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Abstract

The evolution of networks is a fundamental topic in network analysis and mining. One of the approaches that has been recently
considered in this field is the analysis of temporal networks, where relations between elements can change over time. A relevant
problem in the analysis of temporal networks is the identification of cohesive or dense subgraphs since they are related to commu-
nities. In this contribution, we present a method based on genetic algorithms and on a greedy heuristic to identify dense subgraphs
in a temporal network.

We present experimental results considering both synthetic and real-networks, and we analyze the performance of the proposed
method when varying the size of the population and the number of generations. The experimental results show that our heuristic
generally performs better in terms of quality of the solutions than the state-of-art method for this problem. On the other hand, the
state-of-art method is faster, although comparable with our method, when the size of the population and the number of generations
are limited to small values.
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1. Introduction

Analyzing the dynamic of real-world networks is fundamental to understand the behaviour and evolution of com-
plex systems. Temporal networks have been introduced for this aim, since they represent how the relations between
elements change over the discrete-time domain. The application of temporal networks spans different domains, no-
table examples being social networks, economic networks and biological networks [14, 18]. In social networks, for
example, the dynamic of temporal networks has been successfully applied to identify the evolution of communities
[18].

In this contribution, we study the problem of finding cohesive subgraphs inside a temporal network, a problem that
has been recently proposed for the identification of real-time stories in online social networks [2, 18]. The identifica-
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tion of cohesive subgraphs has been a highly investigated problem in network mining (or graph mining) [10, 16, 9, 20]
and a notable approach is based on finding a subgraph having largest density, that is the densest subgraph problem.
The dense subgraph approach has been widely applied to analyse networks (some examples are [1, 20, 21, 22]) and
has been recently extended for the identification of a set of densest subgraphs [4, 12, 8, 15, 7].

Due to its relevance in network mining, the algorithmic properties of the densest subgraph problem have been
widely studied. Goldberg’s algorithm [13] allows us to solve the problem in polynomial time via a reduction to
the minimum cut problem. Due to its application in large-scale network mining, and due to the time complexity of
Goldberg’s algorithm, fast heuristics have been proposed for this problem, a notable example being a linear-time
greedy algorithm with a 1

2 -approximate factor [3, 6].
The densest subgraph approach has been recently applied to discover dense subgraphs in temporal networks [18,

19], in the context of episode identification in online social activity. The problem introduced in [19], called k-Densest-
Episodes, consider a temporal graph and looks for k ≥ 1 densest subgraphs that belongs to disjoint time intervals. A
solution of k-Densest-Episodes requires the computation of a sequence of disjoint time intervals of the given time
domain and, for each one of such intervals, a densest subgraph.

Rozenshtein et al [18, 19] gives a polynomial-time algorithm for k-Densest-Episodes problem. This algorithm
combines dynamic programming to identify intervals of the time domain and Goldberg’s algorithm to compute a
densest subgraph of a static graph in a certain interval. Unfortunately, this polynomial-time algorithm is not a viable
option for large networks [18, 19], due to the complexity of both dynamic programming and Goldberg’s algorithm.
Thus, fast alternative approaches (heuristics) are needed for k-Densest-Episodes. Approximation algorithms have
been considered in [18, 19]. More precisely, Rozenshtein et al in [18, 19] proposed an approximation algorithm,
called KGAPPROX, that combines approximate dynamic programming (ApproxDP) to compute a set of disjoint in-
tervals and an approximation algorithm for the incremental densest subgraph problem (ApprDens). ApproxDP speeds
up the dynamic programming approach by considering a small set of candidates of the timestamps. The quality of
approximation of ApproxDP and its running time depends on a parameter ε1. ApprDens allows the computation of
dense subgraph in evolving graphs. The quality of approximation of ApprDens and its running time depends on a
parameter ε2. The overall approximation ratio of KGAPPROX is 2(1+ ε1)(1+ ε2) [18], with O( k2

ε1ε
2
2
|T |mlog2n) running

time, for k intervals, where n and m are respectively the numbers of nodes and edges of the input graph, and T is a
discrete-time domain. Notice hence that by decreasing the values of ε1 and ε2, the quality of the solution and the time
complexity of the algorithm are both increased.

