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Abstract  

 

Emerging vector-borne diseases pose a significant global public health challenge. In recent 

times, outbreaks of diseases, such as dengue and chikungunya fever, have increased in frequency. 

This is facilitated by globalization, increase in trade and travel, and the spread of invasive vectors 

into new areas. In Europe, this is exemplified by the recent introduction and establishment of Aedes 

mosquito species and subsequent outbreaks of diseases like dengue. With the increasing spread of 

dengue worldwide, the European region has also experienced increase in reported cases - majority 

being travel related. Likewise, there has been an increase in sporadic events of autochthonous 

dengue transmission, in areas with established vector presence and favourable environmental 

conditions. Europe is currently faced with the challenge of assessing its importation risk of 

viraemic cases of dengue, and the probability of local transmission.  

This thesis aims to study the dynamics of viraemic cases importation and virus transmission 

of dengue fever in Europe, namely in Madeira Island. This is achieved by establishing an 

importation and transmission modelling framework. The framework combines three sub-models: 

(i) a network connectivity importation model (ii) a machine learning predictive model and, (iii) a 

compartmental vector-host transmission model. The network connectivity and machine learning 

model were both parameterized using a historical dengue importation data for 21 countries in 

Europe, and indices that characterize important parameters for dengue importation: (i) the air 

passenger traffic, (ii) dengue activity and seasonality, (iii) incidence rate, (iv) geographical 

proximity, (v) epidemic vulnerability, and (vi) wealth of a source country. The transmission model 

was calibrated using empirical parameters for the mosquito life history traits, viral transmission, 

and temperature seasonality of Funchal, Madeira Island.  

The results of the network connectivity and machine learning models demonstrate a higher 

importation risk of a viraemic case from source countries with high passenger traffic, high 

incidence rates, lower economic status, and geographical proximity to a destination country. The 

machine learning model achieved high predictive accuracy with an AUC score of 0.94. The 

transmission model demonstrates the potential for summer and autumn season transmission of 

dengue in Funchal, with the arrival date of the infectious person significantly affecting the 

distribution of the timing and peak size of the epidemic. Likewise, seasonal temperature variation 
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dramatically affects the epidemic dynamics, with warmer starting temperatures producing large 

epidemics with peaks occurring more rapidly. 

The modelling framework described in this thesis has the potential to serve as an integrated 

early warning surveillance tool for dengue in Europe. This work provides practical guidance to 

assist public health officials in preventing outbreaks of dengue and reducing the risk of local 

transmission in areas with vectors presence. This framework could be applied to other Aedes-borne 

diseases such as chikungunya and yellow fever.   

Keywords: Dengue, Spatiotemporal modelling, Early warning system, Europe.  
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Resumo  
 

As doenças emergentes transmitidas por vetores representam um desafio significativo para 

a saúde pública global. Nos últimos tempos, os surtos de doenças como a dengue e a febre de 

chikungunya, aumentaram em frequência. Tal é facilitado pela globalização, pelo aumento do 

comércio e das viagens, e pela dispersão para novas áreas dos seus vetores invasores. Na Europa, 

este facto é exemplificado pela recente introdução e estabelecimento de espécies de mosquitos do 

género Aedes com a subsequente ocorrência de surtos de doenças como a dengue. Com a crescente 

disseminação da dengue em todo o mundo, a região europeia também tem vindo a registar um 

aumento de casos - a maioria destes relacionados com viagens. Da mesma forma, tem havido um 

aumento de eventos esporádicos de transmissão autóctone de dengue em áreas onde ocorre o vetor 

sob condições ambientais favoráveis. Assim, atualmente, a Europa enfrenta o desafio de avaliar o 

risco de importação de casos virémicos de dengue e a probabilidade de ocorrência de transmissão 

local deste vírus. 

Esta tese visa contribuir para a compreensão dos fatores relacionados com a importação do 

vírus da dengue na Europa e a sua transmissão neste território, nomeadamente na ilha da Madeira. 

Para tal foi implementado uma estrutura integrada de modelos computacionais da importação e 

transmissão da doença. A estrutura combina três submodelos: (i) um modelo explicativo de 

importação da doença assente em teoria de redes (ii) um modelo preditivo de aprendizagem 

automática e, (iii) um modelo compartimental de transmissão vetor-hospedeiro. Os modelos de 

teoria de redes e de aprendizagem automática foram parametrizados com recurso a dados históricos 

referentes a estimativas de casos importados de dengue em 21 países na Europa e índices que 

caracterizam parâmetros com relevância na importação da dengue: (i) tráfego de passageiros 

aéreos, (ii) atividade e sazonalidade da dengue, (iii) taxa de incidência, (iv) proximidade 

geográfica, (v) vulnerabilidade à epidemia, e, (vi) contexto económico do país de origem. O 

modelo compartimental de transmissão foi calibrado com parâmetros empíricos referentes ao ciclo 

de vida do mosquito, à transmissão viral e à variação anual de temperatura do Funchal, na ilha da 

Madeira. 

Os resultados dos modelos de teoria de redes e aprendizagem automática demonstram um 

maior risco de importação de casos virémicos de países com elevado tráfego de passageiros, 
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elevadas taxas de incidência, situação económica débil e com maior proximidade geográfica em 

relação ao país de destino. O modelo de aprendizagem automática alcançou elevada performance 

preditiva, com uma pontuação AUC de 0,94. O modelo compartimental de transmissão demonstra 

a existência de um potencial de transmissão da dengue no Funchal nos períodos de verão e outono, 

com a data de chegada da pessoa infeciosa a afetar significativamente a distribuição no tempo e 

tamanho do pico da epidemia. Da mesma forma, a variação sazonal da temperatura afeta 

dramaticamente a dinâmica da epidemia, em que temperaturas iniciais mais quentes levam a surtos 

de maiores proporções, com o pico de casos a ocorrer mais cedo. 

A estrutura de modelação descrita nesta tese tem o potencial de servir como uma ferramenta 

integrada de vigilância de alerta precoce para a ocorrência de surtos de dengue na Europa. Este 

trabalho fornece orientação prática para auxiliar as autoridades de saúde pública na prevenção de 

surtos de dengue e na redução do risco de transmissão local, em áreas onde ocorrem os vetores. 

Essa estrutura, com os devidos reajustamentos, pode ser aplicada a outras doenças transmitidas 

por Aedes, como chikungunya e febre amarela. 

Palavras-chave: Dengue, Modelação espaciotemporal, Sistema de alerta precoce, Europa. 
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1.1 Emerging vector-borne diseases  
 

Emerging vector-borne diseases poses a significant public health challenge, due to their 

increasing global spread and the complexity of their transmission patterns (1, 2). Vector-borne 

diseases are diseases caused by parasites, viruses and bacteria transmitted to humans via the means 

of other organisms, namely vectors (such as mosquitoes, sandflies, triatomine bugs, blackflies, 

ticks, tsetse flies, mites, snails, and lice.) (3, 4). Major global vector-borne diseases of humans, in 

terms of estimated or reported annual number of cases, includes malaria, schistosomiasis, dengue, 

lymphatic filariasis, onchocerciasis, leishmaniasis, Chagas disease, chikungunya, Zika, yellow 

fever and Japanese encephalitis (Table 1).  Combined these major vector-borne diseases account 

for around 17% of the estimated global burden of communicable diseases and are responsible for 

more than 700 000 deaths annually (5). More than 80% of the world’s population live in areas at 

risk from at least one major vector-borne disease, with more than half at risk from two or more 

(Figure 1). 

 

 

Figure 1-1. Overlapping global distribution of nine major vector-borne diseases (VBD) as of 2016.  

Map shows countries/regions where the population is at risk of at least one of the following VBD: malaria, 

lymphatic filariasis, dengue, leishmaniasis, Japanese encephalitis, yellow fever, Chagas disease, human 

African trypanosomiasis, or onchocerciasis. Colours indicate the number of vector-borne diseases that pose 

a risk at each 5 × 5 km grid cell. 
Source: https://apps.who.int/iris/bitstream/handle/10665/259205/9789241512978-eng.pdf?sequence=1. 
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increases in trade and transport networks, urbanization, changes in climatic and environmental 

factors (7, 8).  

Some vector-borne diseases are now classified as emerging (or re-emerging), having met 

one of these criteria: (i) previously known disease, but now spreading to new geographic areas, or 

new populations, or reappearing after having been eradicated; or (ii) a disease occurring as a new 

variance of an already existing pathogen; or (iii) a disease that was previously unrecognized and 

unknown (4, 9). Examples of recent global outbreaks of vector-borne diseases include the 

emergence and rapid spread of West Nile virus (WNV) in North & South America and Europe 

(10); the unprecedented widespread epidemic of Zika fever starting in Brazil to other parts of South 

and North America (11);  the re-emergence of the yellow fever virus in Angola and its rapid spread 

within several African countries, in South America and the Asia regions (12); and the global spread 

of chikungunya fever and dengue fever across the continents – Africa, Asia, North America, South 

America, Europe – increasingly becoming endemic in new regions (13-15). Each of these diseases 

has varying biological and epidemiological drivers, however, a commonality is that they are all 

transmitted by the same type of vector, i.e., mosquitoes. 

Mosquito-borne diseases are diseases in which mosquitoes act as the primary transmitting 

vector from one host to another (16). Figure 2 below shows the significant resurgences of five 

major mosquito-borne diseases globally as of September 2019. The map displays all reported 

outbreaks, imported and autochthon cases of malaria, dengue fever, yellow fever, chikungunya 

fever, and Zika fever between 2017 and 2019. This figure clearly demonstrates the expanding 

spatial distribution of these diseases beyond the tropical countries/region. Notably some of the 

cases reported outside the tropics were imported cases, however some countries with established 

vector presence did report autochthon cases. The increasing spread of these diseases is primarily 

made possible following the introduction and successful establishment of invasive mosquitoes in 

new environments (17).  
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Figure 1-2. Spatial distribution of five mosquito-borne diseases globally.  

 

Circle represents the reported number of cases (i.e. both autochthon and imported) between 2017 and 2019.  
Source: Handi Dahmana and Oleg Mediannikov. Mosquito-Borne Diseases Emergence/Resurgence and How to 

Effectively Control It Biologically. Pathogens 2020, 9(4), 310; https://doi.org/10.3390/pathogens9040310 

 

1.2 Invasive mosquito vectors 
 

Most invasive mosquito species belongs to the genus Aedes, particularly Aedes albopictus 

(Skuse, 1894), commonly referred to as the Asian tiger mosquito and Aedes aegypti (Linnaeus in 

Hasselquist, 1762), also referred to as the yellow fever mosquito (18, 19). Previously, Aedes 

albopictus and Aedes aegypti were geographically restricted to Southeast Asia and the African 

continent, respectively (19, 20), but currently, they have invaded almost all continents (21). These 

vectors have spread into new areas due to globalization and trade, notably transported in used tyres 

and plants (17, 22). Figures 3 and 4 shows the global distribution of both species as of 2015.  
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Figure 1-3. Global distribution of Aedes albopictus from climatic and surveillance data collected up to 

2015.  

 

 

Figure 1-4. Global distribution of Aedes aegypti from climatic and surveillance data collected up to 2015.  

Source for figures 3 & 4: Olivia Wesula Lwande, Vincent Obanda, Anders Lindström, Clas Ahlm, Magnus Evander, 

Jonas Näslund, and Göran Bucht.Vector-Borne and Zoonotic Diseases.Feb 2020.71-81. 

http://doi.org/10.1089/vbz.2019.2486   

http://doi.org/10.1089/vbz.2019.2486
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The European region exemplifies the introduction, spread and establishment of this species. 

Aedes albopictus, has greatly expanded its range over recent decades and is now firmly established 

in the Mediterranean Basin (Figure 5). Predictive models suggest that its geographical spread will 

continue to expand northwards due to climate change and the species ability to survive in regions 

with an average winter isotherm of 10ºC (23, 24). On the other hand, Aedes aegypti, has become 

established in Madeira (Portugal) and around the Black Sea (Georgia and the Russian Federation) 

(Figure 6). Aedes aegypti are closely adapted to human habitats and found in urban areas. The risk 

of its spread to northern Europe is low, due to its inability to survive in places with an average 

winter isotherm below 10ºC, however it could be re-established in southern Europe (23).  

 

Figure 1-5. Current known distribution of Aedes albopictus in Europe (May 2020). 
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Figure 1-6. Current known distribution of Aedes aegypti in Europe (May 2020). 

Source for Figures 5 & 6: European Centre for Disease Prevention and Control and European Food Safety Authority. 

Mosquito maps (internet). Stockholm: ECDC; 2020. Available from: https://ecdc.europa.eu/en/disease-

vectors/surveillance-and-disease-data/mosquito-maps 

 

1.3 Arboviral (Arthropod-borne Viral) diseases 
 

 Arboviral disease is a term used to describe diseases caused by a group of viruses which are 

transmitted to humans via the bite of infected arthropods (insects) such as mosquitoes (25). Aedes 

albopictus and Aedes aegypti are the main vectors for some arboviral (Arthropod-borne Viral) 

diseases. Common arboviral diseases transmitted by these species includes dengue, Zika, yellow 

fever, and chikungunya (25). Amongst these arboviral diseases, dengue has reported a rapid spread 

in the world, with a 30‐fold increase in global incidence over the past 50 years (14) and an 

estimated 50 – 100 million dengue cases reported worldwide per year (26). Dengue poses serious 

concerns for global public health, given its increasing burden in endemic areas like in Africa, Asia, 

and South America (14, 27). Likewise, due to the risk of importation and subsequent 

autochthonous transmission in non-endemic areas, with established vector presence like in Europe 

https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps
https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps
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(28). With climate change, it is anticipated that novel and unusual outbreaks of dengue will 

continue with the progressive risk of endemicity in previously non-endemic areas (29). 

