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Abstract

The ability to monitor land cover changes can be very useful for resource management,

urban planning, forest fire identification, among plenty of other applications. The topic

of remote sensing has been studied for a long time, with many different solutions that

typically use satellites or aircraft to obtain multi-spectral imagery and further analyse it.

The entity responsible for monitoring land use and land cover in Portugal is Direção-

Geral do Território (DGT) which periodically produces a document called Land Use and

Land Cover Map (Carta de Uso e Ocupação do Solo (COS), in Portuguese). This document

uses imagery with high spatial resolution of 0,25 m and has a minimum mapping unit

of 1 ha, however, it is only produced every few years because it is manually curated by

experts. This hinders the ability to closely monitor relevant land changes that occur more

frequently or rapidly.

In this dissertation, several classifiers were developed in a hierarchical manner to

address some of COS drawbacks. The classifiers used were based on decision trees which

were trained using satellite imagery collected from Sentinel-2 satellite constellation. Al-

though having a lower spatial resolution than COS, they can automatically classify land

cover in some minutes every time a new set of Sentinel-2 imagery is collected, in this case

each 5 days. Cloud coverage might make some of these images unusable but nonetheless,

the temporal resolution is still far greater than COS.

However, automatic classification is not as accurate as manual classification. The

produced classifiers did not consider as many classes as COS and had problems distin-

guishing some types of land cover, due to either poor sample size or spectral signature

similarity. Considering Matthews Correlation Coefficient (MCC), water class had the

best performance with an average of 91,28%, followed by forest and agriculture class

with an average of 47,88% and 42,34%, respectively, and lastly urban areas and bare

land class had the worse results averaging 28,03% and 20,53% respectively. Nevertheless,

the results obtained were still considered to be good, but with considerable room for

improvement.

Keywords: remote sensing, land cover classification, Sentinel-2, decision trees.
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Resumo

Acompanhar as mudanças de ocupação de solo tem bastante utilidade para uma cor-

reta gestão de recursos, deteção de fogos florestais, e inúmeras aplicações. O tema de

deteção remota é estudado há vários anos e tipicamente são usadas imagens multiespec-

trais obtidas através de satélites e aeronaves que são depois analisadas em detalhe.

A entidade responsável por esta monitorização em Portugal é a Direção-Geral do

Território (DGT) que produz a Carta de Uso e Ocupação do Solo (COS), onde identifica

o uso e ocupação de solo de Portugal continental. Este documento tem uma resolução

espacial muito boa mas a sua resolução temporal é muito baixa, pois só é produzido em

alguns anos visto ser feito de forma manual. Isto é prejudicial ao acompanhamento em

detalhe das mudanças na ocupação de solo visto muita informação não ser registada.

Nesta dissertação desenvolveram-se vários classificadores, distribuídos de forma hi-

erárquica, para mitigar este problema. Foram usadas árvores de decisão treinadas com

imagens recolhidas pela constelação Sentinel-2. Apesar destas imagens terem uma re-

solução espacial mais fraca, os classificadores conseguem classificar o solo de maneira

automática apenas em alguns minutos cada vez que um novo conjunto de imagens é

recolhido, neste caso a cada 5 dias. Nem todas as imagens podem ser usadas, devido às

condições atmosféricas, mas continua a ter uma resolução temporal superior à COS.

No entanto, esta classificação automática não é tão exata quanto a manual. Também

não foram consideradas tantas classes quanto as presentes na COS e os classificadores ti-

veram dificuldade em diferenciar algumas delas, seja pela amostra ser muito pequena ou

pelos valores espetrais serem demasiado semelhantes. Considerando o Matthews Corre-

lation Coefficient (MCC), a classe “water” obteve os melhores resultados com uma média

de 91,28%, seguida pelas classes “forest” e “agriculture” com uma média de 47,88% e

42,34%, respetivamente, e por último as classes “urban areas” e “bare land” com uma

média de 28,03% e 20,53% respetivamente. Mesmo assim considera-se que os resultados

obtidos são satisfatórios, mas com muitas oportunidades de melhoria.

Palavras-chave: deteção remota, classificação de ocupação de solo, Sentinel-2, árvores de

decisão.
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1
Introduction

1.1 Motivation

The surveying and mapping of land use and land cover are very important for various

sectors, such as forest and water bodies monitoring, precision agriculture and urban

planning. Traditional methods include in situ measurements accompanied by manual

classification of those same measurements. This process has many flaws, as it is extremely

time-consuming and expensive, making it difficult to effectively follow the temporal

evolution of land change (Calvao and Palmeirim (2004)). Besides these, a manual process

is always subjective to personal interpretation, producing different results for the same

area, causing discrepancies (Zha et al. (2003)).

To tackle these problems, satellite remote sensing and automatic classification have

been abundantly used for these kinds of applications, providing the so needed higher

temporal availability at a lower cost, while usually sacrificing accuracy and precision of

class identification.

Satellites have the ability to continuously monitor Earth’s surface (Huang et al. (2018))

providing consistent, accurate and reliable digital images to be used in computer-based

classification techniques. These readings are multi-spectral, meaning they will produce

an image at each band the sensor is able to capture, which is extremely useful as some

elements of the land can have a signature high/low reflectance in certain bands that

will help to identify and differentiate them from their surroundings. They can also have

different spatial resolutions, that will dictate the level of detail they can capture, usually

ranging from 1000 m to 1 m, depending on the satellite (Huang et al. (2018)), with

technology always evolving to allow even finer spatial resolution (e.g. WorldView-4 with

a spatial resolution of 0,3 m for its panchromatic band).

Satellites also have the advantage of being able to reach otherwise inaccessible areas

1



CHAPTER 1. INTRODUCTION

if done through ground measurements (Etteieb et al. (2013)). All these at a very low,

sometimes free, cost.

However, they also present some drawbacks. Multi-spectral sensors are not able to

penetrate clouds obscuring some areas of the lands, especially on overcast days (Huang

et al. (2018); Xue and Su (2017)). The spatial or temporal resolution might not always

be enough depending on the study being performed and when one of them is high, the

other tends to be low, making it difficult to find a good balance between them (Huang

et al. (2018)).

Nevertheless, its applications are countless and of great importance.

Surveying water bodies can help to identify changes in water level over the year, allow-

ing better management of this resource for human activity, such as agriculture, consump-

tion, industrial purposes and energy production, among others (Huang et al. (2018)).

Forests are another critical resource that should be monitored as they are important

for both human activity and the environment. They have a lot of economic, aesthetic

and recreational values for humans (Etteieb et al. (2013)) and are crucial for biodiversity,

global atmospheric cycles, carbon biogeochemical cycling (Brown et al. (2013)), etc.

Besides natural resources, there is also a need for remote sensing of man-made struc-

tures, being them crop fields or urban buildings. When remote sensing is applied to

agriculture improvement it is usually given the name of precision agriculture. It can

improve effectiveness by monitoring crops’ health and identifying any lack of micro-

nutrients or diseases, so adequate fertilisers can be used at early growth stages, or by

predicting the crop’s yield at an advanced development stage (Haboudane et al. (2002)).

It is also used for crop discrimination, crop prediction (Bannari et al. (1995)) and crop

frequency changes (Brown et al. (2013)) so agricultural maps can be created to better

manage the available land (Karakizi et al. (2016)).

Remote sensing in urban environments can be used for map updating, urban devel-

opment analysis, military reconnaissance and disaster management (Tian et al. (2018)).

Besides these, both built-up and bare land have to be closely monitored as they have been

replacing natural vegetation cover over the years. This is damaging the environment and

results in less precipitation, higher temperatures and an increase in water pollutants (As-

syakur et al. (2012); Xu (2008)).

1.2 Statement of the Problem

In Portugal the mapping and management of soil is done by Direção-Geral do Território

(DGT) and is called Land Use and Land Cover Map (Carta de Uso e Ocupação do Solo

(COS), in Portuguese). COS maps and classifies all the territory in continental Portugal,

excluding the archipelagos of Azores and Madeira. The images used are collected by

aerial means at a height of 3200 m to 4300 m with a spatial resolution of 0,25 m (DGTer-

ritório (2019)). However, they only capture four bands: Red, Green, Blue and Near

Infrared (DGTerritório (2019)).

2



1.3. OBJECTIVES

After collecting the necessary orthophotographs they are evaluated and classified man-

ually. There are currently a total of 83 different classes, arranged in a hierarchical struc-

ture, with 9 mega-classes as their base and 4 levels of detail (DGTerritório (2019)). Due to

its manual classification, its temporal resolution is very low, needing several months for

a single COS (COS2018 took 9 months to complete), only producing a new one every few

years. Currently there is a COS for 1995, 2007, 2010, 2015 and 2018 (DGTerritório (2019)).

Besides this, although the orthophotos have a very high spatial resolution of 0,25 m the

proceeding classification will only identify land parcels with a minimum mapping unit

of 1 ha where the class constitutes a minimum of 75% of said land (DGTerritório (2019)).

Another problem is the fact that these orthophotos are only collected during a portion

of the year, not providing enough information if one desires to study the land change over

time. For COS2018 images were collected in June, July, August, September and October

of 2018 (DGTerritório (2019)), leaving winter and spring months out, which can hide

crucial information for certain studies.

1.3 Objectives

Although COS is a very useful information, it has many problems as described above. The

aim of the current work is to tackle some of these problems, starting with the classification

method.

Manual classification is too time-consuming for time-sensitive matters such as forest

monitoring, prevention and fighting of forest fires, precision agriculture, and so on. For

this reason, the main goal of this project is the development and training of automatic

classifiers through supervised learning to classify land cover more briefly and frequently

so said time-sensitive matters can be detected and monitored more efficiently. There are

several supervised learning classification procedures, such as artificial neural networks,

nearest neighbour and decision trees, just to name a few. Decision Trees were chosen

due to their simplicity and the abundance of examples found in the literature of remote

sensing (Wang et al. (2020)).

The training data was obtained using the satellite constellation Sentinel-2, and COS

was considered as ground truth. When compared to COS, Sentinel-2 has a lower, but still

high spatial resolution of 60 m, 20 m and 10 m, a higher temporal resolution of 10 days

per satellite, or 5 days if both are considered, and 9 additional bands to the ones used in

COS, totalling 13 bands. This presents many advantages over the methods used for COS.

However, due to its lower spatial resolution it is not possible to gather as much detail of

the land cover and so the nine mega-classes from COS were grouped into five different

classes: water, forest, agriculture, urban areas and bare land.

The final objective of the present work is to develop five different decision trees, one

for each of the classes described above, and a final decision tree based on these. These

classifiers will take advantage of the higher temporal resolution and the higher number

of bands of Sentinel-2 satellite constellation. The 13 bands available are useful for the
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computation of indices (water indices, vegetation indices, etc) to help to recognise certain

land features, and the higher temporal resolution will allow for these classifiers to be

used all year round.

1.4 Dissertation Structure

The present dissertation is structured as follows:

Introduction The present chapter gives the reader an introductory review of the work

developed and its motivation.

State of the Art Chapter 2 studies and presents many examples found in the literature

of automatic classification in remote sensing. It explores various articles in the five

different classes and aims to understand what kind of indices and classifiers are used and

the results obtained.

Methodology This chapter presents the methodology used, in particular, how the train-

ing dataset was built, the calculated indices and the decision tree parameters used.

Results On Chapter 4 the accuracy assessment metrics are presented and final results

are shown and analysed in detail for each of the six classifiers.

Conclusions and Future work Chapter 5 concludes this document reflecting over the

methodology used and results obtained, discussing future work that could be done to

further improve them as well as presenting some drawbacks felt during the execution of

this work.
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2
State of the Art

This chapter will describe some of the studies found in the literature that could aid the de-

velopment of the current dissertation. Each will be succinctly described, presenting their

methodology, namely, the satellites used, indices calculated, type of classifiers developed

and lastly the results obtained. Since the present dissertation focuses on the detection of

five different classes (water, forest, agriculture, urban areas and bare land) this chapter

will be divided as such, with each section presenting articles from the corresponding

class.

2.1 Water Detection

Water is a crucial resource for all life and ecological systems. It sustains all sorts of differ-

ent habitats for a lot of species of fauna and flora and its hydrologic cycle is critical for the

global ecosystem and climate system (Du et al. (2016); Huang et al. (2018)). Its use is also

indispensable in modern society, being utilised for human consumption, also as a way

of transportation, industrial purposes, agriculture, electricity production, recreational

activities, and so on (Huang et al. (2018)).

Due to these reasons, it is imperative that water resources are monitored for their bet-

ter management. Surface water bodies are not static and do not maintain the same shape

and volume of water all year round. These changes occur due to both natural and human

influence and can have disastrous effects if extreme, like drought or flooding (Huang

et al. (2018)).

In order to prepare and prevent these extreme events, it is important for monitoring

to be done with high spatial and temporal resolutions. A high spatial resolution will allow

for more precise detection of water boundaries, enabling detection of smaller changes that

will aid the prediction of future events. High temporal resolution is just as important for
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these same reasons. More frequent observations allow the detection of smaller changes

and more samples can help to correctly predict the following increases and decreases in

water level.

Despite this, both high and low spatial resolution satellites have been used for this

purpose.

Some examples of coarser resolution satellites include Advanced Very High Resolu-

tion Radiometer that is onboard of National Oceanic and Atmospheric Administration

satellites (NOAA/AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS),

Visible Infrared Imaging Radiometer Suite onboard Suomi National Polar-orbiting Part-

nership (Suomi NPP-VIIRS) and MEdium Resolution Imaging Spectrometer (MERIS) (Du

et al. (2016); Huang et al. (2018)). All these satellites have a spatial resolution above

200 m, not providing as much detail as other satellites but having a broad coverage and

higher revisit frequency between 4 and 1 days (Huang et al. (2018)).

Other more commonly used satellites are the Landsat series, which include the sensors

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land

Imager (OLI), Système Probatoire d’Observation de la Terre (SPOT) and Sentinel-2, which

is a constellation of 2 satellites (Du et al. (2016); Garcia et al. (2020); Huang et al. (2018);

Yang et al. (2017)). These have a higher spatial resolution between 5 m and 100 m which

makes them a more popular choice among this kind of studies.

Lastly, some satellites with even greater spatial resolution are also used, however, they

have very low coverage and temporal resolution and usually do not have free access as

opposed to the majority of the previously stated satellites. These high resolution satellites

include IKONOS, RapidEye, Worldview, ZY-3, Quickbird, and GF-1/2 and their multi-

spectral bands have a spatial resolution below 5 m, being able to capture a lot of detail

and map even small bodies of water like pools and small rivers (Du et al. (2016); Huang

et al. (2018)).

