapshot as a set of events.

By default, Akka uses the local file system through a plugin for a LevelDB 2 instance.

This plugin only provides the journal, and it is not suitable to use in conjunction with an

Akka cluster since it persists on local storage [36]. Nevertheless, other plugins provide

both stores, such as the Akka Persistence Cassandra plugin [30]. We chose to include

Apache Cassandra 3 in our architecture since it’s a distributed NoSQL database that

is suitable in environments that require high performance, availability, and scalability.

Cassandra belongs to the NoSQL database group, where one designs the tables according

to queries. It has its SQL-like language, called Cassandra Query Language 4 (CQL),

in which there is no join mechanism between tables or subqueries, unlike traditional

relational SQL databases.

We designed and implemented the data model for each case study in which we decided

to evaluate our algorithm. In addition to the creation of the tables regarding the case

study (or client application), we also maintain another table related to stable operations.

4.2.2 Summary

To summarize, and following Figure 4.7, there is a set of replicas, which form a cluster.

The cluster implementation uses the pattern publish/subscribe based on topics. Each

replica, which is a persistent actor, is the parent of two other actors: a listener who listens

for state changes of the nodes that pertain to the cluster, such as if a member is running

and stops or is leaving the cluster, and a mediator who publishes messages and receives

notifications about the topics of interest. The replica has an internal state and persistent

data, whereas, for the latter, we are using a connection to the NoSQL Cassandra database.

In the illustration below, solid arrows represent messages exchange. Note that the

outgoing arrow from the listener and the mediator to the main actor represents commu-

nications that inform the parent. Similarly, the replica sends a message to its mediator to

broadcast the message through the cluster. Dashed arrows, which link all replicas, repre-

sent the communication established by the two secondary actors: listener and mediator.

2See https://github.com/google/leveldb/
3See http://cassandra.apache.org/

4See https://cassandra.apache.org/doc/latest/cql/

39

https://github.com/google/leveldb/
http://cassandra.apache.org/
https://cassandra.apache.org/doc/latest/cql/

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.7: Architecture diagram.

40

C
h
a
p
t
e
r

5
Dynamic Cluster

The following chapter complements the previous one. Therefore, it is assumed that the

reader already has an understanding of the architecture that supports our approach.

We will address relevant aspects of the implementation, such as how the broadcast

works, the stabilization of operations, and how we develop a dynamic cluster environment.

The latter includes several steps, from data replication to the beginning of the inclusion

of the new replica in stability verification.

5.1 Assumptions

Before moving into implementation details, as part of it, we assume the following:

• A reliable communication, with no message duplication, corruption, or loss of mes-

sages, and they are eventually delivered to the recipient;

• A replica does not fail, though it is acceptable to stop responding for a finite amount

of time and eventually recover to an active state;

• Every replica is a publisher and a subscriber.

5.2 Message Passing

A replica contains the mediator actor who is responsible for broadcasting messages on the

cluster. Internally, the transmission of messages is eventually consistent.

A part of our architecture contains the publish/subscribe pattern [17]. We developed

the cluster using this pattern so that each replica does not need to know the location of

the others on the network to exchange messages. Replicas publish messages concerning

a topic, and those who have subscribed to that topic receive them. Our approach covers

41

CHAPTER 5. DYNAMIC CLUSTER

four topics: states, ready, operations, and acks. The topics states and ready relate to joining

replicas, and we will address them in a subsequent section on this chapter. The topic

operations refers to the operations originated in a replica, which we call a local execution.

Then, they are broadcast, regarding this topic, so that the receivers can execute it as a

remote operation. Note that the successful execution of a remote operation can only

occur if the replica meets all operation’s dependencies. Otherwise, it becomes a pending

operation and awaits the arrival of each missing dependency. The topic acks is relevant

when it comes to the stability of operations, which we will present in the following section.

5.3 Stability Check

The stability of an operation allows us to reduce the size of the replica’s internal state.

The reason is that stable operations do not need to be broadcasted since the whole cluster

is aware of their existence. We delete the records of the operation in the data structures

of the replica’s internal state (executedOps and opNamesMapping), using the origin field.

Also, we add a new record to the persistent stability table, which stores the information

about stable operations.

As soon as a replica executes an operation, local or remote, it publishes a message

related to the topic acks, which holds the origin of the operation. Remember that the field

origin uniquely identifies the operation, and holds the replica identifier and counter that

the replica had at the time of creating the operation.

Algorithm 2 Stability Check

1: function receive_ack(origin) . origin field has type (replica_id, lamport_counter)

2: op ← executedOps[origin]

3: if op , null then
4: opUpdated ← op.copy(delivered++)
5: executedOps ← executedOps∪ {〈origin, opUpdated〉}
6: check_stability(origin)
7: else
8: updatePendingAcks(origin)

9: function check_stability(origin)
10: op ← executedOps[origin]

11: if op.delivered == op.lastAckId - 1 then . -1 to exclude itself

12: updateInternalState(origin) . delete references of origin from data structures

13: stabilize(persistenceId, op, origin)

As already mentioned in Section 4.2.1, each replica knows the size of the cluster.

The delivery of an ack implies the verification of the stability regarding an origin, as

Algorithm 2 presents. An operation, extending what we have already mentioned in

Section 4.1, contains the following: (i) an object Origin, which has the id of the replica

42

5.4. DYNAMIC CLUSTER ENVIRONMENT

and the counter at the moment of its creation, (ii) a name, (iii) a list of parameters of any

type, (iv) a set of dependencies, and (iv) a field called delivered, which is an integer that

represents the number of acks that the replica holds related to this operation.

When the number of acks reaches the size of the cluster, the operation becomes stable

since all nodes know the operation and have it in their state (L11−13). In case the replica

receives an ack referring to an unknown operation, then the ack turns pending the arrival

of that operation. The reason is that this ack will be used to stabilize the operation

when it arrives. Otherwise, if we did not keep this information, we would have to ask if

every replica had the operation. As soon as the operation arrives, the field delivered is

incremented according to the number of pending acks that the operation has (L8).

This approach works well in the case of a static cluster environment. The challenge is

when we consider a dynamic cluster. Imagine that initially, we have three replicas. All of

them wait for the arrival of two acks for stabilization. In case a new replica joins when the

others are exchanging acks, some replicas may stabilize the operation, while others do not.

The reason is that they may have late knowledge that the size has increased. To overcome

such a problem, we decided to add a new field to the definition of the operation. The field

is an integer that matches the size of the cluster at the moment of the operation’s creation.

We assign replicas identifiers in an orderly manner, so having three replicas assumes that

the replica with the third identifier will be the last one included to participate in the

stability. Therefore, even with a dynamic environment, new replicas are not considered

in the field delivered of previously created operations. So one might ask: "How the new
entry stabilizes this operation?". Well, the new replica may or may not receive the operation

and all acks. We will address this issue in the next section.

