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Abstract 

An innovative friction stir processing variant, named Upward Friction Stir Processing 

(UFSP), for producing customized materials with multifunctional particles is presented. In 

the UFSP, an upward flow is used to disperse these functional particles in a metallic matrix, 

in opposition to the widely used downward flow. As a proof of concept, SiC particles were 

introduced and dispersed into an aluminium alloy AA7075-T651 matrix to study different 

process parameters and to validate this novel material processing technology. Six different 

small-sized ingots were produced and compared to the conventional FSP technology. The 

microstructural evolution is studied by means of optical microscopy, eddy current testing, 

microhardness mapping and advanced characterization techniques, such as, high energy 

synchrotron X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray 

spectroscopy and electron backscatter diffraction. The number of passes was seen to greatly 

impact the particle distribution. Additionally, UFSP promotes a more uniform particle 

distribution over a larger processed area, when the lateral tool offset progress along the 

retreating side. 

 

Keywords: Friction, Processing, Functional, Particles, Aluminium, SiC, NDT&E, 

Characterization, Solid-State. 

 

1. Introduction 

Fusion-based processes, such as wire and arc additive manufacturing [1] or laser processing [2], 

have been used to functionalize materials, via the introduction of particles or inoculants 

elements into the melt pool. Such strategies allow to produce materials with different, 

improved, or customized features/properties, which include: grain refinement [3, 4] or increase 

in hardness and wear-resistance [4–6]. 

However, the high temperatures that occur during fusion-based processes, prevents the use of 

several potential interesting particles (eg. solid antibiotics, antibacterial, antifungal particles or 

pharmacologic substance [7], or anti-corrosion particles [8], since the active ingredient of such 

particles is destroyed during the process, or because high-temperature chemical reactions lead 

to undesirable and prejudicial material properties. 
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In these cases, solid-state material processing technologies can be an alternative route to 

produce such functionalized materials, since the temperature involved can remain below 

250 - 300 ºC, depending on the material being processed and on the selected process 

parameters. Instead of blending particles in a melted material, solid-state processing, via 

Friction Stir Processing (FSP), can be used to introduce and distribute particles, in a metallic 

matrix, by viscoplastic stirring phenomena. 

In fact, the production of functional materials, such as metal matrix composites (MMC) 

produced by FSP, have been often developed for targeting traditional engineering applications, 

namely, for high specific mechanical strength and wear resistance [9–11]. However, the potential 

of Friction Stir-based processes can go beyond the traditional mechanical oriented purposes if 

more effective stirring techniques are develop [12]. Therefore, FSP variant technologies able to 

produce these materials are required. FSP has been investigated for MMC manufacturing and 

various reinforcement methods are described in the literature. The earliest known technique 

comprises the direct pasting of a layer of powder ceramic particles mixed with methanol on the 

base material matrix and its subsequent processing [13]. Regardless of the development of 

different procedures and methods of particles deposition on metallic matrices, those involving 

machining/drilling of grooves/holes have been the most commonly used reinforcement 

techniques to produce MMC by FSP [14, 15]. In the groove technique, one or more grooves are 

machined on the substrate surface and filled in with particles, which are then either compacted 

in the groove(s) (usually using a probeless tool [16]) or covered with a thin metal sheet to avoid 

particles sputtering during manufacturing [17, 18]. Alternatively, it was demonstrated that the 

particles can be stacked between two plates [19, 20]. The metallic matrix/functional particles 

arrangement is then processed by FSP. A similar procedure is adopted in the blind hole 

technique, a pre-established blind hole pattern is drilled on the metallic matrix surface and the 

holes are then filled in with particles and processing afterwards. It was claimed that a more 

uniform distribution of the functional particles in the metallic substrate is achieved by using 

this last technique [21, 22]. In fact, a novel multi-hole pre-setting model was proposed, preventing 

agglomeration and loss of particles, thus promoting homogeneous distribution of NiTi particles 

[22]. Notwithstanding, Rathee et al. [14] reported that combining the groove and the tool offset 

techniques promotes the production of more homogenous MMC when compared to those 

manufactured through the blind hole technique. 

Guo et al. [23] assessed the effect of the number of tool passes on the distribution of nano-sized 

aluminium oxide particles in an AA6061 substrate. The authors pre-placed the particles in the 
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aluminium plate using the blind hole technique and found that multiple tool passes promote 

more homogeneous composites. The most promising results were obtained after the fourth tool 

pass. Yuvaraj et al. [24] carried out a similar study by introducing micro and nano-sized boron 

carbide particles in an AA5083 matrix using the groove method for particles pre-placement. 