In this contribution, we consider a different approach to solve k-Densest-Episodes. Our approach, called TDGA
(Temporal Densest Genetic Algorithm), combines genetic algorithms and combinatorial algorithms. A set of disjoint
intervals of the time domain is computed via a genetic algorithm and, for each interval of the segmentation, the
Charikar’s greedy algorithm is applied to compute a dense subgraph. We show that genetic algorithms (see [17] for an
introduction to genetic algorithms), appropriately bounding the size of the population and the number of generations,
can be exploited to design a method whose running time is comparable with that of KGAPPROX, but improving
significantly the quality (that is the density) of the returned solutions. We present variants of TDGA by varying the
size of the population (values 10 and 100) and the number of generations (values 5 and 10).

We present an experimental comparison between TDGA, the optimal dynamic-programming algorithm (OPTI-
MAL), and KGAPPROX. The comparison between TDGA and OPTIMAL, performed on small synthetic data sets
due to the complexity of OPTIMAL, shows that TDGA is significantly faster than OPTIMAL and find near-optimal
solutions. The comparison between TDGA and KGAPPROX, performed on synthetic data sets and real-world net-
works, shows that TDGA is slower than the faster variants of KGAPPROX (although the running times of the fastest
variant of TDGA and KGAPPROX are comparable). On the other hand, TDGA improves the quality of the returned
solutions, in particular when compared with the fastest variant of KGAPPROX. Furthermore, the experimental results
show that the running time of TDGA is less sensitive to the increase of k than the running time of KGAPPROX. The
experimental results allow us to discuss how the size of the population and the number of generations influence the
performance of TDGA.

The paper is organized as follows. In Section 2, we give some definitions and we introduce the k-Densest-Episodes
problem. In Section 3, we present the genetic algorithms, we describe the genetic operations we consider and we
briefly outline the Charikar’s greedy algorithm. In Section 4, we present the experimental results on TDGA and the
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Fig. 1. An example of a temporal graph over three timestamps t1 = 1, t2 = 2, t3 = 3, over six vertices. An episode in interval [t1, t2] is the subgraph
induced by {v1, v2, v3, v4, v6} of density 7

5 .

comparisons between TDGA, OPTIMAL and KGAPPROX. We conclude the paper with Section 5 pointing out future
directions in the study on k-Densest-Episodes.

2. Definitions

First, notice that all the graphs we consider in this paper are undirect.
We introduce now the main concepts related to temporal graphs. A temporal graph is defined over a discrete time

domain T = [t1, ..., tq], where each ti, i ∈ {1, . . . , q}, is an integer, called timestamp, and ti < ti+1, for each 1 ≤ i ≤ q−1.
An interval in T is defined as I = [ti, t j], where ti, t j ∈ T , 1 ≤ i, j ≤ q and ti < t j. A set S = {I1, . . . , Iz} of disjoint

intervals is such that, for each intervals Ii = [ti1 , ti2 ], I j = [t j1 , t j2 ] in S , with 1 ≤ i, j ≤ z, ti2 < t j1 or t j2 < ti1 ; S is
ordered if ti2 < t j1 when i < j.

In the definition of temporal graph, we assume that the set of nodes does not change from timestamp to timestamp,
while the set of edges may change. Since we are interested in dense graphs that belong to some interval, nodes that do
not have an incident edge in that interval will not be part of any dense subgraph.

Now, we are able to define temporal graphs (see an example in Fig. 1).

Definition 2.1. We define G = (V, T, E) a temporal graph, where:

• V is the set of nodes
• E ⊆ V × V × T is the set of temporal edges.

A temporal edge is hence a triple (u, v, ti), where u and v are two nodes and ti ∈ T , 1 ≤ i ≤ q, is a timestamp. It
follows that if (u, v, ti) ∈ E, then there is an edge connecting u and v at timestamp ti. In this case we say that edge
(u, v) is active at timestamp ti. Consider a temporal graph G = (V, T, E), an interval I in T induces an active graph
GI = (V, EI), where EI is the set of active edges in a timestamp of interval I.