After imagery have been collected from satellites, plenty of techniques can be used to

identify water bodies.

Water indices are abundantly used as they are simple to calculate, require low compu-

tational power and help to differentiate water from non-water terrain (Du et al. (2016);

Huang et al. (2018)). Many different indices have been proposed, some gaining more pop-

ularity than others. Some examples include Normalised Difference Water Index (NDWI),

that was proposed by McFeeters (1996), which uses the Green and Near Infrared (NIR)

reflectance bands; Modified Normalised Difference Water Index (MNDWI), developed

by Xu (2006), replaced the NIR band by Shortwave Infrared (SWIR) band in NDWI for-

mula, resulting in a more reliable index (Huang et al. (2018); Yang et al. (2017)); Au-

tomated Water Extraction Index (AWEI) which was created by Feyisa et al. (2014) and

includes two variations AWEIsh and AWEInsh for images with or without shadows, respec-

tively.

Besides these, some other indices can also be used, such as Normalised Difference

Vegetation Index (NDVI), a vegetation index, to further help differentiate between water
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and surrounding land (Garcia et al. (2020); Huang et al. (2018)).

With these indices calculated a simple method to extract water bodies is binary seg-

mentation. A threshold is applied so that any land whose resulting index has a value

below that threshold is considered as non-water, and those above it are considered water

bodies (Du et al. (2016); Huang et al. (2018); Yang et al. (2017)). This threshold is usually

set to 0. However, it may not always be suitable depending on the satellites used, their

sensors and the time of the year images were taken. A simple solution is applying adap-

tive threshold algorithms such as OTSU (Du et al. (2016)), although these also present

some drawbacks such as uneven luminosity or when the water is not present in the image.

Besides segmentation, both supervised learning and unsupervised learning meth-

ods are also popular. Some of them are Decision Trees (Garcia et al. (2020); Huang

et al. (2018)), Minimum distance (Garcia et al. (2020)), Nearest neighbour (Huang et

al. (2018)), Regression (Huang et al. (2018)), Random forests (Yang et al. (2017)), Deep

learning (Yang et al. (2017)), etc. All having their benefits and drawbacks.

2.2 Forest Detection

Similarly to water, forests have a very important role for both ecosystems and human life.

They cover about 30% of terrestrial land all across the globe and provide a suitable habitat

for almost two-thirds of Earth’s species (Huete (2012)). Forests also have an immense

impact in global atmospheric cycles (Etteieb et al. (2013)) and their decline leads to an

increase in temperature. As previously stated, forests have a great economic value, as

wood products play an important role in today’s society, just as aesthetic and recreational

values for us humans.

However, deforestation has become an increasing problem, with close to 7 million ha

being destroyed every year (Huete (2012)) mainly due to economic and political reasons.

This is unsustainable and many problems arise due to it, such as climate change, loss of

habitat and endangerment of plenty of different species (Huete (2012)).

Therefore it is indispensable to monitor and manage forests globally in a timely and

consistent manner. Satellite remote sensing has been increasingly popular in this field,

proving its ability to accurately identify vegetation (Etteieb et al. (2013); Huete (2012)).

This is due to their high spectral, spatial and temporal resolution.

To further improve vegetation detection, vegetation indices are used. These are widely

adopted when multi-spectral imagery is available and will usually use a band with high

absorbing characteristics in relation to the desired feature (in this case vegetation) and a

low absorbing band (Huete (2012)), but there are also several indices that will use more

than two bands. These indices measure the vigour of vegetation and will make it stand

out from surrounding land, making its identification easier.

Numerous studies that use satellite remote sensing and vegetation indices have been

conducted.
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Huete (1997) used Landsat TM imagery to simulate MODIS, a satellite that was

launched the year after (1998). This was done to better understand the changes, espe-

cially calculating vegetation indices, that would occur when shifting from the broadband

AVHRR to the narrower band MODIS satellite. This shift would improve vegetation

detection and monitoring as MODIS had a greater spatial and spectral resolution than

AVHRR. AVHRR had visible and NIR bands overlapping in the red region of the spec-

trum (Huete (1997)). This was not ideal for vegetation detection because that is the

chlorophyll absorption region and various indices use both the NIR and red portion of

the spectrum. AVHRR also had a lower spatial resolution of 1 km to 4 km compared to

the 250 m to 500 m resolutions of MODIS (Huete (1997)).

Vegetation indices studied include the most widely used NDVI; Soil Adjusted Vege-

tation Index (SAVI), created by Huete (1988); atmospherically resistant vegetation in-

dex (ARVI) and soil and atmospherically resistant vegetation index (SARVI), developed

by Kaufman and Tanre. (1992); modified normalised difference vegetation index (MNDVI),

by Liu and Huete (1995) and soil and atmosphere resistant vegetation index (SARVI2)

produced by Huete et al. (1996). It was observed that NDVI would saturate in certain

scenarios while SARVI2 did not show any saturation. It was shown that SARVI2, SARVI

and SAVI would extend the range of sensitivity on various scenarios where NDVI would

saturate (Huete (1997)).

Arroyo-Mora et al. (2005) conducted a study on secondary forest detection using

Landsat 7 ETM+ and IKONOS imagery. Images from IKONOS with 4 m resolution and

4 spectral bands were collected during the dry season and from Landsat ETM+, with

28,5 m spatial resolution and 7 spectral bands, during the transition period from rainy

to dry season. The vegetation indices examined were simple ratio (SR); NDVI; infrared

index (IRI) and mid-infrared index (MIRI), both by McMorrow (2001). And some of the

techniques used were quadratic classifier (qdc), k-nearest neighbour classifier (knnc) and

feed-forward neural network classifier along with the threshold approach for vegetation

indices.

Etteieb et al. (2013) used hyper-spectral imagery to map Mediterranean forests. They

used Hyperion for this study, which has much greater spectral resolution, at a spatial

resolution of 30 m, than commonly used satellites with the same spatial resolution, such

as Landsat and Sentinel. It has 242 narrow spectral bands, however there is no need in

using all of them considering that bands closer to each other are very similar and can

add redundancy. For this reason 44 of the 242 bands were left out for this study and the

remaining were grouped into 9 different band combinations for further testing (Etteieb

et al. (2013)). Several indices were used in this study, being them NDVI, Difference

Vegetation Index (DVI) , (NIR - Green) index, SAVI, and SWIR_VI.

This study used both pixel-based classification, where each individual pixel is as-

signed a class based on its spectral characteristics disregarding surrounding pixels, and

object-oriented classification, where the image is segmented into objects and the class

is attributed to each object as a whole, taking into account spatial information (Etteieb
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et al. (2013)). The algorithm used for pixel-based classification was Spectral Angle Map-

per (SAM) which is a supervised learning classification algorithm. For object-oriented

classification, segmentation was first applied to the images and then a nearest neighbour

classifier and a membership function classifier were used.

The results obtained by testing all band combinations with all classification methods

achieved an overall accuracy between 78.74% and 82.95% (Etteieb et al. (2013)). The

band combination that fared better against all was 8, which produced the best results

with all three classifiers. This band combination resembled Landsat data and the results

obtained were similar to previous studies performed with Landsat imagery (Etteieb et

al. (2013)). It proved that for this kind of applications spatial resolution is more important

than increasing spectral resolution (Etteieb et al. (2013)).

From the three classifiers, nearest neighbour was the best classifier for coniferous

forests, with an accuracy ranging from 84,62% to 87,42%, and the membership func-

tion classifier produced the best results for broad-leaf forests with a user accuracy of

91,67% (Etteieb et al. (2013)). Nearest neighbour and membership function classifier

were overall better than SAM classifier, proving object-oriented approaches to be better

in this context than pixel-based approaches, even though pixel-based approaches have

been used and refined for longer (Etteieb et al. (2013)).

Finally, Oliveira et al. (2021) used satellite remote sensing to identify eucalyptus trees

in continental Portugal. Eucalyptuses are a major concern in Portugal, because although

they have an interesting commercial value (e.g. paper industry) due to their fast growing

nature, they are a significant water-demanding plant, out-competing other native vegeta-

tion for this resource and soil nutrients (Oliveira et al. (2021)). The satellite used in this

study was Sentinel-2 and the vegetation indices considered were NDVI; Normalised Dif-

ference Moisture Index (NDMI) created by Wilson and Sader (2002); Green Normalised

Difference Vegetation Index (GNDVI) by Gitelson et al. (1996); Green Chlorophyll Index

(CIgreen) proposed by Gitelson et al. (2005); Soil Composition Index (SCI) (also called

Normalised Difference Built-up Index (NDBI) by Zha et al. (2003)) and Green Vegeta-

tion Moisture Index (GVMI). Different classification techniques were studied, such as

decision trees, artificial neural networks, fuzzy logic, among others but the final choice

was fuzzy logic, specifically Fuzzy Information Fusion (FIF) (Mora et al. (2017); Oliveira

et al. (2021); Ribeiro et al. (2014)).

2.3 Agriculture Detection

When it comes to vegetation, remote sensing is not only useful for the detection and

monitoring of forests but also for agriculture, namely, precision agriculture. Agriculture

is one of the oldest human inventions that helped us thrive as a species and it is still today

a crucial part in any society. Agriculture is essential for many different sectors, being

direct human consumption, livestock feeding, textile industry, some of them. For this
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reason, there is a great economic interest in increasing productivity, maximising yield

and optimising profitability (Haboudane et al. (2002)).

Some uses and applications for agriculture detection include greenhouse mapping

and detection, as well as identification of the crops growing inside them (Aguilar et

al. (2015)), identification of crop types and crop rotation dynamics (Aguilar et al. (2015)),

seasonal evolution of single crops and their use over time (Solano-Correa et al. (2017)),

crop mapping, crop inventory, crop monitoring, crop forecasting and yield predictions,

crop condition and status, crop disease, crop micronutrient deficiency (Haboudane et

al. (2002)), monitoring land use and land cover change, evaluating the implications for car-

bon biogeochemical cycling, deforestation trends and effectiveness of agri-environmental

governance systems (Brown et al. (2013)), and many more could be listed.

The information gathered from these applications can then be used to make better

management decisions, for example, when to apply fertilisers and the correct amount to

use.

Satellites are often used for this kind of applications, however, precision agriculture

usually needs higher detail because simply identifying vegetation is not enough, instead,

the correct identification of their species is highly desirable. This makes the use of satel-

lites with finer spatial resolution mandatory. Some other means are also used, such as

aerial imagery and local measurements.

Similarly to the previous section, Forest Detection, vegetation indices are widely used

to highlight vegetation and minimise disturbance from background reflectance.

Wiegand et al. (1991) studied the relationship between vegetation indices and crop

assessment. They used SPOT satellite along with an airborne video system and stud-

ied the vegetation indices Greenness Vegetation Index (GVI); Perpendicular Vegetation

Index (PVI), created by Richardson and Wiegand (1977), Transformed Soil Adjusted Veg-

etation Index (TSAVI), proposed by Baret et al. (1989) and NDVI. They found these

vegetation indices to be highly correlated to chlorophyll content, leaf area index (LAI),

plant height, yield, percentage ground cover by vegetation, among others (Wiegand et

al. (1991)) and could be used to calculate other parameters such as green leaf density,

photosynthesis rate, amount of photosynthetically active tissue, and others (Wiegand

et al. (1991)). They also discovered the measurements of these indices to be best done

during the middle of the plant’s life, as measures taken too early or too late were found

to not correlate well with yield (Wiegand et al. (1991)).

Haboudane et al. (2002) further explored the correlation of vegetation indices and

crops’ chlorophyll content. The study revolved around two vegetation indices: Trans-

formed Chlorophyll Absorption in Reflectance Index (TCARI), proposed in this study,

and Optimised Soil Adjusted Vegetation Index (OSAVI) by Rondeaux et al. (1996) and

the ratio between them, although Modified Chlorophyll Absorption in Reflectance In-

dex (MCARI) was also used as a mean of comparison. Satellite imagery was not used

but instead aerial by the Compact Airborne Spectrographic Imager (CASI), with a spatial

resolution of 1 m for multi-spectral mode and 2 m for hyper-spectral mode, along with
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ground measurements, which are, collection of leaf tissue samples to be further analysed

in a laboratory, use of spectrometer to measure leaf reflectance and transmittance, LAI

and growth measurements (Haboudane et al. (2002)). CASI data went through some

processing stages, for example, atmospheric corrections and removal of aircraft motion

effects. MCARI was found to perform poorly on low chlorophyll concentration levels,

emphasising the benefits of using TCARI which exhibited better sensitivity even at low

levels. It was found that the use of TCARI and OSAVI offered great potential for esti-

mating crops’ chlorophyll content. Chlorophyll content can help to determine nitrogen

concentration as it relates to photosynthesis activity which chlorophyll content is an indi-

cator of, serving as a measure of the crop response to nitrogen application (Haboudane

et al. (2002)).

Brown et al. (2013) developed a multiyear classifier for agricultural land use in Brazil.

Data was acquired by MODIS satellite, NDVI and Enhanced Vegetation Index (EVI) 250 m

datasets were used, as well as in situ interviews of farmers and farm managers. The final

datasets had 5 years of field data and corresponding MODIS data. Some preprocessing

was done to improve future results, which include smoothing, filtering and interpolation.

Then the type of classifier was chosen. Decision Trees are a very common classifier

in remote sensing and this study took a similar approach using Boosted Decision Trees.

Boosting will generate multiple decision trees rather than a single one, iteratively op-

timising them. Cross-validation was then used to train the classifier, leaving one year

out of the training dataset in the first approach, and leaving 20% of random data out

in the second approach. Data filtering was also applied to NDVI and EVI datasets in

three different levels: no filtering, “85/15” and “80/20” which used identical filtering

procedures but with a different filter parameter value (Brown et al. (2013)). The results of

this study showed very little difference between NDVI and EVI datasets with only 0,1%

difference in percentage accuracy when using the second approach of cross-validation

method. Overall final results increased as filtering became more rigorous and using the

year approach to cross-validation and filtering of “80/20” accuracies were consistently

near or above 80% (Brown et al. (2013)).

Aguilar et al. (2015) tried not only to map greenhouses but also to identify the crops

growing inside them using satellite remote sensing. This was done in southern Spain,

where the use of greenhouses is abundant and crucial for the economy. Some problems

right from the start were the plastics used in greenhouses since these can vary in thickness,

transparency, ultraviolet and infrared reflection and transmission properties, additives,

age and colours. Besides these, they are also usually painted white during summer months

to protect the plants from excessive sun and inhibit the temperature from getting too high.