5.4 Dynamic Cluster Environment

Developing a dynamic environment of replicas is difficult, and the challenge is to main-

tain an initial up-to-date state of the new replica without loss of messages. The approach

that we will present considers a join model, in which replicas do not require starting

from the same initial state to have a new node in the cluster. In other words, no synchro-

nization is required between the existing replicas, as they keep their state in receiving

mode. We consider that only one replica works as a join node, which we call the replicator.

The replicator is the node responsible for replicating the data upon join requests from

new nodes. This data includes the internal state of the replica, as well as the persisted

data in the database. If we only replicate the persisted data, then state convergence would

not be guaranteed, as certain operations could be lost.

5.4.1 Two-Phase Joining

Initially, a new instance of a replica, which is a persistent actor, enters a recovery mode,

followed by a receiving mode which starts accepting messages to process. The replica

43

CHAPTER 5. DYNAMIC CLUSTER

also creates the instance of the mediator, i.e., the actor responsible for the retrieval and

publication of messages. The mediator of a new replica N subscribes to the topics states
and ready. The topic states refers to the transmission and acquisition of internal states.

The new entries and the replicator are the replicas that subscribe to this topic. While the

replicator subscribes to the topic permanently, N unsubscribes upon receiving a state from

the replicator. The topic ready informs the cluster that N is ready to participate. As soon

as N applies the received state, it broadcasts a "ready message" and can start receiving op-

erations and acks. As such, the stability calculation for instances of operations originated

from the moment that the cluster acknowledges N will include N.

The joining process is divided into two phases, where the purpose of the second phase

is to ensure state convergence in case the first phase is not sufficient. Following the

illustration in Figure 5.1, let’s assume that a replica with id r4 intends to join the cluster

and, for simplicity, that the replicator has id r1. The actor shown in the center of the

figure is the mediator. In practice, there are two mediator actors, one for each replica. For

simplicity, we are only presenting a single mediator as the channel of communication. We

consider that the cluster has three replicas before the join request from r4. For an easier

understanding, we show only the replicator and the new replica. When necessary, we

will specify the case of exchanging messages with the other existing replicas. The arrows

represent the exchange of messages.

1st Phase

Initially, r4 sends a state request to r1. r1 replicates its persistent data to r4. Eventually,

r1 sends its internal state S1 to r4. The replica r1 also stores the state for future reference.

Note that in the courseware application, replicating the persistent data means that we

will have duplicated data from student, course, enrollment, and stability tables. As we

are using the Cassandra database, being it distributed, it has several nodes. The nodes

are arranged according to the primary key, which is called the partition key. Data that

has the same partition key, without considering intervals of identifiers, are in the same

node. All tables have the replica identifier as the partition key. Thus, r4 will have the

data persisted with its identifier.

Next, r4 applies S1 and subscribes to the topics operations and acks. Then, r4 cal-

culates the minimum counter of S1, which is obtained using the field origin of the

operations. Finally, r4 broadcasts the message indicating that it is ready to join the clus-

ter. Afterward, all replicas increase the size of the cluster. Each replica replies to r4 by

broadcasting a message. This message has the id of the receiver (r4) and the value of

counterOps, which belongs to the internal state. As soon as r4 receives all replies, it cal-

culates the maximum counter. r4 informs r1 of the minimum and maximum counter that

it acknowledges, and r1 replicates all operations that pertain to the interval [min,max]

and that have not yet been replicated. These operations expect three acks to stabilize

since we are considering the existence of three replicas in the cluster. Finally, r1 tells r4

that the process ended, attaching to the message a boolean referencing if it has replicated

44

5.4. DYNAMIC CLUSTER ENVIRONMENT

Figure 5.1: Two-phase joining diagram.

all the operations on the interval [min,max]. In case they haven’t all succeeded, it attaches

their origin. r4 updates its internal state according to what was received.

2nd Phase

During the first phase, r4 may receive acks from unknown operations. These acks remain

pending until the corresponding operation arrives so they can be added to the field acks

of that operation. Well, these operations may never arrive because they have become

stable. For r4 to recognize this stabilization, it will have to ask r1. To do so, r4 sends a

request to r1 to verify each pending ack, attaching in the message the field origin. Then,

r1 will query the stability table for a record of each origin. If it finds, it replicates with

the persistence id of r4. Then it replies with the set of origin it has stabilized. Finally,

45

CHAPTER 5. DYNAMIC CLUSTER

after receiving the response, r4 has to update its internal state accordingly.

This phase repeats periodically as much as necessary until r4 has the set of pending

acks empty. Hence, if we consider that before the introduction of r4, we had three replicas,

all operations whose stability awaits three acks will be made stable for r4. Note that

this process is required, as there is the case of the new replica not recognizing certain

operations while preparing its join in the first phase.

5.4.1.1 Optimization

After several runs and experimenting with the 2-phase joining algorithm, we noticed that

there was the possibility to expedite the process of state convergence. In particular, by

decreasing the overhead in the replication of operations that become stable before the

new replica indicates its preparation.

In Figure 5.2 we highlight the improvements concerning what was previously pre-

sented in Figure 5.1. As soon as r1 (the replicator) sends its state to the new replica (r4),

r1 will add a new entry in a map, which we call persistedOpsLater, a key-value pair,

whose key is the id of the new replica and the value is a set of Origin objects. Replica r1

stores all the operations that become stable until the new replica signals that it is ready.

When r1 receives the preparation message from r4, it replicates all the operations corre-

sponding to the field origin in persistedOpsLater. Replica r1 informs r4 that it has

terminated the process, and r4 updates its status accordingly. Then, r1 on receiving the

message with the minimum and maximum counter filters those that have not yet repli-

cated. Afterward, when the second phase is completed, that is, upon state convergence,

r1 updates the map by removing the entry corresponding to the identifier of the new

replica.

Hence, we anticipate the potential overhead in the database when replicating all

operations that are in the interval [min,max], i.e., the minimum and maximum counter

that the new replica acknowledges upon receiving all replies to its preparation.

46

5.4. DYNAMIC CLUSTER ENVIRONMENT

Figure 5.2: Two-phase joining diagram with optimization.

47

C
h
a
p
t
e
r

6
Evaluation

In this chapter, we present the experimental evaluation of our algorithm’s performance.

Overall, our primary goal is to have our algorithm’s performance located amidst the two

weaker consistency models in the spectrum, presented in Section 2.4: eventual consis-

tency and causal consistency. The evaluation focuses on comparing execution times con-

cerning consistency models, varying the number of operations performed in the cluster

replicas.

6.1 Configuration

We evaluated the performance over two case studies: the courseware (described in Sec-

tion 2.6.1) and a synthetic application. We developed the latter application to assess

and compare the performance according to an application that had an operation with a

significant number of parameter dependencies, which in this case contains five. Figure 6.1

illustrates the dependency graph of the synthetic application. Note that the graph con-

struction follows the description presented in Section 4.1.1.