 

1.4 Transmission of mosquito-borne arboviral disease 
 

Mosquito-borne arboviral diseases are transmitted to human through the bite of an infected 

mosquito (serving as the disease vector). These vector-borne viruses (example dengue, Zika, 

yellow fever, or chikungunya) are transmitted through a human-to-mosquito-to-human cycle of 

transmission (Figure 7). The transmission cycle of the virus in the vector starts after an adult female 

mosquito feeds on the blood of an infected individual. Adult female mosquitoes require blood 

feeding for egg production, a key component of their life cycle as shown in the left panel of Figure 

7 (30). Transmission of the virus from the human-to-mosquito occurs during the period of viremia, 

i.e., when the infected person has high levels of the virus in their blood steam. Following the blood 

feeding, the virus multiples and spread through the mosquito's body over a period of days, 

otherwise called the incubation (extrinsic) period (31). The duration of this period differs for 

different viruses, figure 8 exemplifies the incubation period for dengue.  After this period, the 

infected mosquito can then transmit the virus to another human while feeding. The mosquito will 

remain infected with the virus for its entire life and will continue to transmit every time its bites a 

human host (30, 31).  

Similarly, the susceptible human host undergoes an incubation (intrinsic) period after being 

bitten by an infected mosquito (Figure 8). Within this period (usually a couple of days) the 

individual will develop viremia, and eventually symptom of the disease. Usually, the human host 

would show no symptoms at the beginning of the viremia period but are infectious and can transmit 

the pathogen. The length of the infectious period is dependent on the specific virus, after which 

the human host is no longer able to transmit the infection during this current cycle (31). 
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Figure 1-7. Transmission of a mosquito-borne disease (example of dengue). 

Left panel of figure shows the mosquito life cycle, with two distinct stages, i.e., the immature stage (i.e. the 

eggs, the four larval stages, and metamorphosed pupas) and the adult stage. Right panel shows the virus 

infection/human-to-mosquito-to-human cycle of transmission.   

 
Source: adapted and modified from https://eu.biogents.com/aedes-aegypti-yellow-fever-mosquitoes/ and Whitehead, 

S., Blaney, J., Durbin, A. et al. Prospects for a dengue virus vaccine. Nat Rev Microbiol 5, 518–528 (2007). 

https://doi.org/10.1038/nrmicro1690.  

 

 

Figure 1-8. Duration of incubation period of dengue.  

Source: https://www.cdc.gov/dengue/training/cme/ccm/page45915.html 

https://eu.biogents.com/aedes-aegypti-yellow-fever-mosquitoes/
https://doi.org/10.1038/nrmicro1690
https://www.cdc.gov/dengue/training/cme/ccm/page45915.html
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The understanding of the multiple factors that contributes to the transmission cycle, is 

essential in the reduction and prevention of mosquito-borne diseases. A key component of this is 

the estimation of the vectorial capacity, which is defined as the daily rate at which future 

inoculations arise from a currently infective case, provided that all female mosquitoes biting that 

case becomes infected (32). The vectorial capacity combines different parameters that contributes 

to the ability of the mosquito to successfully transmit pathogens to the human host. These 

parameters includes the following: (i) vector density – in relation to the density of human host; (ii) 

human-biting rate – Average number of mosquito bites received by the human host in a unit time 

; (iii) vector competence - an evaluation of the vector’s capability (mechanical or biological) to 

transmit a pathogen; (iv) survival or mortality rates – of mosquitos per time; and (v) extrinsic 

incubation period – lag time between when the mosquito ingests the virus  to when it becomes 

infectious (32) (Figure 9).  

Changes in any of these components of the vectorial capacity can significantly affects the 

chances of transmission. For example, the biting and morality rates of mosquitoes are significantly 

affected by temperature changes; an increase in temperature can result in corresponding increase 

in the biting rate and a decrease in mortality rates or vice-versa. Other climatic (e.g., rainfall), 

environmental and anthropogenic factors can have significant effect on the components of the 

vectorial capacity and successively the rates of transmission. The understanding of the vectorial 

capacity and transmission of mosquito-borne diseases is fundamental for assessing local 

transmission risk, prevention of spread and vector control in areas with established vector 

presence. 
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Figure 1-9. Components of vectorial capacity.  

Source: Shaw, W.R., Catteruccia, F. Vector biology meets disease control: using basic research to fight vector-borne 

diseases. Nat Microbiol 4, 20–34 (2019). https://doi.org/10.1038/s41564-018-0214-7 

 

 

1.5 Mosquito-borne disease risk in Europe 

 

Currently, mosquito-borne diseases are not endemic to Europe, their main risk is travel-

related, i.e., imported cases. Though over the past decade there have been some locally transmitted 

epidemics of dengue, chikungunya, and Zika in Europe (33-35). 

Historically, dengue fever was endemic in southern European countries, where the vector 

Aedes aegypti was present. In the years 1927 and 1928, Greece experienced several outbreaks, 

with high incidence (over 1 million cases) and mortality (3000 deaths) (36, 37). After which the 

vector and the disease were extinct from the Europe region, but in recent years, the threat of dengue 

fever has re-emerged (28). Since 2010, the Europe has experienced incidence of sporadic 

autochthonous transmission in areas with established vector presence (of Aedes albopictus or 

Aedes aegypti) and favourable environmental conditions (33). Autochthonous cases have been 

https://doi.org/10.1038/s41564-018-0214-7
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reported in Croatia in 2010 (38), France in 2010, 2013, 2014, 2015 and 2019 (39-42), Madeira 

Portugal’ autonomous region, in 2012/2013 (43, 44), and Spain in 2018 and 2019 (41, 45-47). The 

outbreak in Madeira was the first sustained transmission since the 1920s; resulting in 1,080 

confirmed cases and 78 cases reported as imported in 14 other European countries (43).  

Similarly, Europe has reported recent autochthonous transmission of Zika and chikungunya. 

Three autochthonous cases of Zika virus were reported in France in 2019 (35).  Likewise, local 

outbreaks of chikungunya virus were reported in Italy in 2007 and 2017 (48, 49) and France in 

2010, 2014 and 2017 (39, 50, 51). These sporadic events of local Zika and chikungunya virus 

transmissions were in areas where Aedes albopictus is established (34).  

These autochthonous events highlight the risk of the spread of dengue, chikungunya, and 

Zika in Europe, in areas with established vector presence and favourable environmental conditions. 

Consequently, the risk of introducing a viraemic case and triggering a local transmission is 

heightened with the ever-increasing global air travel traffic.  

 

1.6 Dengue fever in Madeira Island 

 

A pragmatic example of the introduction and establishment of Aedes aegypti mosquito, 

leading to local transmission of dengue; was demonstrated in Madeira Island, an autonomous 

region of Portugal. Madeira Island is an archipelago situated in the North Atlantic Ocean, around 

400 kilometres to the north of the Canary Islands, 520 kilometres west of Morocco, and 1,000 

kilometres from the European continent (Figure 10) (52). The island has an estimated population 

of 289,000 (53), and its capital city is Funchal, located on the south coast. The island’s population 

is mostly distributed along the coastal line due to the mountainous interior of the island. Madeira 

Island presents a range of contrasting bioclimates because of its heterogeneous landscape and 

strong influence from the Gulf Stream and Canary current (Figure 10) (54). The southern coastal 

regions of the island (including Funchal), at low altitudes, have higher annual mean temperatures 

in comparison to the northern coastal regions or inland regions with higher altitudes and lower 

annual mean temperatures (Figure 10) (54, 55).  
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Figure 1-10. The temperature map of Madeira Island. 

The map shows the annual average temperature of the island and the various municipalities of island 

(distributed along the coastal line). Box in the left bottom corner shows the location of Madeira Island 

(circled in dark green) in relation to Morocco (in grey) and Europe continental (light green, Portugal in dark 

green). 

Source: https://www.madeiracasa.com/weather.php  

 

The presence of Aedes aegypti mosquito was first detected in Funchal in 2005 and its 

presence was then recorded along the southern coast of the island (56). The mixture of densely 

populated urban areas (e.g., 45% of the island’s population lives in Funchal), and an established 

habit of potting small plants and flowers, provides potential breeding sites and an ecological niche 

for the establishment of the mosquito on the island. In October 2012, the island reported its first 

dengue outbreak; the outbreak constituted a significant public health event because of the 

following: (i) it was the first sustained transmission of dengue in the European region since the 

1920s; (ii) the total number of confirmed cases – 1080 and the subsequent 78 imported cases 

reported in 14 other European countries in travellers returning from Madeira (33, 43). Madeira 

island has not reported any locally transmitted dengue cases since the outbreak in 2012, however, 

it is at risk of another outbreak, in the event of an introduction of viraemic cases, given the presence 

of the Aedes aegypti mosquito and suitable environmental conditions.  With an increase in co-

https://www.madeiracasa.com/weather.php
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circulation of all dengue serotypes worldwide (57, 58), and Madeira’s increasing lure as a popular 

year-round travel destination, the risk of another outbreak with a likely spread to continental 

Europe appears high. 

 

1.7 Surveillance systems for dengue  

 

With the increasingly global spread of dengue fever and other mosquito-borne diseases, the 

risk for Europe is heightened (22, 59).  This risk can be attributed to increases in travel-related 

cases and changes in climatic and environmental factors providing more suitability for the spread 

and establishment of the vectors (i.e., Aedes aegypti and Aedes albopictus) (60).  It is therefore 

imperative to develop integrated systems to monitor importation risk of viraemic cases and reduce 

the risk of their transmission in areas where invasive mosquitoes have become firmly established 

(61). To achieve this its crucial to understand two major events in the spread of dengue in Europe: 

(i) the importation pathways of viraemic cases and factors influencing it and (ii) the subsequent 

transmission dynamics of autochthonous dengue cases, in the event of a successful introduction of 

a viraemic case.  

 

1.7.1 Dengue importation modelling 

 

To understand the importation pathways of dengue, traditional epidemiology studies have 

relied on the modelling (regression analysis) of factors that affect the variability of the number of 

imported cases to provide insights into the burden and spread. However, in recent times, spatial 

statistics is gaining popularity in epidemiology studies, due to the development and application of 

novel computational techniques allowing for the analysis of large spatiotemporal data (62, 63). 

Spatio-temporal modelling involves building theories, testing them against available data, 

quantifying the uncertainties remaining, and informing about subsequent modelling and 

measurement requirements (62). This modelling framework is fitting to disease data collected 

across time and space, with spatial and temporal properties. Example, an imported case of dengue 

in a spatiotemporal dataset describes a spatial and temporal event of an imported viraemic case of 
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dengue at a certain time (t) and location (x). The inclusion of spatial variations helps quantify the 

uncertainties in spatial and spatio-temporal distributions in relation to the imported case, thereby, 

providing evidence of patterns of dependence and level of noise in data, that otherwise would not 

be captured in a simple regression. 

One notable challenge in this kind of analysis is accounting for temporal and spatial 

correlations, which adds significant complexity to the data analysis process (64). In the instance 

of modelling importation of dengue, these correlations will be introduced when considering the 

unpredictable pattern of human movement, transportation networks and geographical (or spatial) 

variations to evaluate the importation pathways for different locations. Likewise, the influence of 

collocated neighbouring spatiotemporal objects (i.e., neighbouring locations) on one another 

would introduce some level of correlations. Hence to adequately model importation pathways of 

viraemic dengue cases, accounting for the correlations from the connectivity of the global transport 

network and human mobility is an integral first step.  

Previous studies have utilized a common framework to explain importation; this 

framework assumes the probability of an imported case is directly correlated with the number of 

arriving air passengers (59, 65).  However, a simple correlation between imported cases and 

arriving passengers’ statistics is insufficient to explain the importation pathways of viraemic cases, 

as it does not account for the spatiotemporal correlations and the co-dynamics of the air transport 

network that influences importation (65).  

One of the spatiotemporal frameworks currently used to address spatiotemporal 

correlations is the generalized linear mixed model (GLMM) (66). This model extends the 

generalized linear model to include a random effect to account for spatial dependence and to 

provide optimal spatial predictions, in additional to the fixed effects (66). The GLMM models can 

help study the spatial the relationship between imported case of dengue, temporal, and spatial 

correlations, in the context of other factors influencing importation (e.g., incidence rate, 

seasonality, number of passengers, geographical proximity), either by controlling for these factors 

or considering interactions with them. However, in addition to the GLMM framework, a dynamic 

network autocorrelation that explicitly incorporates the influence of the air transport network 

topology is required to adequately reconstruct the importation pathways of viraemic cases of 

dengue. The inclusion of network topology will provide insights to how the positioning of 
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countries within the network influence the propensity for imports. (67).  This can be achieved by 

incorporating a network autocorrelation the GLMM framework to address the issue of covariance 

driven by network structure. 

 

1.7.2 Transmission modelling  

 

On the other hand, disease transmission modelling framework are mechanistic in nature. 

These models make it possible to describe the time evolution of an epidemic in mathematical 

terms, by connecting the individual stages of transmission to understand disease outcomes (add 

citation).  Mathematical modelling of disease was pioneered by Kermack and McKendrick in 1927 

(68, 69); they formulated a compartmental model, which are governed by a system of differential 

equations to describe the dynamics of disease transmission. The base compartmental model, 

categorize individuals into three main compartments i.e. Susceptible (S) - individuals not yet 

infected with the disease at time (t), or those susceptible to the disease of the population; Infected 

(I) - individuals of the population who have been infected with the disease and are capable of 

spreading the disease to those in the susceptible class; or Recovered and immune (R) - individuals 

of the population who have been infected and then removed from the disease, either due to 

immunization, recovered or death (70). The mathematical formulation of these compartments and 

their dependencies, analysing all the dynamic processes that contribute to disease transmission in 

each class. These models are largely dependent on the essential processes involved in transmission 

of the disease and the parameters that are most influential.  