Eight images from Landsat 8 OLI were used in conjunction with a single image from

WorldView-2 satellite. A large amount of vegetation indices were used, over 25, but

the authors found GVI, GNDVI and Normalised Differential Senescent Vegetation In-

dex (NDSVI), proposed by Qi et al. (2002), to be the most significant ones (Aguilar et

al. (2015)). Decision Trees were also used in this study, however, boosting was not applied
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like in the previously described one. Decision Trees were chosen due to being easy to

understand and interpret, being computationally fast and making no assumption about

the distribution of data. For the node-splitting rule impurity was measured using Gini’s

index and a 10-fold cross-validation procedure was used to evaluate the resulting classi-

fier. This was done using an object-based approach, rather than pixel-based, and the best

overall accuracy achieved using Landsat was 81,3% with some crops resulting in better

outcomes than others. Tomatoes and peppers achieved F1-scores of 87,7% and 87,0%,

respectively, while cucumber and aubergine ranged from 50% to 63%. These results were

achieved using Landsat imagery only, as it was found that using WV-2 along with Land-

sat only slightly improved the results, with the best overall accuracy using both datasets

being 82,3%. It was found that although high spatial resolution is important, the use of

multitemporal images along growing season was critical to crop discrimination.

Karakizi et al. (2016) also used object-based classification to map and discriminate

vine varieties. This was done in four different viticulture regions in Greece with im-

ages taken by the satellite WorldView-2 accompanied by ground measurements using

a portable spectroradiometer to update and verify boundaries in existing maps. In this

study fuzzy logic and knowledge-based rule sets were used along with a Nearest Neigh-

bour classifier. The vegetation indices used in this study were NDVI and modified Soil-

Adjusted Vegetation Index (MSAVI), created by) Qi et al. (1994). The first step of segmen-

tation into objects used a multi-resolution segmentation algorithm, based on a region-

merging procedure. For classification, data was divided into two classes, vegetation and

non-vegetation, and then the class vegetation was further divided into vineyard and other

vegetation. Membership functions were developed based on this division. Another seg-

mentation was then performed on the vineyard class to extract the vine canopy, proceeded

by a nearest neighbour classifier. For vine variety discrimination nearest neighbour clas-

sifier was also used followed by a post-classification procedure based on a majority voting

process. The results obtained for vineyard detection had an overall quality above 80%

and for vine canopy extraction overall accuracies were above 96%.

Solano-Correa et al. (2017) analysed the evolution of crop fields using Sentinel-2 data.

Mapping and tracking every stage of the vegetative cycle is important, however the differ-

ent varieties of crops will present different maturation in the vegetative cycle and might

not always be detected. NDVI and NDWI are used to make a spectral and spatial analysis,

creating a multitemporal spectral mask and a multitemporal edge mask, respectively, to

separate crop fields. These masks are then fused together and afterwards a connected

component labelling algorithm is applied so each crop can be analysed separately.

2.4 Urban Area Detection

Urbanisation has been rapidly increasing all over the world, especially in developing

countries with high economic growth. Since 1950 urban areas have expanded more than

25%, increasing from 30% to 54% in 2014 and still expanding to this day (Goldblatt
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et al. (2016)). These changes are drastic and in a short period of time, and will usually

replace of natural vegetation cover with buildings and paved surfaces (Xu (2008)). This

impacts the environment in many negative ways such as increases in temperature, re-

duces in water quality, water pollution, high surface runoff (As-syakur et al. (2012)), less

precipitation, more dryness (Xu (2008)), danger to biodiversity, among other. For this rea-

son, it is important to monitor these changes. Some other reasons to map these changes

include better management, planning and decision making when expanding urban areas.

Zha et al. (2003) proposed an index for mapping urban areas, Normalised Difference

Built-up Index (NDBI). This was done with Landsat TM imagery from Nanjing, the capital

of Jiangsu province in China. Surrounding the city there is farmland and mountainous

areas where the natural vegetation is mainly coniferous forests. To filter out vegetation

NDVI was used and its result image was recoded into a binary image, considering all

positive pixels as vegetation and the remaining as non-vegetation. NDBI was then used

to extract built-up land. It resulted in a value close to 0 for vegetation, negative for water,

and a positive value for urban areas. It was then, also recoded into a binary image using

the same method. This does not ensure that all vegetation will be coded as non-built-up

since their value can be positive, although close to 0. To resolve this issue the recoded

NDVI image was subtracted to the recoded NDBI image leading to only built-up pixels

being considered. This resulted in an accuracy of 92,6% in this area. However, this result

is dependant on the assumption that vegetation will always have a NDVI value greater

than 0, which is not always the case. Vegetation reflectance can vary depending on the

location, species and soil moisture. So, although NDBI is effective, it is not foolproof and

should be used bearing in mind the surrounding vegetation.

Xu (2008) proposed Index-based Built-up Index (IBI), a new index to highlight built-

up land in satellite imagery using the previous index, NDBI. Similarly to the previous

study, other indices were also used to suppress the noise created by other elements such

as vegetation. In this study SAVI was used instead of NDVI to filter out vegetation. This

choice was made due to the fact that NDVI will only work when vegetation cover is above

30%, while SAVI can work with percentages of plant cover as low as 15%, which are more

common in urban areas. Xu also used MNDWI to remove water bodies from urban area

detection. NDBI is then calculated and the three images resulting from the indices are

used as if they were reflectance bands to calculate IBI.

The index was then verified using images from Fuzhou City, also in China, collected

by the satellite Landsat ETM+. IBI was calculated and then a manually determined

threshold was used to extract built-up areas. The non-urban areas were then removed

using a vector polygon defining the detected urban outline (Xu (2008)) and the final

overall accuracy achieved 96,77%.

In 2012 another new index was proposed by As-syakur et al. (2012) named Enhanced

Built-up and Bareness Index (EBBI). As the name suggests, this index is capable of

mapping and distinguish both urban areas and bare land. Landsat ETM+ was used for

this study and EBBI was compared with five other indices which are IBI; NDBI; Urban

13



CHAPTER 2. STATE OF THE ART

Index (UI), created by) Kawamura (1996); Normalised Difference Bareness Index (NDBaI),

proposed by Zhao and Chen (2005) and NDVI. IKONOS imagery was also used for

comparison to determine the levels of accuracy and effectiveness (As-syakur et al. (2012)).

When comparing the similarity of built-up areas detected with EBBI and IKONOS imagery

the results were 69.65%, and for bare land they were 62.82%. When comparing to the

other indices EBBI was the one achieving the highest accuracy. EBBI had an average

accuracy of 66,24% while IBI had 54,25% and NDBI had 51,87%. However it is important

to notice that EBBI is a general index for both built-up and bare land and when compared

to specific indices for either of those classes, namely IBI for built-up land and NDBaI for

bare areas, it performs worse for those individual classes even though its average accuracy

is higher. One of the reasons EBBI performs better than the other indices used is the usage

of the Thermal Infrared (TIR) band since this band has high emissivity for both built-up

and bare land.

Zhou et al. (2014) tested the applicability of NDBI with Landsat 8 OLI, the latest

sensor available during the time of this study. They also proposed a new index based

on the characteristics of the study area Zhengzhou, the capital of Henan province in

China. Landsat OLI differed from Landsat TM (the one used in 2003 NDBI study (Zha

et al. (2003))) in band boundaries hence why it is important to test if the index is still

valid with these new bands. Similarly to the reference study both NDBI and NDVI were

calculated, with equivalent bands from Landsat OLI, then recoded into binary images

and the NDVI image was subtracted from the NDBI one.

Then they started developing the new index. They analysed the spectral profiles of

the area and found regular patterns. The reflectance of band 2 (Blue) was greater than

band 3 (Green), and so was band 4 (Red), so they created two versions of NDBI that used

these bands, NDBIOLI2-OLI3 and NDBIOLI4-OLI3 that would help to identify blue-roofed

and red/grey-roofed built-up areas, respectively. The images resulting from these two

indices were then binarised and the new index, denoted BBIOLI, was calculated by adding

both binary images. BBIOLI denotes a binary image with only built-up and bare land area

pixels having positive sum values (Zhou et al. (2014)).

The results were clear, NDBI only achieved an overall accuracy of 57,4%, while BBIOLI

achieved 90,8%, mapping built-up and bare areas, proving to be superior for this study.

The traditional NDBI approach was thus considered to not be applicable to OLI data.

Nevertheless, it is important to emphasise that BBIOLI was developed with this particular

region, and this particular satellite, in mind and its applicability might not be valid for

different cities with different spectral profile patterns or other satellites. BBIOLI also had

trouble separating large bare land areas with no relationship to urbanisation such as

farmland after harvesting (Zhou et al. (2014)).

Rasul et al. (2018) also used Landsat 8 OLI to test already existing indices and propose

two new ones, Dry Built-up Index (DBI) and Dry Bare-Soil Index (DBSI). This study

was performed in Erbil, Iraq where the climate is much dryer, resulting in more bare

areas and less vegetation, which can have an impact on the indices’ performance since
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most of them were developed in China where the climate is a lot more humid. DBI was

compared to NDBI, UI and EBBI, while DBSI was compared to NDBaI, Bare soil Index (BI),

proposed by Chen et al. (2004) and Normalised Difference Soil Index (NDSI), by Rogers

and Kearney (2004). Both DBI and DBSI were found to produce better results than the

remaining indices with an overall accuracy of 93% and 92%, respectively.

Tian et al. (2018) did not propose a new index for urban mapping but instead em-

ployed a new method of automatic classification. They used Deep Convolution Neu-

ral Networks (DCNN) to detect urban areas, a rather new and uncommon (but gain-

ing popularity) method in remote sensing. Training samples were divided into n × n
non-overlapping normalised patches and their features were then extracted using a pre-

trained DCNN followed by a k-means clustering algorithm to produce visual words and

construct a dictionary with them, that would then be used for detection of urban land.

The urban words are then learned using a frequency of occurrence histogram, followed by

Bayes’ rule and a threshold judgement. Detection is a similar process to what was already

described. The test image is segmented into patches that will be normalised and have

its features extracted and then each of these patches is assigned to the nearest dictionary

word. The probability of it belonging to an urban area is then calculated also with Bayes’

rule and the decision is made based on a pre-determined threshold. The results were

good, achieving an overall accuracy of 87,65% on Google Earth dataset and 92,12% on

DigitalGlobe dataset.

2.5 Bare Land Detection

The issues with bare land and its identification are very closely related to the ones with

urban areas. As it could be seen in the previous sections many studies developed indices

that would map both urban and bare land. Nevertheless, there are also indices and

problems specific to bare areas that are worth mentioning in a separate specific section.

Bare lands are important for the ecosystem when they are of natural origins, such as

rock areas in mountainous regions or sand areas close to the shore. However, when that

is not the case they can have serious negative impacts on both the ecosystem and human

lives. Their origins are usually either fallow cropland or construction sites preceding new

buildings (Li et al. (2017)) and for that reason, they can be considered an indicator of

urban expansion. Although this expansion can be beneficial for citizens, providing new

job opportunities and better quality of life, it can be very detrimental to the ecosystem

inducing air pollution, such as smog, water pollution and soil loss to the city (Li et

al. (2017)). Bare areas can also be a source of sandstorms which can be very damaging in

an economic, social and environmental way(Chen et al. (2004)).

For these reasons, it is important to map both urban areas and bare land. Some of

the studies leading to new indices used for this purpose were already described in the

previous section, being them EBBI, BBIOLIand DBSI.
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Chen et al. (2004) tried to map bare land close to Beijing that was causing harmful

dust storms. Multitemporal imagery was collected from Landsat TM and some geometric

and atmospheric corrections were performed. They also proposed a new index, the previ-

ously mentioned Bare soil Index (BI) and used it in conjunction with NDVI and Shadow

Index (SI). The images were then classified using the maximum likelihood method and

masking techniques.

Normalised Difference Bareness Index (NDBaI) was previously mentioned, although

its study was not described since its focus is on bare land and not urban areas. It was

proposed by Zhao and Chen (2005) where the use of TIR band was introduced. The study

focused on a segment of the yellow river delta, in China, and Landsat ETM+, coupled

with a TIR sensor, was used to gather imagery of the river. The TIR band had a lower

spatial resolution of 60 m and had to be rectified to match the spatial resolution of 30 m

of the remaining bands using a Nearest Neighbour re-sampling method. These images

then went through a process of geometric correction and noise reduction. Then NDBaI

was computed and an appropriate threshold was set. The results were very good in inland

areas, however, it had some problems alongshore. For this reason, Normalised Difference

Soil Index (NDSI) was used to correct this problem which resulted in a combined accuracy

of 92,08%

Li et al. (2017) proposed another new index Difference Bare Land Index (NBLI). This

study was also performed in China, in the Wuhan city, the largest megacity in central

China. The authors studied the indices NDBI, IBI and UI that, although being able

to detect bare areas they were not able to clearly distinguish them from urban areas.

They also studied NDBaI and EBBI which can better distinguish between bare land and

urban land, however, an appropriate threshold had to be specified. Finding a suitable

threshold is not always an easy task and can be very time consuming (Li et al. (2017)) so

an automatic method is desired.

Landsat TM was used in this study and some atmospheric correction was performed

on its imagery. The images were then divided into five classes (built-up, bare land, water,

forest and agriculture) and NBLI was calculated as well as the other mentioned indices

as a means of comparison. All indices were able to highlight bare areas, however, as

expected NDBI, IBI and UI produced values too close to built-up areas. NBLI showed

the best results to distinguish bare land from the remaining classes. MNDWI was further

computed to remove water bodies. Then they created an unsupervised classifier, using

the k-means algorithm, to automatically find an appropriate threshold to extract water

bodies. These water bodies were then used as a mask to remove water bodies from NBLI

image (Li et al. (2017)).

Then a k-means classifier was again applied to divide the image into several classes (Li

et al. (2017)). The results showed IBI, NDBI, and UI images to confuse bare lands with

built-up areas excessively, not producing any meaningful results. EBBI was also unable

to distinguish them but NDBaI showed better separation between bare and built-up

areas but had difficulties distinguishing bare land from agriculture. NBLI had a clear
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distinction between bare lands and other classes however some parts of the river had a

large amount of suspended soil that could be mistaken for bare land, hence why MNDWI

was used to remove water bodies. By removing water bodies NBLI reaches an overall

accuracy of 95%, higher than all the remaining indices.
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3
Methodology

In this chapter the methodology employed is described, firstly presenting some details

about the collected data and then describing the preprocessing performed to be later used

for both training and testing the developed classifiers. It goes into detail about the indices

used and COS classes that were aggregated explaining the reasons behind their choice

for each class. Similarly, it presents the reasoning behind the choice of type of classifier

(decision trees) explaining some of their advantages when compared to other classifiers.