The number of tool passes were varied from one to three. Although particles’ agglomeration 

was observed in the composites produced with a single pass, these authors found out that the 

following tool passes tend to either reduce or eliminate the agglomerates by redistributing the 

particles in the metallic substrate. Nascimento et al. [25] reported that work-hardening 

aluminium alloys tend to require more passes than the heat-treated ones to achieve a 

homogenous processed region. Gandra et al. [26] investigated the effect of the overlapping 

direction in multi-pass FSP and concluded that overlapping by the advancing side led to a more 

uniform particles distribution along the base material thickness, while overlapping by the 

retreating side tend to produce smoother surfaces. 

From the literature, it could be concluded that, although, numerous FSP based techniques and 

strategies are in practice, none of them ensure a three-dimensional distribution of the functional 

particles as some envisages manufacturing of superficial functional materials [27], and the ones 

assessing the volume lead to non-uniform distribution of particles with significant cluster 

acting as structural imperfection. In all these, the tool wear is a significant problem when hard 

abrasive particles are used to reinforce aluminium-based matrix. 

In this work, a new FSP-based alternative for the production of functionalized materials 

incorporating any kind of solid particles is proposed. According to this novel variant, an 

upward viscoplastic material flow is promoted by pulling up the functionalized particles from 

the bottom of the tool probe to its top, allowing for a more uniform and three-dimensional 

distribution of the particles in the metal matrix. Moreover, the number of FSP passes required 

to enhance the homogeneity of the processed material, as well as, the overlapping direction in 

multi-pass processing are assessed. 

2. Process innovation: multi-stack Upward FSP (UFSP) 

Current FSP variants used for producing metallic composites are mostly based on a setup where 

the reinforcement particles can be in open or sealed grooves, drilled holes or simply deposited 

on the surface of the plate. The tool used is essentially the same as that used in conventional 

FSW, where the main goal is to promote a downward material viscoplastic flow. So far, all 
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existing FSP variants focus on bringing the particles from an upper level to a lower level, i.e., 

from the top surface into the plate. 

The proposed Upward Friction Stir Processing (UFSP) variant changes that point of view. Two 

sheets (where the bottom one can be a sacrificial plate) are assembled with any functional 

particles in between them. Then, the UFSP variant promotes an “aspiration” effect (upward 

flow). With such an approach, it is possible to introduce more particles with a more uniform 

distribution over the processed volume when compared to the conventional FSP approach, 

since the particles are continuously confined between the two plates, instead of being enclosed 

in discrete holes or grooves. 

The upward flow effect can be achieved, for right-hand thread, by a clockwise rotation of the 

tool. To ensure the desired quantity and the uniform distribution of the functional particles in 

between the two sheets, a spacer is used. Additionally, the spacer also prevents sputtering of 

the particles. The schematic of the UFSP variant is depicted in Figure 1. 

 

Figure 1 – Schematic representation, not to scale, of the Upward Friction Stir Processing 

(UFSP) for left-hand thread. 

 

UFSP can reduce the sheet preparation and setup time before processing, since there is no need 

of machining grooves or drilling holes in the base material plates, the sealing step commonly 

used can be suppressed. Using a heat resistant and low rigidity spacer, enables to compact the 

particles during the thermomechanical processing. The fact that particles are constrained, 

prevents their release during the processing. This feature can also have an economic benefit, 

since expensive particles can be used, and its waste can be minimized. Moreover, UFSP is not 

limited to a linear trajectory, allowing free path planning. All the improvements described 

above might have a positive impact on productivity. 
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3. Materials and methods 

A multi-stack functionalized material was produced using aluminium plates AA7075-T651 

with dimensions of 200 (rolling direction) × 100 ×3 mm3 as base material. The nominal 

composition of the Al plates is depicted in Table 1. Silicon carbide (SiC) microparticles, with 

99,5 % of purity, were used for validation purposes, even though many other functional 

particles can be used, depending on the desired functionality for the base material. The SiC 

particles were characterized by scanning electron microscopy (SEM), as depicted in Figure 2. 