To model the transmission of a vector-borne disease like dengue, the basic SIR model, 

needs to be modified to include the transmission cycle of the vector and interactions with the 

human. The modified model will be a SEI-SEIR transmission model. The SEI component will 

describes the vector population, represented as susceptible (𝑆𝑣), exposed (𝐸𝑣), and infectious (𝐼𝑣), 

while the SEIR component will describes the human population represented as susceptible (𝑆ℎ), 

exposed (infected but not infectious) (𝐸ℎ), infectious (𝐼ℎ), and recovered (immune) (𝑅ℎ). Governed 

by differential equations this model will adequately describe the dynamics of dengue transmission 

in both the vector and human host compartments. This modelling framework will be suited for 

understanding of the dynamics of autochthonous cases in areas with vector presence in Europe.  
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The model domain will be parametrized to a suitable spatial area with defined processes and 

conditions favouring transmission of dengue, which includes vector abundance, ecological, 

climatic, and other anthropogenic factors. For suitable areas, the introduction of a viremia case 

(via importation) increases the probability of triggering a sustained local transmission (for example 

in Madeira Island). Likewise, the redefinition of average annual mean temperatures and anomalies 

due to climate change might increase the environmental and climatic suitability for the vector 

(Aedes aegypti) (57, 71). The compartmental modelling approach will allow for the integration of 

empirical and mechanistic parameters to simulate a potential vector-host transmission, and the 

resulting epidemic dynamics (72, 73).   

 

The combination of both modelling approaches (i.e., importation and transmission) 

described above would pave the way for the development of an integrated surveillance framework, 

that extends the understanding of dengue importation and transmission in non-endemic regions, 

like Europe. This framework will utilize a combination of air transport network data, 

entomological surveillance data, epidemiological surveillance data, and risk factor identification 

data. Thereby, setting the foundational framework for an early warning system to forecast and 

monitor outbreaks of dengue in Europe.  

 

  



38 

 

1.8 Aim and objectives 

 

This thesis aims to add to the understanding of the importation patterns and transmission 

dynamics of dengue fever in Europe. To achieve this aim, we integrate statistical network 

modelling, machine learning algorithms, and deterministic transmission modelling approaches, to 

facilitate the generation of a novel modelling framework for assessing importation risk of a 

viraemic case and the probability of local transmissions of dengue.  

The main objectives of this thesis are:  

1. To develop a statistical network model, to analyse the importation patterns of dengue in 

Europe, the different mediating factors, and the influence of the air transport network.  

2. To develop a prediction model for the importation risk of a viraemic case of dengue into 

Europe, with intuitive explanations for prediction. 

3. To develop a compartmental vector-host deterministic transmission model, to explore the 

local transmission and epidemic dynamics of dengue, through the influence of seasonality.   

 

Each objective was addressed in an individual published paper, with their respective 

background, methods, results, and discussion sections. The published papers are delineated in the 

result chapter of this thesis.  The next section summarizes the methodological approach utilized in 

addressing each objective.    
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1.9 Summary of methodological approach   

 

1.9.1 Objective 1 

 

Objective 1 was achieved via the implementation of a refined network connectivity 

approach, which incorporates network autocorrelation within a generalized linear mixed model 

(GLMM), to examine factors mediating the importation of dengue. The methodological steps to 

this approach include: First, connectivity indices between a source country and a destination 

country in Europe were developed, using different factors that potentially mediate the importation 

risk of a viraemic case of dengue. The indices were decomposed into two components the source 

strength’ and the transport or importation potential. Firstly, the source strength for all indices was 

modelled to represent the endemicity of dengue and the risk of dengue infection in a source 

country. Secondly, the transport and importation potential were modelled to characterize seasonal 

dengue activity, incidence rates, geographical proximity, epidemic vulnerability, air passenger 

volume, population size, and wealth of a source country as mediating risk factors. The indices 

were developed using histological data for 6 years, i.e., 2010 – 2015. 

Second, 72 weighted directed networks were constructed using the monthly air passenger’s 

data, to represent the monthly flow of air passengers into Europe, from 2010 to 2015. The network 

for each month was denoted by Gm = (VG, EG), where VG is a set containing all the nodes (or 

vertices), while EG contains all the edges, with m indicating the month (m = 1, 2, 3… 72, covering 

the years of 2010–2015). Nodes represented all countries worldwide, while edges represent the 

flow of passengers from a source country to a destination country in Europe. Four different 

network centrality measures were then calculated to analyse the network and quantify the capacity 

of a source node to influence transportation of dengue or a destination node’s propensity to receive 

an imported case of dengue, by virtue of their connection topology within the network. 

Finally, a generalized linear mixed effect model (GLMMs) was fitted to quantify the 

variation in dengue importation as explained by the connectivity indices and network centrality 

measures. The GLMM was fitted with logit link functions for binomial errors and fixed effects of 

the connectivity indices, network centrality measures, time, and crossed random effects 
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(intercepts) of the destination country. The goodness of fit was evaluated by calculating the 

marginal and conditional GLMM R2 and DHARMa residual diagnostics for hierarchical models. 

The detailed paper (background, methods, results, and discussion) is outlined in the section 

2.1 of the results chapter. 

 

1.9.2  Objective 2 

 

Objective 2 was achieved via the application of machine learning algorithms to develop a 

predictive model for the importation risk of a viraemic case of dengue into Europe. A diverse set 

of machine learning algorithms were trained, using historical data of dengue importation into 

Europe, connectivity indices, and network centrality measures. The choice of the suite of 

algorithms tested was a trade-off between, meta-algorithm that fits the classification problem and 

with built-in feature selection. Other algorithmic and systematic features that were considered 

include regularization (to handle the effects of multicollinearity), hyperparameter optimization 

(model tuning capabilities), and efficient computation time. The training model compared four 

widely used classifiers algorithms in machine learning: Partial least squares; Lasso and elastic-net 

regularized generalized linear models; Random forests and Extreme gradient boosting.  

Candidate models were evaluated using the area under the receiving operating 

characteristic curve (AUC), sensitivity (true positive rate), and specificity (false positive rate). The 

final candidate model was selected based on the receiving operating characteristic curve (ROC) 

threshold, which maximizes the trade-off between sensitivity and specificity. 

Model-agnostic methods were then applied to provide an interpretation of the predictions 

made by the model achieving higher predictive performance. Model-agnostic methods work by 

extracting post-hoc explanations from an original machine learning model.  Variable importance 

and partial dependence plots were used to provide global interpretation (i.e., the modelled 

relationship and distribution of the predicted target outcome based on the input variables); while 

local surrogate models, called ‘Local interpretable model-agnostic explanations (LIME)’, were 

used to provide local interpretations (understand model predictions for a single instance i.e. a 

single unit of observation). 



41 

 

The detailed paper (background, methods, results, and discussion) is outlined in the section 

2.2 of the results chapter.  

 

1.9.3 Objective 3 

 

Objective 3 was achieved via the implementation of a standard compartmental vector-host 

(SEI-SEIR) deterministic model for the transmission of dengue by Aedes aegypti mosquitoes. 

With the model domain set at the spatial area of Funchal, Madeira Island; the model integrates 

empirical and mechanistic parameters for mosquito life history traits, virus transmission, and 

seasonality of Funchal. The SEI component describes the vector population (i.e., Aedes aegypti 

mosquitoes), represented as susceptible (S), exposed (E), and infectious (I); while the SEIR 

component describes the human population represented as susceptible (S), exposed (infected but 

not infectious) (E), infectious (I), and recovered (immune).  The model is governed by differential 

equations with time-varying entomological parameters and seasonality. The models assume a 

dynamic life-history trait of the mosquitos.    

The adult female mosquitoes’ population is recruited into the model by a Gaussian 

distribution curve. This is fitted to reflect the seasonal pattern of mosquitoes in Madeira Island as 

observed from the Aedes aegypti mosquito entomological surveillance data. Seasonal forcing 

(seasonality) was then incorporated into the framework, via the sinusoidally forcing, the daily 

mean temperature was modelled as a cosine curve with a period of 365 days. Temperature-

dependence was introduced into the model by using fitted thermal response curves for some of the 

mosquito life-history traits, i.e., biting rate, extrinsic incubation period, and mortality rates.  

Constant parameters values were utilized for human components of the transmission cycle since 

they are not seasonal.  The model parameter value/range was then based on scientific literature on 

empirical studies or lab trials and expert knowledge.  Overall, model starting conditions and 

parameter values were set based on their permissibility for transmission. 

Each model simulation is then analysed for the following quantities of interest (QOI): the 

epidemic peak size; time to peak infection in humans; and the final epidemic size, which represents 

a measure of epidemic suitability. The model parameters were then characterized based on their 

influence on the quantities of interest, via variance-based global sensitivity analysis, using a 
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combination of Latin hypercube sampling (LHS) and a multi-model inference on regression-based 

models. 

The detailed paper (background, methods, results, and discussion) is outlined in the section 

2.3 of the results chapter.  
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2 Results  
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2.1 Dengue importation into Europe: A network connectivity-based approach. 
 

 

 

Salami D, Capinha C, Martins MdRO, Sousa CA (2020). Dengue importation into Europe: A 

network connectivity-based approach. PLoS One 15(3): e0230274. 

https://doi.org/10.1371/journal.pone.0230274  

  

https://doi.org/10.1371/journal.pone.0230274
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Table 2-1 Connectivity indices of a focal destination country for the importation of dengue fever. 
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Table 2-2 Centrality measures for a central node. 
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Figure 2-1 Distribution of imported dengue cases by the destination country and the source region. 
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Figure 2-2 Distribution of air passengers arriving into Europe from WHO regions in 2010–2015. 
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Table 2-3 Comparison of generalized linear mixed models predicting dengue importation in Europe
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Figure 2-3 Air transport network and the average degree centrality measure of source countries. 
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Figure 2-4 Forest plot comparing the base model and the network autocorrelation models for explaining dengue importation into Europe 
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Table 2-4 GLMMs modeling centrality measures of the destination countries as a predictor of dengue importation. 

 

Figure 2-5 Degree centrality measure of the focal destination countries in Europe. 
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2.1.1 Supporting Information 

 

 

S1 Fig. https://doi.org/10.1371/journal.pone.0230274.s001 

S2 Fig. https://doi.org/10.1371/journal.pone.0230274.s002 

S1 Appendix. https://doi.org/10.1371/journal.pone.0230274.s003  

  

https://doi.org/10.1371/journal.pone.0230274.s001
https://doi.org/10.1371/journal.pone.0230274.s002
https://doi.org/10.1371/journal.pone.0230274.s003
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Figure 2-6 S1 Fig. Spearman correlations between dengue importation (numbers) and connectivity indices 

(variables).  
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Figure 2-7 S2 Fig. Spearman correlations between network properties of the source and destination 

countries within the air transport networks.  
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Alternative specifications of the GLMM models, for correlated connectivity indices 

 

Alternative scenarios were examined to assess the robustness of our results in the face of 

the high degree of correlation between the connectivity indices. As discussed in the main text, 

GDP and epidemic vulnerability displayed high correlations amongst themselves (Spearman’s ƿ = 

0.88, p <.001). We consider scenarios where either connectivity index was included in separate 

models. In both instances we consider the goodness of fit, using the calculated marginal GLMM 

R2, to estimate the proportion of variation explained by the fixed effects and the resultant 

difference in their fixed effects Akaike information criteria (AIC). 

Comparing both scenarios, most of the estimated coefficients (and odds ratio) of the 

connectivity indices are broadly stable and similar. However, the comparative fit test shows that 

the model with epidemic vulnerability had a slightly better fit than the model with GDP (S1 Table).  

 

Table 2-5 S1 Table. Comparative-fit test for GLMM model including epidemic vulnerability and GLMM 

model including GDP.  

  

Model with epidemic 

vulnerability 
 Model with GDP  

Coefficient  

(95% CI) 

Odd ratio  

(95% CI) 

Coefficient 

 (95% CI) 

Odd ratio  

(95% CI) 

Connectivity Index         

Dengue activity 0.31  

(0.18, 0.44) 

1.36  

(1.19, 1.55) 

0.30  

(0.17, 0.43) 

1.35  

(1.19, 1.54)  

 

Dengue seasonality 0.12  

(-0.01, 0.25) 

1.13  

(0.99, 1.29)  

0.14  

(0.01, 0.27) 

1.15  

(1.01, 1.31) 

 

Incidence estimates  1.44  

(1.33, 1.55) 

4.23  

(3.79, 4.72)  

1.41  

(1.29, 1.52) 

4.08  

(3.65, 4.56)  

 

Geographical distance  -0.52  

(-0.65, -0.38) 

0.60  

(0.52, 0.69)  

 -0.55  

(-0.69, -0.42) 

0.58 

 (0.50, 0.66) 

  

Total Air passengers 2.01  

(1.90, 2.13) 

7.49  

(6.68, 8.39)  

2.03  

(1.92, 2.14) 

7.61  

(6.81, 8.49)  

Epidemic vulnerability  0.19  

(0.10, 0.27) 

1.20 

 (1.10, 1.32) 

  

GDP   0.26  

(0.18, 0.33) 

1.29  

(1.20, 1.40) 
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Model Fit         

𝑹𝐆𝐋𝐌𝐌(𝒎)
𝟐  0.507 0.502 

𝑹𝐆𝐋𝐌𝐌(𝒄)
𝟐  0.656 0.650 

Fixed effects ∆AIC 0.0 26.7 

 

 

Alternative specifications of the GLMM models, using count data 

We did consider an alternative specification of our GLMM models, using count data (i.e. 

the actual imported case numbers), to explore any potential loss of information in the 

transformation of our response variable to a binary one. To do this, we first ran the preliminary 

analysis using a Poisson model on the count data to determine the prima facie dispersion status of 

the model and subsequently ran a negative binomial model, with log link functions. After which 

we ran the binomial model with logit link function, with the response variable as a binary response. 