The way we implemented the system allows us to instantiate a replica specifying

Figure 6.1: Synthetic dependency graph.

49

CHAPTER 6. EVALUATION

whether we want to look at the parameters or break the application invariant, as described

in Table 6.1. Essentially, the key lies in how to build dependencies. In the case of eventual

consistency, it performs write operations in any order, without restriction. Therefore, the

application invariant can break. On the other hand, causal consistency requires a partial

order, in which all operations preceding an operation A have to be observed by others

before A. Our implementation of causal consistency is optimized, in the sense that the set

of dependencies of A will have all non-stable operations at the moment of its execution,

instead of the set of all operations that happened before. This results in less dependencies

compared to a standard causal consistency implementation.

Table 6.1: Consistency model configuration.

Consistency Model lookAtParameters letInvariantBreak

Eventual Consistency (EC) true or false true

Semantic Consistency (SC) true false

Causal Consistency (CC) false false

As described in Section 4.2.1, each actor has a dispatcher, which allows it to schedule

the processing of a message. Thus, we can introduce an interval regarding the transmis-

sion of an operation, more specifically what we call a broadcast delay. This delay consists

of message passing between the replica actor and the mediator actor, who is responsible

for the broadcast. In this manner, we decided to simulate different distances between

clients. Table 6.2 presents three different latency intervals and associated locations, which

rely on Amazon AWS latency monitoring. 1

Table 6.2: Simulation of different distances between clients.

Location
Latency Interval (ms)

From To

Singapore Tokyo [50, 100]

São Paulo Canada [100, 150]

London Sydney [200, 300]

We generate (i) a set of random replicas, (ii) a set of random operations that includes

the operation name and parameters, and (iii) a set of random values of broadcast delay,

and register the execution details into a file. The reason is that for a given number of

operations and a broadcast delay interval, we want the set of operations to be the same

for each consistency model configuration. Each execution instruction of the file has the

following format, represented as a regular expression:

replica_id operation_name (parameter(,parameter)∗)? broadcast_delay

1See https://www.cloudping.co/grid and https://aws.amazon.com/

50

https://www.cloudping.co/grid
https://aws.amazon.com/

6.2. EVALUATION RESULTS

The broadcast delay value is random within the chosen interval delimiters. For example, if

we are using the courseware application and the range [100,150], an execution instruction

of the file could be the following:

1 enroll s1, c1 122

To conduct a semantic analysis, requesting the execution of a certain number of op-

erations involves avoiding throwing exceptions, particularly when it might lead to an

invariant violation, such as the non-existence of a course or student when writing an en-

roll. In other words, the preconditions must be satisfied. To do so, we start by choosing

a random replica, then the operations without dependencies, and, finally, the operation

that has those operations as dependencies. For instance, requesting the execution of five

operations, namely one addCourse, two registerStudent, and two enroll could result

in the following execution instructions:

1 addCourse c1 135

1 registerStudent s2 117

1 enroll s2, c1 122

2 registerStudent s1 141

2 enroll s1, c1 103

When reading the file, for each execution instruction, we send a request to the replica

with the given identifier. The replica will process the local execution of the operation

with the given name, parameters, and broadcast delay.

The experimental evaluation comprises an Akka cluster with three replicas in which

all share the same configuration, running on a single machine with Windows 10 64bits

version 1909, 8 GB memory, and Intel Core i5-8265U quad-core CPU @ 1.60 GHz with 8

hardware threads. The evaluation results in the comparison between consistency models,

considering the average execution time required to perform a given number of operations.

We perform different experiments for each latency interval presented in Table 6.2.

The results we will present include: (i) publication and retrieval of messages, (ii)

communications with the database, (iii) construction of dependencies when executed

locally, (iv) verification of dependencies in a remote operation, (v) potential triggers of

pending operations, (vi) acks processing, and (vii) stabilization of operations. These

results will be discussed in the following section.

6.2 Evaluation Results

For both courseware and synthetic applications, we present the results regarding the

execution of 512, 1024, 2048, and 4096 operations. Tables 6.3 and 6.4 expose their

distribution.

51

CHAPTER 6. EVALUATION

Table 6.3: Courseware application: distribution of operations.

addCourse registerStudent enroll
∑

12 200 300 512

24 400 600 1024

48 800 1200 2048

96 1600 2400 4096

Table 6.4: Synthetic application: distribution of operations.

op1 op2 op3 op4 op5 opZ
∑

56 58 68 62 68 200 512

112 116 136 124 136 400 1024

224 232 272 248 272 800 2048

448 464 544 496 544 1600 4096

Figures 6.2 and 6.3 illustrate the results obtained. The eventual consistency (EC) and

semantic consistency (SC) reveal a more linear behavior than the causal consistency (CC).

In the latter, the execution times are irregular.

The reason is that in eventual consistency, there is no effort in ensuring that precon-

ditions are satisfied, however, invariants might be broken. On the other hand, semantic

consistency is more precise in the sense that it always has the guarantee that the num-

ber of dependencies has a fixed upper-bound. Consider the different case scenarios of

addCourse and registerStudent to stabilize when executing an enroll that depends on them

semantically. In case neither of the dependencies is stable, then enroll has two depen-

dencies. Otherwise, it has zero or one, if both are stable or one is stable, respectively.

With causal consistency, it has as many dependencies as non-stable operations. Therefore,

when we request the execution of a high number of operations, the message queue of the

replicas will increase rapidly, and it will take longer to stabilize, leading to an increase in

the set of dependencies of each operation.

Occasionally, having a significant or minor execution time difference between causal

consistency and semantic consistency is perfectly acceptable. The reason is that we are

dependent on the following factors: (i) the set of operations written in the file, (ii) the

order in which they are executed and received, and (iii) the ratio in which operations

stabilize, which will affect the number of dependencies. These factors are evident from

the results obtained in Figure 6.2 for 2048 operations and Figure 6.3 for 1024 operations,

where the execution time difference between SC and CC is not significant.

Typically we expect an increase in the difference between CC and SC as the number

of operations increases. We start to verify this increase from around 4096 operations.

52

6.2. EVALUATION RESULTS

We notice that in an application with fewer dependencies, the difference progresses

gradually. Yet, in synthetic, there are sudden changes, which are also more irregular. In

EC, as it only executes, the growth of dependencies makes no impact. In the case of SC,

it increases by approximately 14.13%, as presented in Table 6.6. As for CC, the changes

are more unstable, in particular, when increasing the number of operations.