Lastly, the hierarchical structure of the developed classifiers is presented and explained.

3.1 Available Data

The data collected for this study consisted of satellite multi-spectral images from the

Sado estuary region all year round. These images were taken by the satellite Sentinel-2

and possess thirteen different spectral bands, at 60 m, 20 m and 10 m spatial resolutions,

which are listed on table 3.1.

These samples range from March 2018 until January 2020, choosing only one day per

month and using its set of multi-spectral images. Each month had its set of images chosen

based on the percentage of cloud coverage, as this would hinder the performance of the

classifier due to the lack of visibility.

Figure 3.1 presents the date of each sample and its respective cloud coverage, high-

lighting higher percentages with reddish tones while using blue for the opposite.

Figure 3.1: Cloud coverage of each individual sample.
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Table 3.1: Sentinel-2 spectral bands.

Sentinel-2A Sentinel-2B

Bands
Central

wavelength (nm)
Bandwidth (nm)

Central
wavelength (nm)

Bandwidth (nm)
Spatial

resolution (m)

Band 1 – Coastal aerosol 442.7 21 442.2 21 60
Band 2 – Blue 492.4 66 492.1 66 10
Band 3 – Green 559.8 36 559.0 36 10
Band 4 – Red 664.6 31 664.9 31 10
Band 5 – Vegetation red edge 704.1 15 703.8 16 20
Band 6 – Vegetation red edge 740.5 15 739.1 15 20
Band 7 – Vegetation red edge 782.8 20 779.7 20 20
Band 8 – NIR 832.8 106 832.9 106 10
Band 8A – Narrow NIR 864.7 21 864.0 22 20
Band 9 – Water vapour 945.1 20 943.2 21 60
Band 10 – SWIR – Cirrus 1373.5 31 1376.9 30 60
Band 11 – SWIR 1613.7 91 1610.4 94 20
Band 12 – SWIR 2202.4 175 2185.7 185 20

As it can be seen, even though efforts were made to select cloudless samples, this is

not always possible due to the seasonality of these meteorologic events. March, April,

November and December appear cloudy on both years, while September and October vary

between the two. The remaining months (May, June, July, August, January and February)

present almost nonexistent clouds, having great visibility.

3.1.1 Data Preprocessing

The data mentioned in the previous section were then prepared, using Matlab R2018b, to

create a suitable dataset for the training and testing of the several classifiers.

For each month, the first step was resizing all the images to the same size, since there

are different spatial resolutions across spectral bands. This could be done by either upscal-

ing all the images to a spatial resolution of 60 m or downscaling them to the resolution

of 10 m. The latter was chosen using Nearest-Neighbour interpolation due to higher

resolutions holding more detailed spatial information, leading to higher accuracy, (Du

et al. (2016); Huang et al. (2018)) that would otherwise be lost if the former was used

instead.

The resulting images’ size was 10980 by 10980 pixels, which were then reshaped into

one column dimension, totalling 120560400 pixels/rows. This was done to every spectral

band available excluding band 8A - Narrow NIR, since band 8 - NIR also includes its

range of frequencies and has a higher spatial resolution of 10 m instead of 20 m, and

also band 10 - SWIR (Cirrus) due to being mainly used for cirrus detection, a type of

cloud, which falls out of the scope of the present work and the fact that other SWIR bands

(11 and 12) are readily available at better spatial resolutions of 20 m against 60 m. This

resulted in a base dataset common to all classifiers, possessing 11 columns and 120560400

rows as it can be seen in the first section of figure 3.2.

To further increase the success of the developed classifiers some commonly used

indices were also calculated based on the spectral bands available as shown in the second

section of figure 3.2. Each classifier had a different set of indices that were chosen based
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on the class to be detected, so they could improve the performance of the classifier. The

specific indices used in each classifier will be described in detail in subsection 3.1.2.

The last column missing in these datasets should identify which class each pixel/row

belongs to. For this purpose, a section of COS, of the same territory, was used. As it was

done previously, this image was reshaped into one single column containing 10 different

classes. This process is shown in the last section of figure 3.2 and the classes can be seen

in table 3.2 along with their total amount of pixels and the percentage they occupy in the

image.

Figure 3.2: Steps to build the dataset of a single month for binary classifiers.

In COS the label 0 is used to identify land that does not fit in the remaining mega-

classes, so it could be something else besides ocean (since these are excluded from class

9). However it was confirmed that in the territory portion used in this study all the pixels

with the assigned label of 0 were indeed always ocean so they will be considered as such.

These 10 classes will then be aggregated and converted into 5 new classes, as it can be

seen in figure 3.3 so the classifiers can make binary predictions of a specific class, or

non-class (for example, water bodies and non-water bodies).

This process was repeated through all the 23 samples acquired, for each of the 5

classifiers.
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Table 3.2: List of COS classes and their predominance in the sample region.

Label Type of land
Number
of pixels

Percentage
of pixels

0 Ocean 11.523.931 9,6%
1 Artificial territories 2.961.625 2,6%
2 Cropland 30.584.736 25,4%
3 Grassland 12.280.154 10,2%
4 Agroforestry surfaces 25.348.402 21,0%
5 Forest 32.730.095 27,1%
6 Shrubland 769.446 0,6%
7 Bare areas 245.703 0,2%
8 Humid areas 617.522 0,5%
9 Superficial water bodies 3.498.786 2,9%

Total: 120.560.400 100%

Figure 3.3: Conversion of COS classes to the ones used in this study.

3.1.2 Indices used and classes aggregated

3.1.2.1 Water classifier

For the water classifier three different indices were used, with one of them having two

different versions, making it four in total.

The first index used in the water classifier was Normalised Difference Vegetation Index

(NDVI) which will help to differentiate and recognise vegetation. It is calculated from

the spectral reflectance measured in the red part of the spectrum, which corresponds

to Sentinel-2’s band 4, and in the Near Infrared (NIR) portion, which is band 8, and its

formula can be seen in equation (3.1).

NDV I =
NIR−Red
NIR+Red

=
Band 8−Band 4
Band 8 +Band 4

(3.1)

A second one is Normalised Difference Water Index (NDWI) (McFeeters (1996)) that

22



3.1. AVAILABLE DATA

enhances water detection. Similarly to NDVI, this index also uses the spectral reflectance

in the NIR section of the spectrum (band 8), and, instead of the red portion, uses the

green portion of the spectrum (band 3). Following below, it can be calculated using

equation (3.2).

NDWI =
Green−NIR
Green+NIR

=
Band 3−Band 8
Band 3 +Band 8

(3.2)

Lastly, since NDWI has shown poor results in some situations due to signal noise and

inseparability of built-up areas(Yang et al. (2017)), Modified Normalised Difference Water

Index (MNDWI) (Xu (2006)) was also calculated since it has shown better results in such

situations. MNDWI is similar to NDWI but it is calculated using the Shortwave Infrared

(SWIR) band instead of NIR since water bodies have better absorbability in the SWIR

band than NIR band (Du et al. (2016)). Due to the fact that Sentinel-2 has two SWIR

bands (excluding cirrus band) two MNDWI were therefore calculated, MNDWI1 with

band 11 and MNDWI2 with band 12. They can be calculated as shown in equations (3.3)

and (3.4).

MNDWI =
Green− SWIR
Green+ SWIR

; (3.3)

MNDWI1 =
Band 3−Band 11
Band 3 +Band 11

; MNDWI2 =
Band 3−Band 12
Band 3 +Band 12

(3.4)

Similarly to the initial images, all these indices had their bands resized to a spatial

resolution of 10 m, also resulting in a 10980 by 10980 matrix that was then reshaped

into a column of 120560400 rows. They were then added to the base dataset which now

counts 15 columns.

From the 10 mega-classes considered, three (0 - Ocean, 8 - Humid Areas, 9 - Super-

ficial water bodies) were merged into one class representing water bodies (identified as

0), while the remaining were joined to identify non-water bodies (identified with the

number 1). Thus this dataset is complete, having a total of 16 columns (15 predictors and

1 response column).

Figure 3.4: Water classifier summary table, indicating the indices used and COS classes
considered as water.
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3.1.2.2 Forest classifier

For the forest, and following classifiers six different indices were used.

The first one was the most commonly used NDVI to enhance vegetation. This in-

dex is incredibly popular due to its good results and can be seen in several studies sur-

rounding vegetation and remote sensing (Arroyo-Mora et al. (2005); Etteieb et al. (2013);

Huete (1997); Oliveira et al. (2021)). For this reason, it was unavoidable to use it for forest

detection and its formula can be seen in equation (3.1).

A second index is Soil Adjusted Vegetation Index (SAVI) (Huete (1988)) which was

calculated using equation (3.5). This index was developed to remove canopy background

noise produced by the soil underneath it. It was developed based on NDVI and PVI

and similarly uses the NIR part of the spectrum (Sentinel-2’s band 8) along with the red

band (band 4). The formula has a variable L which is the soil adjustment factor and

its standard value for better adjustment is 0,5 (when this value is 0 SAVI equals NDVI).

However, this value may not always be the most optimal and can be tweaked to specific

scenarios since soil emissivity will vary depending on its composition and water content.

Since the study area is too vast and samples are taken all throughout the seasons the

water content and composition of the land will vary immensely and the standard value

of 0,5 will consequently be used.

SAV I =
NIR−Red

NIR+Red +L
× (1 +L) =

Band 8−Band 4
Band 8 +Band 4 + 0,5

× (1 + 0,5) (3.5)

Another index used is Normalised Difference Moisture Index (NDMI) (Wilson and

Sader (2002)) which measures vegetation water stress levels and can detect forest harvest-

ing, which is good for monitoring changes in forests’ overall health and cover. It is also

similar to NDVI but uses the SWIR band (band 11) instead of the red band, due to its

ability to better absorb water, and has shown better results in certain situations (Wilson

and Sader (2002)). Its formula can be seen in equation (3.6).

NDMI =
NIR− SWIR
NIR+ SWIR

=
Band 8−Band 11
Band 8 +Band 11

(3.6)

Next index is Soil Composition Index (SCI), also known as Normalised Difference

Built-up Index (NDBI) (Zha et al. (2003)), which is useful to detect both built-up and

bare land and thus differentiate them from vegetation so it is easier to identify forests

and non-forests land. It uses Sentinel-2’s band 11 (SWIR) and band 8 (NIR) and can be

computed through equation (3.7).

NDBI =
SWIR−NIR
SWIR+NIR

=
Band 11−Band 8
Band 11 +Band 8

(3.7)

The fifth index is Green Chlorophyll Index (CIgreen) (Gitelson et al. (2005)) which will

calculate chlorophyll content of leaves. Chlorophyll is a pigment that is present in the

vast majority of plants and so it can be used to highlight vegetation from surrounding

land. This index uses band 8 (NIR) and band 3 (Green) as shown in equation (3.8).

CIgreen =
NIR
Green

− 1 =
Band 8
Band 3

− 1 (3.8)
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The last index is Green Normalised Difference Vegetation Index (GNDVI) (Gitelson et

al. (1996)) which is very similar to NDVI but, as the name implies, uses the green portion

of the spectrum (band 3) instead of the red one, as seen in equation (3.9). The use of

the green band makes this index at least five times more sensitive to chlorophyll content

than NDVI while also having a wider dynamic range of chlorophyll variations (Gitelson

et al. (1996)).

GNDV I =
NIR−Green
NIR+Green

=
Band 8−Band 3
Band 8 +Band 3

(3.9)

Like previously mentioned, to calculate these indices all the bands used had to be

resized into a 10 m spatial resolution and then the resulting index was reshaped into a

single column that could then be added to the base dataset. Along with the response

column, this resulted in a final dataset size of 120560400 rows and 18 columns.

Then the values of the response column had to be converted so this classifier would

identify land as either forest or non-forest. Both class 4 (agroforestry surfaces) and class 5

(forest) were considered as forest land, due to their similarity, but class 6 (shrubland) was

also included since it is also wild vegetation, and the three were identified as the value of

0 while the remaining were all considered as non-forest being attributed the value of 1.

Figure 3.5: Forest classifier summary table, indicating the indices used and COS classes
considered as forest.

3.1.2.3 Agriculture classifier

The agriculture classifier is very similar to the forest classifier, as they both identify

vegetation, and for this reason, some of the indices used will be common to both (NDVI,

GNDVI, SAVI). However they also have some differences, for example, the agriculture

classifier will have to identify vegetation all throughout the year and the plants will be

in very different growth stages, while the forest one will usually identify plants that are

typically slower in growth and do not present as many changes; agricultural crops also

tend to be somewhat geometrically organised with bare soil in between plants while on

mature forests the crown of the trees might conceal the soil beneath, and the soil itself is

usually not completely bare but being occupied instead by small and low vegetation.
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NDVI was used as it is the staple index for detection of vegetation and its formula can

be seen in equation (3.1).

SAVI was also used as it can help to differentiate plants from the soil surrounding it,

which, as stated before, is very useful in the typical grid-like cropland where plants are

separated by bare soil. It can be calculated through equation (3.5).

The last index common to both agriculture and forest classifier is GNDVI. This index

is far more sensitive to chlorophyll content than NDVI which is a crucial indicator of the

plant’s health and future yield being very important to the agricultural sector. It can be

seen in equation (3.9).,

The next vegetation index used was Greenness Vegetation Index (GVI), as seen in

equation (3.10). This is a simple index that uses the green and red reflectance portion of

the spectrum, Sentinel-2’s band 3 and 4, respectively. It has been proven to effectively

identify various different types of vegetation covers, which is really useful in agriculture

due to the diversity of species cultivated (Bannari et al. (1995); Wiegand et al. (1991)).

GV I =
Green−Red
Green+Red

=
Band 3−Band 4
Band 3 +Band 4

(3.10)

Next, we have the index Optimised Soil Adjusted Vegetation Index (OSAVI) (Rondeaux

et al. (1996)), which belongs to the family of SAVI indexes, like SAVI, MSAVI and TSAVI,

thus serving the similar purpose of contrasting vegetation from the underlying soil. It is

a simplified version of TSAVI that does not require prior knowledge of the soil optical

properties which makes it more accessible to studies where these are not able to be

determined. It has also shown to be better suited for agricultural application (Rondeaux

et al. (1996)). This index can be calculated through equation (3.11) which uses NIR and

red bands (bands 8 and 4, respectively), along with a factor L, for soil adjustment, which

standard value is 0,16.