In all instance we consider the goodness of fit, using the calculated marginal GLMM R2, to 

estimate the proportion of variation explained by the fixed effects.  

We did a comparative-fit test for both models (i.e. the count-data and the binary response), 

with the basic assumptions that either will lead to similar results in terms of estimated coefficient 

and their respective incidence rate ratio or odds ratio. The results of the negative binomial model, 

with log link functions (S2 Table), was similar to that of the binomial model with logit link function 

(reported in Table 3 of the main text) in terms of the strength, direction and statistical significance 

of the estimated coefficients.  

However, the marginal GLMM R2, of the binomial model with a logit link function was 

higher, indicating a better fit for the fixed effects (S3 Table). So, contrary to the transformation of 

the response variable captured more of the variation of the fixed effects as opposing a loss of 

information. It is also worth mentioning the logit link function had better convergence properties 

in comparison to the log link. Hence, we opted for the GLMM logit link function, as best fitting to 

our data structure.  

Below is a table with the comparative-fit test for both modeling approaches, likewise we 

have included a table with the estimated coefficient and incidence rate ratio for the count-data 
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modeling approach to show the similarities with the logit-link results. If necessary, we can include 

this in the supporting information.  

 

Table 2-6 S2 Table. Estimated coefficient and Incidence rate ratio for GLMM log link model (i.e. count 

data) 

  

Model 1  Model 2  Model 3  

Coefficient 

(95% CI) 

 Incidence rate 

ratio  

(95% CI) 

Coefficient 

(95% CI) 

 Incidence rate 

ratio 

(95% CI) 

Coefficient 

 (95% CI) 

 Incidence rate 

ratio  

 (95% CI) 

 

Connectivity Index             

Dengue activity 0.36  

(0.22, 0.50) 

1.44  

(1.25, 1.65) 

0.30  

(0.16, 0.44) 

1.35  

(1.18, 1.56)  

0.28 

 (0.13, 0.40) 

1.32 

 (1.15, 1.52)  

 

 

Dengue seasonality -0.33  

(-0.01, 0.25) 

0.97  

(0.85, 1.11)  

-0.06  

(-0.20, 0.08) 

0.94  

(0.82, 1.08) 

-0.14  

(-0.27, 0.00) 

0.87  

(0.76, 1.00) 

 

 

Incidence estimates  1.49  

(1.38, 1.61) 

4.46  

(3.99, 4.98)  

1.97  

(1.83, 2.11) 

7.17  

(6.22, 8.27)  

2.01  

(1.87, 2.15) 

7.44 

 (6.48,8.55)  

 

 

Geographical distance  -0.33  

(-0.45, -0.20) 

0.72  

(0.64, 0.82)  

 -0.93  

(-1.08, -0.78) 

0.39 

 (0.34, 0.46)  

 -1.09  

(-1.25, -0.94) 

0.34  

(0.29, 0.39)  

 

 

Epidemic 

vulnerability 

 0.10  

(0.01, 0.19) 

1.11 

 (1.01, 1.21) 

0.39  

(0.29, 0.48) 

1.47  

(1.34, 1.62) 

0.46  

(0.37, 0.56) 

1.59 

 (1.44, 1.74)  

 

 

Total Air passengers 2.31  

(2.20, 2.43) 

10.09   

(8.99, 11.32)  

2.31  

(2.17, 2.46) 

10.12  

(8.74, 11.71)  

2.00  

(1.83, 2.18) 

7.41  

(6.23, 8.82)  

Centrality Measures              

Degree — —  —  — 0.54  

(0.37, 0.72) 

1.72  

(1.45, 2.05)  

 

 

Betweenness — —  —  — 1.09  

(0.95, 1.23) 

2.96  

(2.57, 3.42)  

 

 

Closeness — — 0.14 

(0.01, 0.27) 

1.15  

(1.01, 1.30) 

 

 

 —  — 

Eigenvector  —  — 1.10  

(0.95, 1.25) 

3.01  

(2.59, 3.49)  

 —  — 

Model Fit             
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𝐑𝐆𝐋𝐌𝐌(𝐦)
𝟐  0.443 0.492 0.490 

𝐑𝐆𝐋𝐌𝐌(𝐜)
𝟐  0.589 0.625 0.619 

Fixed effects ∆AIC 269.7 59.1 0 

Model 1: the base model of connectivity indices; Model 2: Base model with closeness and eigenvector centrality measures; Model 

3: Base model with the degree and betweenness centrality measures. Log-link utilizes the count data, i.e. actual number of imported 

dengue cases; while the Logit-link utilizes a binary response variable, indicating an imported dengue case or not.  

 

Table 2-7 S3 Table. General comparative-fit test for GLMM log-link (count data) & GLMM logit link 

(binary response) models. 

Model Fit  Model 1 

  

 Model 2 

  

 Model 3 

  

 Log-link Logit-link Log-link Logit-link Log-link Logit-link 

𝐑𝐆𝐋𝐌𝐌(𝐦)
𝟐  0.443 0.507 0.492 0.535 0.490 0.531 

 

𝐑𝐆𝐋𝐌𝐌(𝐜)
𝟐  0.589 0.656 0.625 0.676 0.619 0.673 

Model 1: the base model of connectivity indices; Model 2: Base model with closeness and eigenvector centrality measures; Model 

3: Base model with the degree and betweenness centrality measures. Log-link utilizes the count data, i.e. actual number of imported 

dengue cases; while the Logit-link utilizes a binary response variable, indicating an imported dengue case or not.  
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2.2 Predicting dengue importation into Europe, using machine learning and model-

agnostic methods. 
 

 

 

Salami, D., Sousa, C.A., Martins, M.d.R.O. et al. Predicting dengue importation into Europe, using 

machine learning and model-agnostic methods. Sci Rep 10, 9689 (2020). 

https://doi.org/10.1038/s41598-020-66650-1  

 

https://doi.org/10.1038/s41598-020-66650-1
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Table 2-8 Descriptions of the variables in the dataset.
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Figure 2-8 Spearman correlation matrix of continuous variables. 
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87 

 

Table 2-9 Comparison of the prediction performance of the different models.

 

Figure 2-9 Comparison of the receiver operator characteristic (ROC) curve for the different models 
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Figure 2-10 Comparison of the receiver operator characteristic (ROC) curves for extreme gradient boosting and random forest models. 
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Figure 2-11 Variable importance plots. Top 10 most influential variables from the extreme gradient boosting model. 
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Table 2-10 Ten selected individual observations for LIME model

 

Figure 2-12 Partial dependence plots for a sub-set of the most influential variables in the optimal model predicting the probability of an imported case of dengue. 
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Figure 2-13 LIME model plots explaining individual predictions.   
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2.3 Simulation models of dengue transmission in Funchal, Madeira Island: Influence of 

seasonality 
 

 

 

Salami D, Capinha C, Sousa CA, Martins MdRO, Lord C (2020) Simulation models of dengue 

transmission in Funchal, Madeira Island: Influence of seasonality. PLoS Neglected Tropical 

Diseases 14(10): e0008679. https://doi.org/10.1371/journal.pntd.0008679  

 

https://doi.org/10.1371/journal.pntd.0008679
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Figure 2-14 Schematic representation of the model. 
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Table 2-11 State variables for the model.
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Table 2-12 Definitions and ranges of the model’s parameters. 
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Figure 2-15 The epidemic progression in the human and mosquito populations. 
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Figure 2-16 Quantities of interest (QOI) as a function of arrival date. 
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Figure 2-17 Quantities of interest (QOI) as a function of starting temperature. 
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Figure 2-18 Final epidemic size across different seasonal temperature regimes. 
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Table 2-13 Sensitivity analysis of the model’s quantities of interest (QOI).
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2.3.1 Supporting Information  

 

 

S1 Fig. https://doi.org/10.1371/journal.pntd.0008679.s001 

S2 Fig. https://doi.org/10.1371/journal.pntd.0008679.s002 

S3 Fig. https://doi.org/10.1371/journal.pntd.0008679.s003 

S4 Fig. https://doi.org/10.1371/journal.pntd.0008679.s004 

S5 Fig. https://doi.org/10.1371/journal.pntd.0008679.s005 

S6 Fig. https://doi.org/10.1371/journal.pntd.0008679.s006 

S1 File. https://doi.org/10.1371/journal.pntd.0008679.s007 

S2 File. https://doi.org/10.1371/journal.pntd.0008679.s008 

 

 

 

 

 

 

 

 

 

 

 

  

https://doi.org/10.1371/journal.pntd.0008679.s001
https://doi.org/10.1371/journal.pntd.0008679.s002
https://doi.org/10.1371/journal.pntd.0008679.s003
https://doi.org/10.1371/journal.pntd.0008679.s004
https://doi.org/10.1371/journal.pntd.0008679.s005
https://doi.org/10.1371/journal.pntd.0008679.s006
https://doi.org/10.1371/journal.pntd.0008679.s007
https://doi.org/10.1371/journal.pntd.0008679.s008
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Figure 2-19 S1 Fig. Location of Madeira Island.  

https://doi.org/10.1371/journal.pntd.0008679.s001  

 

 

 

 

Figure 2-20 S2 Fig. Location of Ovitraps in Madeira Island.  

https://doi.org/10.1371/journal.pntd.0008679.s002  

 

https://doi.org/10.1371/journal.pntd.0008679.s001
https://doi.org/10.1371/journal.pntd.0008679.s002
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Figure 2-21 S3 Fig. Cumulative results of Ovitraps in Madeira Island. 

https://doi.org/10.1371/journal.pntd.0008679.s003  

  

 

 

 

Figure 2-22 S4 Fig. Location of BG-traps in Madeira Island.  

https://doi.org/10.1371/journal.pntd.0008679.s004  

 

 

 

 

https://doi.org/10.1371/journal.pntd.0008679.s003
https://doi.org/10.1371/journal.pntd.0008679.s004
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Figure 2-23 S5 Fig. Cumulative results of BG-traps in Madeira Island.  

https://doi.org/10.1371/journal.pntd.0008679.s005  

 

 

 

 

Figure 2-24 S6 Fig. Seasonal temperature pattern.  

https://doi.org/10.1371/journal.pntd.0008679.s006  
  

https://doi.org/10.1371/journal.pntd.0008679.s005
https://doi.org/10.1371/journal.pntd.0008679.s006
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S1 Appendix. Model starting conditions   

 

The model requires an estimate of each state variable (humans and mosquitoes in each 

class), along with estimates or values chosen from distributions for each parameter. Our parameter 

values are based on multiple citations from reviewed literature of previous empirical studies or lab 

trials and expert opinion (Table 2, of the main article). We emphasize previous studies within the 

context of Funchal, Madeira Island (since our main objective was to parameterize the model for 

the island) and chose parameter ranges to reflect conditions in Funchal. 

 

The model assumes a homogeneously mixed population, with a total human population set 

at a constant 30,000 (representative of the population of the most populous civil parish –Santo 

António – in the municipality of Funchal and the island) (1). Since the human components of the 

transmission cycle are not seasonal, we set the intrinsic incubation (1 𝛾ℎ⁄ ) and the infectious period 

(1 𝜂ℎ⁄ ) to constants of 6 and 4 days respectively. For this model, we considered only a single 

dengue serotype. However, these constants reflect mean values for DENV-2 and DENV-4 as 

reported in previous literature (2-6). Based on our mosquito recruitment term, the initial 

susceptible mosquito population is set as the number of females (𝜌𝑏(𝑡)) added to the population 

at intervals (𝑖𝑣), as calculated in equation 12 in the main article. With all infectious classes for 

both human and mosquitoes set to zero, an infection is triggered by the arrival of one infectious 

human on a specified day (𝑡𝑐𝑟𝑖𝑡) into the fully susceptible population. The default initial conditions 

are thus: (𝑆ℎ;  𝐸ℎ;  𝐼ℎ;  𝑅ℎ;  𝑆𝑣;  𝐸𝑣;  𝐼𝑣) = (𝑁ℎ;  0;  0;  0; 𝑝𝑏(𝑡);  0;  0) where 𝑁ℎ = 30,000.  

 

Simulations were set to start at the coldest day in the annual cycle (i.e. February 15) and 

ran for 730 days thereafter (allowing for simulation with 𝑡𝑐𝑟𝑖𝑡 later in the year). We set an arbitrary 

cut-off value for the exposed and infectious classes (i.e. human and mosquitoes): if   (𝐸ℎ, 𝐼ℎ , 𝐸𝑣 , 𝐼𝑣, 

all  <0.5) the simulation is terminated and restarted with the classes set to zero. This cutoff is 

necessary otherwise extremely low levels of infection may persist for long periods; in the natural 

system, there would be a high probability that the virus would go extinct (7).  

 

We performed a preliminary exploration of parameter values to determine their effects on 

transmission. The choice of the final parameter values was based on permissibility for 
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transmission. The preliminary exploration also informed the initial conditions (described above) 

and parameter ranges for sensitivity analyses (Table 2). Model simulations were performed using 

the governing systems of differential equations of MATLAB’s inbuilt routine “ode45” (8). 