An episode is a subgraph G′I = (V ′I , E
′
I) of an active graph GI = (V, EI), that is V ′I ⊆ VI and E′I ⊆ EI ∩ (V ′I × V ′I ).

The density of episode G′I = (V ′I , E
′
I) is defined as:

dens(G′I) =
|E′I |
|V ′I |
.

Consider the active graph GI on the interval I = [t1 = 1, t2 = 2] in Fig. 1. An episode G′I = (V ′I , E
′
I) of maximum

density in I consists of V ′I = {v1, v2, v3, v4, v6} and E′I = {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v2, v6), (v3, v4), (v4, v6)}. The
density of GI is then 7

5 .
A set of episodes is called disjoint if they are defined over a set of disjoint intervals.
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Now, we are able to define the problem we are interested in, called k-Densest-Episodes, introduced in [19] with
the goal of finding significant episodes in a temporal graph.

Problem 1. k-Densest-Episodes
Input: A temporal graph G = (V, T, E), an integer k ≤ q.
Output: A set P = {G′I1

, . . . ,G′Ik
} of k disjoint episodes in G such that

∑k
j=1 dens(G′I j

) is maximized.

We assume that a solution P of k-Densest-Episodes covers the time domain T , that is each timestamp ti, 1 ≤ i ≤ q,
belongs to an episode G′I of P.

3. Genetic Algorithms for k-Densest-Episodes

k-Densest-Episodes admits a polynomial-time of time complexity O(kq2|V ||E| log |V |) or O(kq2|V ||E| log |V |
2

|E| ) [19]
(recall that q is the number of timestamps of time domain T ), but its computational complexity makes it not practicable
for large networks and large time domains.

The method we propose, called TDGA (Temporal Densest Genetic Algorithms), combines two different compu-
tational approaches, a genetic algorithm and a combinatorial algorithm, in order to provide denser solutions than
those computed by the approximation algorithm (KGAPPROX) designed in [19] for k-Densest-Episodes. The two
computational approaches are:

1. A genetic algorithm is applied to compute a set S of disjoint intervals in the time domain T .
2. Charikar’s greedy algorithm is applied to compute an episode (that is a dense subgraph) for each active graph on

an interval of S .

We start by describing our genetic algorithm, then we present a brief description of Charikar’s greedy algorithm.

3.1. Genetic Algorithm

Consider a temporal graph G = (V, T, E), we represent a set of disjoint episodes as a chromosome consisting of k
integers in increasing order between t1 and tq, where each integer (called point) represents the leftmost timestamp of
an interval. Hence consider, for example, chromosome C = [c1, . . . , ck], where ci, 1 ≤ i ≤ k, is a point. First, notice
that c j < c j+1, for each j with 1 ≤ j ≤ k − 1. The i-th interval, with 1 ≤ i ≤ k − 1, represented by C is [ci, ci+1 − 1],
the k-th interval is represented by [ck, tq]. Moreover, notice that c1 = t1, since each timestamp must belong to some
interval.

Each chromosome C represents a set of disjoint intervals and it is associated with a vector fC consisting of k values.
The i-th value of fC , 1 ≤ i ≤ k, is the density of a dense graph, that is the density of an episode, in the i-th interval of
C. The values of fC are computed via Charikar’s greedy algorithm (see the description in Section 3.2).

The genetic algorithm considers a population (a set of chromosomes) of size h. In a preliminary phase, we define
an initial population of h chromosomes, by:

• Define a chromosome that represents a set of disjoint intervals that partition T such that each interval contains
� 1

q | ∪
q
i=1 Eti |� edges;

• Partition the time domain into k intervals that have the same length;
• A set of h − 2 chromosomes, each one computed by partitioning the time domain into k intervals defined

randomly.