Its shape is not uniform, the particle size ranges between 4 to 20 μm, with an average diameter 

of 6 μm. The particles were placed between two plates and surrounded by a Kapton® tape to 

prevent its waste and to level the upper aluminium plate while enabling compacting of the 

particles during the thermomechanical processing. Preliminary trials were carried out to 

evaluate the maximum particles’ layer thickness in which this experimental setup remains 

feasible. It was found that, when the thickness of the SiC layer of particles was below 1 mm, 

the process is feasible, while above this threshold, clusters of particles would form inside the 

aluminium matrix, affecting the mechanical resistance. In fact, for particles’ layer thickness 

above 1 mm the volume fraction of particles/aluminium becomes inviable, preventing an 

effective embedment of SiC particles in the aluminium matrix. Moreover, powder bed higher 

than 1 mm leads to the collapse of the upper plate, since lateral constrain provided by the 

Kapton® tape was not able to hold the particles. The experimental setup was mounted, as shown 

in Figure 3, on a backing plate and fixed by four M8 bolts. 

 

 

Figure 2 - SiC particles morphology and dimension observed by SEM. 
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Figure 3 – Experimental setup of the composite for production by friction stir processing: 

a) Top View; b) Transversal view. 

 

Table 1 - Chemical composition of AA7075-T651 Aluminium Alloy. 

Elements Al Cr Cu Fe Mg Mn Si Ti Zn 

(wt%) remnant 0.18-0.28 1.2-2.0 0.5 2.1-2.9 0.3 0.4 0.2 5.1-6.1 

 

A FSW/P tool made of H13 steel with a concave shoulder of 16 mm diameter and a triflute 

left-hand threaded conical probe of 6 mm of diameter and 6 mm of length was used. The tool 

was tilted by 1° and the tool rotation and processing speed were 900 rev/min and 180 mm/min, 

respectively, for all composites produced, leading to a Ω/V ratio of 5 rev/mm. To evaluate the 

effect of the upward variant on the particles distribution, three distinct case studies were 

performed, as described in Table 2: i) effect of one pass for counter-clockwise (CCW) and 

clockwise (CW) tool rotations; ii) effect of four fully overlapping passes at CCW and CW tool 

rotations; iii) six passes with tool offset of 1 mm between passes towards advancing side and 

retreating side. 
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Table 2 – Experimental plan to evaluate the effect of the processing parameters on UFSP. 

Sample 

#. 

No. processing 

passes 
Particles 

Tool rotation 

direction 

Tool transverse 

direction 

#1 1 SiC CCW - 

#2 1 SiC CW - 

#3 4  SiC CCW No step offset 

#4 4  SiC CW No step offset 

#5 6 SiC CCW 
1 mm step offset to 

advancing side 

#6 6 SiC CCW 
1 mm step offset to 

retreating side 

#7 6 No Particles CCW 
1 mm step offset to 

advancing side 

 

Temperature measurements were carried out using 23 thermocouples placed in the backing 

plate and 4 in between the backing plate and the AA7075-T651 bottom plate, as well as a Fluke 

Ti400 infrared camera for surface measurements.  

After processing, samples were prepared for the different characterization techniques. The 

samples for macro and micrography were grounded and polished following standard 

metallographic procedures and then etched in Keller reagent during three to six seconds. For 

eddy current characterization the top surface of the sample was machined down, grounded and 

polished to obtain a homogenous surface condition. On the same surface, microhardness 

profiles were also obtained. 

Macro and micrography analysis were performed using an Olympus CX40RF200 optical 

microscope to reveal the microstructure and particle distribution. Sequential images were taken 

and merged to create a high-resolution image of the cross-section. 

A Mitutoyo HM-112 hardness testing machine was used to measure the microhardness- 

Vickers profile along the length of the samples. The spacing between consecutive indentions 

was of 1 mm for the base material and 0.5 mm for processed and thermal/mechanical affected 

regions. The load used was 0.3 kgf. 

Eddy current technique was used to characterize the electrical conductivity of the sample 

according to the procedure used by Sorger et al. [28] and Santos et al. [29]. Such technique allows 

to evaluate fine microstructure changes in a reliable and expedite way. An eddy current pencil 

probe operating at 100 and 500 kHz (corresponding to a penetration depth of 0.37 and 0.16 
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mm, respectively) was used with a NORTEC 500C impedance analyser. The electrical 

conductivity profile was performed in the transversal section of the samples. 