Our approach remains approximately constant, even as the broadcast interval in-

creases. As already mentioned, this is because we have a fixed maximum number of

dependencies, and the rate at which they stabilize is not very distinct. The same happens

with EC. However, this is not the case with CC since the ratio of operations that need to

stabilize is higher and takes longer. In particular, using the broadcast interval between

200 and 300 ms, where the number of pending operations increases rapidly.

Additionally, we present in Table 6.5 a linear regression model to estimate values for

higher numbers of operations. Although the values of CC are not properly linear, we have

also decided to present a linear estimate to maintain the same comparison between the

models. The “Linear Fit” column corresponds to the linear equation y = mx + b derived

from the values in the “Actual Value” column. The latter corresponds to the values

extracted from experimentation, presented in Figure 6.3 (b). The next column contains

the difference between the current value and the equation. We can see that the values for

EC and SC differ by less than a second, but for CC, as expected, this does not happen.

To reduce the difference and obtain a value closer to the real prediction, we carry out

another linear trendline equation for the remainder or residual value. The last column

presents the predicted values. We can verify that the difference starts to be less significant

from 4096 operations. The results for a larger number of operations serve as a reference.

Overall, the estimation confirms the assumption that the differences between SC and

CC become more significant as the number of operations increases.

Our solution achieves the same guarantees as causal consistency, namely invariants

preservation. However, we propose a refined approach in the sense that pending opera-

tions genuinely await those on which they are dependent semantically. Semantic analysis

confirms that we can improve in terms of performance, ensuring application correctness.

53

CHAPTER 6. EVALUATION

0
10
20
30
40
50
60
70
80
90

100
110
120

512 1024 2048 4096

Operations
Performed

Execution Time
(seconds)

[50,100]

EC
SC
CC

(a)

512 7.8280 10.5800 12.1120

[50,100]

EC SC CC

4096 62.5055 82.3532 93.0925

1024 15.9807 21.3130 28.4450

2048 32.1315 41.5155 43.6735

(b)

0
10
20
30
40
50
60
70
80
90

100
110
120

512 1024 2048 4096

Operations
Performed

Execution Time
(seconds)

[100,150]

EC
SC
CC

(c)

512 7.9487 10.6977 13.2907

[100,150]

EC SC CC

4096 62.3135 82.6310 99.9795

1024 16.2325 21.3133 29.7193

2048 32.5760 42.5770 44.9277

(d)

0
10
20
30
40
50
60
70
80
90

100
110
120

512 1024 2048 4096

Operations
Performed

Execution Time
(seconds)

[200,300]

EC
SC
CC

(e)

512 7.9930 10.7875 14.8540

[200,300]

EC SC CC

4096 62.4393 82.7867 119.7740

1024 15.9813 21.5520 28.1153

2048 32.6500 42.4503 47.6993

(f)

Figure 6.2: Results of the courseware application, considering different latency intervals.

54

6.2. EVALUATION RESULTS

0
10
20
30
40
50
60
70
80
90

100
110
120
130

512 1024 2048 4096

Operations
Performed

Execution Time
(seconds)

[50,100]

EC
SC
CC

(a)

[50,100]

512

1024

4096

2048

CC

104.220594.378562.3063

55.897648.134232.5417

SCEC

25.504624.060416.5223

14.915812.22788.0503

(b)

0
10
20
30
40
50
60
70
80
90

100
110
120
130

512 1024 2048 4096

Operations
Performed

Execution Time
(seconds)

[100,150]

EC
SC
CC

(c)

4096 61.8663 94.2335 125.8705

1024 16.4923 24.0226 25.4542

2048 32.4650 48.0833 53.1555

[100,150]

EC SC CC

512 8.1780 12.1664 15.7270

(d)

0
10
20
30
40
50
60
70
80
90

100
110
120
130

512 1024 2048 4096

Operations
Performed

Execution Time
(seconds)

[200,300]

EC
SC
CC

(e)

4096 62.8340 94.7773 126.2705

1024 16.3490 24.6527 29.6555

2048 32.5300 48.5790 52.7178

[200,300]

EC SC CC

512 8.0920 12.2843 17.7828

(f)

Figure 6.3: Results of the synthetic application, considering different latency intervals.

55

CHAPTER 6. EVALUATION

Table 6.5: Results estimation of the synthetic application, relying on a linear trendline
equation.

The first column refers to the given number of operations performed.
The results refer to a broadcast delay in the interval [50,100] ms.

All values are represented in seconds.

Linear Fit Equation:
(EC) y = 0.0152075203x+ 0.5253520833
(SC) y = 0.0230229834x+ 0.3968775000
(CC) y = 0.0254718701x+ 0.9829075000

Residual Fit Equation:
(EC) y = 0.0000436392x+ 0.4512741734
(SC) y = 0.0000402300x+ 0.2251647478
(CC) y = 0.0000943078x+ 1.3109821400

Actual Value Linear Fit Residual Value Residual Fit Predicted Value
|Linear Fit - Actual Value| Linear Fit - Residual Fit

EC
0 0.0000 0.5254 0.5254 0.4513 0.0741

512 8.0503 8.3116 0.2613 0.4736 7.8380
1024 16.5223 16.0979 0.4244 0.4960 15.6019
2048 32.5417 31.6704 0.8713 0.5406 31.1297
4096 62.3063 62.8154 0.5091 0.6300 62.1853
8192 - 125.1054 - 0.8088 124.2966

16384 - 249.6854 - 1.1663 248.5191
32768 - 498.8454 - 1.8812 496.9641
65536 - 997.1654 - 3.3112 993.8542

SC
0 0.0000 0.3969 0.3969 0.2252 0.1717

512 12.2278 12.1846 0.0432 0.2458 11.9389
1024 24.0604 23.9724 0.0880 0.2664 23.7061
2048 48.1342 47.5479 0.5863 0.3076 47.2404
4096 94.3785 94.6990 0.3205 0.3899 94.3091
8192 - 189.0012 - 0.5547 188.4464

16384 - 377.6054 - 0.8843 376.7211
32768 - 754.8140 - 1.5434 753.2706
65536 - 1509.2311 - 2.8617 1506.3694

CC
0 0.0000 0.9829 0.9829 1.3110 0.3281

512 14.9158 14.0245 0.8913 1.3593 12.6652
1024 25.5046 27.0661 1.5615 1.4076 25.6585
2048 55.8976 53.1493 2.7483 1.5041 51.6452
4096 104.2205 105.3157 1.0952 1.6973 103.6184
8192 - 209.6485 - 2.0836 207.5649

16384 - 418.3140 - 2.8561 415.4579
32768 - 835.6451 - 4.4013 831.2439
65536 - 1670.3074 - 7.4915 1662.8158

56

6.2. EVALUATION RESULTS

Table 6.6: Growth rate of semantic consistency from an application with two to five
dependencies.

The values refer to those shown in Figures 6.2 and 6.3 for semantic consistency (SC). That is,
the time it takes to execute a given number of operations using a certain broadcast interval.