During the evolution, chromosomes are evolved by means of three operations: mutation, crossover, and selection.
Chromosomes are evaluated via fitness function which is simply the sum of values (densities) of fC , for a chromosome
C, as the goal of k-Densest-Episodes is the maximization of the density of k episodes.

Next, we describe the evolution operators we apply.
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• Mutation. We randomly mutate each point (except the first one, since x1 = t1) with probability 1
k−1 . Consider

the case that the r-th point xr, 2 ≤ r ≤ k, is mutating, where xr is a value in [x2, xk]. In case xr is mutated, the
new value of xr is defined by picking a random value in the interval [xr−1 + 1, xr+1 − 1], where xr−1, xr+1 are the
starting point of the r − 1-th and r + 1-th interval, respectively.
• Crossover. Crossover considers two chromosomes C1, C2 (parents) and computes two chromosomes C′1, C′2

(children). A value p is chosen randomly (with equal probability) between 2 and k and C′1, C′2 are defined as
follows:

– C′1 contains the first p values of C1 and the last k − p value of C2
– C′2 contains the first p value of C2 and the last k − p value of C1.

Notice that the value of C′i , with 1 ≤ i ≤ 2, are reordered to have points in increasing order. If some value is
repeated in C′i , only one is retained and the removed ones are replaced by picking random values in [1, tq] that
do not belong to C′i .
• Elitist selection. To ensure that the density of the computed solutions does not decrease from one generation to

the subsequent [5], the h best-performing chromosomes are copied in the next population.

The procedure is iterated for g generations.

3.2. Charikar’s Greedy Algorithm

Here, we briefly outline the Charikar’s greedy algorithm. Given a graph (in this case an active graph GI = (VI , EI)),
Charikar’s greedy algorithm approximates the densest subgraph problem as follows. Charikar’s Greedy algorithm
computes a set of subgraphs of GI by iteratively removing a node of GI . Each iteration j, with 1 ≤ j ≤ |VI |, considers
in input a subgraph G j

I of GI and it computes the subgraph G j+1
I of GI obtained by removing a node of minimum

degree from G j
I . Notice that G1

I = GI and that G|VI |
I consists of a single node.

Charikar’s Greedy Algorithm considers then the set {G1
I , ...,G

|VI |
I } of |VI | subgraphs computed so far. Finally,

Charikar’s Greedy Algorithm returns as a solution a subgraph of {G1
I , ...,G

|VI |
I } having largest density. The algorithm

has been shown to have 1
2 approximation factor [6]. It is applied in several contexts (for example in [15, 12]) since it

has linear-time complexity.

4. Experimental Analysis

In this section, we present the experimental results for our method, TDGA, on synthetic and real-world datasets,
and we compare it with OPTIMAL and KGAPPROX. We implemented TDGA in Python (notice that also OPTIMAL
and KGAPPROX were implemented in Python).

We run TDGA with different combinations of population size (h) and number of generations (g). More precisely,
we consider: g=5 & h=10, g=5 & h=100, g=10 & h=10, g=10 & h=100. We limit the number of generations to 10 to
allow for the analysis of large networks. Moreover, increasing the number of generations, as we have tested on some
datasets, does not increase significantly the quality of the solutions.

As we will see in the next subsections, the values of parameters h and g greatly influence the running time of our
method and to a less extent the quality of the returned solutions: small (large, respectively) values of h and g makes
the algorithm faster (slower, respectively) and usually decreases (increases, respectively) the quality of the returned
solutions.

We compare TDGA with KGAPPROX with parameters ε1 = ε2 = 0.01, ε1 = ε2 = 0.1 and ε1 = ε2 = 2. The values
of these two parameters for KGAPPROX have been chosen according to [18].

The experiments were run on MacBook-Pro (OS version 10.15.3) with processor 2.9 GHzIntel Core i5 and 8GB
2133 MHz LPDDR3 of RAM, Intel Iris Graphics 550 1536 MB. Considering the stochasticity of the proposed method,
for both synthetic and real networks we executed 100 independent runs. In the continuation of the paper, we reported
the average (running time and performance) over the 100 runs.
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Table 1. Comparison between TDGA and OPTIMAL on Synthetic-small. The results are averaged over 100 independent runs. The running time is
in seconds.