Synchrotron X-ray diffraction was performed at the High Energy Materials Science P07 

beamline at PETRAIII/DESY. A wavelength of 0.14325 Å was used, which allowed to work 

in transmission mode. The diffraction cones were captured using a 2D Perkin Elmer fast 

detector. The X-ray beam was focused on the base material and stirred region to evaluate the 

microstructural changes induced by the UFSP variant. Treatment of the raw data was 

performed using Fit2D developed by Hammersley et al. [30] and using the procedure described 

by Oliveira et al. [31]. 

To prepare the samples for EBSD, the samples were then ground using 800, 1200 and 2400 

grit paper before being polished with 3, 1 and 0.25 μm diamond compound on a Struers 

LaboPol-5 machine, with a final polishing being done using a Buehler Vibromet 2 vibration 

polisher on Microcloth fabric with 0.02 μm colloidal silica suspension for 3 hours. The 

scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 

electron backscatter diffraction (EBSD) were done using a Zeiss Ultra 55 SEM equipped with 

Bruker XFlash EDS detector, and Nordlys EBSD detector. 

 

4. Results and discussion 

4.1. Temperature measurements 

Figure 4 shows the maximum temperature values recorded by the thermocouples during single 

and multi-pass processing and the temperature field at time instant 65 s and 450 s, respectively. 

Thermocouple measurements revealed peak temperatures about 350 ºC during processing. The 

temperature raised up during the tool’s plunge stage and was almost constant during 

processing. It is during the tool’s plunge stage that the initial heat generation and plastic 

deformation stage occurs. From Figure 4, one can observe that: for multi-pass processing, the 

peak temperatures at each pass remain almost constant, regardless processing has started at 

around 100 ºC or 200 ºC and, the maximum temperature experienced by the material is not 

affected by the number of passes when using the same processing parameters. 
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Figure 4 - Time-evolution of the maximum temperature during UFSP with 1 and 8 passes. 

 

4.2. Macrography Analysis 

Figure 5 depicts the macrographs of two processed materials produced with the novel UFSP 

variant (refer to Figure 5a, corresponding to sample #1) and with conventional FSP (refer to 

Figure 5 b, corresponding to sample #2). There is an evident particle distribution in the upper 

plate of sample #1 proving that the upward methodology was able to promote an ascendant 

material flow that brings the particles almost along the full thickness of the upper sheet. 

Furthermore, the particles were preferentially distributed in the advancing side. In contrast, 

when the FSP was done in CW (sample #2) the particles have not been distributed in the upper 

plate, though this upper plate has been processed. This suggests the existence of a concentration 

region where the particles were deposited. Such effect is attributed to the downward material 

flow typical of conventional FSP, that transported the particles from the middle of the probe to 

its bottom since the probe tread promotes the downstream of the material. 
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Figure 5 – Methodology performance in particle distribution: a) after one pass of UFSP; 

b) after one pass of conventional FSP. 

 

From the macrography of sample #1, shown in Figure 6, a good homogeneity was already 

achieved near the shoulder surface. However, a detailed analysis of the stirred zone depicts 

some heterogeneity regions and voids at the bottom of the tool probe. 

 

Figure 6 – Micrography of UFSP with one pass: a) Concentration of SiC particles near 

top surface; b) Nugget Zone; c) Cluster of SiC particles; d) Void at the bottom of the 

nugget zone due to lack of pressure. 
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The final particle distribution reflects the material flow of the AA7075-T651 and the different 

levels of forging pressure within the stirred zone. Near the shoulder, the viscoplastic material 

flow is influenced by the combined actions of planar flow induced by the rotating shoulder and 

vertical flow induced by the probe action. At the tip of the probe, there is only the vertical flow 

induced by the probe action as claimed by Reynolds [32]. Considering these actions it is possible 

to understand the significantly different behaviour of the CCW and CW action on the particle 

distribution exhibited in Figure 5 and emphasized in Figure 6. In the conventional FSP the 

particles are exclusively influenced by the stirring effect induced by the probe, that takes the 

particles from his mid-section pushing them down, resulting in significant volumes of highly 

pressurized clusters of particles mostly localized at the root of the stirred zone. The typical 

upward flow of the interface of the plates, sometimes forming hooks-like shapes, and well 

known from overlapping FSW, is visible in the Figure 5b. Any voids in the conventional FSP, 

will be generated due to the high density of particles preventing the aluminium alloy from 

flowing and fill all zones left empty in the trailing side of the travelling probe. In opposition, 

the novel UFSP alternative with one pass only already delivers one impressive quasi-uniform 

distribution of the particles within the solid phase of AA7075. In the micrograph of Figure 6a, 

near the shoulder, it is possible to confirm that the uniform distribution is based on small size 

clusters of particles, no bigger than 20 µm, with consolidated all-round aluminium as expected 

in a sound MMC microstructure. Dialami et al. [33] indicated that the quality of the fine 

dispersion of particles decreases from the face towards the root zones of the stirred zone as the 

combined shoulder + probe + high forging pressure effect on the material flow disappears. 

