
Diogo Duarte de Abreu Farinha

Bachelor in Electrical and Computer Engineering Sciences

Blockchain based architecture to increase
trustability and transparency in manufacturing

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Electrical and Computer Engineering

Adviser: José Barata de Oliveira, Professor, Universidade Nova
de Lisboa

Co-adviser: André Dionísio Rocha, Professor, Universidade Nova de
Lisboa

Examination Committee

Chairperson: Doctor André Damas Mora
Raporteur: Doctor João Paulo Pimentão

Member: Doctor André Dionísio Rocha

March, 2020

Blockchain based architecture to increase trustability and transparency in
manufacturing

Copyright © Diogo Duarte de Abreu Farinha, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Dedico este trabalho à minha mãe Luísa, ao meu pai Acácio e
ao meu irmão Guilherme.

Acknowledgements

Neste espaço, gostaria de prestar os meus mais sinceros agradecimentos a todos os que

contribuiram e continuam a contribuir para este meu percurso.

Gostaria de agradecer ao Professor José Barata e ao Professor André Rocha por me

terem acolhido e guiado nesta árdua tarefa que é realizar uma tese.

Aos meus amigos; nomeadamente Pepi, Gonçalos, Bernardo e malta do MP que sem-

pre estiveram presentes e genuinamente me tornam numa melhor pessoa. Um grande

obrigado.

Ao Tó, toda a disponibilidade e orientação ao longo do curso não tem preço e estarei

eternamente agradecido.

Aos meus pais, ao meu irmão e aos meus avós, a quem devo tudo.

Quando olho para o lado e vejo as pessoas que tenho a meu lado, só posso estar grato.

Por fim, gostaria de deixar uma palavra para o Professor Tiago Cardoso. Foi um

privilégio ter sido seu aluno. Descanse em paz.

vii

Abstract

As the fourth industrial revolution is now more of a reality than a mere futuristic vision,

necessary changes need to be addressed in the manufacturing environment. The general

inability of companies and customers to distinguish between truthful and untruthful

information has opened a dangerous void; one that is often filled with fraud and greed.

This, allied with the general population’s concerns over privacy and data mismanagement,

has led to the birth of a new technology: blockchain.

A universally accessible ledger that generates immutable data allows systems to be

based on cryptography. Decentralized by nature, users no longer need to trust a cen-

tralized node with their data. The user becomes empowered as they are rewarded for

participating, as opposed to a central entity reaping all of the wealth generated by the

network.

For companies in the manufacturing business, blockchain technology is also specially

beneficial. Removing the trust factor among the actors in the horizontal integration of

industry 4.0 translates to more transparency in the supply chain, which leads to a better

overall vision and understanding of the product.

The aim of this thesis is to implement an architecture connecting suppliers, retail

and customers based on blockchain technology. Complete and reliable traceability of the

product to the customer is the goal. By providing truthful information to all the actors

involved in a product’s life cycle, value can be added, thus increasing transparency and

trust in the whole network.

Keywords: Blockchain, Industry 4.0, Manufacturing, Transparency, Traceability

ix

Resumo

À medida que a quarta revolução industrial se vai tornando cada vez mais presente, certas

questões necessitam de ser repensadas. A incapacidade geral de empresas e do consumi-

dor de distinguir informações verídicas de não verídicas abre um vazio que muitas vezes

dá azo a ganância e fraude. A juntar a isto, uma acrescida preocupação da população geral

em matérias como privacidade e uso indevido de dados levou a que uma nova tecnologia

emergisse: blockchain.

Uma lista universalmente acessível que gera dados imutáveis permite que sistemas

tenham como base a criptografia. Descentralizada por natureza, os utilizadores deixam

de ser forçados a confiar num nó central a sua informação. O utilizador ganha poder,

passa a ser visto como um membro valioso e é recompensado por participar, ao invés de

uma entidade central colher toda a riqueza gerada na rede.

Para empresas no mundo da manufatura, a tecnologia de blockchain é especialmente

atrativa. Remover a necessidade de confiança entre os atores na integração horizontal na

indústria 4.0 traduz-se em maior transparência na supply chain, o que leva a uma melhor

visão e compreensão do produto no geral.

A finalidade desta tese é implementar uma arquitetura que conecta fornecedores,

retail e consumidores baseada na tecnologia de blockchain. Rastreabilidade completa

e fiável do produto é o objetivo. É possível acrescentar valor ao partilhar informação

verídica a todos os atores envolvidos no ciclo de vida de um produto, o que leva a um

aumento de transparência e confiança em toda a rede.

Palavras-chave: Blockchain, Indústria 4.0, Manufatura, Transparência, Rastreabili-

dade

xi

Contents

List of Figures xv

List of Tables xvii

Acronyms xix

1 Introduction 1

1.1 Motivation and background . 1

1.2 Contextualization . 2

1.3 Objectives . 3

1.4 Document overview . 4

2 State of the art 5

2.1 Industry 4.0 . 5

2.1.1 Integration . 6

2.2 Blockchain . 7

2.2.1 Decentralization . 8

2.2.2 Digital Signature . 10

2.2.3 Consensus . 11

2.2.4 Hybrid Implementations . 15

2.2.5 Smart Contracts . 16

2.2.6 Blockchain in Manufacturing . 17

3 System architecture 19

3.1 Brief overview . 19

3.2 Identity . 20

3.3 Peers . 21

3.4 Blocks . 25

3.5 Ledgers . 28

4 Implementation 31

4.1 Frameworks and tools . 31

4.2 Data Models . 32

4.3 Protected routes . 35

xiii

CONTENTS

4.4 Relevant routes . 36

4.5 General navigation . 45

5 Tests and validation 47

6 Conclusions and future work 57

6.1 Conclusions . 57

6.2 Future work . 58

Bibliography 59

I Annex 1 64

xiv

List of Figures

2.1 Industry 4.0 characteristics . 7

2.2 Each block includes the previous block’s hash, forming a chain, forming a chain 8

2.3 Centralized, at left, and decentralized systems, at right 9

2.4 The usage of private and public keys in a blockchain 11

2.5 The nonce is aggregated in the block in order to reach part of the desired hash 13

2.6 A blockchain fork . 14

2.7 The information flow in international trade is complex and documentation

heavy . 17

3.1 An overview of the platform . 20

3.2 The company’s information that is registered 21

3.3 Several conglomerates in the network, ensuring confidentiality 22

3.4 Peer A can inspect its businesses partners’ chains 23

3.5 Peers in the same network can inspect each other’s inventory and make pur-

chases . 24

3.6 Blocks always have an unique hash as well as the previous block’s hash . . . 26

3.7 An example of a Genesis Block . 27

3.8 A regular block of the network . 28

4.1 The process of registering a user . 39

4.2 The process behind a transaction . 40

4.3 The process behind showing the peer’s partners and its chains 41

4.4 The process behind adding a partner . 42

4.5 The process behind adding a product . 43

4.6 The process behind creating a final product 44

4.7 The process behind returning a final product 45

4.8 Navigation through the platform . 46

5.1 The server response upon sign in . 47

5.2 Inspecting the newly created chain . 48

5.3 Inspecting the partners list . 48

5.4 Inspecting Peer X’s chain . 49

5.5 Inspecting partners’ inventories . 49

xv

List of Figures

5.6 The updated testPeer’s chain . 50

5.7 The updated testPeer’s chain . 50

5.8 The newly created product . 51

5.9 The inspection by a customer . 51

5.10 Inspecting the new chain in the frontend . 52

5.11 Inspecting the partners’ list in the frontend 52

5.12 Inspecting a peer X’s chain in the frontend . 53

5.13 Inspecting own chain in the frontend . 54

5.14 Customer inspection of final product in the frontend 55

I.1 The homepage . 64

I.2 Login . 65

I.3 Registration . 65

I.4 The peer’s area . 66

I.5 Inspecting partners’ inventories . 67

I.6 Inspecting own inventory . 67

I.7 Inspecting partners’ profile . 68

I.8 Editing own profile . 68

xvi

List of Tables

1.1 Use cases of the blockchain . 3

4.1 The user’s schema . 33

4.2 The block’s schema . 33

4.3 The chain’s schema . 34

4.4 The inventory’s schema . 34

4.5 The final’s schema . 35

xvii

Acronyms

ASIC Application-specific integrated circuits.

B2B Business-to-business.

CPS Cyber-physical Systems.

GUI Graphical User Interface.

HTTP Hypertext Transfer Protocol.

IoE Internet of Everything.

IoT Internet of Things.

IT Information Technology.

JSON JavaScript Object Notation.

JWT JSON Web Token.

P2P Peer-to-peer.

PBFT Practical Byzantine Fault Tolerance.

PK Public Key.

PoS Proof of Stake.

PoW Proof of Work.

SHA Secure Hash Algorithm.

SK Secret Key.

UI User Interface.

URL Uniform Resource Locator.

xix

ACRONYMS

VE Virtual Enterprise.

WHO World Health Organization.

xx

C
h
a
p
t
e
r

1
Introduction

Industry 4.0 has helped the phenomenon of widespread digitalization to take off. While

this has been a key contributor to shaping the world as we know it, it isn’t so without

some serious downsides.

In this chapter, some of these problems and resulting consequences are explored. A

contextualization of blockchain technology is also presented, pinpointing some of its use

cases and how its implementation can be beneficial to the various honest parties involved

in transactions.

1.1 Motivation and background

More and more resources are allocated to the research and development of smart devices,

connected between themselves forming a complex network with the intent of gathering

information about the user. This relatively new business model allowed some compa-

nies to emerge as technological giants. Instead of selling a product, the user becomes

the product. With huge amounts of data, including user’s behaviours, interactions and

preferences, an accurate image of the person is painted, which is then used to make deals

with third parties. Users make use of these technologies, hoping the actors are honest and

well intentioned. However, many examples of data mismanagement and cyberattacks

do exist that invariably end up with sensitive, private data falling into the wrong hands.

The fact that these centralized architectures are commonly used means that information

regarding transactions is solely managed in a central, private server where it can be easily

tampered.

This can lead to a commonly overlooked problem: lack of traceability. Since there

isn’t a mechanism that allows customers to verify with certainty the origin of the product

being purchased, fraud can happen in multiple levels. A notorious industry specially

1

CHAPTER 1. INTRODUCTION

vulnerable is the wine industry. Retail fraud can affect millions worldwide because from

the customers’ perspective, there isn’t a feasible way to truthfully verify that a specific

bottle indeed came from the producer indicated in the label. As the market for old and

rare wine significantly increased in the past few decades, collectors are also in serious

jeopardy. These wines, commonly costing thousands of euros, are often bought with

the intent of not being drunk but rather kept indefinitely. Because these are so rare and

expensive, very few can claim to be an expert on how they taste and collectors are often

deterred from using methods that can compromise the wine. The conclusions are that

tampering wine bottles is a lucrative business and fraud is hard to detect, creating a

dangerous combination [1].

Another field particularly suffering from fraud is the pharmaceutical industry. A

problem severely aggravated by the internet, as it is a platform that allows a trafficker

or a seller to reach millions while maintaining anonymity. It is a market estimated to be

worth 75 billion dollars per year, as the World Health Organization (WHO) calculates that

up to 50% of online sold pharmaceuticals are counterfeit [2]. It’s not just harmless ripoffs

like water and random minerals contained in a pill. Traffickers have been upping their

game, building labs to produce these drugs. Chemicals are used and the active substance

is present, making it even more scary. The product is dangerous; the doses are wrong, the

substances used have no quality and the know-how just isn’t there to manufacture these

sensible products, where errors can mean the difference between life and death [3]. As

expected, pharmaceutical fraud has catastrophic consequences, specially in developing

countries. Although pinpointing a number of victims is nearly impossible, estimates

range from 100,000 to 700,000 deaths per year caused by counterfeits [2].