OSAV I =
NIR−R

NIR+R+L
=

Band 8−Band 4
Band 8 +Band 4 + 0,16

(3.11)

The last index used is Transformed Chlorophyll Absorption in Reflectance Index

(TCARI) (Haboudane et al. (2002)) which is also a chlorophyll sensitive index. Chloro-

phyll is an indicator of photosynthetic activity which is strongly correlated to nitrogen

concentrations. Monitoring chlorophyll concentrations can help farmers dictate the cor-

rect amount of nitrogen to be applied at a given moment to later increase yield. This index

has shown to be very sensitive to chlorophyll concentrations at a wide range, including

low ones which make it good to detect vegetation at different growth stages. The formula

for this index can be seen in equation (3.12) where the number associated with each R

variable indicates the wavelength, in nanometers, that should be used. Sentinel-2’s bands

were then chosen based on these numbers so that their central wavelength would be as

close as possible to the value specified so the results would not differ too much.
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TCARI = 3 ·
(
(R700 −R670)− 0,2 · (R700 −R550)× R700

R670

)
(3.12)

= 3 ·
(
(Band 5−Band 4)− 0,2 · (Band 5−Band 3)× Band 5

Band 4

)
As for the classes considered for this classifier, both classes 2 (Cropland) and 3 (Grass-

lands) were merged to symbolise agricultural land, with the remaining being non agri-

cultural land. The reason for grasslands to be included in this classifier is due to both

plant cultivation and livestock production being part of agriculture, and grasslands being

used a lot for livestock. Besides this, some grasslands are not of natural origin but instead

cultivated by man, therefore, being different from other kinds of spontaneous wild low

vegetation.

Figure 3.6: Agriculture classifier summary table, indicating the indices used and COS
classes considered as agriculture.

3.1.2.4 Urban Areas classifier

The indices used in the urban areas classifier will not only focus on detecting built-up

land but also the typical surrounding land like vegetation and water so they can be more

easily discarded as non-built-up areas. For this reason both NDVI (equation (3.1)) and

SAVI (equation (3.5)) were used to detect vegetation and MNDWI (equation (3.3)) was

used to identify water. The reason behind the use of both NDVI and SAVI resides on

their sensitivity on plant cover. NDVI is known to work effectively when the plant cover

is above 30%, while SAVI can achieve this in situations with a plant cover as low as

15% (Xu (2008)). This is relevant due to vegetation inside urban areas typically having

lower coverage.

Another index previously mentioned that was also used in this classifier is NDBI

(equation (3.7)). NDBI was developed with built-up land identification in mind, however,

it can also be used to detect soil and bare land, hence why it was used in the forest

classifier.
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Next we have Urban Index (UI) (Kawamura (1996)) which uses the reflectance of the

SWIR and NIR part of the spectrum which correspond to Sentinel-2’s band 12 and 8, re-

spectively. This index was developed for mapping built-up land, although it occasionally

mistakenly identifies some bare land as built-up land due to their spectral similarities. It

can be seen in equation (3.13).

UI =
SWIR−NIR
SWIR+NIR

=
Band 12−Band 8
Band 12 +Band 8

(3.13)

Lastly, there is the Index-based Built-up Index (IBI) (Xu (2008)) which is a slightly

different index from the ones previously presented. Instead of directly using the spectral

band available this index uses the result of other indices to identify urban areas as it can

be seen in equation (3.14). These indices are NDBI, SAVI and MNDWI. NDBI is used to

highlight urban areas, however, this index often mixes built-up land with vegetation (Zha

et al. (2003)). Therefore SAVI is used to counteract this limitation of NDBI, identifying

plant cover to be then removed. NDVI can also be used in place of SAVI, however, it is not

as effective in situations where the plant cover is low, which is fairly common in urban

scenarios, hence SAVI being preferred, as it can highlight vegetation with its cover is as

low as 15%. MNDWI is used to identify water bodies and remove them from the picture.

So, by combining the results of both SAVI and MNDWI and subtracting them from NDBI,

only built-up land is remaining. The reason why the sum of SAVI and MNDWI is divided

by two is to avoid IBI from getting too small values (Xu (2008)).

IBI =

NDBI − SAV I+MNDWI
2

NDBI + SAV I+MNDWI
2

 (3.14)

Finally, for the COS classes considered in this classifier, only class 1 (Artificial terri-

tories) was treated as urban areas, identified by the number 0, while the remaining nine

classes were aggregated to identify non-urban areas, identified by the number 1.

Figure 3.7: Urban Areas classifier summary table, indicating the indices used and COS
classes considered as urban areas.
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3.1.2.5 Bare Land classifier

Similarly to the Urban area classifier, the indices used in this case will also not only focus

on bare land but also the neighbouring land such as vegetation and water. Thus, both

NDVI (equation (3.1)) and NDWI (equation (3.2) were used to detect each of these cases,

respectively.

The index NDBI (equation (3.7)) is also used because as formerly mentioned, although

its development focused on built-up land it was found to also be effective to map bare

land.

Next index is Bare soil Index (BI) (Chen et al. (2004)) which is an index designed to

identify bare land that uses four different spectral bands, SWIR (band 11), NIR (band

8), red (band 4) and blue (band 2). It can be calculated through the formula seen in

equation (3.15).

BI =
(SWIR+Red)− (NIR+Blue)
(SWIR+Red) + (NIR+Blue)

=
(Band 11 +Band 4)− (Band 8 +Band 2)
(Band 11 +Band 4) + (Band 8 +Band 2)

(3.15)

Another bare land index is Dry Bare-Soil Index (DBSI) (Rasul et al. (2018)) which

focuses on bare land in dry climates. This index was included due to the Alentejo region

in Portugal having very dry summers which result in dry vegetation and soil, which this

index aims to detect. Its formula is also uncommon, since it uses both spectral bands

and an index, and can be seen in equation (3.16). It uses SWIR and green reflectance

bands which are Sentinel-2’s band 11 and 3, respectively. The index used is NDVI which

is subtracted so vegetation is removed.

DBSI =
SWIR−Green
SWIR+Green

−NDV I =
Band 11−Band 3
Band 11 +Band 3

−NDV I (3.16)

Finally, an index simply denoted by B (equation (3.17)) (Zhou et al. (2014)) is calcu-

lated to detect bare land. This index also works in a different way than most traditional

indices by using two other indices instead of spectral bands. Besides that, these indices,

NDBI and NDVI are first binarised instead of being used as-is. For both indices, any

negative value is represented by 0, and any positive value represented by 1. The resulting

indices, NDBIb and NDVIb are then subtracted so all vegetation is removed and only bare

land has a positive value. The use of NDBI has the downside of also detecting urban areas

along with bare land which can not always give the best results.

B =NDBIb −NDV Ib (3.17)

As for the classes used, COS mega-class 7 (Bare areas) was used to identify bare land,

with the value 0, while the rest of the mega-classes were joined to identify non-bare land,

with the value of 1.
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Figure 3.8: Bare Land classifier summary table, indicating the indices used and COS
classes considered as bare land.

3.2 Classifiers

As stated before, five different classifiers were trained to detect five different classes:

water, forest, agriculture, urban areas and bare land, plus one final classifier that uses the

result of the latter to further improve performance and solve any conflicts between the

binary classifiers. These five classifiers are binary decision trees that can only predict if a

pixel is either the class or not the class that it was trained to detect, while the final decision

classifier is multi-class and will predict which of the five classes is more appropriate for

a given pixel. This process can be seen in figure 3.9.

Decision trees were used because they (and their variants such as boosted decision

trees and random forests) have been commonly used, with good results, in the field of

remote sensing for a long time (some examples include (Aguilar et al. (2015); Brown et

al. (2013); Goldblatt et al. (2016); Huang et al. (2018))). This classification procedure will

recursively divide the initial dataset into smaller, homogeneous and mutually exclusive

subsets using an impurity function such as information gain index, Gini index, chi-square

measure, and others (Brown et al. (2013); Oliveira et al. (2021); Pal and Mather (2003)).

This results in a set of rules arranged as an inverted tree-like structure, hence the name,

where each node represents a single rule that decides which of its descendants is more

appropriate (has less impurity) for the given input data. (Oliveira et al. (2021)).

Decision trees are non-parametric classifiers, meaning they do not make assumptions

regarding the distribution of the data (Aguilar et al. (2015); Brodley and Friedl (1997))

that could limit its learning ability. A lot of different datasets can also be used with

these classifiers with little preprocessing since they can handle noisy and non-linear

relationships between classes, data measured in different scales, both categorical and

numerical data and missing values (Brodley and Friedl (1997); Pal and Mather (2003)).

In addition, decision trees are computationally fast for both training and testing, espe-

cially when compared to other popular classifiers nowadays such as neural networks and

its variants. They also contrast with neural networks when it comes to interpretation, af-

ter all, neural networks are viewed as a black box, where the inside cannot be interpreted,
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while decision trees are considered white boxes because their classification structure is

made from simple and explicit rules which can easily be read and interpreted by humans.

However, decision trees also have some disadvantages. Once a decision tree is trained

its structure and rules are set, not being able to learn and adapt to new data, unlike

neural networks. Therefore the decision trees specifically built for this study case may

not produce the same results if applied to other areas, especially in different climates.

The development of the classifiers used in this study was also performed using Matlab,

version R2018b, and its app “Classification Learner”. Given the training data already

preprocessed a decision tree of type ‘Fine Tree’ was used, with a maximum number of

splits of 10, using the split criterion of Gini’s diversity index and with surrogate decision

splits turned off. Due to the very extensive dataset used for training (30.000.000 rows)

the holdout method was chosen for validation, with 25% held out, instead of the more

commonly used cross-validation method. These parameters were used for all the six

classifiers developed in this thesis.

3.2.1 Binary Classifiers

The first part of this work focused on the development of binary classifiers for each of the

five defined classes: water, forest, agriculture, urban areas and bare land. For each of these

cases there are two versions, one that will use the prepared dataset as it is, and other that

will first filter pixels obscured by clouds, by applying an appropriate mask to the satellite

images. This is done so the classifier will not create rules based on fallacious values.

These were called and will be referred to as, respectively, “Clouds” and “Cloudless”.

Then, for each of these two versions, there are other four different variants by the

names of “allMonths”, “MonthVar”, “2019” and “2019_MonthVar”. From these vari-

ants, “allMonths” and “MonthVar” are very similar to each other, and so are “2019” and

“2019_MonthVar”, with the only difference being the presence, indicated by the name

MonthVar, or absence of an extra column in the training dataset specifying the month

(using a number between 1 and 12) at which each sample (each line of the dataset) was

taken. The purpose of this extra information is to help identification of land cover that

change a lot throughout seasons, namely: water, that is affected by temperature and cli-

mate events, suffering periods of drought or shallower water and floods and deeper water

which change its spectral reflectance; forest, that similarly go through periods of dry and

humid weather which in turn change the spectral reflectance of tree leaves, and in the case

of deciduous tree species they completely lose their foliage which also significantly alters

the spectral readings of the satellites; and agriculture, that rapidly changes throughout

the year to optimise and maximise yield.

The variants “allMonths” and “MonthVar” used all the 23 months for both training

and testing the classifier. A sample of 30 million random pixels was taken from the

original dataset to create the training dataset, maintaining similar class proportions as

to avoid unwanted biases. The numbers of rows taken from each class can be seen in
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table 3.3, along with the total number of pixels of each class and their percentage, which

can be compared to the original percentages in table 3.2. Some rows indicate values

with a decimal part (shown with an asterisk (*)) which is counter-intuitive when pixels

are concerned, however, it is just the result of the division between the total numbers of

pixels and the number of months concerned. This was corrected by taking an extra pixel

from some months until the desired total number of pixels for that class was achieved.

It is important to point that in all the 23 months available there are always two distinct

observations of each month except for February, and due to that, the number of pixels

extracted from February was doubled to correct this imbalance.

Table 3.3: Number of pixels used for the training dataset of classifiers “allMonths” and
“MonthVar”.

Label Type of land
Number of pixels

per month
Total number

of pixels
Percentage
of pixels

0 Ocean * 119.583,(3) 2.870.000 9,6%
1 Artificial territories 37.500 900.000 3,0%
2 Agriculture * 316.666,(6) 7.600.000 25,3%
3 Grassland 125.000 3.000.000 10,0%
4 Agroforestry surfaces 262.500 6.300.000 21,0%
5 Forest * 330.416,(6) 7.930.000 26,4%
6 Shrubland * 8.333,(3) 200.000 0,7%
7 Bare areas * 4.166,(6) 100.000 0,3%
8 Humid areas * 8.333,(3) 200.000 0,7%
9 Water bodies 37.500 900.000 3,0%

Total: 30.000.000 100%

However, training and testing with the same dataset can lead to optimistic results and

for this reasons the variants “2019” and “2019_MonthVar” were created. These variants

will train with the 12 months from 2019 and test with the remaining. The training dataset

was built similarly to the previous one, selecting 30 million random pixels from each class,

while maintaining a similar percentage to the original dataset, as it can be seen in table 3.4

(the value with a decimal part, indicated by asterisk, are treated as it was described for

table 3.3, taking an extra pixel from some months until the desired total number of pixels

for that class is achieved). Unlike the previous one, since we only use one month of each,

it is not necessary to double the value of pixels taken from February.

A flowchart illustrating the process of creating a training dataset depending on the

intended version and variant can be seen in figure 3.10. It can be seen how variants

“allMonths” and “MonthVar” differ from variants “2019” and “2019_MonthVar” in the

number of datasets (months) used. Then it is possible to observe that clouds are immedi-

ately filtered out before any further processing when the version “Cloudless” is chosen,

and after that a column for the month variable may be added depending on the variant.

Afterwards a sample from each class if taken from each dataset (month) according to
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Table 3.4: Number of pixels used for the training dataset of classifiers “2019” and
“2019_MonthVar”.

Label Type of land
Number of pixels

per month
Total number

of pixels
Percentage
of pixels

0 Ocean * 239.166,6 (6) 2.870.000 9,6%
1 Artificial territories 75.000 900.000 3,0%
2 Agriculture * 633.333,3 (3) 7.600.000 25,3%
3 Grassland 250.000 3.000.000 10,0%
4 Agroforestry surfaces 525.000 6.300.000 21,0%
5 Forest * 660.833,3 (3) 7.930.000 26,4%
6 Shrubland * 16.666,6 (6) 200.000 0,7%
7 Bare areas * 8.333,3 (3) 100.000 0,3%
8 Humid areas * 16.666,6 (6) 200.000 0,7%
9 Water bodies 75.000 900.000 3,0%

Total: 30.000.000 100%

tables 3.3 or 3.4 depending on the variant chosen. For any version or variant the training

dataset will total 30 million rows and the training of decision trees can then begin.

Figure 3.10: Flowchart depicting the process of creating a training dataset depending on
the desired version and variant.