Thus, the exception to this optimal fine dispersion condition is the root of the processed zone, 

mostly at the retreating side (Figure 4d). This is due to the local reduction of forging pressure 

to consolidate the aluminium flow in that zone, as the probe as an essentially upward action. 

Also, near the shoulder at the retreating side, there is an AA7075 rich zone that was brought-

in by the trailing edge of the rotating shoulder. But in general, the in-volume quality of the fine 

dispersion of particles is one of the best in state of the art, using FSP’s technique. 

Figure 7 depicts the two composites produced with overlapping 4 passes for sample #3 (Figure 

7a) and for sample #4 (Figure 7b) - with the UFSP and conventional FSP variants, respectively. 

Despite the existence of a flow arm, also showed by Pashazadeh et al. [34], from the retreating 

side in sample #3, the particle homogeneity in the advancing side was achieved. Although a 

slight improvement of the distribution of particles over the advancing side and near the 

shoulder, the improvements from one pass is not significant, as for one pass the results were 
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already quite good. Near the root of the stirred zone the AA7075 consolidation is still poor due 

to lack of forging pressure. 

The increased number of passes promoted the dispersion of the functional particles in the 

matrix when comparing sample #4 with sample #2 (conventional FSP variant with four and 

one pass, respectively). This is in good agreement with founds in other works on FSP [23, 27]. 

Despite of the fact that the SiC particles are well distributed, the induced material flow was not 

enough for the particles to reach the top surface. This is because the particles are not dragged 

towards the nugget. Thus, despite of the fact that material deformation occurs, the SiC particles 

are not fully incorporated into the processed area. It was observed a good homogeneity in the 

stirred zone, from the bottom of the tool probe to approximately ¾ of the probe length, with a 

slight increase in the advancing side. 

The increase of the number of passes was found to be critical for the conventional FSP, but it 

seems to be not so crucial for UFSP. This outcome is of major importance in terms of 

productivity in manufacturing of Functional Graded Materials (FGM). Although, conventional 

FSP improves the uniformity of the particles distribution in the matrix, its limited upward 

action was not able to bring any significant amount of particles to the upper region of the 

sample, and the hook-like alignment of particles from the advancing side into the middle of the 

stirred zone, will act as a structural defect. 

 

Figure 7 – Variant performance in particle distribution: a) after four passes of UFSP 

(sample #3); b) after four passes of conventional FSP (sample #4). 
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The performance of the upward FSP variant was also evaluated in terms of the particles 

distribution, when the tool was moved in the direction of the advancing side or in the direction 

of the retreating side after six passes evenly spaced by 1 mm. Considering the direction of the 

advancing side, corresponding to sample #5, it was observed a heterogeneous distribution of 

the particles, due to the appearance of successive flow arms from the retreating side, as 

presented in Figure 8. This also means that the CCW tool rotation for a left-hand thread 

promotes a material flow from the retreating side to the advancing side. 

 

Figure 8 – Transversal section of the composite produced by UFSP variant after six 

passes spaced by 1 mm with tool offset in direction of advancing side (sample #5). 

 

In opposition, when the tool offset was in direction of the retreating side, the particle 

distribution was significantly improved, as depicted in Figure 9, where an excellent 

homogeneity inside the stirred zone was achieved when compared to sample #5. 

This improvement is in good agreement with the results of sample #1 where the SiC particles 

are predominantly deposited in the advancing side, highlighting that the particles travel to that 

side. The addition of more processing steps towards the retreating side allows the admission of 

more particles into the stirred zone that were ultimately deposited in the advancing side. 