1.2 Contextualization

Industry 4.0 is changing the manufacturing environment. However, as this revolution

continues to happen, some issues still pose a difficult challenge to overcome.

After some initial bad reputation gained by being associated with purchases in the

Darknet, blockchain has now gathered the attention of giants such as Microsoft, Facebook,

Google, IBM, among others who are actively researching and developing the technology.

Due to the interest of these companies directly leading to a maturation of the technology,

media coverage, money involved in cryptocurrency trading and peoples’ concerns over

transparency, the perspective is now changing.

By being an open environment that generates immutable data and isn’t based on a

trust model, blockchain technology promises to address some existing problems such as

transparency and traceability across the value chain of a product’s life cycle.

Users no longer need to trust a central authority since the architecture is now based

on cryptography and said to be trustless, meaning participants don’t need to trust other

participants or mediators. Participants, also called peers since the network is Peer-to-

peer (P2P), can check in real time the transactions that happened in the network with

2

1.3. OBJECTIVES

confidence that these are honest and indeed happened, adding a layer of transparency.

The technology also enables complete, reliable traceability of transacted goods since it is

immutable, meaning once a contract is consumed and added to the blockchain, it takes

an amount of computational power that simply does not exist to alter it. And even in

the remote possibility that it will exist somewhere in the future, widely used security

protocols based on the same cryptographic methods will also be compromised, sending

shock waves throughout Information Technology (IT) and deeply changing it.

Below, use cases for the technology are presented in Table 1.1 (adapted from [4]):

Category Usage of blockchain

Data storage management Management of access policies and users’ data

Management of data storage contracts

Management of document storage contracts

Immutable, tamper-proof log of events

Trade of goods and data Purchases of assets

Identity management Management of identity verification

Public Key Infrastructure (PKI)

Other Timestamping service

Implementation of a lottery

Banking applications (automated, distributed ledgers)

Implementation of a social cryptocurrency

Table 1.1: Use cases of the blockchain

Multiple blockchains have emerged with intricate design and implementation speci-

ficities, aiming at actuating in different sectors. As the technology matures, more and

more enterprises will be able to reap the benefits of using blockchain technology in their

areas, hopefully meaning a step in the right direction.

1.3 Objectives

The work on this thesis aims at studying and subsequently implementing a platform

using blockchain technology in a manufacturing environment. The desired outcome of

this platform is to replace the traditional trust based model with a trustless one across all

actors in the value chain of a product’s life cycle.

Since it is inserted in the manufacturing environment, a few characteristics must be

taken into account. Broadly speaking, the developed platform should try to achieve the

following:

• Transparency Between the actors in a supply chain

3

CHAPTER 1. INTRODUCTION

• Immutability Stored information shouldn’t be adulterated

• Value to the consumer The consumer should also benefit from the platform

1.4 Document overview

This document is divided into six chapters:

1. Introduction - Motivation and background sub chapter exemplifies and addresses

the problems which leads to the existence of this thesis while Contextualization tries

to give an insight into what blockchain technology can do to solve the previously

mentioned challenges.

2. State of the art - The focus is on industry 4.0, the blockchain technology and how

it can be helpful in the manufacturing environment.

3. System architecture - An overview of the concepts that support the architecture.

4. Implementation - A description of the actual developed work.

5. Tests and validation - The tests conducted to assess if the platform is working as

intended.

6. Conclusions and future work - A brief look at what has been done and considera-

tions regarding future versions.

4

C
h
a
p
t
e
r

2
State of the art

This chapter will start by presenting an overview of Industry 4.0 and its related concept

of integration in manufacturing. Followed by this, blockchain technology is introduced,

underlining key concepts such as decentralization, cryptography and consensus. Finally,

an attempt is made to understand how the manufacturing industry can benefit with the

use of blockchain.

2.1 Industry 4.0

Technological leaps drastically change the way we produce goods and the term “industrial

revolution” is used to denote these major paradigm changes [5].

The first industrial revolution, occurring in the XVIII century, was characterized by

the introduction of mechanized systems, such as coal/water/steam powered machines in

an effort to replace human labour [6]. The second industrial revolution was defined by

the widespread use of electricity and its impact on industrial processes in the XIX century

[6] [7]. The third industrial revolution, taking place in the XX century, is rather different

from its predecessors, having consisted in digitalization and the use of IT to automate

industrial processes [6].

Forwarding to the XXI century and a new paradigm is observable. Industry 4.0 (or

fourth industrial revolution) is the term used to denote this shift. It promises to address

necessary changes in industrial systems such as shorter development periods, individual-

ization on demand, decentralization and resource efficiency [5].

Integration of the Internet of Things (IoT) into manufacturing is considered key in

enabling the fourth industrial revolution [8]. The IoT allows objects to gather and com-

municate information between themselves in order to reach common goals [9]. There

is an effort to make the IoT presence felt in everyday objects, even in our home’s basic

5

CHAPTER 2. STATE OF THE ART

appliances [10]. The other major player in the scene is Cyber-physical Systems (CPS) [6].

CPS are the fusion between computation and physical systems, in the sense that there

is a loop between computation and physical process where one affects the behaviour

of the other and vice-versa [11]. By integrating CPS and the IoT, production becomes

even better suited to meet the demand, hence creating an industrial revolution [12]. With

more and more objects making use of these technologies, an intelligent network is formed

characterized by a cycle of feedback, thus allowing them to have better decision-making

processes. This also creates a huge amount of information (big data) that can be further

used in analysis, to improve and optimize the existing processes [7]. Smart factories, i.e.

the ones making use of these technologies, have a more flexible approach to manufac-

turing - producing custom products (even in batch sizes of 1) to meet the customer’s

requirements and to take advantage of opportunities, discovered by the analysis of data,

through innovative services, while having a better productivity and resource efficiency

[12].

As this revolution is happening, the IoT continues to morph into Internet of Every-

thing (IoE), where not only machines are included in these smart networks, but a much

more complex system emerges, encompassing people, machines, objects and data [8].

2.1.1 Integration

There are three key concepts that underpin the notion of industry 4.0: (1) vertical inte-

gration and networked manufacturing systems, (2) horizontal integration through value

networks and (3) end-to-end engineering across the product life cycle [13]. A fourth

characteristic; (4) acceleration through exponential technologies, might be considered

to complete the loop. Figure 2.1 illustrates how they are connected

In more detail, we have:

1. Vertical integration refers to the cross-linking of several IT systems operating at

different hierarchical levels in order to create more flexible and reconfigurable man-

ufacturing systems [12]. As a result, these systems become much more adapt to

not only rapidly react to fluctuations in demand or stock levels but also to faults

that naturally occur, thus becoming better suited to the ever-changing environment.

Through vertical integration, more data is generated and available to be collected.

As we make use of the data, an emphasis is laid on resource (energy, human and

materials) efficiency in an attempt to optimize existing processes [13].

2. Horizontal integration stretches beyond to encompass the cross-linking of several

IT systems operating at different stages (logistics, warehousing, sales, production,

marketing, etc) in the manufacturing and business processes, both intra-company

and between different enterprises, creating local and global value networks [12].

Local value networks allow a greater flexibility and transparency within a company.

By having this cross-linking of departments, the consumer is now able to actively

6

2.2. BLOCKCHAIN

customize not only the manufacturing but also the ordering, planning and distribu-

tion of the product. A product’s history is logged and available, making it traceable

at all times [13].

Inter-cooperation, particularly helpful for small and medium sized enterprises, al-

lows them to thrive in an otherwise harsh environment, typically dominated by the

big, resourceful players. An example of a global value network is an Virtual Enter-

prise (VE). In this case, enterprises come together to share skills, competencies and

information to better respond to business opportunities [14].

3. End-to-end engineering across the product life cycle describes the cross-linking

and digitalization throughout the various stages of the product’s life cycle since the

acquisition of the materials until the product end of life while also including its

conception and use [15].

4. Acceleration through exponential technologies alludes to how these technologies

are acting as a catalyst to a transformation happening in every sector. The indi-

vidualised solutions, flexibility and efficiency are allowing new disruptive business

models to emerge, challenging the more rigid, traditional supply chains [13].

Figure 2.1: Industry 4.0 characteristics [13]

2.2 Blockchain

In 2008, the concept of blockchain was introduced by a person (or persons) by the name

of Satoshi Nakamoto in his now famous paper [16]. In this paper, some inherent flaws of

7

CHAPTER 2. STATE OF THE ART

a trust based model are outlined: having a centralized institution as mediators increases

the cost of the transaction as there is always a fee to be paid and the clients are forced

to blindly put their trust upon these centralized companies, empowering them, when

their data can easily be manipulated, tampered, shared or sold without consent to third

parties.

So a new solution was proposed; a purely peer-to-peer electronic payment system,

hence completely removing the need of a mediator, based on cryptographic proof of work

instead of trust [16]. Multiple blockchain implementations which drastically differ from

the original one exist. An emphasis is going to be given to Nakamoto’s implementation

due to being the pioneer that set in motion the whole phenomenon.

A blockchain is a collection of blocks linked together in a decentralized, universally

accessible ledger [17]. As illustrated in figure 2.2, each block contains a cryptographic

hash of the previous block, a timestamp and transactions validated through digital sig-

natures. The information of each block is broadcast to every node, updated by miners,

available to everyone and controlled by no one [18].

Figure 2.2: Each block includes the previous block’s hash, forming a chain [16]

There are three types of blockchains (more later on hybrid implementations): Permis-

sioned or private blockchains, permissionless or public blockchains and consortium. If

everyone has access to the blockchain and is able to actively participate in the consensus

mechanism the blockchain is said to be permissionless. In a consortium blockchain, only

selected nodes have the ability to participate in the validation of transactions, therefore it

isn’t fully permissionless. Finally, in a private blockchain, the system behaves somehow

similarly to a centralized system since a single entity controls which transactions are

validated in the network [19].

2.2.1 Decentralization

In theory, a centralized system is a type of architecture where all or most of the processing

is performed in a central node or central server. Solutions, resources and instructions are

then passed by this central node to the attached client nodes. A decentralized system, on

the other hand, is a system in which peers are equally privileged, where nodes operate on

local information to accomplish goals, instead of operating based on a central influence.

A simplified example of such systems is shown in figure 2.3.

8

2.2. BLOCKCHAIN

Figure 2.3: Centralized, at left, and decentralized systems, at right. Adapted from [20]

Decentralization has a number of benefits over its counterpart - it’s considerably

harder and more expensive to manipulate or compromise a decentralized system, since

there isn’t a central weak point of access. Decentralized systems are much less prone

to failure, since there are multiple autonomous components working autonomously in

the network. The fact that there is no central authority results in less censorship. The

idea that participants can be rewarded ownership or economic stake (through tokens,

or cryptocurrency) for producing work or value in the network, whereas in centralized

systems only the ones controlling the central node reap the benefits of the network.

A blockchain, unlike ledgers controlled by traditional institutions, is replicated in

every node of the network and accessible by everyone. Therefore, it’s often hailed for

being a decentralized system [17].

However, it’s worth noting that almost no system is purely decentralized or purely cen-

tralized. It makes more sense to subdivide these broader terms and characterize systems

in each category accordingly. This results in the creation of a spectrum (centralization

in one hand and decentralization in the other) in which systems fall into, giving a better

idea of how they are designed and dismissing the notion of a binary state [21].