Simulation outputs were analyzed in the R Programming Language version 3.5.3 (9). 
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S2 Appendix. Model sensitivity analysis 

 

To characterize the model parameters exerting the most influence on our quantities of 

interest, we performed a variance-based global sensitivity analysis, using a combination of Latin 

hypercube sampling (LHS) and a multi-model inference on regression-based models. LHS is a 

stratified Monte Carlo sampling technique, where specified parameter distributions are divided 

into (M) equiprobable intervals, and then sampled, here (M) is the sample size. The entire range of 

each parameter is explored, by sampling each interval for each parameter only once without 

replacement. Parameters values are then randomly resorted into sets to use for simulation. The 

LHS method assumes that the sampling is performed independently for each parameter, thereby 

allowing for an unbiased estimate (1, 2). Parameter ranges for sampling were derived from existing 

literature, expert opinion, and field-based data (Table 2 of the main article), we assumed a uniform 

distribution for all parameter values.  

 

Multi-model inference on a generalized least square (GLS) regression was used to estimate 

the relative importance of the input parameters. Multi-model inference uses the information-

theoretic approach to offer a more objective way to assess the relative importance of input variables 

by inferring all possible models from a defined candidate set (3, 4). A vector of the input 

parameters (𝑥𝑝)  were fitted into all possible unique models and then ranked from best to worst, 

based on Akaike information criterion (AIC) values. An estimate of the relative importance of a 

single parameter (𝑝) was then calculated by summing the Akaike weights (𝑤) across all fitted 

models where parameter (𝑝) occurs. Akaike weights are normalized, such that the sum over all 

models considered is 1. The relative importance of parameter (𝑝) was quantified by the sum (𝑤) 

for the parameter. The larger the sum of the weight (between 0 and 1 by definition) the more 

important the parameter is, relative to the other parameters (4). Input parameters were then ranked 

in terms of their importance to the quantities of interest.  

 

The sensitivity analysis considered main effects and pairwise (first-order) interactions of input 

parameters on our quantities of interest.  
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Multi-model inference analysis  

 

We used multi-model inference with glm function from the glmulti R package (5), to 

estimate the relative importance of our input variables on our QOIs. Our first analysis considers 

the main effects of the input variables on the QOIs. Utilizing the default method of the glmulti 

package (exhaustive screening of all candidate models), we built all possible unique models based 

on the 11 input variables. Thus, the candidate set of models for each QOIs main effect analysis 

contained a total of 2048 models. We defined the confidence set of models as those models within 

two Akaike information criterion (AIC) unit difference (ΔAIC) from the best model (4) However, 

the glmulti function by default returns a confidence set of 100 models and delineates the number 

of models within 2 ΔAIC from the best model.  

Our second analysis considers the pairwise interactions between our input parameters. We 

utilized the genetic algorithm approach of the glmulti package, to fit a sub-set of all possible unique 

models (due to the extremely large number of possible candidate models). The genetic algorithm 

approach randomly explores a subset of all possible models, with a bias towards better models to 

fit the best fitting model. Our confidence set is as defined above, i.e. within 2 ΔAIC of the best 

model. However, due to a large number of possible candidate models, the size of the returned 

confidence set was increased to 500 models (from the default of 100). 

Note, before the multi-model inference fitting, we normalized the input parameters (by 

centering on zero and scaled to unit variance) to allow comparison of resulting model-averaged 

estimates on a common scale. 

S1- S3 Tables (main effects) and S4 – S6 Tables (pairwise interactions), presents the top 

five models in the confidence sets for each our QOIs, their log likelihood values, number of fitted 

parameters (K), Akaike information criterion (AIC), AIC weights, and the goodness of fit (R2).   

S7 Fig to S9 Fig (main effects) and S10 Fig to S12 Fig (pairwise interactions), shows the 

AIC profile of all fitted models. 

S7 Table presents the model averaged coefficients and relative-importance weights for the 

parameters from the best model with the pairwise interactions. The definition and description of 

the parameter symbols are as presented in Table 2 of the main article.  
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Table 2-14 S1 Table. Top five models in the confidence set exploring the main effects of input variables on 𝑴𝒂𝒙𝑰𝒉.  

The confidence set had 5 models within 2 ΔAIC from the best model. 

 

Model 

Order 
Model K 

Log 

Likelihood 
AIC 

AIC 

weight 
R2 

1 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣 + 𝑅𝑡𝑜𝑡  7 -990.96 1999.92  0.33 0.36 

2 
~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣 +  𝛾𝑣 + 

𝑅𝑡𝑜𝑡  
8 -990.45 2000.91  0.20 0.36 

3 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽𝑣→ℎ +  𝜇𝑣 +  𝑖𝑣 + 𝑅𝑡𝑜𝑡  7 -990.91 2001.83  0.13 0.36 

4 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒  +  𝛽𝑣→ℎ +  𝛽𝑣→ℎ+  𝜇𝑣  + 𝑞 + 𝑅𝑡𝑜𝑡  8 -990.96 2001.92  0.12   0.36 

5 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣  + 𝑞 + 𝑅𝑡𝑜𝑡  8 -990.40 2001.92  0.12 0.36 

 



127 

 

 

Figure 2-25 S7 Fig. The AIC profile of models exploring the main effects of input variables on 𝑴𝒂𝒙𝑰𝒉.  

AIC values from the best to the worst model from the 100 returned models, horizontal line delineates models that are within 2 ΔAIC from the best 

model. Best AIC: 1999.92; Worst AIC: 2074.25 
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Table 2-15 S2 Table. Top five models in the confidence set exploring the main effects of input variables on 𝒕𝒎𝒂𝒙𝑰𝒉.  

The confidence set had 26 models within 2 ΔAIC from the best model. 

 

Model 

Order 
Model K 

Log 

Likelihood 
AIC AIC weight R2 

1 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 +  𝛽ℎ→𝑣 +  𝜇𝑣    
4 

 
1295.92 2603.85 0.04 0.31 

2 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 +  𝛽ℎ→𝑣 + 𝜇𝑣+ 𝑅𝑡𝑜𝑡  5 1294.95 2603.91 0.04 0.31 

3 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣    5 1295.08 2604.15 0.03 0.31 

4 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝜇𝑣    5 1295.14 2604.27 0.03 0.31 

5 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣+ 𝑅𝑡𝑜𝑡  6 1294.14 2604.29 0.03 0.31 
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Figure 2-26 S8 Fig. The AIC profile of models exploring the main effects of input variables on 𝒕𝒎𝒂𝒙𝑰𝒉.  

AIC values from the best to the worst model from the 100 returned models, horizontal line delineates models that are within 2 ΔAIC from the best 

model. Best AIC: 2603.85; Worst AIC: 2609.30 
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Table 2-16 S3 Table. Top five models in the confidence set exploring main effects of input variables on 𝒄𝒖𝒎𝑰𝒉.  

The confidence set had 5 models within 2 ΔAIC from the best model. 

 

Model 

Order 
Model K 

Log 

Likelihood 
AIC 

AIC 

weight 
R2 

 

1 
~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣 + 𝑅𝑡𝑜𝑡  7 -1207.91 2433.81 0.36 0.46 

2 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒  +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣 + 𝛾𝑣  + 𝑅𝑡𝑜𝑡  8 -1207.63 2435.25 0.17 0.46 

3 
~ 1 + 𝑡𝑐𝑟𝑖𝑡+ 𝑇𝑚𝑒𝑎𝑛 + 𝑇𝑟𝑎𝑛𝑔𝑒   +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣  + 𝑖𝑣 +   

𝑅𝑡𝑜𝑡  
8 -1207.90 2435.81 0.13 0.46 

4 
~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ +  𝜇𝑣 +   𝑞 + 

𝑅𝑡𝑜𝑡  
8 -1207.91 2435.81 0.13 0.46 

5 ~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  + 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣  +  𝛽𝑣→ℎ +  𝜇𝑣 + 𝑅𝑡𝑜𝑡  7 -1207.62 2435.81 0.13 0.46 
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Figure 2-27 S9 Fig. The AIC profile of models exploring the main effects of input variables on 𝒄𝒖𝒎𝑰𝒉.  

AIC values from the best to the worst model from the 100 returned models, horizontal line delineates models that are within 2 ΔAIC from the best 

model. Best AIC: 2433.81; Worst AIC: 2510.59 
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Table 2-17 S4 Table. Top five models exploring in the confidence set the main effects and pairwise (first order) interactions of input variables on 

𝑴𝒂𝒙𝑰𝒉.  

The confidence set had 47 models within 2 ΔAIC from the best model.  

 

Model 

Order 
Model K 

Log 

Likelihood 
AIC 

AIC  

weight 
R2 

1 

~ 1  + 𝛽ℎ→𝑣  + 𝛾𝑣   + 𝑖𝑣   +𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 

𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ  + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 + 𝛾𝑣: 𝑖𝑣 + 

𝑇𝑟𝑎𝑛𝑔𝑒: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝛽𝑣→ℎ: 𝑅𝑡𝑜𝑡 + 𝑞: 𝑅𝑡𝑜𝑡  

 

14 -958.11 1948.23 0.03 0.41 

2 

~ 1  + 𝛽ℎ→𝑣 + 𝛾𝑣 + 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 

𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ  + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 +  𝛾𝑣: 𝑖𝑣 + 

𝑇𝑟𝑎𝑛𝑔𝑒: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝛽𝑣→ℎ: 𝑅𝑡𝑜𝑡 + 𝜇𝑣: 𝑅𝑡𝑜𝑡 + 𝑞: 𝑅𝑡𝑜𝑡  
15 -957.45 1948.90 0.02 0.41 

3 

~ 1 + 𝛽ℎ→𝑣 + 𝛾𝑣  + 𝑖𝑣  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 

𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ  + 𝑡𝑐𝑟𝑖𝑡: 𝜇𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣  

+  𝛾𝑣: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝛽𝑣→ℎ: 𝑅𝑡𝑜𝑡  + 𝑞: 𝑅𝑡𝑜𝑡  

 

15 -957.55 1949.11 0.02 0.41 

4 

~ 1 + 𝛽ℎ→𝑣 + 𝛾𝑣 + 𝑖𝑣  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 

𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣  +  𝛾𝑣: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝛽𝑣→ℎ: 𝑅𝑡𝑜𝑡 + 

𝑞: 𝑅𝑡𝑜𝑡  

 

15 -957.57 1949.13 0.02 0.41 

5 

~ 1  + 𝛽ℎ→𝑣 + 𝛾𝑣  + 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛 + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 

𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ  + 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 𝛽ℎ→𝑣: 𝜇𝑣 + 

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣  +  𝛾𝑣: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑅𝑡𝑜𝑡 + 

𝛽𝑣→ℎ: 𝑅𝑡𝑜𝑡  + 𝑞: 𝑅𝑡𝑜𝑡  

16 -957.68 1949.36 0.02 0.41 
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Figure 2-28 S10 Fig. The AIC profile of models exploring the main effects of input variables on 𝑴𝒂𝒙𝑰𝒉.  

AIC values from the best to the worst model from the 500 returned models, horizontal line delineates models that are within 2 ΔAIC from the best 

model. Best AIC: 1948.23; Worst AIC: 1982.56 
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Table 2-18 S5 Table. Top five models in the confidence set exploring the main effects and pairwise (first order) interactions of input variables on 

𝒕𝒎𝒂𝒙𝑰𝒉.  

The confidence set had 128 models within 2 ΔAIC from the best model.  

 

Model 

Order 
Model K 

Log 

Likelihood 

AIC AIC  

weight 

R2 

1 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝛽ℎ→𝑣 +  

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 𝑇𝑚𝑒𝑎𝑛: 𝛽𝑣→ℎ + 𝛽ℎ→𝑣: 𝛽𝑣→ℎ + 𝛽𝑣→ℎ: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 

𝛽ℎ→𝑣: 𝛾𝑣 + 𝛽𝑣→ℎ: 𝛾𝑣 + 𝜇𝑣: 𝛾𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑖𝑣 + 𝛽𝑣→ℎ: 𝑖𝑣 + 

𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑅𝑡𝑜𝑡 +  

𝛽ℎ→𝑣: 𝑅𝑡𝑜𝑡  + 𝜇𝑣: 𝑅𝑡𝑜𝑡  

 

29 -1243.69 2547.38 0.01 0.40 

2 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝛽ℎ→𝑣 +  

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 𝑇𝑚𝑒𝑎𝑛: 𝛽𝑣→ℎ + 𝛽ℎ→𝑣: 𝛽𝑣→ℎ + 𝛽𝑣→ℎ: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 

𝛽ℎ→𝑣: 𝛾𝑣 + 𝛽𝑣→ℎ: 𝛾𝑣 + 𝜇𝑣: 𝛾𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑖𝑣 + 𝛽𝑣→ℎ: 𝑖𝑣 + 

𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑅𝑡𝑜𝑡 +  

𝛽ℎ→𝑣: 𝑅𝑡𝑜𝑡  + 𝜇𝑣: 𝑅𝑡𝑜𝑡   

 

28 -1244.74 2547.47 0.01 0.40 

3 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝛽ℎ→𝑣 +  

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 𝑇𝑚𝑒𝑎𝑛: 𝛽𝑣→ℎ + 𝛽ℎ→𝑣: 𝛽𝑣→ℎ + 𝛽𝑣→ℎ: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 

𝛽ℎ→𝑣: 𝛾𝑣 + 𝛽𝑣→ℎ: 𝛾𝑣 + 𝜇𝑣: 𝛾𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑖𝑣 + 𝛽𝑣→ℎ: 𝑖𝑣 + 

𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑅𝑡𝑜𝑡 +  

𝛽ℎ→𝑣: 𝑅𝑡𝑜𝑡  + 𝜇𝑣: 𝑅𝑡𝑜𝑡  

 

29 -1244.75 2547.48 0.01 0.40 
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4 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝛽ℎ→𝑣 +  

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 𝑇𝑚𝑒𝑎𝑛: 𝛽𝑣→ℎ + 𝛽ℎ→𝑣: 𝛽𝑣→ℎ + 𝛽𝑣→ℎ: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 

𝛽ℎ→𝑣: 𝛾𝑣 + 𝛽𝑣→ℎ: 𝛾𝑣 + 𝜇𝑣: 𝛾𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑖𝑣 + 𝛽𝑣→ℎ: 𝑖𝑣 + 

𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑅𝑡𝑜𝑡 + 

𝛽ℎ→𝑣: 𝑅𝑡𝑜𝑡  + 𝜇𝑣: 𝑅𝑡𝑜𝑡  

29 -1244.77 2547.53 0.01 0.40 

5 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝛽ℎ→𝑣 +  

𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 𝑇𝑚𝑒𝑎𝑛: 𝛽𝑣→ℎ + 𝛽ℎ→𝑣: 𝛽𝑣→ℎ + 𝛽𝑣→ℎ: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 

𝛽ℎ→𝑣: 𝛾𝑣 + 𝛽𝑣→ℎ: 𝛾𝑣 + 𝜇𝑣: 𝛾𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑖𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑖𝑣 + 𝛽𝑣→ℎ: 𝑖𝑣 + 

𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝑅𝑡𝑜𝑡 + 

𝛽ℎ→𝑣: 𝑅𝑡𝑜𝑡  + 𝜇𝑣: 𝑅𝑡𝑜𝑡  

29 -1244.79 2547.58 0.01 0.40 
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Figure 2-29 S11 Fig. The AIC profile of models exploring main effects and pairwise (first order) interactions of input variables on 𝒕𝒎𝒂𝒙𝑰𝒉.  