The first column refers to the given number of operations performed.
All values are represented in seconds.

SC Rate
[50,100] ms (s) [100,150] ms (s) [200,300] ms (s) Mean (s)

Courseware
512 10.58 10.70 10.79 10.69

1024 21.31 21.31 21.55 21.39
2048 41.52 42.58 42.45 42.18
4096 82.35 82.63 82.79 82.59

Synthetic
512 12.23 12.17 12.28 12.23

1024 24.06 24.02 24.65 24.24
2048 48.13 48.08 48.58 48.26
4096 94.38 94.23 94.78 94.46

The table below presents the growth ratio from the courseware application that has
two dependencies to the synthetic application that has five dependencies.

The mean values that were used are presented in the table above.

Growth Rate
Percentage Mean

MeanSynthetic−MeanCourseware
MeanCourseware ∗ 100 Percentage

512 14.41 %
1024 13.32 %
2048 14.41 %
4096 14.37 %

14.13 %

57

C
h
a
p
t
e
r

7
Conclusion

Large scale distributed applications are used to serve millions of users and, to fulfill their

needs, it is necessary to ensure availability and to have a consistent system. However, ac-

cording to the CAP theorem [19], a partitioned distributed system cannot fully guarantee

both availability and consistency. If one places the consistency models in a spectrum, on

one edge, one finds the weak consistency models, such as the eventual consistency. This

consistency model guarantees high availability without maintaining any order between

operations. Another weak consistency model is causal consistency, where although it

has tighter network requirements compared to eventual consistency, it guarantees data

integrity through partial order between operations, even during network partitions. On

the other edge, one finds the strong consistency models, such as sequential consistency,

in which replicas behave as a singleton, ensuring consistency.

Our initial goal was to develop an approach that stood between eventual consistency

and causal consistency, i.e., to enable high availability of eventual consistency while ensur-

ing the integrity of the data, as is the case with causal consistency. Generally, approaches

that use causal consistency make use of vector clocks, which are designed to determine

the partial order between events. However, the main drawback is that it requires every

replica to maintain a vector of the size of the cluster, which grows linearly according

to the number of existing replicas. However, for a high number of replicas, broadcast-

ing the vector clock may become unfeasible. Even with the existing alternatives and

improvements regarding the limitation of the data sent over the network, as mentioned

in Chapter 3, generally in the internal state, it is necessary to maintain a vector of a size

corresponding to the number of replicas.

In this dissertation, we propose an approach that uses a consistency model called

semantic consistency (SC), in which we provide better performance compared to causal

consistency, while still ensuring data integrity. To do so, we rely on CISE3 [42], a tool for

59

CHAPTER 7. CONCLUSION

static analysis of weakly consistent applications, to manage a semantic analysis. The static

analysis of the client application provides dependencies between operations, including

the relationship between their parameters. As a result, we build a graph of dependencies,

in which the nodes are the operations, and the edges are the relationships between the

parameters. The algorithm we developed uses this graph to build the dependencies.

Thus, for instance, the enrollment of a student s1 in a course c1 is not dependent on

all the student and course registrations that the replica observed before executing the

enrollment. It is only dependent on two operations, being the registration of s1 and c1.

Through our graph construction, we ensure that the number of maximum dependencies

is always settled for a given operation throughout the program life cycle.

We also present the architecture that supports our approach, which is based on

Akka [29]: an actor-based middleware that provides a set of open-source libraries that

allows the development of distributed and concurrent applications. The replicas, which

are remote actors, form a cluster that supports the architectural pattern publish/sub-

scribe [17]. The purpose of using this pattern was to abstract direct communication

between the replicas, that is, to avoid them communicating directly with each other, not

knowing the exact location of the other members in the network to exchange messages.

Moreover, the architecture also includes persistence. We use the database NoSQL Apache

Cassandra 1, which is widely used in distributed environments since it guarantees high

availability. For each case study, we develop the corresponding data model. We always

include a table that stores stable operations: a stability table. An operation is considered

stable when it is observed by all replicas. In this sense, the algorithm we have developed

performs the verification and manages stability. Whenever an operation becomes stable,

it is removed from the internal state of the replica and added a new record to the stability

table.

Furthermore, we specified how we handled the integration of a dynamic cluster envi-

ronment. One of the replicas, typically the oldest, assumes the role of the replicator. The

replicator is responsible for receiving new join requests to the cluster and handles the

replication of data for the new replica. Through a two-phase joining, we guarantee state

convergence of the new replica, as well as its integration into the stability of operations.

Lastly, we evaluate the performance of the developed algorithm, taking into account

the number of operations performed, a latency interval, which simulates several realistic

distances, as well as two case studies. We confirm that as the overhead in the number

of executed operations increases, we start to have significant improvements in terms of

performance, compared to the use of causal consistency.

Summary

To summarize, we were able to present a solution that reduces the synchronization be-

tween the replicas while ensuring data integrity, which was the primary goal of the

1See http://cassandra.apache.org/

60

http://cassandra.apache.org/

7.1. CONTRIBUTIONS

dissertation.

In an early stage, one of the concerns focused on identifying a technique to avoid

the use of vector clocks to track causality. The way we built the graph of dependencies

allowed us to establish a fine-grained analysis of dependencies. We managed to reduce

the partial order between operations that the causal consistency maintains due to the

semantic analysis and the consequently limited number of dependencies. For instance,

consider two replicas r1 and r2. In the case of r1 sends an operation A to r2, r2 is not

required to observe all the updates that occurred before A, to apply A.

The usage of Akka helped us to avoid writing low-level code, more precisely threads,

and the concurrent accesses between them. It allowed us to focus on the development of

the algorithm and the exchange of messages in the cluster.

We had some difficulties in developing the dynamic cluster environment. The reason

is that the aim was to allow new replicas in the cluster without the existing ones having

to synchronize and stop their execution. From what we searched, there is no such study

in the literature. The study that comes closest to what we have developed involves syn-

chronization, and all replicas have to recognize that a given replica is joining the cluster

at a certain point [11]. So, in this context, state convergence became a challenge, and we

managed to overcome it through the development of the two-phase joining.

The evaluation confirms that, in scenarios where we want to ensure availability and

application correctness, the semantic analysis of operations provides performance gains

when compared with a classic approach of causal consistency. It limits the number of

dependencies and reduces the metadata that is broadcast on the network.

7.1 Contributions

In summary, this dissertation makes the following contributions:

1. A detailed explanation of the semantic consistency (SC) model, which provides

availability, efficient updates convergence, and ensures application correctness by

preserving the invariants.

2. The introduction of a semantic analysis of operations, as well as the proposed con-

struction of the graph of dependencies.

3. The presentation and explanation of the architecture that supports our approach,

built using the Akka actor-based middleware and the use of persistence.