To give a better idea where a blockchain is situated, three subcategories are considered

[22]:

• Architectural (de)centralization - takes into account how many nodes make up the

core of the network and how many of these can be compromised without the net-

work failing completely

• Political (de)centralization takes into consideration how many individuals or entities

ultimately control the network

9

CHAPTER 2. STATE OF THE ART

• Logical (de)centralization relates to the behaviour of the network as a whole and char-

acterizes whether nodes are differentiated between themselves or rather function as

an amorphous swarm

A blockchain is architectural decentralized since there isn’t a core exerting influence

on the other existing nodes. Also, there isn’t a central weak point to be exploited. While

nodes can be attacked and exploited, the integrity of the whole network isn’t at risk.

It’s also political decentralized because no individual or enterprise has special control

over the network, every participating node is equally privileged. And finally, it is logi-

cally centralized since every node is running on the same protocol, behaving as a single

computer.

2.2.2 Digital Signature

A digital signature is the digital counterpart of a physical signature. It’s unique, meaning

two persons shouldn’t be able to produce the same signature. This allows to verify its

authenticity, since it’s possible to correspond a digital signature to its author. It’s also

desirable to tie it to the document it was originally signed on, so it cannot be replicated

in another context without the person’s consent.

To make it possible, each agent is assigned both a private (or Secret Key (SK)) and a

Public Key (PK). The PK is used to validate the signature and the SK used for producing

signatures [23]. A message M has a value that depends on both M and the signer’s SK.

The PK can be used to easily verify the authenticity of the signature PK [24][25].

A digital signature scheme:

1. (SK,PK) <- generateKeys(keysize) This method generates in polynomial time a

matching key pair given an input size. The SK is kept private to the user, while PK

is the key that everyone has access in order to verify the user’s signature.

2. sig <- sign(SK,M) This method produces a signature that both depends on the SK

and M.

3. isValid <- verify(PK,M,sig) This method returns the boolean value TRUE if SK is

a valid signature for M using the PK and returns FALSE otherwise.

It is important to note that while generateKeys and sign should be randomized, verify

should be a deterministic algorithm [21].

This methodology is what enables transactions in a blockchain context to happen.

When two parties initiate a transaction, one uses its SK to sign the transaction data while

the recipient can verify the authenticity of the signature using the other party’s PK as

shown in figure 2.4 [26].

10

2.2. BLOCKCHAIN

Figure 2.4: The usage of private and public keys in a blockchain. Adapted from [16]

2.2.3 Consensus

In a blockchain, for its attributed definition of being a single and global ledger to hold, its

participants must agree on a number of aspects such as which transactions took place and

their respective order. In order words, a consensus between all the nodes of the network

must take place to make the system viable [27].

In systems possessing a central node controlling the network, this doesn’t pose a

challenge at all since most of the times this node has the authority to dictate what is

added and what is rejected. However, in a blockchain, the solution to this problem isn’t

so trivial since there is no central authority and some nodes might be malicious. Therefore,

a consensus validation protocol with the following properties is needed: it must terminate

with all nodes agreeing on the value and that same value must have been produced by a

honest node [21].

Transactions that happen are broadcast to the P2P network. The transaction data is

then verified by the peers and periodically assembled in a block. However, a consensus

hasn’t been reached regarding this block and therefore it isn’t automatically added to the

blockchain [28].

In most implementations, the peers are encouraged to work on creating valid blocks

that contain the transactions broadcast to them so it can be added to the blockchain. If

they indeed manage to create a valid block, accepted by other peers, they are rewarded

with tokens, or cryptocurrency specific to that blockchain [17]. These tokens can either

be generated on the fly, i.e. the number of tokens in the network increases proportionally

to the number of blocks in the blockchain, or rather be a fee of the transaction value.

By using rewards to recognize those who produced honest work, people are encouraged

to participate and more value is generated. If a peer so wishes, he/she can trade the

11

CHAPTER 2. STATE OF THE ART

tokens for physical currency. How much people are willing to pay for these tokens is

entirely dictated by supply and demand of the market. In January 2017, Bitcoin broke the

$1000 mark, while on December of the same year it was almost worth $20000, making it

outrageously profitable for those who got into the train on time. Being a super volatile

market, similar crashes have occurred as well [29].

2.2.3.1 Consensus mechanisms

Before continuing, it’s important to understand the notion of a hash function. A hash

function is a mathematical function used to map an input of arbitrary length into a value

with a fixed length, normally called hash. For the same input, the function always re-

turns the same hash value. Two almost identical inputs have completely different hashes.

These functions are particularly useful in cryptography since it’s easily verifiable that a

given input maps to a given hash value. However, if the input is unknown, it’s nearly

impossible to reconstruct it only knowing its hash value, being trial and error the best

known method. Secure Hash Algorithm (SHA)-256 is a cryptographic function whose

many security protocols rely on. Since it produces a 256 bits output, it would take

on average 2256 guesses to reach the desired input, an unfathomable large number [30].

Previously, it was stated that broadcast transactions don’t automatically make it to the

blockchain, but rather put on standby until a consensus is reached between the peers. In

some implementations, in order for a block to generate consensus among the peers and

be considered valid it must contain a proof (often, a cryptographic one) to go along with

it.

A block containing transaction data (tx) and the previous block’s hash, outputs an

arbitrary string with a fixed length when ran through a hash function. To make the block

valid, a hexadecimal string has to be attached, referred to as nonce. The condition is that

a block, now containing the concatenation of the previous block’s hash, tx and the nonce

is considered valid only if its hash outputs a string that has a lower value than a current

target T. So the condition H(B.N) < T has to be met, where B is the block data, N is the

nonce and H is the hash function. This T value fluctuates to ensure that a new block is

generated after a given amount of time, different in each blockchain solution proposal

[31].

As it was already noted, due to the fact that hash functions are completely unpre-

dictable and pseudorandom, a peer can’t just manipulate the hash value to quickly obtain

the desired input through reverse engineering to quickly go around this challenge. The

best known method to obtain the nonce is to try any random number, attach it to (tx) and

the previous block’s hash, run the hash function and check if the target is met. If it isn’t,

then repeat the process with another random number [17]. This method of trial and error

is called mining and those who participate in it are called miners, since these participants

are also performing a repetitive, arduous task hoping to "strike gold"[31].

12

2.2. BLOCKCHAIN

As the number of miners increase and faster, specialized hardware is being deployed

to the network, T becomes smaller to adjust to the increase of computational power and to

ensure that a new block is formed in a regular fixed interval of time. Therefore, the process

of mining greatly varies in difficulty. Nowadays, mining is often done professionally

with specialized hardware such as Application-specific integrated circuits (ASIC). These

chips are designed and built with sole purpose of mining. And even though everyone can

participate and try to solve these hash puzzles, T can become small enough so that finding

a solution is just not a feasible possibility for a common laptop or personal computer

since, on average, it would take years to be the one finding a valid nonce. Therefore, not

everyone in the network bothers with mining [21].

After the nonce for a given block is discovered, others can confirm that indeed the

nonce is correct by simply hashing the block containing the nonce, tx and the previous

block’s signature. In other words, it’s easily verifiable that the nonce is correct without

having to go through all the work the miner had.

Miners compete between themselves to win the lottery of finding the nonce. The

probability of a miner being the first to solve the challenge is directly proportional to the

resources it can allocate to the task as more computational power means more possible

tries in an amount of time. The first to find the nonce either gets a percentage of the

transactions as a fee or a special tx is added in the block stating that he/she is awarded

with a number of tokens (dependant on the blockchain and usually dynamic over time)

as a reward for having solved the challenge [31]. This miner then broadcasts the valid

block, with nonce included, which can finally be added to the blockchain as displayed in

figure 2.5.

Figure 2.5: The nonce is aggregated in the block in order to reach part of the desired hash
[16]

A valid block can be added to the chain by a miner. However, there is the possibility

that multiple miners create different valid blocks based on the same preceding block. In a

scenario where a compromised miner sets out to broadcast blocks containing fraudulent

transactions, by chance he too can be the first to find the nonce. However, after a given

amount of time, another miner will also find the nonce to a group of honest tx using the

same preceding block the compromised miner used. In this situation, the blockchain

becomes forked [31]. A forked blockchain is illustrated in figure 2.6.

13

CHAPTER 2. STATE OF THE ART

Figure 2.6: A blockchain fork. Adapted from [32]

In a forked blockchain, miners can then add subsequent blocks to any of the branches.

In the previous scenario where the compromised miner that successfully found the nonce

to the corrupted tx, that block is valid and is now in a branch. However, the pool of honest

miners are not going to use the fraudulent block for their subsequent work because the

previous corrupted tx was never used by them in the first place (if the compromised

miner was to send the corrupted tx, honest miners would just discard it since the keys

wouldn’t verify). This leads to having the honest miners mining on the honest branch

and the compromised miner or miners producing work on the corrupted branch. The

protocol indicates that the valid branch is the one with more computational work put into

it. So after a given time, the blockchain will discard the shortest branch and permanently

add the branch that required the most mining power to generate to the blockchain [31].

Therefore, the integrity of the blockchain is assured if more than the majority of min-

ers, weighted by computational power, is honest since it means that there is more than

50% chance that a block will come from a honest miner and fraudulent ones are discarded.

This makes collusion between a group of individuals to their benefit at the expense of

others extremely hard to happen since possessing the majority of computational power

between themselves in a given blockchain is rather unmanageable [21]. The idea behind

this extremely costly (in both electric energy and expensive hardware) consensus mecha-

nism is to select nodes based on a resource that in theory nobody can monopolize such as

computational power.

As every block depends on the previous block and so on, it is extremely difficult to

alter any past transaction history since altering one block would require producing a new

proof of work for every single subsequent block making it an infeasible task [17]. For this

reason, a blockchain is commonly referred to as immutable.

This system is called Proof of Work (PoW). It is the original consensus mechanism

proposed in the Satoshi Nakamoto’s paper [16]. It is still widely used in platforms like

14

2.2. BLOCKCHAIN

Bitcoin and Ethereum [33]. The major downside is that it is extremely costly energy wise.

Estimates show that bitcoin mining consumes more electricity than a country like Ireland

[34].

Due to this, other consensus mechanisms have emerged. One particularly gaining

relevance is Proof of Stake (PoS). In this system, peers invest tokens resulting in a stake

on a given block. The chance of becoming the validator for that block is proportional to

the to the size of the block. Thus, if an individual owns 1% of all of the tokens in the

network, he/she can expect to be the validator of 1% of all the blocks [19]. The same

principle of the 51% attack still applies but no longer with with computational power.

As long as no individual controls more than 50% of all existing tokens in the network, its

integrity is, in theory, ensured.

2.2.4 Hybrid Implementations

The previously discussed PoW and PoS used in many permissionless blockchains result

in a no privacy environment in the network due to the fact that the transactions rely on

the approval by other nodes. This lack of confidentiality is often not particularly useful

for a business. As an example, a company might want to give preferential treatment to a

costumer for a number of reasons, such as incentivizing additional spending or as part of

a loyalty program [35].

Public blockchains will always be more transparent and safe but if blockchain tech-

nology is to become relevant in the enterprise world, it has to take into consideration not

only the customer’s wishes but also the company’s interests.

This is the gap hybrid implementations try to fill. They greatly vary between them-

selves implementation wise. It’s assumed that because they are to be used in a business

case, there is an environment of partial trust between the participants which allows for

flexibility in the whole design process. Now, the participants’ identity isn’t unknown. All

of them are registered and verified. These hybrid implementations often try to combine

the benefits of both a private and a public blockchain: allow some sort of privacy on

Business-to-business (B2B) transactions while also sharing new information on an open

ledger with the consumer regarding their product [36].