AIC values from the best to the worst model from the 500 returned models, horizontal line delineates models that are within 2 ΔAIC from the best 

model. Best AIC: 2547.38; Worst IC: 2589.56 
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Table 2-19 S6 Table. Top five models in the confidence set exploring the main effects and pairwise (first order) interactions of input variables on 

𝒄𝒖𝒎𝑰𝒉.  

The confidence set had 84 models within 2 ΔAIC from the best model.  

 

Model 

Order 

Model K Log 

Likelihood 

AIC AIC weight R2 

1 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛 +  𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 

𝑡𝑐𝑟𝑖𝑡: 𝜇𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 +  

𝛾𝑣: 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡   

19 -1159.61 2361.21 0.02 0.53 

2 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽𝑣→ℎ + 

 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 𝑡𝑐𝑟𝑖𝑡: 𝜇𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 +  

𝛾𝑣: 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡   

20 -1158.63 2361.26 0.02 0.53 

3 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛 +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 +  𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 

𝑡𝑐𝑟𝑖𝑡: 𝜇𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 + 𝛽ℎ→𝑣: 𝑖𝑣 +  

𝛾𝑣: 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡   

20 -1158.67 2361.34 0.02 0.53 
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4 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 

 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 𝑡𝑐𝑟𝑖𝑡: 𝜇𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 +  

𝛾𝑣: 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡   

20 -1157.70 2361.41 0.01 0.53 

5 

~ 1 + 𝑡𝑐𝑟𝑖𝑡 + 𝑇𝑚𝑒𝑎𝑛  +  𝑇𝑟𝑎𝑛𝑔𝑒 +  𝛽ℎ→𝑣 +  𝛽𝑣→ℎ + 𝜇𝑣  +  𝑅𝑡𝑜𝑡 + 

𝑡𝑐𝑟𝑖𝑡: 𝑇𝑚𝑒𝑎𝑛  + 𝑡𝑐𝑟𝑖𝑡: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑚𝑒𝑎𝑛: 𝑇𝑟𝑎𝑛𝑔𝑒 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛽ℎ→𝑣 + 

 𝑡𝑐𝑟𝑖𝑡: 𝛽𝑣→ℎ + 𝑡𝑐𝑟𝑖𝑡: 𝜇𝑣 + 𝛽ℎ→𝑣: 𝜇𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝛾𝑣 + 𝑇𝑟𝑎𝑛𝑔𝑒: 𝛾𝑣 +  

𝛾𝑣: 𝑖𝑣 + 𝑡𝑐𝑟𝑖𝑡: 𝑞 + 𝑖𝑣: 𝑞 + 𝑇𝑚𝑒𝑎𝑛: 𝑅𝑡𝑜𝑡   

20 -1159.75 2361.51 0.01 0.53 
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Figure 2-30 S12 Fig. The AIC profile of models exploring main effects and pairwise (first order) interactions of input variables on 𝒄𝒖𝒎𝑰𝒉.  

AIC values from the best to the worst model from the 500 returned models, horizontal line delineates models that are within 2 ΔAIC from the best 

model. Best AIC: 2361.21; Worst AIC: 2447.52 
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Table 2-20 S7 Table. Model averaged coefficients and relative-importance weights for dengue parameters.  

From the best model with the pairwise interactions. Before model fitting, parameters were centered on zero and scaled to unit variance, to normalize 

parameters within the same range. Hence coefficient estimates are within the range of 0.0 to 1.0. Relative importance ≥0.90 appears in bold, an 

arbitrary cut-off for visualizing most important parameters. 
 

Parameter 

𝑴𝒂𝒙𝑰𝒉  𝒕𝒎𝒂𝒙𝑰𝒉  𝒄𝒖𝒎𝑰𝒉  

Coefficient1 
Relative  

Importance 
Coefficient1  

Relative  

Importance 
Coefficient1  

Relative  

Importance 

𝒕𝒄𝒓𝒊𝒕 0.00 0.02 0.43 1.00 0.36 1.00 

𝒕𝒄𝒓𝒊𝒕: 𝑻𝒎𝒆𝒂𝒏 0.38 1.00 0.15 1.00 0.10 1.00 

𝒕𝒄𝒓𝒊𝒕: 𝑻𝒓𝒂𝒏𝒈𝒆 -0.14 0.96 0.00 0.04 -0.07 1.00 

𝒕𝒄𝒓𝒊𝒕: 𝜷𝒉→𝒗 0.00 0.03 0.00 0.01 0.00 0.02 

𝒕𝒄𝒓𝒊𝒕: 𝜷𝒗→𝒉 0.16 0.98 0.00 0.01 0.07 1.00 

𝒕𝒄𝒓𝒊𝒕: 𝝁𝒗 0.00 0.02 0.00 0.08 -0.07 1.00 

𝒕𝒄𝒓𝒊𝒕: 𝜸𝒗 0.00 0.02 0.05 0.99 0.03 0.85 

𝒕𝒄𝒓𝒊𝒕: 𝒊𝒗 0.00 0.01 -0.02 0.54 0.00 0.03 

𝒕𝒄𝒓𝒊𝒕: 𝒒 0.00 0.02 0.07 1.00 0.04 0.97 

𝒕𝒄𝒓𝒊𝒕: 𝑹𝒕𝒐𝒕  0.00 0.02 0.00 0.02 0.00 0.02 

𝑻𝒎𝒆𝒂𝒏 0.00 0.02 0.15 1.00 0.15 1.00 

𝑻𝒎𝒆𝒂𝒏: 𝑻𝒓𝒂𝒏𝒈𝒆 -1.04 1.00 0.08 1.00 -0.10 1.00 

𝑻𝒎𝒆𝒂𝒏: 𝜷𝒉→𝒗 0.00 0.02 0.07 1.00 0.00 0.06 

𝑻𝒎𝒆𝒂𝒏: 𝜷𝒗→𝒉 0.00 0.02 -0.05 0.98 0.00 0.02 

𝑻𝒎𝒆𝒂𝒏: 𝝁𝒗 0.00 0.02 0.00 0.01 0.00 0.02 

𝑻𝒎𝒆𝒂𝒏: 𝜸𝒗 0.00 0.02 0.00 0.01 0.00 0.01 

𝑻𝒎𝒆𝒂𝒏: 𝒊𝒗 0.00 0.02 0.00 0.02 0.00 0.02 

𝑻𝒎𝒆𝒂𝒏: 𝒒 0.00 0.02 0.06 0.99 0.00 0.02 

𝑻𝒎𝒆𝒂𝒏: 𝑹𝒕𝒐𝒕  1.11 1.00 0.04 0.94 0.08 1.00 

𝑻𝒓𝒂𝒏𝒈𝒆 0.01 0.02 -0.04 0.96 -0.12 1.00 
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𝑻𝒓𝒂𝒏𝒈𝒆: 𝜷𝒉→𝒗 -0.01 0.06 0.07 0.99 -0.02 0.48 

𝑻𝒓𝒂𝒏𝒈𝒆: 𝜷𝒗→𝒉 0.00 0.02 0.00 0.03 0.00 0.02 

𝑻𝒓𝒂𝒏𝒈𝒆: 𝝁𝒗 0.00 0.02 0.00 0.04 0.00 0.02 

𝑻𝒓𝒂𝒏𝒈𝒆: 𝜸𝒗 -0.49 0.99 0.00 0.08 -0.04 0.96 

𝑻𝒓𝒂𝒏𝒈𝒆: 𝒊𝒗 0.00 0.01 0.07 1.00 0.00 0.03 

𝑻𝒓𝒂𝒏𝒈𝒆: 𝒒 1.45 1.00 0.00 0.01 0.00 0.03 

𝑻𝒓𝒂𝒏𝒈𝒆: 𝑹𝒕𝒐𝒕  0.00 0.03 0.04 0.95 0.00 0.02 

𝜷𝒉→𝒗 1.15 0.99 0.08 1.00 0.23 1.00 

𝜷𝒉→𝒗: 𝜷𝒗→𝒉 0.00 0.01 -0.05 0.99 0.00 0.01 

𝜷𝒉→𝒗: 𝝁𝒗 -0.66 1.00 0.00 0.04 -0.05 0.98 

𝜷𝒉→𝒗: 𝜸𝒗 0.00 0.01 -0.06 1.00 0.00 0.01 

𝜷𝒉→𝒗: 𝒊𝒗 0.00 0.02 0.00 0.02 0.01 0.23 

𝜷𝒉→𝒗: 𝒒 0.01 0.02 0.00 0.02 0.00 0.08 

𝜷𝒉→𝒗: 𝑹𝒕𝒐𝒕  0.00 0.02 -0.05 0.98 0.00 0.03 

𝜷𝒗→𝒉 0.00 0.02 -0.06 0.99 0.12 1.00 

𝜷𝒗→𝒉: 𝝁𝒗 0.02 0.15 0.05 0.98 0.00 0.03 

𝜷𝒗→𝒉: 𝜸𝒗 0.00 0.02 -0.05 0.98 0.00 0.05 

𝜷𝒗→𝒉: 𝒊𝒗 0.00 0.03 0.01 0.36 0.00 0.03 

𝜷𝒗→𝒉: 𝒒 0.00 0.02 0.00 0.01 0.00 0.02 

𝜷𝒗→𝒉: 𝑹𝒕𝒐𝒕  0.16 0.85 0.00 0.03 0.00 0.02 

𝝁𝒗 0.00 0.02 -0.06 0.99 -0.25 1.00 

𝝁𝒗: 𝜸𝒗 0.00 0.03 0.03 0.81 0.00 0.03 

𝝁𝒗: 𝒊𝒗 0.00 0.02 0.00 0.07 0.00 0.03 

𝝁𝒗: 𝒒 0.00 0.03 0.00 0.02 0.00 0.01 

𝝁𝒗: 𝑹𝒕𝒐𝒕  -0.06 0.22 0.05 0.97 0.00 0.02 

𝜸𝒗 1.27 1.00 0.00 0.02 0.00 0.04 

𝜸𝒗: 𝒊𝒗 -0.72 0.98 0.00 0.02 -0.04 0.95 
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𝜸𝒗: 𝒒 0.01 0.02 0.00 0.02 0.00 0.05 

𝜸𝒗: 𝑹𝒕𝒐𝒕  0.01 0.03 0.00 0.01 0.00 0.05 

𝒊𝒗 0.53 0.65 0.00 0.02 0.00 0.01 

𝒊𝒗: 𝒒 0.15 0.37 -0.05 0.99 -0.05 0.98 

𝒊𝒗: 𝑹𝒕𝒐𝒕  0.01 0.03 0.00 0.02 0.00 0.03 

𝒒 -0.21 0.16 0.01 0.21 0.00 0.02 

𝒒: 𝑹𝒕𝒐𝒕  -0.79 0.99 0.00 0.01 0.00 0.02 

𝑹𝒕𝒐𝒕  0.02 0.02 0.04 0.96 0.13 1.00 
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3 General discussion 
 

 

 

This general discussion summarizes the content and the main findings of this thesis, discusses 

the key contributions, and integrates finalizes with a concise conclusion. The section is outlined 

according to the overall modeling framework applied i.e., the importation models and the 

transmission model and a potential real-world application of both frameworks. 
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3.1 Discussion  
 

Understanding the dispersal patterns of infectious diseases is increasingly important in the 

current era of fast-paced globalization. To do this, it is crucial to understand how diseases are 

transported, introduced, established, and spread into new geographical regions. This spread is very 

often initiated by human mobility; hence the role of the global transport network in facilitating 

importation is an integral focus in the epidemiology of infectious diseases. This thesis 

contextualizes this, in relation to the importation and spread of dengue fever in Europe. This thesis 

focused on the transport and introduction stages of viraemic cases of dengue, as these remain less 

studied than the establishment and transmission stages. Sections 2.1 and 2.2. of this thesis, employ 

two specific modelling approaches, (i.e., a connectivity model and a predictive model) towards the 

understanding and prediction of dengue importation into Europe. The connectivity model 

investigates the factors mediating the risk of importation from the source country into Europe, 

while the predictive model forecasts the importation risk of a viraemic case of dengue.  

The model outlined in section 2.1, integrated a refined connectivity network approach, 

drawing on the underlining concept of spatial interaction modelling, generalized linear mixed 

modelling, temporal network autocorrelation modelling, and consideration of factors that may 

affect the likelihood of dengue transport and importation (1-4). The choice to integrate these 

different approaches, the detail of each modelling approach, and the main benefits/contributions 

are discussed here.  