4. The implementation of the protocol, which takes as input a set of dependencies

between operations and the relationship between their parameters. This input is

provided by the static analysis tool CISE3 [42].

5. The stability of operations using SC, establishing the relationship between the in-

ternal state of the replicas and the data that is persisted.

61

CHAPTER 7. CONCLUSION

6. The detailed explanation and implementation of a cluster in a dynamic environ-

ment, divided in two phases, which allows new replicas to join the cluster without

interrupting the execution of existing replicas.

7. An experimental evaluation that reveals the performance gains, which includes

the following factors: (i) latency, (ii) number of operations performed, and (iii)

consistency model. The evaluation is conducted using two case studies, which

vary in the number of dependencies, and we measure the growth ratio in terms of

execution time between them.

7.2 Future Work

To enhance our work, it would be valuable to formally prove the definition of the al-

gorithm, to develop a specification that would confirm the correction properties, and

to prove that the replicas converge to the same state in a geo-replicated setting using

the protocol. We consider that it would be interesting to implement the specification in

TLA+ [25] using the TLC model checker to validate the protocol.

The formal proof of the definition and convergence may be done using the logs that

are generated when running the system. Our idea focuses on log analysis. We could

formally confirm the construction of the dependencies and the stability of the operations

by tracking the field origin of each operation. It is expected that in a distributed setting,

the execution of the system keeps up and running, so this would have to be done in

runtime. Additionally, it would also be possible to prove the state convergence of new

replicas upon entering the cluster.

62

Bibliography

[1] A. Agarwal and V. K. Garg. “Efficient Dependency Tracking for Relevant Events

in Shared-Memory Systems.” In: Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Distributed Computing. PODC ’05. Las Vegas, NV, USA:

Association for Computing Machinery, 2005, 19–28. isbn: 1581139942. doi: 10.

1145/1073814.1073818. url: https://doi.org/10.1145/1073814.1073818.

[2] P. Bailis. Linearizability versus Serializability. Accessed January 2020. 2014. url:

http://www.bailis.org/blog/linearizability-versus-serializability/.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “Coor-

dination Avoidance in Database Systems.” In: Proc. VLDB Endow. 8.3 (Nov. 2014),

185–196. issn: 2150-8097. doi: 10.14778/2735508.2735509. url: https://doi.

org/10.14778/2735508.2735509.

[4] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “Bolt-on Causal Consistency.”

In: Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’13. New York, New York, USA: Association for Computing Ma-

chinery, 2013, 761–772. isbn: 9781450320375. doi: 10.1145/2463676.2465279.

url: https://doi.org/10.1145/2463676.2465279.

[5] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, and N. Preguiça. “IPA: Invariant-

Preserving Applications for Weakly Consistent Replicated Databases.” In: Proc.
VLDB Endow. 12.4 (Dec. 2018), 404–418. issn: 2150-8097. doi: 10 . 14778 /

3297753.3297760. url: https://doi.org/10.14778/3297753.3297760.

[6] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and

M. Shapiro. “Putting Consistency Back into Eventual Consistency.” In: Proceedings
of the Tenth European Conference on Computer Systems. EuroSys ’15. Bordeaux,

France: Association for Computing Machinery, 2015. isbn: 9781450332385. doi:

10.1145/2741948.2741972. url: https://doi.org/10.1145/2741948.2741972.

[7] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and

M. Shapiro. “Towards Fast Invariant Preservation in Geo-Replicated Systems.”

In: SIGOPS Oper. Syst. Rev. 49.1 (Jan. 2015), 121–125. issn: 0163-5980. doi:

10.1145/2723872.2723889. url: https://doi.org/10.1145/2723872.2723889.

63

https://doi.org/10.1145/1073814.1073818
https://doi.org/10.1145/1073814.1073818
https://doi.org/10.1145/1073814.1073818
http://www.bailis.org/blog/linearizability-versus-serializability/
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2723872.2723889
https://doi.org/10.1145/2723872.2723889

BIBLIOGRAPHY

[8] V. Balegas, C. Li, M. Najafzadeh, D. Porto, A. Clement, S. Duarte, C. Ferreira, J.

Gehrke, J. Leitão, N. Preguiça, R. Rodrigues, M. Shapiro, and V. Vafeiadis. “Geo-

Replication: Fast If Possible, Consistent If Necessary.” In: Bulletin of the Technical
Committee on Data Engineering. IEEE Data Engineering Bulletin, Special Issue

on Data Consistency across Research Communities 39.1 (Mar. 2016), p. 12. url:

https://hal.inria.fr/hal-01350652.

[9] C. Baquero, P. S. Almeida, and A. Shoker. “Pure Operation-Based Replicated Data

Types.” In: CoRR abs/1710.04469 (2017). arXiv: 1710.04469. url: http://arxiv.

org/abs/1710.04469.

[10] C. Baquero and N. Preguiça. “Why Logical Clocks Are Easy.” In: Commun. ACM
59.4 (Mar. 2016), 43–47. issn: 0001-0782. doi: 10.1145/2890782. url: https:

//doi.org/10.1145/2890782.

[11] J. Bauwens and E. Gonzalez Boix. “Memory Efficient CRDTs in Dynamic Envi-

ronments.” In: Proceedings of the 11th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages. VMIL 2019. Athens, Greece: As-

sociation for Computing Machinery, 2019, 48–57. isbn: 9781450369879. doi:

10.1145/3358504.3361231. url: https://doi.org/10.1145/3358504.3361231.

[12] P. A. Bernstein and N. Goodman. “Concurrency Control in Distributed Database

Systems.” In: ACM Comput. Surv. 13.2 (June 1981), 185–221. issn: 0360-0300. doi:

10.1145/356842.356846. url: https://doi.org/10.1145/356842.356846.

[13] I. S. E. I. Bertrand Meyer and Usa. “Design by Contract: Making Object-Oriented

Programs That Work.” In: Proceedings of the Technology of Object-Oriented Languages
and Systems - Tools-25. TOOLS ’97. USA: IEEE Computer Society, 1997, p. 360.

isbn: 0818684852.

[14] K. P. Birman and T. A. Joseph. “Reliable Communication in the Presence of Fail-

ures.” In: ACM Trans. Comput. Syst. 5.1 (Jan. 1987), 47–76. issn: 0734-2071. doi:

10.1145/7351.7478. url: https://doi.org/10.1145/7351.7478.

[15] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev. “Serializability for Even-

tual Consistency: Criterion, Analysis, and Applications.” In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL

2017. Paris, France: Association for Computing Machinery, 2017, 458–472. isbn:

9781450346603. doi: 10.1145/3009837.3009895. url: https://doi.org/10.

1145/3009837.3009895.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Available

Key-Value Store.” In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), 205–220. issn:

0163-5980. doi: 10.1145/1323293.1294281. url: https://doi.org/10.1145/

1323293.1294281.