Multiple hybrid approaches are emerging to meet the enterprise world’s needs and

desires. Hyperledger Fabric, the most notable framework of the Hyperledger project,

developed by Linux Foundation and backed by big names not only of the tech world but

also financial and software companies and even academic institutions allows users to

set up channels between the participants that form a network [35]. Libra, a blockchain

network with its own cryptocurrency, developed by Facebook and expected to launch

in 2020, also takes a hybrid approach in an attempt to become the dominant currency

used. Although it is decentralized on paper, the occurring transactions will not be veri-

fied by all the nodes, but rather a collection of validators, selected partners that will form

the membership of the Libra Association. Also, to combat the volatility of traditional

15

CHAPTER 2. STATE OF THE ART

cryptocurrencies’ value, thus adding stability and some intrinsic value which facilitates

widespread adoption, Libra’s value will be tied to other reserve assets such as other cur-

rency (U.S. Dollar, Euro, Japanese Yen, among others) and government securities from

central banks [37].

In many hybrid implementations, often there isn’t a predefined consensus mechanism.

Hyperledger Fabric, a modular network, allows users the flexibility to select the most

fitting consensus mechanism [38].

2.2.5 Smart Contracts

As blockchain technology advances, its applications have gone far beyond simple token

transactions. Recent blockchain technology allows the carrying out of contracts where

payment is dependant on the state of a number of variables agreed by peers making the

contract. These type of contracts are referred to as smart contracts. In other words, au-

tomated, self-executing scripts whose execution doesn’t rely on any human interference

[27]. Since these reside in the blockchain, they possess a unique address. When a trans-

action is addressed to it, they will trigger and execute based on the data contained in

the transaction. It’s a trustless model, since there isn’t the need to trust the peer we are

trading with nor a third party that usually mediates transactions.

To illustrate the concept, a simple practical case is considered. Peer A is a collector

of the asset X and wants to acquire as many as possible. He deploys a smart contract

in a blockchain containing the following methods: a "deposit"method allowing him to

store currency in the contract, a "trade"method that sends back currency for everyone

that deposited 1 unit of X and a "withdraw"method allowing peer A to withdraw all of

the assets X in the contract. Peer B, also participating in the same network of peer A,

can now access the smart contract. He can now send to the contract 1 unit of X that he

owns, which triggers the "trade"method that ends up with him getting currency. Peer A

can now make use of the "withdraw"method to withdraw the 1 unit of X that belonged

to peer B. The contract checks the signature of peer A to validate that it is indeed the

contract owner withdrawing and the request goes through. All of the transactions are

recorded and eventually added to the blockchain. Peer A will always be able to tell with

certainty where that unit X came from and for how much it was acquired. This record

is now theoretically immutable (unless it was designed to self-destroy) and was made

without any third party in between.

A number of characteristics are worth mentioning; a smart contract has its own state

and is able to take custody over both goods being traded (previously, transactions in a

ledger were a matter of deleting and adding rows); a decent smart contract should con-

template every possible scenario and act accordingly while being deterministic, making

its behaviour completely predictable [39].

16

2.2. BLOCKCHAIN

2.2.6 Blockchain in Manufacturing

A supply chain is a set of organizations, parties and people directly involved in the various

stages of a product’s life cycle until it is delivered to the customer. Before getting to the

consumer, products often travel through an immense network of retailers, distributors,

transporters, storage facilities and suppliers, comprising the phases of design, production,

delivery and sales [40].

Supply chains have played a significant role in globalization since they have been one

of the catalysts for the growth of both manufacturing and trade worldwide [5]. However,

there is more than meets the eye. Today’s global supply chains have become rather

complex and are generally slow and inefficient due to having to coordinate many parties

in multiple countries, subject to several different laws and regulamentation.

A representation of the tedious and complicated administrative procedures involved

in an import is shown in figure 2.7:

Figure 2.7: The information flow in international trade is both complex and documenta-
tion heavy (adapted from [41])

While supply chains are the backbone for any business in the manufacturing indus-

try, generally not much information is shared to the outside. The consumers are often

oblivious as to where are their products coming from and who is producing them, who’s

supplying what in the long supply chain and the several stages the product went through.

Some certifications are welcomed but at the end of the day, most of the times consumers

have no choice but to accept the claims regarding their product’s information, as verify-

ing certificates can prove to be both impractical and costly. Furthermore, the credibility

of such certificates is oftentimes undermined by misconducts, usually fueled either by

corruption or greed [42]. The Volkswagen emissions scandal is an example of such abuse

[43].

Another challenge companies have to face is related to transparency in the supply

chain, as truthful information regarding suppliers in deeper tiers (i.e. suppliers for the

suppliers of a company) can be scarce [44]. Transparency and visibility in a supply chain

is considered key for any business. It enables new analytics which leads to better decision

making, optimizing processes and smoothing the information flow between all parties

17

CHAPTER 2. STATE OF THE ART

involved. Nevertheless, this can prove to be a hard task. It often involves putting a great

deal of trust in every actor in the supply chain, trusting they are both well intentioned

and capable from a technical standpoint [45].

18

C
h
a
p
t
e
r

3
System architecture

In this chapter, a macroscopic view of the work is presented without discussing implemen-

tation choices. A brief overview, followed by a more in depth description of its underlying

concepts is given.

3.1 Brief overview

As explained in the previous chapter, a purely permissionless, decentralized blockchain

platform isn’t exactly suited to a business environment due to a number of reasons, confi-

dentiality being the one that stands out the most.

We’ll start by defining retailers and suppliers in our platform. Retailers are the com-

panies that sell goods directly to the public (customers). Suppliers are companies that

provide something to the retailers. As seen in the previous chapter, these networks can

become quite large rather quickly (retailers have a lot of suppliers, these suppliers then

can have a lot of suppliers and so on) which can lead to wrong information.

Therefore, the goal is to develop a platform that connects suppliers, retailers and

customers, each having their own interface. Companies get connected with their sup-

ply chain partners. All transactions between business partners get registered in several

ledgers in the form of blocks, which form a blockchain. At the same time, a costumer that

purchases a product from a retailer has access to information regarding transactions that

are behind the making of said product. Hopefully, this can bring two major benefits: 1)

companies can have a better insight on their supply chain partners and 2) costumers can

better know the suppliers behind their final product.

This is possible with the creation of several ledgers that have precious information

regarding previous transactions. The most important aspect is to ensure that these ledgers

remain truly immutable. If otherwise, then the whole platform becomes pointless. In

19

CHAPTER 3. SYSTEM ARCHITECTURE

a decentralized system, this is somewhat achievable since each peer holds a copy of the

ledger and to compromise it, one would need to hack into each of those copies to get the

desired outcome. With enough nodes, this proves a practically unfeasible task. However,

it’s worth mentioning that there are no flawless architectures security wise. Due to the

impossibility of having hundreds, even dozens peers to simulate a decentralized network,

a centralized solution was developed instead. The underlying concepts of the platform

as well as the steps taken to try to ensure the integrity of the ledgers will be explained in

this chapter.

What businesses is the platform aiming to serve? It’s a blockchain hybrid implementa-

tion with the intent of storing information in an immutable way and increase transparency

between companies and between company-customer. Therefore, the platform is intended

for every business and respective customers.

An abstract overview of the platform is displayed in figure 3.1. In this image, we have

suppliers, a retailer and a customer. The retailer can see the past transactions of its three

suppliers while the customer can check the transactions that were involved in product.

Figure 3.1: An overview of the platform

3.2 Identity

Unlike the original bitcoin’s blockchain implementation, the anonymity of the different

actors isn’t an option. Their identity is a hard requirement since the idea is to increase

the transparency in a manufacturing environment. The goal is not to enable transactions

but rather to know who made them.

Whenever a company or a company’s branch joins, a number of fields are registered

to identify the new member. These fields can vary but the idea is to make it clearly

20

3.3. PEERS

identifiable to its business partners.

An example of the information registered is displayed in figure 3.2.

Figure 3.2: The company’s information that is registered

Customers, on the other hand, have a much less active role in the network. They

never get registered since they aren’t participating in the transactions, meaning their

identity is irrelevant. However, they also greatly benefit from the platform. As outsiders,

they come into play whenever they acquire a product in its final form that belongs to a

participating company. A ledger was created specifically for their product, containing

relevant information they can inspect carefully. Later on, this will be explained in greater

detail. This essentially tries to demolish the traditional trust based system in place. As

long as the ledgers aren’t compromised, a customer can have much more insight regarding

his product

3.3 Peers

The peers are the active participants in the network. In this architecture, there isn’t a

single common ledger to everyone. It doesn’t make sense for two companies that have

nothing to do with each other, to be able to check each other’s past transactions. In a

scenario where a give company is testing out new products, it would be catastrophic to

have that information out in the public. Therefore, transactions should only be visible to

other relevant companies. The solution is the creation of several ledgers with different

permissions. This way, a company can only certain ledgers which results in a degree of

confidentiality.

The existence of multiple ledgers allow peers to join multiple conglomerates in accor-

dance to what makes sense business wise. When a peer registers in the platform, some

sort of unique identifier must be created as well. This way, a partner can be added or

removed from networks. Apart from this, every time a peer registers, a new ledger is

created specifically for that partner. As its business partners also join the platform, the

21

CHAPTER 3. SYSTEM ARCHITECTURE

original peer invites them to join his subset of the network. This brings many benefits as

will be explained later.

Ideally, if every member of a supply chain of a given company is present and active in

the platform, great insights can be generated which results in much more transparency.

Because peer A (PA) might have peer B (PB) and peer C (PC) as business partners

but PC then has peer D (PD) and peer E (PE) as its own partners, the possibility to be in

multiple networks within the platform must be supported.

A representation of several subset of networks within the whole network is displayed

in figure 3.3. P stands for peer and the next letter indicates which peer. So ten different

example peers are represented (A to H).

Figure 3.3: Several conglomerates in the network, ensuring confidentiality

It is established that peers should be in a conglomerate with their respective business

partners. This brings a number of benefits to the participants. Firstly, it allows the

inspection of your business partner’s ledgers. This is of particular importance. This is

a key point since this is what enables an increase of transparency between the several

actors that comprise any given supply chain. By being allowed to so, a peer can inspect its

partners past transaction and be certain that it isn’t being wronged by its suppliers. This

is vital on certain businesses. Even giant companies have many suppliers and therefore,

there are a lot of raw materials handling and manufacturing processes that go beyond

their scope. An electronic device company might be supplied from capacitors, to memory

modules to processors. However, being in the final step of the supply chain just before the

customer, these companies are required to make sure everything is regulation compliant

and has quality. The ability to inspect its suppliers transactions empowers the company.

Being able to truthfully check to whom and from where are these suppliers buying from

22

3.3. PEERS

can give great insight in making sure it is not being wronged.

It’s important to note a relevant question: How far should a company be able to inspect

his suppliers? As in, should the company be able to inspect their suppliers’ suppliers

by themselves? In our example, peer A is supplied by B and C. Naturally, peer A is

able to inspect the latter two. But C is supplied by D. Should peer A be able to inspect

D and its suppliers? A line must be drawn, otherwise due to the interconnectivity and

globalization, company A could quite possibly be able to inspect every peer present in the

platform. In this implementation, a decision was taken to only allow a peer to directly

inspect its business partners.

An illustration is displayed in figure 3.4 (the objects are then further inspected).

Figure 3.4: Peer A can inspect its businesses partners’ chains

It’s also important to notice a key issue. This doesn’t stop fraud per se. Every system

will have its intrinsic flaws since it is man made. A company might still record false

information in the platform. For example, a company might register that it gathered

some certain raw materials from place B while they were expected to get it from place A.

Being a private platform, it doesn’t hold any sort of legal power that compels companies

to be honest and truthful. It’s up to certain entities such as regulators and other partners

to ensure everything is done in accordance with what’s stipulated for their own benefit.