Firstly, as dengue importation are initiated by human movement, which is supported by 

transportation infrastructures, this implies that a source country must be linked to a destination 

country for a successful transferability (5). The quantification of this transferability is modelled 

under the basic assumption of spatial interaction modelling, that inflow between two locations is 

a function of the attributes of the source and destination, the friction of distance, and corresponding 

interactions (6). Section 2.1 details the development of seven simple connectivity indices specific 

to the transport and introduction of viraemic cases of dengue between any possible location pairs 

(with countries in Europe). These indices were used to characterize the specific attributes of a 

source country. These attributes are epidemiologic, socio-economic, and anthropogenic – 

characterizing the role of the dengue activity, seasonality, incidence rate, epidemic vulnerability, 

geographical proximity, air passenger traffic, and wealth of a source country. This modelling 
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structure is an improvement over standard epidemiological models, that establish only correlations 

between imported dengue cases and total inflow passengers. These previous methods were 

generally not sufficient (7, 8), because statistical descriptors of passengers’ data alone, do not 

indicate whether imports are arriving from regions at high risk of dengue transmission or if they 

are correlated with other factors facilitating imports. The spatial interaction modelling approach 

improves the simple statistical approach and offers a more refined quantification of the attributes 

between each location pair and their corresponding flow. As discussed in section 2.1, each of the 

developed indices represents a spatial interaction, as an analogy for human mobility and dengue 

importation, between a discrete source/destination pair.  

The next modelling approach used in the importation model is the generalized linear mixed 

model (9). The first analysis considered which combination of the connectivity indices was best at 

explaining the importation of dengue into Europe. To this, a generalized linear mixed-effects 

model (GLMM) with logit link functions for binomial errors and fixed effects of the connectivity 

indices were fitted. The choice of a GLMM method is justified by the particularity of the 

connectivity indices having more than one source of random variability, as the connectivity data 

were drawn from a hierarchy of different spatial and temporal groupings. The random effects 

allowed by the GLMM add to the variance component, which accounts for the random variability 

that relates to the hierarchal differences across the country pairs. The GLMM also allowed the 

estimation of the fixed effects of variation in the connectivity indices between country pairs. To 

this effect, the primary outputs of the first analysis in section 2.1, were quantitative parameter 

estimates describing how dengue importation into Europe changes as a function of the connectivity 

indices, and the variability among the levels of the random effects as represented in the country 

pairs. 

Finally, the model in section 2.1 incorporated a temporal network autocorrelation to account 

for the co-dynamics of the air transport network structure in facilitating dengue importation (10). 

It is important to consider the air transport network in the understanding of the importation patterns 

because this network is dynamic. The dynamic nature of the air transport network has a direct 

influence on the interactions and flow between country pairs. To this effect, the air transport 

network was constructed using direct and indirect route-based data of air passengers between 

country pairs. As a measure of the network connections, centrality measures were calculated for 
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each country pair. The effect of the network autocorrelation was then incorporated into the GLMM 

framework (described above) to address the issue of covariance driven by the network structure. 

This alternative approach allowed for testing how individual connectivity indices change in the 

context of the dynamic and multiple temporal snapshots of the network. Offering insights into how 

the connectivity indices, network positioning, and the interaction of countries within the network 

can best explain the transport and introduction of dengue into a destination country.  

Overall, the analyses show that the connectivity indices and centrality measures of the air 

transport network are strong indicators of dengue importation in Europe. This result is particularly 

valuable as it substantially adds to the understanding of the dynamics of dengue importation, by 

relating source countries' attributes and the air transport network structure. The outputs (i.e., the 

connectivity indices & network centrality measures), were then used to parameterize a predictive 

model. 

Section 2.2 outlines the development of a predictive model for the importation risk of a 

viraemic case of dengue. Predictive modelling encompasses a variety of mathematical and/or 

statistical techniques to analyse current and historical data to make forecasts about future or 

otherwise unknown events (11). This thesis integrated the use of machine learning algorithms – an 

applied extension of artificial intelligence – for the development of the predictive model. Machine 

learning algorithms are built on a mathematical model base, that can automatically learn patterns 

in the data, and perform inference, without explicit instructions (12). Several studies have 

demonstrated the powerful predictive capabilities of machine learning models and their superiority 

over conventional statistical methods for prediction (13-15). The primary interest of our model 

was to optimize predictive accuracy for the importation risk of a viraemic case of dengue, with a 

secondary interest in providing intuitive explanations for the model’s predictions.  

The modelling approach compared four widely used classifiers algorithms in machine 

learning. In a supervised learning technique, the predictor variables (in our case, the connectivity 

indices and centrality measures) and an outcome of interest (imported case of a viraemic case of 

dengue) are already known. The machine-learning algorithm then uses a subset of the supplied 

data to learn the mapping function from the input to the output, allowing it to predict expected 

outcomes in new datasets. The choice of the final optimal model was based on, a meta-algorithm 

that fits our classification problem, built-in feature selection, regularization (ability to handle the 



148 

 

effects of multicollinearity), hyperparameter optimization (model tuning capabilities), and 

efficient computation time. The predictive performance was evaluated using the area under the 

receiving operating characteristic curve of the receiving operating characteristic curve (AUC-

ROC) threshold, which maximizes the trade-off between sensitivity and specificity. The best-

performing model was the extreme gradient boosting model with an AUC score of 0.94, a true 

positive rate of 0.88, and a false positive rate of 0.12. The final model was able to correctly predict 

the probability of an imported case of dengue with an 88% accuracy rate. As a first attempt to 

apply a machine learning model for predicting dengue importation in Europe, we can safely state 

that this model provides a benchmark result for predictive performance. 

Beyond the predictive accuracy of the final model, we explain the rationale behind the 

predictions, using intuitive model-agnostic techniques. Model-agnostic methods work by 

extracting post-hoc explanations from an original machine learning model (16), by training an 

interpretable model on the predictions of the original model, and/or by changing the inputs of the 

original model and measure the changes in the prediction output (17, 18).  The interpretability 

framework employed provided both global and local scale explanation to our model predictions. 

Global interpretability provided an understanding of the general pattern of the relationship and 

distribution of the predicted outcome (such as key features facilitating dengue importation in 

Europe), while local interpretability provided an in-depth understanding of a single predicted 

instance (such as why was there an imported case for a specific source to destination country pair). 

The former was important to capture the relative contribution of the input variables in predicting 

the importation of a viraemic case of dengue at an aggregated level for Europe; while the latter 

provided insights into the heterogeneities that affect the prediction of dengue importation at the 

country level. 

The global interpretability utilized both variable importance and partial dependence plots to 

quantify the relationship between our model variables and the predicted outcome (17, 19). 

Generally, the model implies that on average the probability of an imported case of dengue 

increases for source countries with higher dengue incidence rates, larger population, and higher air 

passenger volume. Likewise, the propensity of a destination country to receive an imported case 

increases for countries with the following attributes: (i) high connectivity within the air travel 

network, (ii) putative connection hubs to other countries, and (iii) have a relatively short 
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connection time with other countries. The local interpretability utilized local surrogate models, 

otherwise called- Local interpretable model-agnostic explanations (LIME) – to provide an intuitive 

explanation of a single prediction (16, 18). The single unit of analysis in the model was a source-

destination country pair, at a monthly timescale. Using the local interpretable model-agnostic 

explanations, the model explained the influences on the predictions at a single temporal and 

country-pair level. In the real-world risk, probabilities will differ based on the dynamics of 

attributes and the air travel network topology from one source-destination country pair to another. 

The local explanations provide insights into the heterogeneities of importation risk of a viraemic 

case of dengue at the different country pairing levels and how they change over time. This is 

particularly useful in profiling the importation risk of viraemic cases from a specific source country 

or region to guide targeted surveillance and public health preparedness for destination countries. 

Section 2.3 of this thesis went further to examine the modelling of dengue transmission in a 

composite space-time domain under conditions of the vector presence, biological and 

environmental variability. This was achieved using a standard deterministic compartmental vector-

host transmission model for dengue. The two components of this model were specified as follows: 

(i.) the vector (Aedes aegypti mosquitoes)- SEI and (ii) the human component - SEIR.  

The general formulation of the SEI component, describes the vector population, at any given 

time during the transmission cycle. Adult female mosquitoes are classified into one of three 

classes, i.e. susceptible (S), exposed (E), and infectious (I). The model allows for the mosquitoes 

to bite, transmit the virus, and remain infected until they die. The human component of the 

transmission cycle is represented as susceptible (S), exposed (infected but not infectious) (E), 

infectious (I), and recovered (immune) (R). The model allows for individual humans to be in one 

of four classes, at any given time in the transmission cycle and did not discriminate between the 

symptomatic or asymptomatic infectious individuals (22). 

The model was governed by state variables and parameters, which were satisfied by 

differential equations. Parameter values were retrieved from peer-reviewed literature on empirical 

studies or laboratory trials and expert knowledge. The parameter range used to set the 

characteristics boundaries of the model reflects the spatiotemporal conditions in Funchal, Madeira 

Island, as best possible. Adult female mosquitoes were introduced into the system using a fitted 

Gaussian curve, mimicking the observed seasonal pattern of mosquitoes on the island from the 
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entomological data for the years 2012 – 2019 (23, 24). Seasonality was incorporated into the 

compartmental modelling framework by a sinusoidal curve, with a period of 365 days. This was 

fitted using a decadal historical daily mean temperature in Funchal (25, 26). Mechanistic thermal 

response curves were then fitted for some components of life-history traits of the mosquitoes (i.e. 

biting rate, extrinsic incubation, and mortality). The initial starting conditions of the model assume 

a homogeneously mixed population, with all infectious classes set to zero, and an infection was 

triggered by the arrival of an infectious human on a specified day. The constants for the intrinsic 

incubation and infectious periods were set to reflect an introduction of a different serotype other 

than DENV-1 (i.e., the circulating serotype of the 2012/13 dengue outbreak in Madeira) (27). The 

model simulation was used to explore epidemiologically relevant outcomes of epidemic size, peak 

incidence, and time to peak. These outcomes were used to examine how the epidemic dynamics 

varied as a function of arrival dates and seasonality. Finally, the influence of the input parameters 

on the outcomes was characterized using a variance-based global sensitivity analysis.  

The model results demonstrate a high potential for a sporadic dengue transmission on the 

island, driven by the seasonal change, with the arrival date significantly affecting the distribution 

of the timing and peak size of the epidemic. Mid-summer (July) to early-autumn (September) 

arrivals tend to produce epidemics with a faster peak rate and a resulting large final epidemic size. 

The model results went further to demonstrate the impact of variation in seasonal temperature 

regimes, as the model simulated both historical and futuristic temperature regimes. Annual mean 

temperatures of 18ºC to 26ºC were most suitable for epidemics transmission, irrespective of the 

seasonal temperature variation. When seasonal temperature variation was low, annual average 

temperatures of 27ºC to 30ºC, produced the largest epidemics, but this range shifted to cooler 

annual average temperatures (15ºC to 17ºC) as seasonal temperature variation increased. Beyond 

the arrival date of an infected human and temperature seasonality, the sensitivity analysis 

characterized the variability of the epidemic dynamics to other parameters. Epidemic dynamics 

were also sensitive to transmission rates, mortality rate, and mosquito population size, highlighting 

the importance of the mosquito life-history traits on epidemic outcomes. 

A key aspect of the model results is the interaction between mean annual temperature and 

temperature range and its effect on epidemic suitability. These findings can be extrapolated to 

other regions on the island. With rising mean annual temperatures and increasing seasonal 
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temperature variation due to climate change (28, 29), these results provide insights into the likely 

shift in the epidemic suitability on the island. Importantly, areas on the island (i.e., the North coast 

regions) with previously limited or no epidemic suitability may have an increased potential for 

transmission in the future.  On the other hand, the South Coast region with current suitability may 

have an increased potential for year-round transmission and higher epidemic rates.  

Other key public health-related findings from the model sensitivity analysis are the insight 

it provides into the relative importance of parameters and their interactive effects as mechanistic 

drivers of an epidemic. This serves as a guide for targeted control and mitigation strategies for 

future outbreaks on the island. For example, reducing the mosquito population size via adulticides 

and larvicides will be effective as both preventive and control measures in the event of an outbreak. 

Given the knowledge of the most sensitivity parameters, a more effective preventive and mitigative 

strategy can be integrated acting over multiple parameters simultaneously.  

Overall, the modelling framework presented in this thesis fits into one of the principal 

strategic approaches proposed by the World Health Organization (WHO) European regional 

framework for surveillance for re-emerging vector-borne diseases (30). The strategy calls for the 

development of an integrated system of vector and disease surveillance. A system with the ability 

to combine data sources from entomological surveillance, epidemiological surveillance, and risk 

factor identification, to guide effective preventive measures and epidemic response. The 

importation model presented in this thesis, integrates epidemiological, socio-economical, and 

anthropogenic data, to analyse and predict the importation risk of a viraemic case of dengue. While 

the dengue transmission model integrates entomologic, epidemiologic, and climatic data to 

examine the probability of local transmission in areas with established vector presence. The 

combination of both modelling techniques provides an integrated surveillance system for 

monitoring the importation risk of viraemic cases and assess the risk of local transmission of 

dengue.  

 Although this work focuses heavily on practical aspects of infectious diseases modelling, it 

provides a basic structure for an early warning system to forecast and monitor the risk of dengue 

in Europe. Despite this possibility, a few limitations are worth noting and that could be targeted 

for improvement in future implementations:  
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(i) The dengue incidence data used in the importation model was aggregated at a yearly scale, 

due to the paucity of surveillance data at a finer scale. This may have overestimated or 

underestimated the actual effect of incidence and potentially impact the predicted risk 

probability from a source country. Even though this was compensated for within the 

analysis −by the inclusion of the dengue activity and seasonality variables (serving as 

proxies). Future implementation of this framework may also benefit from data at a finer 

temporal resolution (e.g., monthly, or weekly), which could lead to improved performance 

and accuracy of dengue importation predictions.  