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14
OPTIMAL Time 9.23 80.64 137.39 247.77 526.66 664.67 911.79

Den. 5.28 9.71 12.89 14.53 17.14 19.62 22.52
TDGA
g=5&h=10 Time 0.20 0.63 0.77 0.91 1.07 1.20 1.31

Den. 5.28 9.40 12.33 13.87 15.82 18.06 21.17
g=5&h=100 Time 1.84 6.18 7.46 9.01 10.62 11.62 13.07

Den. 5.28 9.59 12.76 14.30 16.49 18.64 21.56
g=10&h=10 Time 0.35 1.21 1.41 1.66 1.93 2.17 2.42

Den. 5.28 9.41 12.36 13.83 15.68 18.23 21.23
g=10&h=100 Time 3.34 11.99 13.75 16.28 20.00 21.62 24.64

Den. 5.28 9.60 12.89 14.52 16.77 19.14 22.00

4.1. Synthetic datasets

Following Rozenshtein et al [18], we generate temporal graphs consisting of a background network, based on
Erdős-Rényi model, with k planted communities, that is k planted subgraphs. Erdős-Rényi model [11] is a well-
known model for generating random graphs. Given a set of nodes, each pair of nodes is connected with an edge with
independent probability, depending on a parameter. The background network G includes all nodes over the discrete-
time domain T . We vary edges distribution according to the average degree of the background graph G (below we
specify how density changes in different experiments). The background graph contains k dense subgraphs (k planted
communities) induce a subgraph of G. These k communities are defined in non-overlapping intervals and they have
the same density.

We generate three families of synthetic networks, called Synthetic-small, Synthetic1 and Synthetic2. These three
families of synthetic datasets are generated for different purposes, varying time domain, number of nodes/edges,
background graph and communities.

First, a small synthetic network called Synthetic-small is generated for comparison with OPTIMAL, the optimal
algorithm for k-Densest-Episodes. Indeed, due to the computational complexity of OPTIMAL, we have to limit the
comparison to a small dataset. Synthetic-small contains a background graph with 20 nodes, while each community
has 4 nodes and the time domain consists of 60 timestamps.

For the other two datasets (Synthetic1 and Synthetic2), networks are generated in a time domain T of length 1000
and the edges of each planted community are generated in intervals consisting of 100 timestamps.

Synthetic1 tests the robustness of the algorithms against background noise, by varying the average degree of the
background graph from 0.5 to 4, and by fixing the density of the planted graphs to 4. Synthetic2 tests the robustness
of the algorithms against the density of the planted communities (containing 8 nodes), by varying their density from
2 to 7, where the average degree of the background network is fixed to 2.

4.1.1. TDGA vs OPTIMAL
We evaluate the running times and the density of returned solutions of TDGA with different parameter values versus

OPTIMAL. Recall that TDGA applies Charikar’s greedy approximation algorithm to compute a dense subgraph of
an active graph. OPTIMAL is based on dynamic programming and applies the Goldberg’s algorithm to compute a
densest subgraph of an active graph [18].

The number k of intervals varies from 2 to 14. Table 1 shows the total density and the running time of TDGA
and OPTIMAL. The results show that TDGA can find near-optimal solutions, while it is significantly faster than
OPTIMAL. For small value of k (k = 2, 4, 6, 8), TDGA returns solutions of density very close (in some cases equal)
to the density of solutions returned by OPTIMAL. When k increases, the solutions returned by TDGA are less dense
compared with OPTIMAL (the maximum decreasing in density with respect to OPTIMAL is of 7.95% when k = 12,
g=5&h=10).
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Table 2. Comparison between TDGA and KGAPPROX. The results are averaged over 100 independent runs. The running time is in seconds.
k = 3 k = 5