Another major benefit of peers being grouped with their partners relates to trans-

actions. A sort of inventory is associated with every peer in the network. This allows

the listing of products with fields containing relevant information like the name of the

product, the manufacturer, the amount, the value, an unique identifier (different manu-

facturers might produce two seemingly identical but different products like bolts so it’s

23

CHAPTER 3. SYSTEM ARCHITECTURE

important to make the distinction) among others. By being in a conglomerate with other

partners, a peer has access to the inventories of each of them. With this in place, a peer

can then make purchases in the network that automatically get compiled in the form of

immutable blocks (more on 3.4) that are then added to a ledger.

An illustration of peers inspecting inventories and making purchases is displayed in

figure 3.5.

Figure 3.5: Peers in the same network can inspect each other’s inventory and make pur-
chases amongst themselves

Two important questions arise: how is the consensus mechanism processed and how

do the assets and the monetary compensation switch hands? To tackle the first question,

its important to remember that the platform is to be used in an environment of partial

trust and theoretically, peer A isn’t too skeptical about transactions between peer B and

C. Because transactions only directly concern two parties and the network itself isn’t

decentralized, other peers don’t get a vote on if the transaction is to be deemed valid and

subsequently added to the network. Therefore, the consensus mechanism itself is made

between two parties (buyer and seller) and it simply involves them both agreeing with

each other on the several aspects that make up a transaction. This was the implemented

approach. If the system was to be decentralized or was to be used in an environment

where it is important to give parties this voting power (for example, in a network where

users have anonymity) then a consensus mechanism would have to be devised. To answer

the second question: just like they normally do. Just like many other blockchains imple-

mentations, there is no cryptocurrency associated with this specific platform. This would

be possible, but would require additional resources to develop . Therefore, the platform

doesn’t support the notion of digital wallet. The idea isn’t to replace traditional banks,

but to update an otherwise dangerous way of storing information through the usage of

24

3.4. BLOCKS

an immutable registry. So, peers are responsible with moving goods, both material and

currency, among themselves just like they normally do. Once a transaction is completed,

they are encouraged to register the details in the network. The problems associated with

damaged or stolen goods have existed for as long as supply chains exist. Blockchain can’t

solve those problems since it doesn’t have legal power and it isn’t a way of transporting

physical goods either. It is simply a registry of transactions between parties.

Peers also have another important feature as pointed out in 3.2 that directly relates

to customers. Companies that directly sell to customers can do so with increased trans-

parency.

A final product is always the result of several transactions that happened between

the several actors in a supply chain. In light to this, a company has an option within the

platform to assemble a product with the intent of selling it to a customer by selecting

all the transactions (that by now is already in the form of blocks, as will be explained in

3.4) of supplies that make up that specific final product. Then, a new ledger is created

containing all this information. This ledger is then inspectable by the customer, through

a serial key. This naturally can give a great insight to the customer

It increases transparency between the customer and the company. Now, the customer

knows exactly what is the seller buying off suppliers (as well as a timestamp of purchases)

and who these suppliers are. As long as the ledger’s integrity isn’t compromised, this

information is reliable.

It’s important to point out that this newly created ledger, that will be made available

to the customer, only contains transactions that happened in the network. This essentially

means two things: 1) there won’t be any information regarding products that the company

itself manufactures that are later integrated in the final product (constituents) and 2) there

also won’t be information regarding the manufacturing processes a product went through.

2) This doesn’t seem of particular relevance, since the ordinary customer isn’t too keen

on understanding the manufacturing processes as long as the quality of the product is

sound. And although solving 1) would certainly be interesting, oftentimes the fact that

those constituents are associated to the well known company is enough to please the

customers.

3.4 Blocks

Blocks are the essence of any blockchain. The ability to store immutable information in

the form of blocks remains the core of any blockchain network. And this is quite telling

since different implementations can vary a great deal between themselves.

A block consists of compiled information about one, or more, transactions that took

place in the network. In this specific platform, a block is created for a single transaction

since the network won’t have to withstand much traffic.

Before diving into more details, let’s talk about integrity since it’s vital to ensure

blocks remain logical throughout time. If it was possible to change its fields after they are

25

CHAPTER 3. SYSTEM ARCHITECTURE

set in the network, then it would be just like a normal regular system and transactions

could be adulterated. To tackle this problem, the solution used is the solution many other

blockchain implementations use; through the usage of hash functions. Blocks possess

several fields of information and two of the most important are related to its hash and to

the previous block’s hash which is related to its location.

As it was explained, hash functions are like digital signatures since every input has its

own. Therefore, whenever a block is compiled, it’s ran through a hash function to obtain

the corresponding hash. Any number of the block’s fields can be ran through the hash

function as long as the process is consistent. However it’s important to get differentiating

fields through to ensure different transactions won’t output the same hash (it’s likely

that a transaction of a specific product between two companies keeps repeating and thus

it’s important to feed the function more than the buyer/seller/product fields). A way to

ensure this is to run through the hash function every single field, including the timestamp

and the previous block’s hash.

An illustration of three partial blocks in the same ledger is shown in figure 3.6.

Figure 3.6: Blocks always have an unique hash as well as the previous block’s hash

Obviously, in order to feed the hash function the previous block’s hash field, we

need to already know it first. This essentially means to know to which ledger does the

block in the making belongs to. This isn’t too hard since given the circumstances of the

transactions, it’s always known who is buying and selling and therefore where to place

it. The listed item by the seller already contains most of the information needed such

as the identity of the seller and the product description. To know who is buying is also

trivial. Since a peer has to be logged into the platform to purchase, we can make use of

the browser’s token that is making the request to the network to get the identity of the

buyer.

As a peer joins the network, a new block is always created. This block is called

the Genesis Block or Block zero and it signals the beginning of that peer’s ledger (hence

the name Genesis) on which additional blocks are sequentially added. In some other

blockchain implementations, namely those with a common ledger to everyone, this index

26

3.4. BLOCKS

is particularly useful since it serves as a good metric to judge the network’s traffic due to

blocks being generated every X minutes. Also, since cryptocurrencies are limited, indexes

allow to make predictions about when are these going to cease. In this platform, neither

problem is valid and therefore indexes aren’t needed.

Even though the Genesis block mostly contains zeros, its hash is still likely unique

unless two peers registered on the same date at the same exact time, since a timestamp

service is used to generate the hash.

An example of a Genesis Block is shown in figure 3.7.

Figure 3.7: An example of a Genesis Block

Whenever a transaction takes place in the network between peers, it gets compiled

into a block in the relation of one transaction per one block. As a result, the blocks must

contain fields of information relevant to the proceedings. In this case, the following

categories make it to the block:

• timestamp - a digital record of the time of occurrence of the block’s creation

• issuer - The entity selling the product

• newOwner - The entity buying the product

• data - Product information, particularly its name

• dataID - The output of hash(issuer + data) to avoid ambiguity of same product with

different manufacturers

• amount - The quantity of products sold in one transaction

• value - The monetary worth of the transaction

• prevHash - The previous block’s hash

• hash - The output of hash(timestamp + issuer + newOwner + data + dataID + amount
+ value + prevHash)

27

CHAPTER 3. SYSTEM ARCHITECTURE

As these fields get completed with the relevant information, transactions are easily

identifiable. These are the blocks that are made available for further inspection by both

the peers and the customers.

An example of a block in the network is shown in figure 3.8.

Figure 3.8: A regular block of the network

3.5 Ledgers

As mentioned before, ledgers are collections of blocks appended together and it can never

be retroactively changed. By now, the ledgers that get generated along the navigation in

the network have been approached. Whenever a peer registers, a new ledger is created

containing only the genesis block initially. As a peer participates in the network, its

corresponding chain gets longer in terms of number of blocks registered. It’s worth

noticing that whenever a transaction is made, two blocks are generated. Two because,

that transaction concerns two parties and therefore there are two ledgers that need to be

updated. The blocks are nearly identical with the exception of prevHash since that field

relates to the ledger they will be appended to.

The longer a ledger is, the more past transactions are safe. It’s not blocks themselves

that grant an increased layer of security to the network but rather the way they are linked

together forming a chain.

Because there isn’t a consensus mechanism, there is no need to deal with the famous

51% attack nor the Byzantine fault condition. However, transactions can still be subject

to undesired to change. Adulterating a transaction (as in, modifying an existent block)

results in a completely different block’s hash. This means that the subsequent block will

have a prevHash that doesn’t correspond to the previous block. Therefore, there are two

major ways to check if the system is compromised: 1) Check if the visible hash codes

indeed correspond to the other information fields present in the block and 2) Check if the

sequence of Hash and prevHash of every consecutive blocks remains correct. Tampering

28

3.5. LEDGERS

one block means having to tamper every single subsequent block which proves itself an

arduous task to do.

A new ledger is formed whenever a peer assembles a final product by selecting the

relevant transactions. This new ledger is just a collection of loose blocks, since these in

all likelihood aren’t linked in any way. The corresponding transactions likely were done

with other unrelated arrangements being done in between. This results in the blocks that

make it to the new ledger, don’t have corresponding Hash and prevHash pairs. This is the

ledger that peers have access to with the corresponding serial key.

29

C
h
a
p
t
e
r

4
Implementation

This chapter contains an overview of the implementation detailed in chapter 3. It starts

with brief look at the most relevant frameworks and tools employed, to put in context the

jargon and the implementation decisions that were taken. Next, relevant developed work

in the database, the back end and the front end will also be explained. A general naviga-

tion through the website with the several levels of content is also provided. The entirety of

the code produced is available on https://github.com/dfarinha?tab=repositories.

4.1 Frameworks and tools

Several frameworks and tools were used for the development of this platform, the most

notable being:

• Node.js Node.js is an open-source, asynchronous event-driven JavaScript run-

time environment that executes JavaScript code outside of a browser,

allowing the development of web servers and modules with multiple

functionalities [46].

• Angular Angular 2+ is an open-source, TypeScript-based web framework that

allows the creation of single-page applications (upon startup, data is

sent to the browser as a JavaScript Object Notation (JSON) payload

and the HTML transformation process is shifted from server to client

side. Interactions are done with re-writings of the current page within

the browser rather than requesting and loading from the server), de-

veloped by Google [47].

31

https://github.com/dfarinha?tab=repositories

CHAPTER 4. IMPLEMENTATION

• MongoDB MongoDB is an open-source NoSQL document database that uses

JSON documents with schema. It has a number of features like ag-

gregation, replication, support of JavaScript queries, etc [48]. Mon-

goDB Compass was used, which is a Graphical User Interface (GUI)

for MongoDB.

• Express Express.js is an open-source, web framework for Node.js that provides

robust tooling for HTTP servers [49].

• Passport Passport is authentication middleware for Node.js that authenticates

requests. It provides an array of multiple authentication strategies

[50].

A free to use User Interface (UI) kit by Creative-Tim as a template for the landing

page was also used.

4.2 Data Models

Data modelling is always going to be a flexible process that needs to take into consider-

ation the purpose of the application, the intrinsic characteristics of the data and what

will its manipulation patterns be. For this application, five schemas were created with

Mongoose, an object modelling tool for MongoDB:

• Users

– The schema Users describes a peer. Apart from the usual identification fields

like email or location, fields like key (which indicates key people within the com-

pany) or affiliate (which indicates affiliate companies) help to paint a clearer

picture of the company’s operations. Whenever a peer joins the platform, these

should be filled. Along with these, an unique ID is also assigned automatically.

The field partners is an array of documents that naturally stores other users. In

order to avoid saving whole documents in the array, only the reference to the

unique ID is stored as a reference. When needed, MongoDB’s Populate() allows

the possibility to fetch all the desired data related to the user with the ID in

question.