Regarding the appearance of a void, it was demonstrated that when an upward material flow is 

promoted, that eventually might cause a tunnel defect [35]. This void is an inherent consequence 

of the UFSP technology due to the “aspiration” effect induced which causes a sub-pressure 

condition at the root of the stirred zone. However, this is not a critical issue because the purpose 

of this process is not to manufacture a component with the two plates, but to produce high value 

small-sized ingots of an enhanced material with functional particles incorporated. This material 
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will then be used as a base material for subsequent manufacturing processes (eg. machining, 

forming, welding) to produce small, customized products (eg. implants, sensors, actuators, high 

abrasive, and corrosion resistant components). 

 

Figure 9 - Transversal section of the composite produced by UFSP variant after six passes 

spaced by 1 mm with tool offset in direction of retreating side (sample #6). 

 

4.3. Microhardness and eddy current testing 

Microhardness measurements and eddy current testing were performed in the transversal 

section of the samples, 1 mm below the top surface to characterize the processed and non-

processed zones, and to evaluate the particles distribution. Hardness can be also an indicator of 

the effect of the processing conditions in terms of mechanical strength since it is directly 

proportional to it. Eddy current testing is an expedite technique for assessing microstructural 

changes in thermomechanically processed materials, that is complementary to hardness 

measurements [36, 37]. In fact, other works have shown that electrical conductivity is inversely 

proportional to hardness and consequently to the mechanical strength [28, 29]. As such, refined 

zones have lower electrical conductivity, since more grain boundaries reduces the electronic 

mobility, while the thermal affected zones have higher conductivity due to the grain growth. 

Figure 10 and Figure 11 depict the hardness and electrical conductivity profiles for one pass 

with UFSP and the conventional FSP variant, respectively. It is observed a slight (≈12 HV) 

decrease of hardness in the stirred zone when compared to the base material. The strengthening 

effect induced by the T651 heat treatment is lowered by a low temperature annealing 

experienced during processing. However, in the sample with the UFSP variant (sample #1), the 
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presence of SiC particles have increased the hardness in that region and, consequently the 

material hardness is higher there than in the base material. Eddy current testing are in good 

agreement with the obtained hardness profiles. 

 

Figure 10 – Hardness and electrical conductivity profiles of UFSP variant with one pass 

(sample #1). 

 

Figure 11 - Hardness and electrical conductivity profile of conventional FSP with one 

pass (sample #2). 
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For samples #5 and #6 the processing strategy was to offset the tool in each pass by 1 mm in 

direction of the advancing and retreating sides, respectively. This aimed to evaluate the SiC 

particles dispersion in the Al plate. From the macrography analysis it is possible to conclude 

that imposing an offset towards the advancing side promotes heterogeneity, while towards the 

retreating side promotes homogeneity. The hardness and electrical conductivity profiles plotted 

in Figure 12 and Figure 13 further highlight that evidence. For sample 5#, a maximum hardness 

of 223 HV0.3 inside the stirred zone was measured, whereas for sample 6# there is a uniform 

plateau hardness level in the stirred zone at ≈175 HV0.3. 

 

 

Figure 12 - Hardness and electrical conductivity profile of UFSP with 6 passes spaced by 

1 mm in direction of advancing side (Sample #5). 
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Figure 13 - Hardness and electrical conductivity profile of UFSP with 6 passes spaced by 

1 mm in direction of retreating side (sample #6). 

 

The macrostructure, microhardness and electrical conductivity profiles of the sample produced 

without any particles, corresponding to sample #7, is depicted in Figure 14. Both hardness and 

electrical conductivity profiles have a symmetrical-like shape, in good agreement with what 

was expected for this configuration without SiC particles. In terms of mechanical strength, the 

hardness of the stirred zone is at the same level as the base material level, without any 

significant improvement as previously observed for sample #5 and sample #6. 

The hardness and electrical conductivity profiles previously presented show that the UFSP 

variant can modify the material properties, including mechanical resistance, especially when 

processing with tool offset moving towards the retreating side. 
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Figure 14 - Hardness and electrical conductivity profile of UFSP with 6 passes spaced by 

1 mm in direction of advancing side and without particles (sample #7). 

 

4.4. X-Ray diffraction testing 

Synchrotron X-ray diffraction performed in the base material and processed region of 

sample #5 emphasize the existence of the SiC particles in the stirred zone. The strengthening 

precipitates typical of AA7075-T651 alloy, namely Al2CuMg, Mg2Si and MgZn2 
[38], were 

observed in both the pre- and post-processed regions, showing that the temperature reached 

during the process was not enough to promote their dissolution. 
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Figure 15 – Diffractogram of the composite (sample #5) produced by UFSP using 

synchrotron X-ray diffraction. 