TDGA
g=5&h=10 Time 3.22 5.08

Den. 14.58 24.26
g=5&h=100 Time 30.94 47.84

Den. 14.59 24.35
g=10&h=10 Time 6.74 9.86

Den. 14.58 24.26
g=10&h=100 Time 54.86 86.66

Den. 14.59 24.37
KGAPPROX
ε1 = ε2 = 0.01 Time 17.27 59.42

Den. 12.53 20.39
ε1 = ε2 = 0.1 Time 1.08 3.56

Den. 11.71 18.34
ε1 = ε2 = 2 Time 0.17 0.38

Den. 7.35 9.68

The running time required by OPTIMAL highly increases as k increases from 9.23 second (k = 2) to 911.79 second
(when k = 14). This confirms that OPTIMAL is not scalable for large graphs, as it is not applicable even for medium
size graphs and moderate value of k, as reported in [19]. The performance of TDGA is less influenced by the value of
k. In the worst case (g=10&h=100). In the worst case (g=10&h=100), the running time of TDGA for k = 14 increases
approximately 738% with respect to the case k = 2, while the running time of OPTIMAL increases of around 9879%.

In this small dataset, we start also to analyze the performance of TGDA when varying parameters g and h. As
expected the densest solutions are always returned with parameters g=10 & h=100. The densities returned by TDGA
with g=5 & h=100 are close to the case g=10 & h=100. This confirms that increasing the size of the population
allows the computation of denser solutions, even when reducing the number of generations. The running time is
heavily affected by the size of the population: the case g=10 & h=100 is at least 16 times slower than g=5 & h=10,
while the decreasing of the density of this latter variant is at most 5.66% with respect to the case g=10 & h=100.

4.1.2. TDGA vs KGAPPROX
We evaluate TDGA with the same parameters considered in the previous subsection and we compare its perfor-

mances with those of KGAPPROX, with values ε1 = ε2 = 0.01, ε1 = ε2 = 0.1 and ε1 = ε2 = 2. For this comparison, we
use the two synthetic datasets Synthetic1 and Synthetic2, over 100 independent runs. For this medium size synthetic
datasets, we use moderate values of k (k = 3 and k = 5).

Table 2 reports the density of the returned solutions and the running time of TDGA and KGAPPROX averaged over
100 independent runs. These experimental results show that the solutions returned by TDGA in all the cases considered
are denser on average than those computed by KGAPPROX. The fastest variant of KGAPPROX (ε1 = ε2 = 2) returns
solutions that have roughly half density for k = 3 and 40% of the density for k = 5 with respect to the less effective
variant of TDGA (g=5 & h=10). The variant of KGAPPROX returning densest solutions (ε1 = ε2 = 0.01) shows a
decreasing of at least 14% (k = 3) and 15.9% (k = 5) in density with respect to the less effective variant of TDGA (g=5
& h=10). Notice also that the quality of the solutions returned by TDGA, when applied to this datasets, is not changing
significantly when varying the values of g and h. Indeed, for k = 3, the average values of the returned solutions are
basically identical. When k = 5 the decreasing of the density of the less effective case is limited to 0.45%.

Considering the running time, TDGA with g=5 & h=10 and g=10 & h=10 is significantly faster than the KGAP-
PROX algorithm with ε1 = ε2 = 0.01 and comparable with ε1 = ε2 = 0.1 (especially for k = 5), but slower than
KGAPPROX with ε1 = ε2 = 2 (in this case the density of the solutions returned by TDGA is significantly higher than
the solutions computed by TDGA). More precisely, for k = 3, TDGA with g=5 & h=10 on average is 5.4 times faster
than KGAPPROX with ε1 = ε2 = 0.01, 3 times slower than KGAPPROX with ε1 = ε2 = 0.1 and 19 times slower than
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KGAPPROX with ε1 = ε2 = 2. In this case the solutions returned by TDGA with g=5 & h=10 are 1.7 times denser
than the best solutions of KGAPPROX (ε1 = ε2 = 0.01). For k = 5, TDGA with g=5 & h=10 on average is faster than
KGAPPROX with ε1 = ε2 = 0.01 (11.7 times) and slower than the other variants of KGAPPROX (0.7 times slower for
ε1 = ε2 = 0.1, 9.4 times slower for ε1 = ε2 = 2). Notice that in these cases (in particular forε1 = ε2 = 2) the solutions
returned by KGAPPROX are considerably less dense.