Passwords are never stored because, should the database be breached, every

password would be leaked. A modern day catastrophe in most cases. Hash-

ing it and storing its output value is common practice even though that also

isn’t entirely safe due to the deterministic nature of said functions, where two

identical inputs result in the same hash. Multiple strategies (like the usage of

rainbow tables) have surfaced to try to decode hashed passwords and it has

been shown that common "weak"passwords can easily be compromised. A

way to go around this is to add a salt which is random value that is appended

32

https://www.creative-tim.com/

4.2. DATA MODELS

to the input of hash functions, creating unique outputs. The result is that

even the same two passwords will yield different hashes, making it look like a

non-deterministic function.

The several fields as well as its types that comprise the user’s schema are shown

in table 4.1.

Table 4.1: The user’s schema

Field Type
email String
name String
partners Schema.Types.ObjectId, ref: ’Users’
location String
address String
country String
cellphone String
postal String
key String
affiliate String
hash String
salt String

The model Users also has several methods, most notably:

* setPassword generates the salt and the subsequent hash

* validatePassword checks whether a log in attempt is valid

* generateJWT generates a JSON Web Token (JWT) for the user upon a

successful login, allowing it to access protected routes

• Block

– The schema Block describes a single block. In subsection 3.4, the anatomy of a

block has already been examined. It is represented again in table 4.2.

Table 4.2: The block’s schema

Field Type
timestamp Date
issuer String
newOwner String
data String
dataID String
amount Number
value Number
prevHash String
hash String

Because filling these fields isn’t straightforward, a class block was also cre-

ated. Notably, the constructor receives all of the arguments (the proper block’s

33

CHAPTER 4. IMPLEMENTATION

creation date as well, courtesy of a timestamp service) and makes use of a

JavaScript hashing component to hash the necessary fields. Only then, is a

document created in the block model.

• Chain

– The chain model is relatively simple since it is merely an ordered list of blocks.

It could be an additional field of the model Users in the form of an array but to

avoid clogging that model too much, which affects visualization while testing,

a new one was created. Because it’s just a collection of existing entries in the

database, it only has two fields both of which reference other documents.

The chain model is represented in table 4.3.

Table 4.3: The chain’s schema

Field Type
owner Schema.Types.ObjectId, ref: ’Users’
blocks Schema.Types.ObjectId, ref: ’Block’

• Inventory

– The inventory model represents a peer’s inventory. It is comprised of two fields.

One of them is a reference to a document of type User since each inventory

belongs to a user and the other field is a products array where each object is

defined by a name, an amount and a value. These are the values that are later

compiled into a block.

The inventory model is displayed in table 4.4.

Table 4.4: The inventory’s schema

Field Type
owner Schema.Types.ObjectId, ref: ’Users’
products [{ name: String, amount: Number, value: Number}]

An inventory class was also created that is responsible for assembling an object

with the name, amount and value values.

• Final

– The final model represents a final product, after a peer has assembled it with

the relevant blocks. The name field contains the name or a description of

the assembled good while the manufacturer is a reference to an existent User,

the peer behind the production and selling of the product. The serial field

is needed to attach an unique key to the product so the customer can look it

34

4.3. PROTECTED ROUTES

up. Finally, it also has an array of objects of the type Block which shows every

block behind the product.

The final model is displayed in table 4.5.

Table 4.5: The final’s schema

Field Type
name String
serial String
manufacturer Schema.Types.ObjectId, ref: ’Users’
blocks [{ type: Schema.Types.ObjectId, ref: ’Block’}]

The serial is generated through a simple JavaScript library that generates a

random number in a selected interval.

4.3 Protected routes

Routing describe the response of the application when a request is received, through

a path and a specific Hypertext Transfer Protocol (HTTP) request method (GET, POST,

HEAD, PUT, etc) to a specific endpoint.

Before detailing the most relevant endpoints developed, an overview of route protec-

tion is needed.

Naturally, most of the routes are not available to users that are not signed in. This is

due to: 1) A user has its own peer area with relevant information displayed and 2) most

requests require an identity to know who the the peer behind the request is.

To ensure this condition within the platform, a control is made both server side and

client side:

• Server side - Whenever a user signs in, a JWT is created and associated with that

peer. While the session is active, every request by that user will have the JWT

attached in the payload. When a request is received, the token is decrypted and

analyzed to check its validity. If it isn’t, the server won’t respond to the request.

When a peer logs out, the JWT is destroyed.

• Client side - An authentication guard and an authentication service ensure this

control in the front end. Whenever a peer successfully logs in, its JWT will be

sent by the back end. The token is then retrieved and associated to the user in

the authentication service. An authentication guard communicates with the said

service whenever a request is received to access a protected route. It then analyzes

the validity of the token and answers accordingly. Only then does the guard let the

user’s request to a protected route go through to the back end.

35

CHAPTER 4. IMPLEMENTATION

4.4 Relevant routes

Several endpoints were created server-side, the most relevant ones being explained here.

The corresponding flowcharts are presented at the end of the bullet list.

• /api/users/

– This endpoint handles registration requests. It creates an object user through

the body of the request and it analyses if properties user.email and user.password
are present since these are required to perform a registration (an additional

form validation is performed on the front end as well). If any of these two

fields isn’t present, error 422 (Unprocessable Entity) is thrown and registration

fails. If both were inputted, the user is created and a JWT is generated to allow

navigation.

Afterwards, a new inventory for that user is automatically created in which

inventory.owner = user.id (the reference to the user is stored in the field owner
of the inventory) and the array products is empty. Likewise, a new chain is

also created, belonging to the same newly created user. A genesis block is then

created with the timestamp service and the fields as seen in subsection 3.4.

This new genesis block is a normal block and is saved normally. As seen in 4.2,

block objects aren’t saved in the array blocks of the chain, only its references.

Therefore, the reference of the genesis block is then stored in the array blocks.
Finally, the process is complete and the newly created user is returned as a

JSON object.

A diagram that illustrates the registration process in the platform is shown in

figure 4.1.

• /api/users/addblocktochain

– This endpoint is responsible for adding blocks to the corresponding chains. In

other words, it contains all the logic behind a transaction. When one happens,

a couple things need to be done. Both parties’ identity must be known, the

transaction data needs to be analyzed, two different blocks need to be gen-

erated (the prevHash field will be different) and subsequently added to both

parties’ chains and the seller’s inventory needs to be updated, since the product

is no longer in his possession.

Transactions are actions that are activated only by the buyer. A peer is brows-

ing its partners’ inventories and clicks on a product to buy it, triggering the

transaction. With this in mind and with the fact that it is a protected route, it

is known who is making the purchase through the request’s payload. Because

a product is clicked, it is possible to send the transaction data and the seller

identity in the request’s body. Therefore, through the request, it is possible to

36

4.4. RELEVANT ROUTES

know: 1) the identity of the buyer (newOwner) and 2) the identity of the seller

(issuer) and the transaction data.

After both identities and transaction information is known, the only thing left

to do is to take a logical step by step approach to make the necessary alterations.

Almost all information needed to compile a block is known by know, expect

what will the prevHash be. Through the buyer’s ID, its chain is fetched. An

object chain, as seen before, has the field owner and blocks which is an array of

blocks. Since it is now fetched, getting the latest block’s hash (which is the new

block’s prevHash) is done with chain.blocks[chain.blocks.length - 1].hash. After

this is also known, the new block for the buyer’s chain can now be generated

and pushed into its chain.

An identical process is repeated for the seller. After its chain is dealt with, the

inventory also needs updating. Its inventory is then fetched and the transaction

product is pulled from the array products. The whole process is now complete

and the now updated inventory is returned as JSON.

A diagram that illustrates this process is displayed in figure 4.2.

• /api/users/showpartnerchains

– This endpoint returns all the peer’s partners in detail as well as all of the

partners’ blocks. Because objects aren’t stored, only its reference, MongoDB’s

populate() fills in the rest of the data, as mentioned before. This allows the

complete object to be sent to the front end and thus showing it all of its fields

since showing only references to the user would be no good. When the request

is received, again through the payload it is known who the peer behind the

request is. With that, a comparison between the content of its field partners
with each chain owner returns every chain of every peer’s partner. Now that

all the relevant chains are known, its fields blocks and owner are populated to

return the wanted object.

An illustration of the process to show the peer’s partners and its chains is

displayed in figure 4.3.

• /api/chains/:id

– The previous endpoint returns all of the partners’ chains, which can be a bit

too broad. In this endpoint on the other hand, only one chain and its blocks is

returned. The ID of the desired chain is sent through the Uniform Resource

Locator (URL). This is done, for example, when a peer is browsing a list of its

partners and clicks in one of them, triggering the request.

When the request is received, the ID of the chain is retrieved from the URL, the

corresponding chain is fetched and its blocks are populated. Then, the chain

is now returned as a JSON.

37

CHAPTER 4. IMPLEMENTATION

• /api/invent/addpartner

– This endpoint allows the peer to add partners to its list. Through the request’s

payload, the identity of the peer is known. In order to add a partner, some sort

of unique identifier that identifies another peer. In this implementation, the

email field was used. With that input, the corresponding peer is fetched.

If no peer exists with that identifier, error 400 is thrown (Bad Request). If it

does exist, its reference is then stored in the partners field of the original peer,

which is then returned as a JSON object. This is a one way process. Peer A adds

peer B, but peer A doesn’t get automatically added to peer B. This could easily

be implemented but in some use cases it might not be the desired behaviour.

So, with flexibility in mind, in order for both peers to be added in each other’s

partners field, two requests need to be made.

An illustration of the process is depicted in figure 4.4.

• /api/invent/addproduct

– This endpoint allows the peer to add a product to its inventory. The user’s

identity is once again known through the payload.

The peer inputs the product’s name, value and amount values. These fields

constitute the request’s body and are used to create a product, using the in-
ventory class. With the product created, the peer’s inventory needs updating.

Through its identity, its inventory is fetched. Following this, the newly created

product can be pushed into the products array of the peer’s inventory. After

this is completed, the updated inventory is returned as JSON.

The handling of a add product request is shown in figure 4.5.

• /api/invent/addfinal

– This endpoint allows the peer to assemble a final product. This is the product

that is later sold to the customer. As explained before, this product is created by

selecting all of the blocks that contain relevant transactions. Because several

blocks need to be selected, this action is done in the area where a peer is

inspecting its own main ledger. While visualizing every block in the front end,

a peer clicks on the desired ones to select them. A name, or a description should

also be written before assembling the product. When all of this is concluded,

the request to add a product takes place. The payload is also analyzed once

again because the identity needs to be known. Following this, a new final

product is created in the final class which contains name, manufacturer and

blocks along with field serial that is generated in the process. This product is

then stored and returned as a JSON.

An illustration of this process is displayed in figure 4.6.

38

4.4. RELEVANT ROUTES

• /api/invent/getfinal/:serial

– This endpoint handles requests by costumers. Because customers don’t get

registered, the route isn’t protected.

The costumer inputs the serial key given to him in the moment of purchase

in the front page of the platform. The serial is then passed in the URL and

the corresponding product is fetched. The blocks and manufacturer fields get

populated and that object is sent as a JSON.

An illustration of this sequence is displayed in figure 4.7.

Were email and password
fields inputted?

Error 422NO

newInvent = new
Inventory(user._id)

YES

GenesisBlock = new Block(...)
chain.blocks = [genesis.Block._id]

res.json({user})

Sign up request

FUser = new Users(user)
fUser.save()

Creates a user with the information received. JWT is generated with method
.toAuthJSON()

Creates a new inventory with inventory.owner = user._id and
inventory.products = []

newChain = newChain(user._id) Creates a new chain with chain.owner = user._id

Generates a new block with the current date and genesis block's data. Also
saves the block's in the chain created in the step above

Returns the created user as JSON

Figure 4.1: The process of registering a user

39

CHAPTER 4. IMPLEMENTATION

payload: { id }

Chains.findOneAndUpdate({
owner: id}, {$push: {blocks:

block._id}

Request

block = new Block(...)

prevHash =
chains.blocks[chain.blocks.lenght-1].

hash

Chains.findOne({owner: id})

res.send({invent})
Finds the inventory of the seller and

updates it by removing the sold
product

Invent.findOneAndUpdate({ owner:

body.owner}, {$pull: {products:

{id:body.id}

Chains.findOneAndUpdate({

owner: id}, {$push: {blocks:

block._id}

Users.findOne({ name:

body.issuer}

Chains.findOne{owner:

obj.id}

prevHash =
chains.blocks[chain.blocks.lenght-1].

hash

block = new Block(...)