64

https://hal.inria.fr/hal-01350652
https://arxiv.org/abs/1710.04469
http://arxiv.org/abs/1710.04469
http://arxiv.org/abs/1710.04469
https://doi.org/10.1145/2890782
https://doi.org/10.1145/2890782
https://doi.org/10.1145/2890782
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281

BIBLIOGRAPHY

[17] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. “The Many Faces

of Publish/Subscribe.” In: ACM Comput. Surv. 35.2 (June 2003), 114–131. issn:

0360-0300. doi: 10.1145/857076.857078. url: https://doi.org/10.1145/

857076.857078.

[18] C. J. Fidge. “Timestamps in message-passing systems that preserve the partial

ordering.” In: Proceedings of the 11th Australian Computer Science Conference 10.1

(1988), 56–66. url: http://sky.scitech.qut.edu.au/~fidgec/Publications/

fidge88a.pdf.

[19] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-Tolerant Web Services.” In: SIGACT News 33.2 (June 2002),

51–59. issn: 0163-5700. doi: 10.1145/564585.564601. url: https://doi.org/

10.1145/564585.564601.

[20] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. “’Cause I’m

Strong Enough: Reasoning about Consistency Choices in Distributed Systems.”

In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’16. St. Petersburg, FL, USA: Association for

Computing Machinery, 2016, 371–384. isbn: 9781450335492. doi: 10.1145/

2837614.2837625. url: https://doi.org/10.1145/2837614.2837625.

[21] J. Helary, M. Raynal, G. Melideo, and R. Baldoni. “Efficient causality-tracking

timestamping.” In: IEEE Transactions on Knowledge and Data Engineering 15.5

(2003), pp. 1239–1250. doi: 10.1109/TKDE.2003.1232275.

[22] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming.” In: Commun.
ACM 12.10 (Oct. 1969), 576–580. issn: 0001-0782. doi: 10.1145/363235.363259.

url: https://doi.org/10.1145/363235.363259.

[23] F. Houshmand and M. Lesani. “Hamsaz: Replication Coordination Analysis and

Synthesis.” In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/

3290387. url: https://doi.org/10.1145/3290387.

[24] A. D. Kshemkalyani, A. Khokhar, and M. Shen. “Encoded Vector Clock: Using

Primes to Characterize Causality in Distributed Systems.” In: Proceedings of the
19th International Conference on Distributed Computing and Networking. ICDCN ’18.

Varanasi, India: Association for Computing Machinery, 2018. isbn: 9781450363723.

doi: 10.1145/3154273.3154305. url: https://doi.org/10.1145/3154273.

3154305.

[25] L. Lamport. The TLA+ Home Page. Accessed February 2020. 2018. url: http:

//lamport.azurewebsites.net/tla/tla.html.

[26] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System.”

In: Concurrency: The Works of Leslie Lamport. New York, NY, USA: Association

for Computing Machinery, 2019, 179–196. isbn: 9781450372701. url: https:

//doi.org/10.1145/3335772.3335934.

65

https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
http://sky.scitech.qut.edu.au/~fidgec/Publications/fidge88a.pdf
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1109/TKDE.2003.1232275
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3154273.3154305
https://doi.org/10.1145/3154273.3154305
https://doi.org/10.1145/3154273.3154305
http://lamport.azurewebsites.net/tla/tla.html
http://lamport.azurewebsites.net/tla/tla.html
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.1145/3335772.3335934

BIBLIOGRAPHY

[27] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. “Making

Geo-Replicated Systems Fast as Possible, Consistent when Necessary.” In: 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX Association, Oct. 2012, pp. 265–278. isbn: 978-1-

931971-96-6. url: https://www.usenix.org/conference/osdi12/technical-

sessions/presentation/li.

[28] Lighbend. Actor References, Paths and Addresses. Accessed October 2020. 2020. url:

https://doc.akka.io/docs/akka/current/general/addressing.html.

[29] Lighbend. Akka: build concurrent, distributed, and resilient message-driven applica-
tions for Java and Scala. Accessed October 2020. 2020. url: https://akka.io/.

[30] Lighbend. Akka Persistence Cassandra. Accessed October 2020. 2020. url: https:

//doc.akka.io/docs/akka-persistence-cassandra/current/index.html.

[31] Lighbend. Classic Distributed Publish Subscribe in Cluster. Accessed October 2020.

2020. url: https://doc.akka.io/docs/akka/current/distributed- pub-

sub.html.

[32] Lighbend. Classic Persistence. Accessed October 2020. 2020. url: https://doc.

akka.io/docs/akka/current/persistence.html.

[33] Lighbend. Cluster Membership Service. Accessed October 2020. 2020. url: https:

//doc.akka.io/docs/akka/current/typed/cluster-membership.html.

[34] Lighbend. Cluster Specification. Accessed October 2020. 2020. url: https://doc.

akka.io/docs/akka/current/typed/cluster-concepts.html.

[35] Lighbend. Message Delivery Reliability. Accessed October 2020. 2020. url: https:

//doc.akka.io/docs/akka/current/general/message-delivery-reliability.

html.

[36] Lighbend. Persistence Plugins. Accessed October 2020. 2020. url: https://doc.

akka.io/docs/akka/current/persistence-plugins.html.

[37] Lighbend. Why modern systems need a new programming model. Accessed October

2020. 2020. url: https://doc.akka.io/docs/akka/current/typed/guide/

actors-motivation.html.

[38] J. Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers. “Warranties for Faster

Strong Consistency.” In: 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). Seattle, WA: USENIX Association, Apr. 2014, pp. 503–

517. isbn: 978-1-931971-09-6. url: https://www.usenix.org/conference/

nsdi14/technical-sessions/presentation/liu_jed.

66

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://doc.akka.io/docs/akka/current/general/addressing.html
https://akka.io/
https://doc.akka.io/docs/akka-persistence-cassandra/current/index.html
https://doc.akka.io/docs/akka-persistence-cassandra/current/index.html
https://doc.akka.io/docs/akka/current/distributed-pub-sub.html
https://doc.akka.io/docs/akka/current/distributed-pub-sub.html
https://doc.akka.io/docs/akka/current/persistence.html
https://doc.akka.io/docs/akka/current/persistence.html
https://doc.akka.io/docs/akka/current/typed/cluster-membership.html
https://doc.akka.io/docs/akka/current/typed/cluster-membership.html
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.html
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.html
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/current/persistence-plugins.html
https://doc.akka.io/docs/akka/current/persistence-plugins.html
https://doc.akka.io/docs/akka/current/typed/guide/actors-motivation.html
https://doc.akka.io/docs/akka/current/typed/guide/actors-motivation.html
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed

BIBLIOGRAPHY

[39] T. Magrino, J. Liu, N. Foster, J. Gehrke, and A. C. Myers. “Efficient, Consistent Dis-

tributed Computation with Predictive Treaties.” In: Proceedings of the Fourteenth
EuroSys Conference 2019. EuroSys ’19. Dresden, Germany: Association for Com-

puting Machinery, 2019. isbn: 9781450362818. doi: 10.1145/3302424.3303987.

url: https://doi.org/10.1145/3302424.3303987.