 

4.5.  Scanning Electron Microscopy and Energy-dispersive X-ray spectroscopy 

The good performance in particles distribution shown in section 4.2, specifically the trial 

with 6 passes spaced by 1 mm in direction of the retreating side (sample #6 - Figure 9), was 

analysed via SEM and EDS. Though the mechanical behaviour of the produced parts is not 

discussed in this paper, we show the fracture surface of sample #6 to highlight the particle 

distribution induced by the novel UFSP. 

Figure 16 depicts the fracture surface from tensile testing conditions of the above 

mentioned UFSP sample #6 with the SiC particles, appearing in red by combination of 

SEM imaging and EDS analysis. The SiC particles were found piled up at the bottom of 

large voids (Figure 16a). At the location represented in Figure 16b, a brittle-like fracture 

and non-homogenous particle distribution were observed, identifying some agglomerations 

of SiC particles in the crack edge. Dimples with varying dimensions are identified in Figure 

16c and Figure 16d, respectively. Furthermore, SiC particles were found inside the dimples, 

which can promote void nucleation by fracture of particles or decohesion of particle-matrix 

interfaces [39]. 
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Figure 16 - SEM image of the tensile fracture surface of UFSP with 6 passes spaced by 

1 mm in direction of retreating side with SiC particles. 

 

4.6. Electron backscatter diffraction (EBSD) 

Samples of the AA7075-T651 base material and UFSP sample #7, without particles were 

analysed via EBSD. Figure 17a depicts the EBSD map of base material, in which a 

preferential grain orientation and texture effects can be observed, owing to previous cold 

rolling and artificial ageing of the aluminium alloy plate. The average grain size is 

approximately 31.4 µm. 

The EBSD map of UFSP without particles is presented in Figure 17b. The original 

preferential grain orientation and texture effects cannot be identified anymore. No textured 

microstructure is present with homogenous shape and refined grains, with an average grain 

size reduced to about 4.0 µm, showing that the UFSP process promoted a full dynamic 

recrystallization of the stirred material. This is in agreement with results obtained 

previously from Gandra et al. and Suhuddin et al. [40, 41]. 
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The presence of the particles is clear in the EBSD map of Figure 18, for the UFSP sample 

#6, with 6 passes spaced by 1 mm in direction of retreating side with SiC particles. The 

average grain size was of 3.9 µm and most of particles were reduced to nearly 5 times of 

their original dimension. 

 

Figure 17 - EBSD map: a) Base material AA7075-T651 (with IPF legend); b) UFSP with 6 

passes spaced by 1 mm in direction of retreating side without SiC particles (sample 6). 

 

 

Figure 18 - EBSD map of the sample 6, UFSP sample #6, with 6 passes spaced by 1 mm in 

direction of retreating side with SiC particles: a) Phase ID; b) Orientation map (with IPF 

legend). 

 

5. Conclusions 

An innovative variant named Upward Friction Stir Processing (UFSP) was developed and is 

shown to be suitable to produce customized materials with functional particles incorporated. 

This UFSP variant promotes an even particle distribution throughout the processed volume 

after only one pass in comparison with conventional FSP since the particles are continuously 

confined between the two plates, instead of being compartmented in discrete holes or grooves. 

The admission of the particles in the nugget zone should occur from the retreating side to 

increase its packing density in the advancing side. The increase of the overlapping passes was 

not so critical for the UFSP, as the original one-pass condition was significantly uniform over 
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most of the stirred zone. This outcome is of major importance in terms of productivity in 

manufacturing of MMCs or FGMs turning it technological and economically feasible for 

industrialization. 

For multi-pass processing, the tool offset direction that promotes better homogeneity is from 

the advancing side to the retreating side. This reinforce the fact that UFSP technology is capable 

to promote an in-volume particle distribution. 

The samples were characterized by microhardness measurements and eddy current testing, and 

both have shown that the material properties were significantly changed throughout the entire 

processed zone without fluctuations, confirming the uniform distribution of the SiC particles. 

The stirred zone by UFSP, delivered a non-textured microstructure with uniform grain structure 

refined from original size of about 31 µm to about 4 µm. during the stirring effect, also the SiC 

particles were reduced to nearly 5 times of their original dimension, found as non-homogenous 

particle distribution, at the bottom of large voids, or finely dispersed, found inside dimples of 

fracture surfaces from tensile tests. 
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