Updates the seller's chain with the
block created in the step above

Assembles a block

Gets the hash of the last block of
the seller's chain

Fetches the chain of the seller

Gets the seller's identity, based on
the request's information

Gets the id of the user (buyer)
making the request through its

payload

Fetches the chain of the user
making the request

Gets the hash of the last block of
the user's chain

Assembles a block

Returns the updated inventory as
JSON

Updates the user chain with the
block created in the step above

Figure 4.2: The process behind a transaction

40

4.4. RELEVANT ROUTES

payload: { id }

Users.findbyId(id)

populate('blocks').populate('owner')

Request

Identifies the user making the request

Chains.find{'owner': $in:
user.partners}

Fetches all the chains whose owners are in user's partners array

Populates blocks and owner fields of the chains fetched in the step
above

Gets the id of the user making the request through its payload

res.send{obj) Returns the populated object as JSON

Figure 4.3: The process behind showing the peer’s partners and its chains

41

CHAPTER 4. IMPLEMENTATION

payload: { id }

YES

res.send(user)

Request

Updates the user partners' field with the user that matches the inputted emailUsers.findOneAndUpdate({ _id: id },
$push: {partners: obj._id }

Returns the added user

Does a peer that
matches the identifier

existsts?

Gets the id of the user making the request through its payload

No Error 400

Users.findOne({ email:
body.email})

Gets the user that matches the the input. In this implementation, the email
was used as an unique identifier

Figure 4.4: The process behind adding a partner

42

4.4. RELEVANT ROUTES

payload: { id }

prod = new Product(body.name,
body.amount, body.value)

res.send(invent)

Request

Creates a product with the request's body. The request should
contain the name of the product as well as its value and amount

Invent.findOneAndUpdate({
owner: id}, { $push: {

products: prod}

Finds the inventory of the user who made the request and updates
it with the product created in the step above

Returns the updated object as JSON

Gets the id of the user making the request through its payload

Figure 4.5: The process behind adding a product

43

CHAPTER 4. IMPLEMENTATION

payload: { id }

final = new
FinalProduct(body.name, id,

body.blocks)

res.send(obj)

Request

Creates a final product with the request's information. The serial is
generated by a library and added as well

final.save(err, obj) The final product is saved

Returns the created object as JSON

Gets the id of the user making the request through its payload

Figure 4.6: The process behind creating a final product

44

4.5. GENERAL NAVIGATION

Final.findOne({ serial:
req.params.serial})

populate('blocks').
populate('manufacturer')

Request

Populates the blocks and manufacturer fields

res.send(results) Returns the populated object

Finds the final object through the serial which is passed in the URL

Figure 4.7: The process behind returning a final product

4.5 General navigation

The top level navigation (or first level content) corresponds to the front page in which a

brief description of the product is shown as well as the team behind the project (advisor,

co-adviser and advisee). It’s through the front page that a customer can make use of

the serial key provided in a purchase. This leads to a deeper navigation level where the

customer can inspect the relevant blocks. Also in the front page, authentication/regis-

tration is available to the peers. If valid, navigation is redirected to the peer’s area. The

authenticated peer is now referred simply as "peer". The peer area is comprised of six

categories:

• Partners’ chains - A list with the peer’s partners. Each can be individually clicked,

leading to the inspection of every single past transaction, in the form of blocks,

related to that partner

• Your own chain - The category in which the peer is able to inspect the blocks that

comprise its own chain (the same data that is displayed when the peer’s partners

inspect it). Through this category, the peer can also assemble a product to be sold

45

CHAPTER 4. IMPLEMENTATION

by selecting the relevant transactions. Through this operation, an unique serial key

is generated which should be passed along to the customer

• Partners’ inventories - The list of products currently being sold by the peer’s part-

ners, allowing purchases to be made which are added in the relevant ledgers

• Manage inventory - Where the peer can add and delete products which are then

displayed to its partners

• Partners’ profiles - A list with the peer’s partners. Upon further clicking, additional

information is displayed about the clicked partner such as contact information, key

people within the organization, affiliate companies. The peer can also add a new

partner to its network in this category, expanding business opportunities

• Profile - Where the peer can update its own profile with relevant information. This

information is later displayed to the peer’s partners

An illustration of the platform’s levels of content is displayed in figure 4.8.

Platform
navigation

The team /
Product

description
Sign in / Sign up

Customer area -
Check product
through serial

Peer area

Partner's chains

Legend

Top-level navigation

2nd-level Content

3rd-level Content

4th-level Content

Your own chain
Partners'

inventories
Manage your own

inventory
Partners' profiles Your own profile

Partners' blocks See your blocks Assemble product Buy products Add products Delete products Add partner
See individual

profiles
Update profile

Display relevant
blocks

If validIf valid

Figure 4.8: Navigation through the platform

46

C
h
a
p
t
e
r

5
Tests and validation

In the previous chapter, the most relevant routes were presented. As it was seen, every

route has a response that involves the server returning an object. The tests are done

by analyzing the several returned JSON objects sent by the server in order to check if

the desired updates took place. Images in this section are taken from Google Chrome

devTools’ console upon valid requests to the server. Afterwards, screenshots taken in the

browser, showcasing the frontend work are presented. Some additional screenshots of

the frontend are presented in Annex I.

If the endpoints work correctly then it means the platform is working as intended and

creating the front end becomes only a design challenge.

To test the platform, a tour with the user (testPeer), a coffee manufacturer, is taken as

it explores the capabilities of the platform.

As the newly created testPeer inputs its crediantials, the sign in is successful and a

valid JWT is generated to allow navigation. The token, while valid, is associated with its

unique ID, allowing the server to authenticate requests.

The server response upon signing in is shown in figure 5.1.

Figure 5.1: The server response upon sign in

47

CHAPTER 5. TESTS AND VALIDATION

As testPeer performs a request to inspect its chain, the response is shown in figure 5.2.

Figure 5.2: Inspecting the newly created chain

It’s noticeable that the chain’s owner has the testPeer’s ID and it only contains one

block, the Genesis Block.

Normally, the chain only holds the blocks’ references. In this case, populate() was used

to fill the multiple block’s fields.

Next, testPeer adds Peer X and Peer Y to its partners list.

The response of the request by testPeer to inspect its partners list is shown in figure

5.3.

Figure 5.3: Inspecting the partners list

testPeer can inspect its partners’ chains to get more information about previous trans-

actions. Upon inspection of Peer X’s chain, the response received is shown in figure 5.4.

48

Figure 5.4: Inspecting Peer X’s chain. 5th block is expanded for visualization purposes

In this case, peer X has five transactions registered in the platform (the first block is

the Genesis Block) which are can be inspected by its partners.

Inspecting its partners’ inventories, allows testPeer to buy products. The received

response is shown in figure 5.5.

Figure 5.5: Inspecting partner’s inventories. 3rd item is expanded for visualization pur-
poses

testPeer can currently buy three products, all belonging to peer X. In this case, two

products get bought, Ethylphenol and Dicaffeoylquinic acid which are two chemical com-

pounds present in coffee.

49

CHAPTER 5. TESTS AND VALIDATION

Upon a new request to inspect its own chain, testPeer gets the response by the server

shown in figure 5.6 and 5.7.

Figure 5.6: The updated testPeer’s chain. 2nd block is expanded for visualization pur-
poses

Figure 5.7: The updated testPeer’s chain. 3rd block is expanded for visualization purposes

The first block of the chain is the Genesis Block, as exhibited before. The following

two are the purchases testPeer just did. The blocks are being appended correctly, as the

50

sequence of hashes show.

testPeer now produces a batch of coffee with these newly acquired goods to sell to

consumers. The response received after selecting these two new blocks and producing

the batch of coffee is shown in figure 5.8.

Figure 5.8: The newly created product

A serial key was generated for this new batch as the figure above shows.

Finally, as a user acquires the product, it can make use of the platform by inputting

the serial key associated with the purchase. The corresponding request with the serial

"35402" yields the response shown in figure 5.9.

Figure 5.9: The inspection by a customer. 2nd block is expanded for visualization pur-
poses

Now that it was shown the server works and the responses are what is desired, the

51

CHAPTER 5. TESTS AND VALIDATION

frontend becomes just a design challenge. The following images are screenshots taken di-

rectly from the browser and present a graphical visualization of what was shown through

Google Chrome devTools’ console.

testPeer’s inspection of its own newly created chain is shown in figure 5.10.

Figure 5.10: Inspecting the new chain in the frontend

The inspection of its partners list after adding two new members is shown in figure

5.11.

Figure 5.11: Inspecting the partners’ list in the frontend

testPeer inspection of peer X’s chain is shown in figure 5.12.

52

Figure 5.12: Inspecting a partners’ chain in the frontend

The updated testPeer’s chain after the two purchases is shown in figure 5.13.

53

CHAPTER 5. TESTS AND VALIDATION

Figure 5.13: Inspecting own chain in the frontend

Finally, testPeer assembles a product (Coffee batch). The customer, upon inputting

its serial key, is shown the blocks behind the product. This visualization is presented in

figure 5.14.

54

Figure 5.14: Customer inspection of final product in the frontend

As the figures show, the data that is generated remains consistent as it is stored in

several places, which is the most important aspect. With these requests made to the

server, the following capabilities of the platform were successfully tested:

• Signing in the platform

• Inspecting own chain

• Inspecting the partners list

• Inspecting a partner’s chain

• Inspecting the partners’ inventories

• Buying a product from a partner

55

CHAPTER 5. TESTS AND VALIDATION

• Assembling a new product

• Customer inspection of the acquired product

56

C
h
a
p
t
e
r

6
Conclusions and future work

6.1 Conclusions

With increased demand for transparency, there has been somewhat of a rise of interest in

blockchain technology.

This thesis aim is to better understand this technology and how it can be employed in

a manufacturing environment through a platform that connects actors in a supply chain.

In the first chapter, some industries, particularly susceptible to fraud, were singled out

in an attempt to explain the need for the technology. Also, some blockchain use cases were

also presented to give a general overview of the technology. In the second chapter, a look

into the state of the art was presented. Topics like industry 4.0, blockchain technology

itself and supply chains were approached. Hopefully, this put the work into context by

explaining how the technology works and how it fits in the evermore technological world

around us. In the third chapter, an overview of the developed platform is presented,

followed by descriptions of the implementation itself in the fourth chapter. Finally, in the

fifth chapter, tests were conducted in the platform to determine whether it was working

as intended.

This platform was developed with the objective of providing the groundwork for a

more transparent system between all parties involved in a traditional supply chain. It

connects suppliers, retailers and customers, generating truthful information that the

parties can rely on. The hybrid implementation allowed flexibility in the design process.

Both the traditional model and a blockchain one have its strengths and shortcomings. In

this implementation, a compromise between privacy and transparency was reached. By

being able to choose the convenient aspects of both, a common ground was attained.

The tests conducted in chapter five consisted in a tour through the platform, as a

made up retailer added its business partners in the network, purchased products from

57

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

them and assembled a final product to be sold to the public. All of the tests showed that

the platform is storing the relevant information in the right places in an immutable way,

thus showing that it is indeed working as intended. The final test, a customer wanting to

track its products’ origins, also returned the correct information.