3.2.2 Final Decision Classifier

After all the versions and variants from each class were computed the final decision

classifier was developed. This classifier takes a different approach, not using the original

dataset of satellite imagery but instead the results from the developed binary classifiers, as

seen in figure 3.9. Each binary classifier can output if a pixel is either its class or not, and it

is also possible to know how certain the classifier is that the pixel in question represents in

fact the class it was trained to detect. This percentage of certainty (certainty maps) of each

class was obtained through the function [label,score,node,cnum] = predict(Mdl,X), from

Matlab, and will form the training dataset for this final classifier as shown in figure 3.11.

Only the “Cloudless” version of binary classifiers was employed to create this training

dataset, so rules and results derived from fallacious readings due to cloud cover will be

avoided. Then, for each variant, the developed binary decision trees were used to classify

the intended months (23 months for variants “allMonths” and “MonthVar”, 12 months
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Figure 3.11: Steps to build the dataset of a single month for the final classifier.

for variants “2019” and “2019_MonthVar”) and the resulting certainty maps were stored

to build each dataset.

Since there are five different classes each single dataset will have five columns, along

with an extra column indicating the month at which the input was taken, and a final

response column with COS values, totalling seven columns. The construction of a single

dataset, for a single month, can be seen in figure 3.11.

Then for the development of the training dataset a sample was taken from each of

these datasets. The number of pixels used for each of the four variants is the same as

previously stated and can be seen in tables 3.3 for “allMonths” and “MonthVar” where

every month is used and the amount of pixels for February is doubled, and 3.4 for “2019”

and “2019_MonthVar” where only 2019’s months are used.

Unlike in the previous case variants “MonthVar” and “2019_MonthVar” do not in-

dicate that a column for month variable was added, since it is already present in all

datasets, instead they specify the variant of the binary classifiers used. This means that

a final classifier of specific variant was developed based on the results of the group of
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binary classifiers of that same variant. A diagram showing the process of training the

final classifier based on the previous classifiers is displayed in figure 3.12.

Figure 3.12: Process of building a training dataset from the developed binary classifiers
to train a final classifier.

Contrary the previous classifiers, the final decision classifier is multi-class and can

have as an output a number between 0 and 4 that corresponds to one of the five considered

classes, which are, in order: water (0), forest (1), agriculture (2), urban areas (3) and bare

land (4).
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Results

In the present chapter, the results obtained from the various classifiers developed will

be presented and analysed. These results will be compared between the various metrics

chosen to assess performance, between all versions and variants, and also between the

binary classifiers and the final decision classifier. Thus, making it possible to draw some

conclusions about each classifier.

4.1 Metrics for Classification Assessment

For a correct assessment of a classifier’s performance, the choice of metrics is crucial and

factors such as dataset balance should be considered. Metrics commonly found in the

literature include accuracy and its variants such as overall accuracy, producer accuracy

and user accuracy, F1-score, sensitivity, specificity, among others.

However some of these metrics, namely accuracy and F1-score, are sensitive to un-

balanced data and their results can be overoptimistic, not always reflecting the true

performance of the classifier. This is important since the dataset used for this study is

not perfectly balanced between the five classes considered. Urban areas and bare land

are notably unbalanced compared to the remaining classes as it can be seen in table 4.1.

Due to this imbalance, an effort was put into finding other metrics that would not be

affected by this problem. There is a myriad of different metrics in the field of machine

learning and the ones used in the present work were based on the confusion matrix built

with the output of each classifier. A general confusion matrix for a binary classification

problem is presented in figure 4.1.

At the top the “Actual Class” can be seen which is the ground truth, in this case

it is the binarised COS classes, and on the left, there is the “Predicted Class” which is

what the developed classifier predicted for that instance. When both the actual class and
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Table 4.1: List of final classes considered and their cover percentage.

Label Type of land
Total number

of pixels
Percentage
of pixels

0 Water 15.640.239 13,0%
1 Forest 58.847.943 48,8%
2 Agriculture 42.864.890 35,6%
3 Urban Area 2.961.625 2,5%
4 Bare Land 245.703 0,2%

Total: 120.560.400 100%

Figure 4.1: Binary confusion matrix.

the prediction from the classifier are positive (value 0 in this case) then it is called a

True Positive (TP), similarly, when both the ground truth and the prediction are negative

(value 1) then it is a True Negative (TN). When the true class is positive but the classifier

mistakenly identifies it as negative it is called a False Negative (FN) and when the opposite

happens, the real class is negative and prediction is positive, then it is a False Positive

(FP).

To test if a metric is affected by data imbalance, its formula and the confusion matrix

must be analysed to understand how this imbalance impacts it. Data imbalance means

that there will more actual positives than actual negatives or vice-versa. To represent

this a constant α is multiplied by the values of either column. Then the formula is once

again analysed with this new constant in place. If both formulas (with and without

the constant) lead to the same result then it can be said that the metric is not affected by

unbalanced data, however, if that is not the case then the constant (the unbalance between

positive and negative classes) had an impact on the result and it should be interpreted

with caution (Tharwat (2020)).

For example, by analysing accuracy’s formula Acc = T P+TN
T P+TN+FP+FN , and applying the

constant α to the actual positives (TP and FN) this will result in Acc′ = αT P+TN
αT P+TN+FP+αFN .

These two formulas are different and cannot be solved in any way that would make

them equivalent, therefore proving that accuracy is a metric affected by data distribu-

tion (Tharwat (2020)). In contrast, if the same process is applied to sensitivity’s formula

sensitivity = T P
T P+FN the resulting formula sensitivity′ = αT P

αT P+αFN = �αT P

�α(T P+FN )
= T P

T P+FN

leads to the same result as the original, which means it is not affected by unbalanced data.
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When the classifier is not binary, as it is the case of the Final Decision classifier de-

veloped, the confusion matrix will be different and metrics cannot be directly calculated

through it. For the sake of simplicity, a confusion matrix of 3 variables (the Final Decision

classifier has 5) is presented on figure 4.2.

Figure 4.2: Multi-class confusion matrix. Based on (Tharwat (2020)).

The TPs can easily be identified, however, the same cannot be said for TN, FP and

FN. To calculate the metrics for this kind of problem each class is analysed separately

against the remaining, like if it was a binary classifier. For example, considering A the

positive class, all others will be considered negative and FP will be any of the other

classes mistakenly identified as A, that is EBA and ECA. Similarly, FN will be any instance

of class A that was predicted as any of the others, meaning EAB and EAC. For the TN we

considered the remaining cells which are TPB, TPC, ECB and EBC. In the end values are

grouped and summed as seen in figure 4.3. With these values calculated the metrics used

can be computed with ease. This process is repeated for each class.

Figure 4.3: By grouping and summing the values inside the coloured rectangles a multi-
class problem can be treated as a simpler binary problem.
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4.1.1 Metrics Chosen

Eight different metrics were chosen to evaluate the performance of the developed classi-

fiers. They are True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive

Value (PPV), Negative Predictive Value (NPV), accuracy, Balanced Accuracy (BA), F1-score

and Matthews Correlation Coefficient (MCC). Each one will be described, mentioning if

they are sensitive to data distribution, which was assessed using the process described

previously.

Sensitivity Also called True Positive Rate (TPR), Recall or Probability of Detection. This

metric is calculated by dividing the number of true positives by all the actual positives,

indicating the percentage of positive pixels correctly identified.

• Formula: T PR = T P
T P+FN ;

• Domain: [0, 1];

• Data imbalance: insensitive.

Specificity Also known as True Negative Rate (TNR) and Selectivity. It is very similar to

TPR but it refers to the negative values instead of positive ones. Indicates the percentage

of negative pixels correctly identified.

• Formula: TNR = TN
TN+FP ;

• Domain: [0, 1];

• Data imbalance: insensitive.

Precision Or Positive Predictive Value (PPV) is calculated by dividing the true positives

by all the predicted positives indicating how much the classifier got right when declaring

a pixel as positive. This can tell the user how much to trust the classifier when it identifies

the result as positive.

• Formula: P P V = T P
T P+FP ;

• Domain: [0, 1];

• Data imbalance: sensitive.

Negative Predictive Value (NPV) This metric is the negative version of PPV, telling

the user how much the classifier can be trusted when deeming a pixel as negative.

• Formula: NPV = TN
TN+FN ;

• Domain: [0, 1];

• Data imbalance: sensitive.
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Accuracy Very popular metric that takes into account both positive and negative sam-

ples, summing true positives and true negatives and then dividing by total population. It

can estimate how well the classifier performed overall.

• Formula: Acc = T P+TN
T P+TN+FP+FN ;

• Domain: [0, 1];

• Data imbalance: sensitive.

Balanced Accuracy (BA) This metric aims to give a better estimation of the classifier

performance than traditional accuracy (Brodersen et al. (2010)). Because the latter is

sensitive to unbalanced data, the former attempts to show a more appropriate estimate

for situations where the data distribution is not perfect (Brodersen et al. (2010)).

• Formula: BA = T PR+TNR
2 = 1

2 ·
(

T P
T P+FN + TN

TN+FP

)
• Domain: [0, 1];

• Data imbalance: insensitive.

F1-score Very commonly used metric that represents the harmonic mean between pre-

cision and recall. It has been criticised for being independent of TN which makes it not

reliable for unbalanced datasets (Chicco and Jurman (2020)).

• Formula: F1-score = 2 · P P V×T PRP P V+T PR = 2T P
2T P+FP+FN

• Domain: [0, 1];

• Data imbalance: sensitive.

Matthews Correlation Coefficient (MCC) Considered to be a better alternative to F1-

score, this metric uses all the cells of the confusion matrix (Chicco and Jurman (2020)).

Its domain is slightly different from the other metrics, with 0 meaning the classification

was no better than a random classifier and -1 and 1 meaning perfect misclassification and

perfect classification, respectively (Chicco and Jurman (2020)).

• Formula: MCC = T P×TN−FP×FN√
(T P+FP )(T P+FN )(TN+FP )(TN+FN )

• Domain: [-1, 1];

• Data imbalance: insensitive.
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4.2 Classifier Results

Using the monthly images collected to test the already trained classifiers, the results

produced were then evaluated by calculating all eight metrics and registering them in a

spreadsheet. Since there are 23 different months it would be difficult to analyse so many

values and because of that, an auxiliary table was built with the minimum value a metric

displayed, its maximum, and the average between all the months. In figure 4.4 and 4.5

the full table is shown along with the auxiliary table on the right. As it can be seen it

is illegible, especially the first one that uses all months for testing, and so from now on

only the auxiliary table will be displayed. The yellow highlighted metrics are insensible

to data imbalance and should be more relied upon than the remaining.

Figure 4.4: Full spreadsheet from water classifier, “Clouds” version, variant “allMonths”.

Figure 4.5: Full spreadsheet from water classifier, “Clouds” version, variant “2019”.

4.2.1 Water Classifier Results

Here the results of the various versions and variants of the water classifier are displayed.

Figure 4.6 shows the results of the version “Clouds” where no filter was applied, and

figure 4.7 displays the result for the “Cloudless” version. Inside each of these figures,

there are four subfigures presenting the results for each of the four variants.

By analysing both figures we can perceive a general decrease in the classifier perfor-

mance for variants “2019” and “2019_MonthVar” when compared to “allMonths” and

“MonthVar”. This was expected since the classifier is testing data that it did not train with,

therefore causing the results to be worse, but more realistic to a real scenario.
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(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.6: Results of water classifier, Clouds version.

(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.7: Results of water classifier, Cloudless version.
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The addition of the month variable had mixed results. When looking at accuracy, BA,

F1-score and MCC it is possible to observe that in the “Clouds” version (figure 4.6) it had

almost no impact on “MonthVar” and a slight decrease on “2019_MonthVar”, while on

“Cloudless” (figure 4.7) it had a very small increase on “MonthVar"and slightly bigger, but

still small, increase on “2019_MonthVar”. On any of these cases, the change is almost

insignificant but still important to be reported. It is also important to stress that there is

always an element of random when creating the training classifier and thus the results

will always vary slightly independently of new variables that might be added.

The results of this classifier are considered to be good overall. The averages registered

present high values and even the minimum values are still high and reliable for the most

part. The exception is figure 4.7(c) where one month registered a very low PPV, bringing

F1-score and MCC down as well. However, it can be noticed that the average of these

values is still high, meaning this result might have been just a fluke.

4.2.2 Forest Classifier Results

The results from the forest classifier are displayed in figure 4.8 and 4.9, which corre-

spond to “Clouds” and “Cloudless” version, respectively, and have four subfigures each

concerning each of the four variants inside those versions.

(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.8: Results of forest classifier, Clouds version.

Immediately, it is apparent that the results are lower than the ones obtained for the

water classifier. This is mainly due to the spectral similarities to class Agriculture since

both concern vegetation and can get easily mistakenly identified as each other. This class,
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(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.9: Results of forest classifier, Cloudless version.

and Agriculture too, also goes through more changes spectrally throughout the year than

the water class, which also makes rule creation more difficult and less accurate.

Like the results of the water classifier, these results also suffered a decrease, on both

“Clouds” and “Cloudless” version, when using only 2019’s months to train instead of all

the 23 months available. However, unlike the water classifier, adding the month variable

to the training dataset had a positive impact on the results. Albeit still small it helped

to correctly identify more forest land, as it can be seen by the increase of TPR by about

7-10% on both versions, that consequently also rose MCC by roughly 2%.

4.2.3 Agriculture Classifier Results

The results for the agriculture classifier can be seen on figures 4.10 (without cloud fil-

tering) and 4.11 (cloudless). These results are very similar to the forest classifier results,

although lower in some instances.

This classifier has similar problems already described in the previous subsection. It

tries to identify land that is very similar to the forest classifier and the spectral values of

each pixel vary a lot throughout the year, especially in this case where crops are more

frequently harvested and planted than in the forest case. This classifier also has a smaller

sample size than the forest classifier (about 35,6%, for agriculture class, and 48,8%, for

forest class, of the total dataset, as seen on table 4.1) which can contribute to slightly

worse results.

As expected variants “2019” and “2019_MonthVar” were as good as “allMonths” and

“MonthVar” and suffered a decrease of about 1% to 4%, depending on the metric.
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(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.10: Results of agriculture classifier, Clouds version.

(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.11: Results of agriculture classifier, Cloudless version.
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The addition of the month variable did not have as much benefit in this case when

compared to the forest classifier. The month variable still helped to increase the result

on all variants, however, it was not as significant as in the forest classifier. The reason for

this probably stems from having more variation throughout the year than the forest, with

some crops reaching its mature stage and being consequently harvested at different times

of the year.

4.2.4 Urban Areas Classifier Results

The results for the urban areas classifier are on figures 4.12 and 4.13, for “Clouds” and

“Cloudless”, respectively.