[40] F. Mattern. “Virtual Time and Global States of Distributed Systems.” In: Parallel
and Distributed Algorithms. North-Holland, 1988, pp. 215–226.

[41] B. Medjahed, M. Ouzzani, and A. Elmagarmid. Generalization of ACID Properties.
Tech. rep. Purdue University, 2009. url: https://docs.lib.purdue.edu/

ccpubs/97/.

[42] F. Meirim, M. Pereira, and C. Ferreira. “CISE3: Verificação de aplicações com con-

sistência fraca em Why3.” In: INForum 2019 - Actas do 11º Simpósio de Informática
(2019). Universidade de Coimbra.

[43] Microsoft. Dafny: A Language and Program Verifier for Functional Correctness. Ac-

cessed January 2020. 2008. url: https://www.microsoft.com/en-us/research/

project/dafny-a-language-and-program-verifier-for-functional-correctness/.

[44] V. Mihalcea. A beginner’s guide to ACID and database transactions. Accessed January

2020. 2019. url: https://vladmihalcea.com/a-beginners-guide-to-acid-

and-database-transactions/.

[45] S. S. Nair, G. Petri, and M. Shapiro. “Proving the safety of highly-available dis-

tributed objects.” In: ESOP 2020 - 29th European Symposium on Programming.

Dublin, Ireland, Apr. 2020. url: https://hal.archives-ouvertes.fr/hal-

02424317.

[46] M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro. “The CISE

Tool: Proving Weakly-Consistent Applications Correct.” In: Proceedings of the 2nd
Workshop on the Principles and Practice of Consistency for Distributed Data. PaPoC

’16. London, United Kingdom: Association for Computing Machinery, 2016. isbn:

9781450342964. doi: 10.1145/2911151.2911160. url: https://doi.org/10.

1145/2911151.2911160.

[47] T. Pozzetti and A. D. Kshemkalyani. “Resettable Encoded Vector Clock for Causal-

ity Analysis With an Application to Dynamic Race Detection.” In: IEEE Transactions
on Parallel and Distributed Systems 32.4 (2021), pp. 772–785. doi: 10.1109/TPDS.

2020.3032293.

[48] M. Raynal and M. Singhal. “Logical time: capturing causality in distributed sys-

tems.” In: Computer 29.2 (1996), pp. 49–56. doi: 10.1109/2.485846.

67

https://doi.org/10.1145/3302424.3303987
https://doi.org/10.1145/3302424.3303987
https://docs.lib.purdue.edu/ccpubs/97/
https://docs.lib.purdue.edu/ccpubs/97/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://vladmihalcea.com/a-beginners-guide-to-acid-and-database-transactions/
https://vladmihalcea.com/a-beginners-guide-to-acid-and-database-transactions/
https://hal.archives-ouvertes.fr/hal-02424317
https://hal.archives-ouvertes.fr/hal-02424317
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1109/TPDS.2020.3032293
https://doi.org/10.1109/TPDS.2020.3032293
https://doi.org/10.1109/2.485846

BIBLIOGRAPHY

[49] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and J. Gehrke.

“The Homeostasis Protocol: Avoiding Transaction Coordination Through Program

Analysis.” In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’15. Melbourne, Victoria, Australia: Association for

Computing Machinery, 2015, 1311–1326. isbn: 9781450327589. doi: 10.1145/

2723372.2723720. url: https://doi.org/10.1145/2723372.2723720.

[50] F. Ruget. “Cheaper matrix clocks.” In: Distributed Algorithms. Ed. by G. Tel and P.

Vitányi. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 355–369. isbn:

978-3-540-48799-9.

[51] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506. Inria

– Centre Paris-Rocquencourt ; INRIA, Jan. 2011, p. 50. url: https://hal.inria.

fr/inria-00555588.

[52] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-Free Replicated

Data Types.” In: Proceedings of the 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems. SSS’11. Grenoble, France: Springer-

Verlag, 2011, 386–400. isbn: 9783642245497.

[53] F. J. Torres-Rojas and M. Ahamad. “Plausible clocks: Constant size logical clocks

for Distributed Systems.” In: Distributed Algorithms. Ed. by Ö. Babaoğlu and K.

Marzullo. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 71–88. isbn:

978-3-540-70679-3.

[54] X. Wang, J. Mayo, W. Gao, and J. Slusser. “An Efficient Implementation of Vector

Clocks in Dynamic Systems.” In: Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications & Conference on Real-Time
Computing Systems and Applications, PDPTA 2006, Las Vegas, Nevada, USA, June
26-29, 2006, Volume 2. Ed. by H. R. Arabnia. CSREA Press, 2006, pp. 593–599.

[55] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. “Understanding

replication in databases and distributed systems.” In: Proceedings 20th IEEE In-
ternational Conference on Distributed Computing Systems. 2000, pp. 464–474. doi:

10.1109/ICDCS.2000.840959.

[56] M. Wiesmann and A. Schiper. “Comparison of database replication techniques

based on total order broadcast.” In: IEEE Transactions on Knowledge and Data Engi-
neering 17.4 (2005), pp. 551–566. issn: 2326-3865. doi: 10.1109/TKDE.2005.54.

68

https://doi.org/10.1145/2723372.2723720
https://doi.org/10.1145/2723372.2723720
https://doi.org/10.1145/2723372.2723720
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1109/ICDCS.2000.840959
https://doi.org/10.1109/TKDE.2005.54

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Proposed Solution
	Document Structure

	Background
	ACID Properties in Transactions
	Replication
	CAP Theorem
	Consistency Models
	CRDTs
	Operations Conflicts and Dependencies
	Case Study: Courseware
	Conflicts
	Dependencies

	Program Specification
	Causality Tracking
	Logical Clocks
	Vector Clocks

	Related Work
	Hamsaz
	Non-Blocking Protocol
	Blocking Protocol
	Dependency Tacking Protocol

	Indigo
	IPA
	Predictive Treaties
	Join Model
	Conclusions

	Design and Implementation
	Core Algorithm
	Dependencies Construction
	Graph Construction
	Build Dependencies

	Architecture
	Akka
	Cluster Publish/Subscribe
	Akka Persistence

	Summary

	Dynamic Cluster
	Assumptions
	Message Passing
	Stability Check
	Dynamic Cluster Environment
	Two-Phase Joining
	Optimization

	Evaluation
	Configuration
	Evaluation Results

	Conclusion
	Contributions
	Future Work

	Bibliography