While it still has a few rough edges, as previously discussed on this chapter, hopefully

it was shown that it is possible for an alternative, more transparent architectures to be

used. Companies can reap benefits in knowing with greater depth their business partners

and costumers also gain by getting better insights on their product.

6.2 Future work

The main focus of future work would be to decentralize the network. Some difficulties

arise mostly because there aren’t truly common ledgers and therefore not too many nodes

to use as storages. Because it doesn’t make sense to save a copy of a peer’s ledger in a

stranger node, copies of that same ledger would only be saved in the owner and potentially

its business partners. A ledger stored on a few select nodes could be at risk of adulteration

since only a small number of machines would need to be compromised. Big conglomerates

with up to hundreds of partners would probably be safe but small ventures that operate

within a small circle could potentially be at risk. A strategy would need to be developed

to tackle these problems. Another future feature would be to check whether the platform

is compromised by analysing every block’s hash automatically and check if they indeed

match instead of having to do it manually.

Aside from that, future versions should also focus on modularity. Businesses vary a

great deal between themselves, therefore it is always going to be hard to design something

to suit each one. What kind of information should be stored about a product? And about

a partner? How to deal with the asymmetry of business relations (should a small supplier

be able to inspect a big company’s ledger)? These and other, are questions that can have

different answers depending on the businesses in question. With a modularity approach,

each conglomerate could set up the network to suit their specific needs. Some quality of

life updates, having an automatic buy action in place to buy product X every Y days from

a partner for example, would also be increase the platform’s value.

Regardless of this work in specific, it should be important for the people behind the

development of future system implementations and even business models to think about

the customer and how to reduce the possibility of fraud and corruption. These maledict

practices, specially when occurring in the public sector, actively hinder the progress and

development of entire countries and populations. It’s up to everyone to keep pushing the

transparency agenda.

58

Bibliography

[1] L. Holmberg. “Wine fraud.” In: International Journal of Wine Research 2 (2010).

[2] A. Lavorgna. “The online trade in counterfeit pharmaceuticals: New criminal

opportunities, trends and challenges.” In: European Journal of Criminology 12.2

(2015).

[3] P. Aldhous. “Murder by medicine.” In: Nature - International Journal of Science 434

(2005).

[4] M. Conoscenti, A. Vetrò, and J. C. D. Martin. “Blockchain for the Internet of Things:

A systematic literature review.” In: 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA). 2016.

[5] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. “Industry 4.0.” In:

Business & Information Systems Engineering 6.4 (Aug. 2014), pp. 239–242.

[6] C. Klingenberg. “Industry 4.0: what makes it a revolution?” In: July 2017.

[7] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank. “The expected contri-

bution of Industry 4.0 technologies for industrial performance.” In: International
Journal of Production Economics 204.C (2018), pp. 383–394.

[8] M. Hermann, T. Pentek, and B. Otto. “Design Principles for Industrie 4.0 Scenar-

ios.” In: 2016 49th Hawaii International Conference on System Sciences (HICSS). Jan.

2016, pp. 3928–3937.

[9] E. sayed ali ahmed and Z. Kamal Aldein Mohammed. “Internet of Things Applica-

tions, Challenges and Related Future Technologies.” In: world scientific news (Jan.

2017).

[10] C. Saidu, A. Usman, and P. Ogedebe. “Internet of Things: Impact on Economy.” In:

British Journal of Mathematics Computer Science 7 (Jan. 2015), pp. 241–251.

[11] E. A. Lee. “Cyber Physical Systems: Design Challenges.” In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting (ISORC). May 2008, pp. 363–369.

[12] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster. Recommendations for Im-
plementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German
Manufacturing Industry ; Final Report of the Industrie 4.0 Working Group. Forschung-

sunion.

59

BIBLIOGRAPHY

[13] R. Schlaepfer, M. Koch, and P. Merkofer. Industry 4.0 - Challenges and solutions for
the digital transformation and use of exponential technologies. Tech. rep. Deloitte AG,

2015.

[14] L. M. Camarinha-Matos, H. Afsarmanesh, N. Galeano, and A. Molina. “Collabo-

rative networked organizations – Concepts and practice in manufacturing enter-

prises.” In: Computers Industrial Engineering 57.1 (2009). Collaborative e-Work

Networks in Industrial Engineering, pp. 46–60.

[15] T. Stock and G. Seliger. “Opportunities of Sustainable Manufacturing in Industry

4.0.” In: Procedia CIRP 40 (2016). 13th Global Conference on Sustainable Manufac-

turing – Decoupling Growth from Resource Use, pp. 536–541.

[16] S. Nakamoto. “Bitcoin: a peer-to-peer electronic cash system, Oct. 2008.” In: URL
http://www. bitcoin. org/bitcoin. pdf (2008).

[17] M. E. Peck. “Blockchains: How they work and why they’ll change the world.” In:

IEEE spectrum 54.10 (2017), pp. 26–35.

[18] M. Swan. Blockchain: Blueprint for a new economy. "O’Reilly Media, Inc.", 2015.

[19] J. Michael, A. Cohn, and J. R. Butcher. “BlockChain technology.” In: The Journal
(2018).

[20] E. Grange. Mesh World P2P Simulation Hypothesis. 2016. url: https://www.

delphitools.info/DWSH/ (visited on 01/30/2019).

[21] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. “Bitcoin and

Cryptocurrency Technologies.” In: Network Security 2016.8 (2016).

[22] V. Buterin. “The Meaning of Decentralization.” In: Medium (Feb. 2017).

[23] W. Diffie and M. Hellman. “New directions in cryptography.” In: IEEE Transactions
on Information Theory 22.6 (Nov. 1976).

[24] S. Goldwasser, S. Micali, and R. Rivest. “A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks.” In: SIAM Journal on Computing 17.2 (1988).

[25] L. Zhu and L. Zhu. “Electronic signature based on digital signature and digital

watermarking.” In: 2012 5th International Congress on Image and Signal Processing.

2012.

[26] M. Pilkington. “Blockchain technology: principles and applications.” In: Research
handbook on digital transformations (2016).

[27] G. W. Peters and E. Panayi. “Understanding Modern Banking Ledgers Through

Blockchain Technologies: Future of Transaction Processing and Smart Contracts on

the Internet of Money.” In: Banking Beyond Banks and Money: A Guide to Banking
Services in the Twenty-First Century. 2016.

60

https://www.delphitools.info/DWSH/
https://www.delphitools.info/DWSH/

BIBLIOGRAPHY

[28] A. Hari and T. V. Lakshman. “The Internet Blockchain: A Distributed, Tamper-

Resistant Transaction Framework for the Internet.” In: Proceedings of the 15th ACM
Workshop on Hot Topics in Networks. HotNets ’16. 2016.

[29] url: https://coinmarketcap.com/currencies/bitcoin/#charts (visited on

02/01/2019).

[30] H. Gilbert and H. Handschuh. “Security Analysis of SHA-256 and Sisters.” In:

Selected Areas in Cryptography. Springer Berlin Heidelberg, 2004.

[31] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse. “Bitcoin-NG: A Scalable

Blockchain Protocol.” In: 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). 2016.

[32] R. Blasetti. Brace Yourself For The Bitcoin Hard Fork. 2017. url: https://decentralize.

today/brace-yourself-for-the-bitcoin-hard-fork-5c42e61e596c (visited

on 02/02/2019).

[33] V. Buterin et al. “A next-generation smart contract and decentralized application

platform.” In: Ethereum White Paper (2013).

[34] K. J. O’Dwyer and D. Malone. “Bitcoin mining and its energy footprint.” In: Insti-
tution of Engineering and Technology (2014).

[35] L. Foundation. “A Blockchain Platform for the Enterprise.” In: https://hyperledger-
fabric.readthedocs.io/en/release-1.4/ (2019).

[36] L. Mearian. Why hybrid blockchains will dominate ecommerce. 2019. url: https:

//www.computerworld.com/article/3435770/why-hybrid-blockchains-will-

dominate-ecommerce.html (visited on 12/25/2019).

[37] I. Facebook. “The Libra Blockchain.” In: Libra White Paper (2019).

[38] A. Baliga. “Understanding blockchain consensus models.” In: Persistent (2017).

[39] K. Christidis and M. Devetsikiotis. “Blockchains and Smart Contracts for the Inter-

net of Things.” In: IEEE Access 4 (2016).

[40] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith, and Z. G.

Zacharia. “Defining supply chain management.” In: Journal of Business logistics 22

(2001).

[41] Blockchain: The technology reshaping supply chain management. 2018. url: https:

//kodiakrating.com/2018/07/30/blockchain-the-technology-reshaping-

supply-chain-management/ (visited on 02/10/2019).

[42] S. A. Abeyratne and R. P. Monfared. “Blockchain ready manufacturing supply

chain using distributed ledger.” In: International journal of research in engineering
and technology 05 (2016).

[43] “A mucky business.” In: The Economist (2015).

61

https://coinmarketcap.com/currencies/bitcoin/#charts
https://decentralize.today/brace-yourself-for-the-bitcoin-hard-fork-5c42e61e596c
https://decentralize.today/brace-yourself-for-the-bitcoin-hard-fork-5c42e61e596c
https://www.computerworld.com/article/3435770/why-hybrid-blockchains-will-dominate-ecommerce.html
https://www.computerworld.com/article/3435770/why-hybrid-blockchains-will-dominate-ecommerce.html
https://www.computerworld.com/article/3435770/why-hybrid-blockchains-will-dominate-ecommerce.html
https://kodiakrating.com/2018/07/30/blockchain-the-technology-reshaping-supply-chain-management/
https://kodiakrating.com/2018/07/30/blockchain-the-technology-reshaping-supply-chain-management/
https://kodiakrating.com/2018/07/30/blockchain-the-technology-reshaping-supply-chain-management/

BIBLIOGRAPHY

[44] M. Frentrup, L. Theuvsen, et al. “Transparency in supply chains: Is trust a limiting

factor.” In: Trust and Risk in Business Networks, ILB-Press, Bonn (2006).

[45] K. Kim and T. Kang. Does Technology Against Corruption Always Lead to Benefit? The
Potential Risks and Challenges of the Blockchain Technology. 2017.

[46] Various. Node.js. https://github.com/nodejs/node.

[47] Google. Angular. https://github.com/angular/angular.

[48] Various. MongoDB. https://docs.mongodb.com/manual/introduction/.

[49] Various. Express.js. https://github.com/expressjs/express.

[50] Various. Passport. https://www.npmjs.com/package/passport.

62

https://github.com/nodejs/node
https://github.com/angular/angular
https://docs.mongodb.com/manual/introduction/
https://github.com/expressjs/express
https://www.npmjs.com/package/passport

A
n
n
e
x

I

63

ANNEX I. ANNEX 1

Annex 1

Figure I.1: The homepage

64

Figure I.2: Login

Figure I.3: Registration

65

ANNEX I. ANNEX 1

Figure I.4: The peer’s area

66

Figure I.5: Inspecting partners’ inventories

Figure I.6: Inspecting own inventory

67

ANNEX I. ANNEX 1

Figure I.7: Inspecting partners’ profile

Figure I.8: Editing own profile

68

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation and background
	Contextualization
	Objectives
	Document overview

	State of the art
	Industry 4.0
	Integration

	Blockchain
	Decentralization
	Digital Signature
	Consensus
	Hybrid Implementations
	Smart Contracts
	Blockchain in Manufacturing

	System architecture
	Brief overview
	Identity
	Peers
	Blocks
	Ledgers

	Implementation
	Frameworks and tools
	Data Models
	Protected routes
	Relevant routes
	General navigation

	Tests and validation
	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Annex 1