(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.12: Results of urban areas classifier, Clouds version.

These results are not so great, especially compared to the other classifiers seen until

now. The percentage of urban areas in the original dataset is very small, only 2,5% (ta-

ble 4.1). This is a tremendous imbalance in the training dataset and the decision tree will

have trouble to learn from it, as shown in the results.

Another reason is the fact that Sentinel-2 lacks a Thermal Infrared (TIR) band. This

band is very useful for detecting built-up land since it is normal for cities to have a higher

temperature than forests, agriculture or water. Some indices could not be used due to

the lack of this feature, namely the Enhanced Built-Up and Bareness Index (EBBI) and

Dry Built-Up Index (DBI). These indices could enhance the detection of urban areas and

increase the classifier’s performance.

It is expected that the variants “allMonths” and “MonthVar” will yield better results

than “2019” and “2019_MonthVar”, respectively, however that is not the case in this
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(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.13: Results of urban areas classifier, Cloudless version.

classifier. The results are unstable with some metrics indicating a better performance and

others indicating worse. Since pixels are chosen at random when building the training

dataset, and that the sample of urban areas is already so minimal it could be more heavily

affecting the results than if it was a bigger sample. The classifier already has trouble

learning from such an unbalanced dataset and the randomness could be selecting “bad”

pixels that do not reflect as well the spectral signature of built-up land, making it worse.

It is also possible to observe that when adding the month variable the outcomes are

worse. Built-up land spectral reflectance typically does not change much along the year,

as vegetation does. So this new variable could be adding redundant information that with

such imbalanced data distribution would make it even harder to create accurate rules

and an acceptable decision tree.

4.2.5 Bare Land Classifier Results

The bare land classifier has similar problems to the urban areas classifier, since these

classes are very similar to each other. Its results can be seen in figures 4.14, for “Clouds”

version, and 4.15, for “Cloudless” version.

Similarly to the urban areas classifier, this classifier would also benefit from the read-

ings of a TIR band since, likewise, bare areas typically absorb more heat than surrounding

classes, in most cases, vegetation or water. Because of this, the presence of a TIR spectral

band would by itself benefit the detection of this class, and it would also allow the com-

putation of additional indices such as EBBI and Normalised Difference Bareness Index

(NDBaI).
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(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.14: Results of bare land classifier, Clouds version.

(a) allMonths (b) MonthVar

(c) 2019 (d) 2019_MonthVar

Figure 4.15: Results of bare land classifier, Cloudless version.
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The sample for this class is even smaller, being only 0,2% of the total dataset, as seen

in table 4.1. As previously explained this represents an extremely data imbalance that

affects the performance of the classifier due to being difficult to create accurate rules with

so few samples.

However, unlike urban areas classifier, this classifier follows the expected decrease

in performance when training with only 2019’s months instead of the whole 23 months

available.

Looking at how the addition of the month variable affected the results then we see a

similarity to the urban areas classifier again. The performance decreases with this extra

information, and just like the class of urban areas, bare land does not change a lot along

the year and for this reason, an extra variable is adding redundancy which will make it

harder to learn from the minute amount of samples present in the training dataset.

4.2.6 Final Decision Classifier Results

The final decision classifier is different from the previous ones since it is multi-class

instead of binary and does not use satellite imagery and indices as its input, using instead

certainty maps produced by the binary classifiers.

The confusion matrices for these classifiers can be seen in figures 4.16, 4.17, 4.18

and 4.19 where they display the total number of pixels that were correctly identified

(diagonal cells with a blueish tone) and those who were mistakenly classified as other

classes (the remaining cells painted with a cream/pink colour). These matrices were

produced based on the confusion matrices from each test, which means that for variants

“allMonths” and “MonthVar”, that test with all the 23 months available, the final con-

fusion matrix is built based on the output of each of those 23 months; and for variants

“2019” and “2019_MonthVar”, that only use 11 of the 23 months to test then the final

confusion matrix will be based on the output produced by those 11 months. This can

be noticed when comparing the numbers present in both matrices, since variants “2019”

and “2019_MonthVar” have approximately half the amount of pixels in each cell when

compared to variants “allMonths” and “MonthVar”.

By examining them it is possible to observe one of the problems already mentioned,

the classifier has trouble distinguishing between the forest and agriculture class as it

is evident by the stronger colour (indicating higher values in these cells) of the cells

corresponding to instances where forest was mistaken for agriculture and vice-versa.

However, these matrices should be examined with caution, as they may give the im-

pression that the classifier is performing terrifically in forest identification as the colour

of that cell is extremely vivid with a very high value. But that is not the case, this classifier

presents similar results to the binary classifier previously presented, with its best ability

residing in water detection. The high value and bright blue colour is due to the high num-

ber of pixels present in the dataset, almost half (table 4.1), so even if its identification is

not perfect it will still be a very high and contrasting value compared to the other classes.
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Figure 4.16: Confusion Matrix of all the results from Final classifier, variant “allMonths”

Figure 4.17: Confusion Matrix of all the results from Final classifier, variant “MonthVar”
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Figure 4.18: Confusion Matrix of all the results from Final classifier, variant “2019”

Figure 4.19: Confusion Matrix of all the results from Final classifier, variant “2019_Mon-
thVar”

52



4.2. CLASSIFIER RESULTS

As stated before, extracting the values from the confusion matrix of a multi-class

classifier is not as simple and the approach used is selecting one class against all, which

means one of the five classes will be picked and analysed against the remaining four.

This is done for each of the five classes. Figure 4.20 presents the results of the class

water against all others, then on figure 4.21 we can see the same for the forest class, on

figure 4.22 for agriculture, on figure 4.23 for urban areas and finally on figure 4.24 for

bare land.

This classifier was developed using the results from the “Cloudless” version of the bi-

nary classifiers. The usual four variants were still developed using the respective decision

trees. It is important to remember that, in this case, the training dataset for all variants

included the month variable. In this classifier variants “MonthVar” and “2019_Month-

Var” indicate that the decision trees used to construct the dataset were of said variants;

contrary to all the other classifiers, they do not indicate that new variable was added.

The results obtained were mixed, with some classes benefiting from it and other

worsening.

In the case of water against all, figure 4.20, when compared to the results of the

cloudless binary classifier, figure 4.7, (summary in table 4.2 with the average obtained

in all variants) it is possible to observe that in general, it had a negative impact. BA had

a better score using this classifier, however the same is not shown looking at F1-score

and MCC. The exception to this is “2019” variant that obtained better results in all these

metrics using the final decision classifier.

(a) allMonths (Water) (b) MonthVar (Water)

(c) 2019 (Water) (d) 2019_MonthVar (Water)

Figure 4.20: Results of Final Decision classifier, Water against all.
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Table 4.2: Average results comparison between Water Binary classifier and Final Decision
classifier, Water against all

Water Binary classifier Final Decision classifier

allMonths MonthVar 2019 2019_MonthVar allMonths MonthVar 2019 2019_MonthVar

TPR 91,23% 91,57% 93,04% 92,90% 92,19% 92,20% 92,83% 93,02%
TNR 99,80% 99,81% 95,34% 97,75% 99,55% 99,68% 97,48% 97,64%
PPV 98,52% 98,65% 86,62% 88,26% 96,85% 97,73% 88,39% 88,05%
NPV 98,71% 98,76% 98,92% 98,92% 98,84% 98,85% 98,91% 98,94%
Acc 98,68% 98,74% 95,04% 97,12% 98,60% 98,71% 96,88% 97,04%
BA 95,51% 95,69% 94,19% 95,32% 95,87% 95,94% 95,16% 95,33%
F1-score 94,71% 94,96% 87,98% 90,06% 94,45% 94,88% 89,81% 89,93%
MCC 94,07% 94,34% 86,66% 88,75% 93,69% 94,20% 88,58% 88,63%

In the case of class forest the opposite can be seen when analysing figures 4.21 (final

decision classifier) and 4.9 (cloudless binary classifier). Table 4.3 presents the average

results of both classifiers in all metrics and varianst and it can be seen that this final

classifier obtained better results in all variants. Only in the variant “2019” the metric

MCC obtained a higher score in the binary classifier instead of the final decision classifier

but the difference is minimal and could be due to the randomness when building the

training dataset for both binary and multi-class classifiers.

(a) allMonths (Forest) (b) MonthVar (Forest)

(c) 2019 (Forest) (d) 2019_MonthVar (Forest)

Figure 4.21: Results of Final Decision classifier, Forest against all.
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Table 4.3: Average results comparison between Forest Binary classifier and Final Decision
classifier, Forest against all

Forest Binary classifier Final Decision classifier

allMonths MonthVar 2019 2019_MonthVar allMonths MonthVar 2019 2019_MonthVar

TPR 73,92% 80,21% 68,62% 70,32% 82,71% 83,70% 72,01% 72,39%
TNR 73,97% 69,40% 72,97% 73,31% 67,11% 67,15% 69,98% 72,81%
PPV 73,26% 71,86% 71,23% 72,20% 71,04% 71,20% 69,87% 72,12%
NPV 75,33% 79,38% 73,23% 74,20% 80,56% 81,36% 73,95% 75,28%
Acc 73,95% 74,67% 70,85% 71,85% 74,73% 75,22% 70,97% 72,61%
BA 73,94% 74,80% 70,79% 71,82% 74,91% 75,42% 70,99% 72,60%
F1-score 73,30% 75,41% 68,09% 69,94% 76,19% 76,77% 70,19% 71,09%
MCC 48,24% 50,40% 42,95% 44,98% 50,69% 51,69% 42,89% 46,25%

The results were mixed for the agriculture class. By comparing the outcomes of the

final decision classifier, figure 4.22, and the corresponding binary classifier, figure 4.11,

summarised in table 4.4, it can be noticed that the performance of the final decision classi-

fier obtained for variants “allMonths” and “MonthVar” is superior to the binary classifier

for most of the metrics considered, with an increase between 1% and 3%. However, the

same cannot be said for variants “2019” and “2019_MonthVar”, where the binary classi-

fier has the advantage and the final classifier performed worse, varying between metrics

from approximately 1% to 5%.

(a) allMonths (Agriculture) (b) MonthVar (Agriculture)

(c) 2019 (Agriculture) (d) 2019_MonthVar (Agriculture)

Figure 4.22: Results of Final Decision classifier, Agriculture against all.
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Table 4.4: Average results comparison between Agriculture Binary classifier and Final
Decision classifier, Agriculture against all

Agriculture Binary classifier Final Decision classifier

allMonths MonthVar 2019 2019_MonthVar allMonths MonthVar 2019 2019_MonthVar

TPR 54,42% 57,78% 59,47% 59,28% 57,24% 57,33% 57,04% 54,08%
TNR 86,09% 84,94% 79,70% 81,73% 85,46% 86,08% 80,03% 83,92%
PPV 68,80% 68,07% 62,44% 64,28% 68,67% 69,44% 62,67% 65,78%
NPV 77,70% 78,88% 78,26% 78,67% 78,71% 78,80% 77,52% 77,13%
Acc 74,83% 75,29% 72,51% 73,75% 75,43% 75,86% 71,86% 73,31%
BA 70,25% 71,36% 69,58% 70,50% 71,35% 71,70% 68,54% 69,00%
F1-score 60,02% 61,70% 60,41% 61,25% 61,75% 62,26% 58,58% 58,44%
MCC 43,30% 44,68% 39,88% 41,92% 44,90% 45,69% 38,50% 40,26%

Next, for urban areas, this final classifier (figure 4.23) had better outcomes than the

binary classifier (figure 4.13). By examining and comparing the results in table 4.5 it can

be seen that the final decision classifier obtained a better results than the binary classifier

in all variants and in most of the metrics considered, with an increase ranging from,

approximately, between 1% and 5%, depending on the metric. Therefore this class was

the one that most benefited from the development of the final decision classifier as its

results were the most affected, positively, when compared to the results of the remaining

four classes.

(a) allMonths (Urban Areas) (b) MonthVar (Urban Areas)

(c) 2019 (Urban Areas) (d) 2019_MonthVar (Urban Areas)

Figure 4.23: Results of Final Decision classifier, Urban Areas against all.
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Table 4.5: Average results comparison between Urban Areas Binary classifier and Final
Decision classifier, Urban Areas against all

Urban Areas Binary classifier Final Decision classifier

allMonths MonthVar 2019 2019_MonthVar allMonths MonthVar 2019 2019_MonthVar

TPR 14,38% 12,22% 17,21% 16,52% 15,93% 16,18% 21,18% 33,35%
TNR 99,74% 99,79% 98,93% 98,96% 99,70% 99,65% 98,44% 93,68%
PPV 62,34% 62,22% 44,78% 43,32% 60,67% 57,64% 42,33% 29,78%
NPV 97,88% 97,83% 97,94% 97,92% 97,92% 97,93% 98,02% 98,24%
Acc 97,64% 97,63% 96,92% 96,94% 97,64% 97,60% 96,54% 92,19%
BA 57,06% 56,00% 58,07% 57,74% 57,82% 57,92% 59,81% 63,51%
F1-score 22,77% 20,10% 22,39% 20,96% 24,78% 24,85% 26,32% 26,15%
MCC 28,57% 26,47% 24,91% 23,60% 29,86% 29,33% 27,29% 25,66%

Finally, for the bare land class, the results were also mixed. The figures for this class

are figure 4.24, for the final classifier, and figure 4.15, for the binary classifier. The results

for the variant “allMonths” and “MonthVar” are better in the binary classifier. The results

of the final decision classifier for variant “MonthVar” are inexplicably terrible and do

not match with the remaining. It is unclear what caused this but such a considerable

difference cannot be blamed on the randomness of the training dataset alone however it

is difficult to pinpoint a reason.

For the variant “2019” the results between both classifiers are similar, with the binary

classifier having higher BA and F1-score and the final decision classifier having the ad-

vantage on MCC metric. For the variant “2019_MonthVar” the results were also similar

but slightly higher for the final decision classifier.