(ii)  The transmission model did not explicitly address the scenario of multiple serotypes of 

dengue co-circulating in the population. Considering the circulating serotype (i.e., DENV 

1) of the 2012 outbreak in Madeira Island, subsequent exposure to a different serotype 

(i.e., DENV 2, 3, or 4) might lead to immune interactions and increased risk of severe 

disease and dengue haemorrhagic fever in secondary infections. Likewise, reinfection 

with the same serotype (DENV 1) might contribute to an increase in the number of 

primary and secondary dengue cases. 

(iii)  The transmission model varied only input parameters from the vector component of the 

transmission cycle and did not vary parameters in the human component. Likewise, the 

model did not account for the influence of ongoing vector control on the island on the 

overall transmission cycle. Additional modification to improve the functionality of both 

modelling techniques is discussed in the next section (i.e., section 3.2).  

The results from the overall modelling framework represented in this thesis indicate that the 

importation and potential local transmission of dengue in Europe to be was quite multifaceted. As 

such, public health implications can be considered from multiple domains and scope. The public 

health implications will be discussed on the merits of each model (i.e., the importation or 

transmission model) and as a single early warning system that combines both models. 

Risk assessment tool: The importation model provides insight into risk assessment, which 

can be translated into real-time policy decisions regarding resource allocation for destination-based 

surveillance. The ability of the model to predict specific country-pair or route-level risk profiling 

enables public health officials to conduct destination-based surveillance and assign resources to 

most at-risk routes. For example, attention can be focused on passengers arriving from Brazil into 
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Portugal, given a risk assessment that demonstrates: Brazil has a high incidence rate of dengue, 

presence of other conditions that support local transmission (e.g., ongoing dengue seasonality), 

and a high amount of expected air travel from Brazil into Portugal. This kind of risk assessment 

will help health authorities plan for potential spikes in travel-related cases of dengue, requiring 

clinical treatment. Likewise, it can help authorities estimate the potential consequences for travel-

related cases in areas with vector presence, suitable environmental and climatic conditions for local 

transmissions. Similar risk assessment and profiling can be conducted in the instance of a major 

event that will result in an increase of arriving passengers (e.g., a major sporting event) to a specific 

destination country in Europe. Results from such risk assessment can assist public health officials 

in preparing for the scale-up of laboratory diagnostic assays and prepare physicians for effective 

case management.  

Mitigation and control strategies: The transmission model provides insights into 

mitigation strategies for local transmission in areas with vector presence and suitable 

environmental and climatic conditions. From a mitigation perspective, the results of sensitivity 

analysis indicate parameters that a slight change in them would greatly affect the dynamics of the 

epidemics (in the event of an outbreak). The result highlight that even small changes in parameters 

like mosquito population and morality rates can have a significant effect on the distribution of the 

timing and peak size of the epidemic. Hence this can guide the implementation of local mitigation 

and control strategies, like reducing the vector density via adulticides and larvicides or reducing 

the mosquito lifespan via the use of lethal ovitraps. Likewise, the results of the pair-wise 

interactions in the sensitivity analysis can be considered as an effective guide in the formulation 

of integrated strategies that can change multiple parameters simultaneously. These integrated 

strategies will assist in preventing outbreaks of dengue and reduce the risk of transmission in areas 

where invasive mosquitoes have become firmly established in Europe. 

Event-Based Surveillance: Considering both modelling techniques in a combined early 

warning system, it presents a convenient and efficient tool for investigation of the dynamics of 

dengue in Europe and its quantitative changes over time. This is mainly because the combined 

framework goes far beyond traditional disease-based surveillance and syndromic surveillance and 

offers the option of event-based surveillance. Event-based health surveillance systems are systems 

that can integrate public reports, stories, rumours, and other information about health events and 
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analysis the potential serious risk to public health. The importation model presented in this thesis 

offers that functionality, in the sense that it integrates the collection and analysis of data from 

sources beyond the health system, to enable the prediction of imported cases of dengue and/or 

simulations of potential local transmission. The model encompasses the air transportation network, 

socio-economic, environmental, ecological, climatic, and anthropogenic data, to offer a more 

robust type of surveillance system. The dynamic nature of the modelling framework (if 

implemented with real-time data) will allow the update of changes in dengue incidence, 

seasonality, and activity for source countries (as obtained from DengueMap) and their effect on 

the importation of viraemic cases of dengue into Europe. The country-pair level profiling of the 

modelling framework also allows patterns of infection/transmission in different countries to be 

compared and the factors that are responsible for these differences determined. This can guide 

public health officials in the implementation of an early warning and a rapid response to prevent a 

potential outbreak of dengue.  
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3.2 Real-world application of the modelling framework 
 

The modelling framework developed in this thesis is expected to fit into the WARDEN early 

warning system. The WARDEN project (31) aims to develop an operational, real-time, forecasting 

model of the risk of outbreaks of dengue, chikungunya, and yellow fever for Madeira Island. 

Contextually the project aims to supplement the existing surveillance system with an early warning 

system providing daily forecasts of outbreak risk for dengue, chikungunya, and yellow fever, up 

to 16 days in advance. This will be achieved using a dynamic spatial-temporal and compartmental 

SEI-SEIR modelling framework. The early warning system will result from the integration of two 

subsystems. The first subsystem corresponds to a data assimilation module, which will collect data 

concerning the foreseeable status of variables (e.g., meteorological forecasts, airline, and ship 

arrivals) influencing transportation and the introduction of these diseases for a 16-day risk 

prediction. The second module corresponds to the compartmental SEI-SEIR model, based on 

comprehensive ordinary differential equations which can provide risk forecasts of disease 

transmission and epidemic dynamics. 

 

3.2.1 The dengue importation framework  

 

The modelling framework developed in sections 2.1 and 2.2 is expected to fit into the first 

subsystem of the WARDEN early warning system. However, the framework will be modified 

slightly to capture the contextual dynamics of Madeira Island in relation to the input variables. The 

following data input components will be modified accordingly:  

▪ Dengue data: change to the historical imported cases of dengue in Madeira (for all years 

available).  

▪ Air passenger’s data: using the IATA comprehensive air passenger travel data, reconstruct 

the monthly passenger flow from all countries worldwide with a final destination in 

Madeira (accounting for all connecting flights).  

▪ Connectivity indices between a source and destination: reconstitute the connectivity 

indices to be between a source country and Madeira Island. Example - change the 
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geographical distance between centroids to reflect the spatial connectivity of the source 

country and Madeira Island. 

▪ Centrality measures of the air transport network: using the monthly air passenger’s data, 

reconstructed a weighted directed network, with nodes representing all countries 

worldwide, while edges represent the flow of passengers from a source country into 

Madeira Island. 

▪ Unit of analysis: update this to a source country to destination (Madeira Island) pair, at a 

monthly timescale, and a binary response variable coded to indicate an imported dengue 

case (1) or not (0). 

The modelling technique – data pre-processing and splitting, modelling algorithm, training, 

tuning, validation, and evaluation – will remain the same. The model interpretability (model-

agnostic) technique will remain unchanged, however, should be implemented independently from 

the model training component. This is necessary to ensure that when the base model inputs are 

updated and refined, the model-agnostic algorithms would not be affected. The ensemble of the 

prediction and the post-hoc explanations would first be based on a hold-out dataset (i.e., the test 

dataset from historical data). Subsequently, this subsystem will be linked to real-time/forecasted 

data to provide futuristic importation risk prediction (i.e., of viraemic cases of dengue). To achieve 

this, the system needs to be linked to the following real-time data source:  

▪ DengueMap: a unified data collection tool, that brings together disparate dengue reports of 

local or imported dengue cases from official, newspapers, and other media sources globally 

(20). This will enable the categorizing of real-time dengue activity and seasonality changes 

around the globe.  

▪ IATA AirportIS database: a powerful market intelligence and analysis tool for airports, 

that aggregates global passenger traffic flows (both historical and future schedules) through 

a series of advanced algorithms and several unique databases to capture 100% of traffic 

around the world (21). This will enable the categorizing of real-time and forecasted air 

passenger flow in Madeira Island and the construction of the air transport network.  

Note: the following input data – dengue incidence, vulnerability index, GDP, and population – 

will be updated as new data becomes available. The model will be constantly updated with newly 

available data to improve its predictive accuracy.  
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Given real-time information, the model can predict the importation risk of a viraemic case of 

dengue for each flight route (based on projected arriving passengers) and compute the 

corresponding influential input variables. These forecasts can be updated every 16 days (as 

proposed by the WARDEN framework), based on real-time data for air-passenger flow.  

 

3.2.2 The dengue transmission framework  

 

This transmission modelling framework (section 2.3) is expected to fit into the second 

subsystem of the WARDEN early warning system. The simulated model provides important 

insights into the input parameters required for the implementation of the SEI-SEIR module of the 

system, within a deterministic compartmental framework. However, it will be modified slightly to 

fit the proposed differential equations for risk forecasting within the system. The WARDEN 

system proposes three differential equations:  

▪ Equation 1: represents the dynamics of vector populations and quantifies the average 

number of mosquitoes that become infected per each infectious human host in the system.  

▪ Equation 2: quantifies the average number of humans that become infected by each 

infectious mosquito  

▪ Equation 3: combines the previous quantities to estimate the basic reproduction number.  

The framework described in section 2.3 address equations 1 and 2 but does not explicitly address 

equation 3. The following modifications can be applied to accommodate this: 

▪ Introduce the basic reproductive number (𝑅𝑜) to the quantities of interest of the model. The 

𝑅𝑜 would define the expected number of secondary infections that one infectious individual 

would cause throughout the infectious period in a fully susceptible population. 

▪ Set a threshold condition for disease-free equilibrium. This can be achieved using the next 

generation matrix approach, as described by Van denDriessche and Watmough (32), to 

derive the 𝑅𝑜, which defines a threshold condition for when the disease-free equilibrium 

(the point at which no disease is present in the population) is achieved. Thus, setting 𝑅𝑜 as 

a threshold parameter for the model; if 𝑅𝑜 < 1, then the disease-free equilibrium is locally 

asymptotically stable, whereas if 𝑅𝑜 > 1), then it is unstable.  
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▪ Adopting a discrete event simulation approach with space and time being represented 

discretely. This will represent Madeira island as a spatial unit (i.e., in grid cells), with all 

processes of the model occurring in the basic spatial unit of the model.  

▪ Modify the human population mixing from homogeneous to heterogeneous population in 

which the vital and epidemiological parameters for an individual will not be fixed, but 

dependent on factors such as disease stage, spatial position, age, or behaviour. This will be 

introduced via the spatial-temporal unit of the WARDEN system.  

The above-described modification will introduce stochasticity to the model and provide 

important insights into the variation of dengue transmission in Madeira Island.  
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3.3 General conclusions  
 

The various spatiotemporal modelling approaches presented in this thesis provide a 

significant expansion to existing frameworks modelling the spread and transmission of dengue 

fever. Overall, this thesis offers the following main contributions. First, it identifies factors 

facilitating the transport and importation of dengue fever into Europe, thereby providing valuable 

guidance to the parameterization of future epidemiological models. Second, this is a first attempt 

at applying machine learning algorithms and model-agnostic approaches to predict the risk of 

dengue importation into Europe, thereby offering a benchmark framework for subsequent 

predictive models and early warning surveillance systems. Third, it integrates a deterministic SEI-

SEIR dynamic model to simulate the transmission of Dengue in Madeira Island, following an 

introduction of infectious individuals, thereby providing an understanding of how environmental 

conditions and seasonality affect dengue transmission and epidemic dynamics.  

With dengue fever being non-endemic in Europe, and the majority of reported cases are 

travel-related, the importation models presented in this thesis are of interest to public health 

officials and researchers within the region, allowing to assess the importation risk of a viraemic 

case of dengue and the drivers behind its variation. The transmission model though spatially 

limited to Madeira Island provides relevant insights for control and mitigation of dengue 

transmission and could be adapted for other areas of Europe. When combined, these contributions 

can assist public health practitioners to develop a reliable, cost-effective, and scalable early 

warning surveillance system for dengue. The results of this thesis provide strategic and evidence-

based information to public health decision-makers to guide implementation for targeted vector 

control and effective prevention strategies. The results also provide useful information for the 

control and prevention of other Aedes aegypti borne diseases both in Madeira Island and by 

extension to the European region. The modelling approaches presented could also be applied to 

chikungunya and yellow fever, two other diseases transmitted by the same mosquito vector (i.e., 

Aedes aegypti), by re-parameterisation of the models appropriately.  
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4 Annex  
 

 

This annex contains other publication achieved during the period of the PhD program, which 

was not related to the thesis.  
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4.1 Africa Rising, a Narrative for Life Expectancy Gains? Evidence from a Health 

Production Function 

 

 

 

Salami D, Shaaban AN, Oliveira Martins MDR (2019). Africa Rising, a Narrative for Life 

Expectancy Gains? Evidence from a Health Production Function. Ann Glob Health. 

2019;85(1):63. doi: https://doi.org/10.5334/aogh.2307  
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Table 4-1 Descriptive statistics of variables 
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Table 4-2 Regression coefficient of model estimations

 

Table 4-3 Relative contributions of the explanatory variables to life expectancy gains over time: 1995 to 2009 
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Figure 4-1 Life expectancy gains associated with percentage change in explanatory variables over time. 
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Table 4-4 Appendix Table I: Alternative model specification excluding GDP per capita.

 



174 

 

Table 4-5 Appendix Table II: Definition and sources of all variables.
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