(a) allMonths (Bare Land) (b) MonthVar (Bare Land)

(c) 2019 (Bare Land) (d) 2019_MonthVar (Bare Land)

Figure 4.24: Results of Final Decision classifier, Bare Land against all.
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Table 4.6: Average results comparison between Bare Land Binary classifier and Final
Decision classifier, Bare Land against all

Bare Land Binary classifier Final Decision classifier

allMonths MonthVar 2019 2019_MonthVar allMonths MonthVar 2019 2019_MonthVar

TPR 14,41% 14,85% 14,67% 12,35% 10,31% 0,02% 13,87% 13,14%
TNR 99,94% 99,94% 99,95% 99,98% 99,99% 100,0% 99,97% 99,98%
PPV 62,77% 57,35% 60,16% 57,62% 73,51% 19,45% 63,95% 54,95%
NPV 99,83% 99,83% 99,83% 99,82% 99,82% 99,80% 99,82% 99,82%
Acc 99,77% 99,76% 99,78% 99,80% 99,80% 99,80% 99,80% 99,80%
BA 57,18% 57,40% 57,31% 59,17% 55,15% 50,01% 56,92% 56,56%
F1-score 22,58% 22,62% 22,21% 19,88% 17,56% 0,15% 21,76% 20,72%
MCC 29,36% 28,34% 28,38% 25,92% 26,62% 0,83% 28,60% 26,10%

4.2.6.1 Image results

In figure 4.25 it is possible to observe a small section of the region of study. The COS for

that section is displayed (this section does not possess the class bare land), along with

an RGB satellite image taken at 2018/05/10 and the result of the Final classifier (variant

“allMonths”) for that day. Full results of this land section can be seen in appendix A. The

appendix contains the COS for this region, as seen in figure 4.25(a), satellite RGB images

of all the dates used in this study, along with the results of the four variants of the Final

classifier developed.

It is interesting to compare the resulting images with COS as it can be noticed how

much grainier they are. Classes can be seen having isolated pixels in the middle of other

classes and the edges between classes are also much less defined and less smooth than

they are in COS.

When examining appendix A it can also be seen how the classifier handled the pres-

ence of clouds, especially in date 2018/04/30 where the land in this section was almost

entirely obscured by a cloud and its shadow. Since the readings of the satellite cannot

penetrate thick clouds like the one present in this instance it is expected that the classifier

will not be able to correctly identify the land. In most cases, it classifies the cloud as

forest, except on “2019_MonthVar” where it is classified as urban area. It is also possible

to observe that even with the shadow the cloud is projecting onto the land the classifiers

are still able to identify some water, on the left lower corner, and some agriculture, on

the right lower corner.

It is also interesting to observe how the percentage of forest and agriculture identified

will change along the seasons. Typically dry seasons, where the land has more of a brown-

yellow tone, will have more land identified as forest than agriculture. On the contrary,

humid months, where the scenery is much greener, present a bigger percentage of land

identified as agriculture than forest. However, this is not always the case with some

month presenting opposite results of what was described. It can safely be said that the

task of distinguishing both these classes is not trivial, needing some improvements.
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(a) COS of the sample section
(b) Final classifier result of sample section

(c) RGB image of the sample section

Figure 4.25: COS, satellite RGB image, and Final classifier result of a sample section
dating 2018/05/10

4.3 Factors affecting performance

There are some factors that could be leading to lower performance. One of them, as

discussed previously, is the fact that the satellites used, Sentinel-2 constellation, lack a

TIR sensor. As explained before, this band is very useful for the identification of urban

areas and bare land, since these types of terrain tend to absorb and reflect a lot more heat

when compared to the remaining classes. This would lead to distinctively higher values

of TIR in these regions, making them stand out from the others. This band is also used to

calculate some of the indices found in the literature that could not be computed in this

study.

Another factor has to do with the type of classifier chosen. Decision trees, although

simple to understand and fast to train and test, are static once the training is completed,

which means they cannot adapt to new information unless all the training is repeated

with these new examples. This limits the scalability of the developed classifiers which
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are expected to perform poorly in regions with a very contrasting climate from the one

in Portugal. Other types of classifiers, such as artificial neural networks, could be used

instead to tackle this limitation, although time is a concerning factor too.

The analysis and training of the classifier are also pixel-based, so each pixel is clas-

sified based only on its values, not taking into account the information of its neighbour

pixels. This lack of spatial awareness can hinder the ability to detect certain man-made

structures. Cities and crops are typically built in a very geometric manner, with straight

lines, perfect circles, and similar shapes that do not typically occur in nature. These

characteristics usually make them clearly distinguishable from natural elements, which

would be especially useful to differentiate forest from agriculture since the spectral values

of a pixel of either class are very similar. An object-based approach could allow for an

improvement in detection performance of some of these elements.

Lastly, it is important to discuss the veracity of the ground truth. As mention before

COS was used as the ground truth for this study. However, it has some important flaws

for this use. COS is only developed every few years, using only certain months instead of

the whole year for its development which will cause some information, from the left out

months, to not be registered.

COS also only registers the land use and not the land cover at the moment. For

example, considering a crop field, after harvesting, the land will be mainly bare soil (class

bare land), however, COS only registers what the land is used for, in this case, agriculture.

So, although the classifier might correctly identify it as bare land, it will be marked as

a wrong prediction since the ground truth identifies it as agriculture. Another example

is water bodies, which change the amount of water throughout the year. This means

that in dryer months the portion of water identified will be smaller, nonetheless COS

always considers the maximum amount of water registered, which again would lead to

the classifier identifying the dried water body as another class (mostly bare land) and

COS stating otherwise.

Besides this, the minimum unit of land is 1 ha, and a class has to occupy at least 75%

of that unit of land to be registered in COS (DGTerritório (2019)). Because of this, some

smaller portions of a certain class might not be identified in COS, once again leading to

good predictions being identified as wrong.

This leads to lower performances than they might be in reality since the ground truth

does not adapt to these variations over seasons.
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5
Conclusions and Future work

This dissertation aimed to develop a better way to perform land cover classification. Cur-

rently, COS is mostly used for this purpose but although it has a high spatial resolution,

its temporal resolution is very low, only being produced every few years. This makes it

very hard to accompany land change that could be of interest for various sectors such as

forest monitoring and fire prevention. For this reason, an automatic approach based on

satellite images was used, and several decision tree classifiers were developed.

The images obtained, from Sentinel-2 constellation, have a somewhat worse spatial

resolution than COS but compensate on temporal resolution. One set of images was taken

from each month, from March 2018 to January 2020, however, the resulting classifiers

can be used more than once a month, providing a great temporal resolution.

The development of these classifiers used not only the various spectral bands available,

just as they are, but also to calculate indices that would help to identify various types

of land. Five different classes were considered, contrasting from the nine mega-classes

COS possesses, and decision trees classifiers were built for each one. Decision trees were

used due to their computational speed and simplicity. Some different approaches were

performed in order to correctly assess the true performance of the classifiers and also try

to improve it.

The binary classifiers performed differently for each class and it was possible to see

how certain factors affected the performance, such as the spectral signature of a type of

land and the imbalance of the dataset.

Water was the best performing classifier, having a very unique spectral signature and

a good sample size, it was easy to identify and distinguish from surrounding land.

Forest and agriculture both had a good sample size but their spectral signature were

very similar which resulted in some difficulty distinguishing these two classes. Neverthe-

less, the performance for both was considered to be good.
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Urban areas and bare land had a very small sample size, and although their spectral

signature was distinguishable from the remaining classes that was not enough to produce

good decision trees. The results for both of these classes were very weak compared to the

other classes. Another factor worth mentioning is the lack of a TIR band which is not

available in the satellites used but could have had a positive impact on the detection of

both theses classes, as seen in the literature.

These binary classifiers were then used to build a final classifier, so it would be able

to better distinguish similar classes and improve performance. The results were mixed

with some classes benefiting from it, and others not so much.

These classifiers are simpler and less accurate than COS but they are still considered

to be of added-value due to their temporal resolution. Sentinel-2 satellites have a revisit

frequency of 10 days for each satellite, or 5 days when considering both. The classifiers

can be used with that frequency, which is a good temporal resolution. Although it is

important to remember that some images might not produce good results due to cloud

cover, it is still a much better approach to monitoring of the land than COS alone.

5.1 Future work

There are still some aspects that would be interesting to further develop and experiment.

Some of the factors that could be hindering the performance of the classifiers described

in section 4.3 should be looked upon and corrected when possible.

The first different approach would be adopting an object-based approach instead of

a pixel-based one as done in this study. An object-based approach could more easily

identify land geometrically arranged, such as crops and cities, also helping to distinguish

them from natural classes such as forests. As previously discussed the spectral values

obtained from forest and agriculture can be extremely similar so using only a pixel-based

approach makes it difficult to differentiate them.

Another different approach that could be done would be trying different types of

classifiers besides the decision trees used. Other kinds of classifiers could potentially

lead to better results, and better adaptability in the long run, which decision trees lack.

However, it is important to point out that with images of this dimension this would be a

very time-consuming task since most classifiers are much more computationally heavy

than decision trees.

Using another satellite with similar characteristics but possessing a TIR sensor would

also improve the detection of urban areas and bare land, since these usually accumulate

more heat than the surrounding land, besides being used to calculate other indices to

further help the detection of these classes.

However, without changing anything in the methodology used, the current classifiers

could still be improved with different techniques without needing to re-train them. Image

processing could be applied to the images output by the classifier so that isolated pixels

could be corrected and rough edges between classes could be smoothed. This would
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certainly help to improve performance because as it could be seen in appendix A the

images created by the classifier as very different from COS with a lot of isolated pixels

and ragged edges.
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A
Classifier images

A.1 COS and original images

Figure A.1: COS of a sample section in the region of study. Water is identified as blue,
forest is identified as green, agriculture is identified as yellow and urban areas are identi-
fied as grey. There was no bare land in this sample, but otherwise it would be identified
as dark red.
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APPENDIX A. CLASSIFIER IMAGES

(a) 2018/03/31 (b) 2018/04/30

(c) 2018/05/10 (d) 2018/06/19

(e) 2018/07/29 (f) 2018/08/18

Figure A.2: RGB images of the sample section, part 1.
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A.1. COS AND ORIGINAL IMAGES

(a) 2018/09/27 (b) 2018/10/07

(c) 2018/11/16 (d) 2018/12/06

(e) 2019/01/25 (f) 2019/02/14

Figure A.3: RGB images of the sample section, part 2.
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APPENDIX A. CLASSIFIER IMAGES

(a) 2019/03/16 (b) 2019/04/30

(c) 2019/05/15 (d) 2019/06/09

(e) 2019/07/24 (f) 2019/08/23

Figure A.4: RGB images of the sample section, part 3.
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A.1. COS AND ORIGINAL IMAGES

(a) 2019/09/12 (b) 2019/10/22

(c) 2019/11/16 (d) 2019/12/06

(e) 2020/01/10

Figure A.5: RGB images of the sample section, part 4.
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APPENDIX A. CLASSIFIER IMAGES

A.2 Image results from final decision classifier, variant

“allMonths”

(a) 2018/03/31 (b) 2018/04/30

(c) 2018/05/10 (d) 2018/06/19

(e) 2018/07/29 (f) 2018/08/18

Figure A.6: Resulting images from final decision classifier, variant “allMonths”, of the
sample section, part 1.
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A.2. IMAGE RESULTS FROM FINAL DECISION CLASSIFIER, VARIANT

“ALLMONTHS”

(a) 2018/09/27 (b) 2018/10/07

(c) 2018/11/16 (d) 2018/12/06

(e) 2019/01/25 (f) 2019/02/14

Figure A.7: Resulting images from final decision classifier, variant “allMonths”, of the
sample section, part 2.
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APPENDIX A. CLASSIFIER IMAGES

(a) 2019/03/16 (b) 2019/04/30

(c) 2019/05/15 (d) 2019/06/09

(e) 2019/07/24 (f) 2019/08/23

Figure A.8: Resulting images from final decision classifier, variant “allMonths”, of the
sample section, part 3.
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A.2. IMAGE RESULTS FROM FINAL DECISION CLASSIFIER, VARIANT

“ALLMONTHS”

(a) 2019/09/12 (b) 2019/10/22

(c) 2019/11/16 (d) 2019/12/06

(e) 2020/01/10

Figure A.9: Resulting images from final decision classifier, variant “allMonths”, of the
sample section, part 4.
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APPENDIX A. CLASSIFIER IMAGES

A.3 Image results from final decision classifier, variant

“MonthVar”

(a) 2018/03/31 (b) 2018/04/30

(c) 2018/05/10 (d) 2018/06/19

(e) 2018/07/29 (f) 2018/08/18

Figure A.10: Resulting images from final decision classifier, variant “MonthVar”, of the
sample section, part 1.
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A.3. IMAGE RESULTS FROM FINAL DECISION CLASSIFIER, VARIANT

“MONTHVAR”

(a) 2018/09/27 (b) 2018/10/07

(c) 2018/11/16 (d) 2018/12/06

(e) 2019/01/25 (f) 2019/02/14

Figure A.11: Resulting images from final decision classifier, variant “MonthVar”, of the
sample section, part 2.
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APPENDIX A. CLASSIFIER IMAGES

(a) 2019/03/16 (b) 2019/04/30

(c) 2019/05/15 (d) 2019/06/09

(e) 2019/07/24 (f) 2019/08/23

Figure A.12: Resulting images from final decision classifier, variant “MonthVar”, of the
sample section, part 3.
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A.3. IMAGE RESULTS FROM FINAL DECISION CLASSIFIER, VARIANT

“MONTHVAR”

(a) 2019/09/12 (b) 2019/10/22

(c) 2019/11/16 (d) 2019/12/06

(e) 2020/01/10

Figure A.13: Resulting images from final decision classifier, variant “MonthVar”, of the
sample section, part 4.
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APPENDIX A. CLASSIFIER IMAGES

A.4 Image results from final decision classifier, variant “2019”

(a) 2018/03/31 (b) 2018/04/30

(c) 2018/05/10 (d) 2018/06/19

(e) 2018/07/29 (f) 2018/08/18

Figure A.14: Resulting images from final decision classifier, variant “2019”, of the sample
section, part 1.
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A.4. IMAGE RESULTS FROM FINAL DECISION CLASSIFIER, VARIANT “2019”

(a) 2018/09/27 (b) 2018/10/07

(c) 2018/11/16 (d) 2018/12/06

(e) 2020/01/10

Figure A.15: Resulting images from final decision classifier, variant “2019”, of the sample
section, part 2.
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APPENDIX A. CLASSIFIER IMAGES

A.5 Image results from final decision classifier, variant

“2019_MonthVar”

(a) 2018/03/31 (b) 2018/04/30

(c) 2018/05/10 (d) 2018/06/19

(e) 2018/07/29 (f) 2018/08/18

Figure A.16: Resulting images from final decision classifier, variant “2019_MonthVar”,
of the sample section, part 1.
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A.5. IMAGE RESULTS FROM FINAL DECISION CLASSIFIER, VARIANT

“2019_MONTHVAR”

(a) 2018/09/27 (b) 2018/10/07

(c) 2018/11/16 (d) 2018/12/06

(e) 2020/01/10

Figure A.17: Resulting images from final decision classifier, variant “2019_MonthVar”,
of the sample section, part 2.
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