The results on this synthetic datasets confirm also that the value of k has a greater impact on the running time of
KGAPPROX, in particular for small values of ε1 and ε2, with respect to the running time of TDGA. For ε1 = ε2 = 0.01,
the average running time for k = 5 is 3.44 times of the running time for k = 3. For TDGA, the increase in the running
time of the case k = 5 compared to k = 3 is at most 1.58 times

4.2. Real-world datasets

We analyze the performance of TDGA considering four different real-world datasets taken from social network
platforms and emails, considered in [18]. The first dataset considered, called Students1, contains logs activity of
students of the University of California, Irvine, between 2004.06.27 and 2004.10.26. In this network, nodes represent
students and edges represent messages exchanged between students. This network contains 10000 interactions, 889
nodes, and time domain T consists of 1000 timestamp. The second data, called Enron2, contains messages (made
public by the Federal Energy Regulatory Commission3) exchanged from 1980.01.01 to 2002.02.13. In this network,
nodes represent managements, while edges represent e-mail communications between managements. This network
contains 6245 interactions, 1143 nodes, and time domain T consists of 815 timestamp. The third dataset, Facebook,
consists of a portion of Facebook activity in the New Orleans regional community from 2006.05.09 to 2006.08.20.
In this network, nodes represent users, while edges user posting on the walls of other users. The Facebook network
contains 10000 interactions, 4117 nodes, and time domain T consists of 9984 time stamps. The fourth dataset, Twitter,
represent interactions between Helsinky users of Twitter between 2010.07.31 and 2010.10.31. In this network, nodes
represent users and edges represent tweets that mention other users. The Twitter dataset contains 11868 interactions,
4605 nodes and time domain T consists of 9968 time stamp.

In Table 3, we present the running time and the densities of the solutions returned by TDGA (for the four combi-
nations of parameters) and KGAPPROX (for the three values of ε1 and ε2 considered) on real-world datasets. We run
the algorithms fixing an upper bound of 10000 seconds for running time. Table 3 has a blank entry for KGAPPROX
(Twitter for k = 10) since it was not able to return the result within the considered upper bound.

As shown in Table 3, the density returned by different variants of TDGA has small variations. The decreasing in
density of the less dense returned solution with respect to the densest returned solution is on average of 4.3%, with
a maximum of 9.19% (for the Facebook datasets with k = 5). Except in one case (Students for k = 5), the results of
TDGA when g=10&h=100 are always denser than the other combinations of parameters of TDGA. In this latter case,
notice that the highest value (when g=5&h=100) is only marginally. However, while increasing the size of populations
leads to a small improvement in the quality (density) of the solution, the running time is heavily affected. The slowest
variant (g=10&h=100) is on average 17.84 slower than the fastest variants (g=5&h=10), at least 13.61 slower and at
most 21.64.

The comparison between TDGA and KGAPPROX on these real-world datasets shows that TDGA always produces
significantly denser solutions than KGAPPROX. Even the less dense solutions returned by TDGA are denser than the
densest solution returned by KGAPPROX with ε1 = ε2 = 0.01. For the other variants of KGAPPROX the gap is more
significant. Notice that for the case ε1 = ε2 = 2, the gap is particularly relevant, with a density decrease of at least
55%, at most 122% and on average around 77% for k = 5 and at least 72%, at most 155% and on average around
100% for k = 10.

As for the running time, TDGA (even in the slowest case when g=10&h=100) is always faster than KGAPPROX
with ε1 = ε2 = 0.01, the variant of KGAPPROX that returns densest solutions. On the other hand, the fastest variant

1 http://toreopsahl.com/datasets/#onlinesocialnetwork
2 http://www.cs.cmu.edu/~./enron/
3 https://www.ferc.gov
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Table 3. Comparison between TDGA and KGAPPROX on real-world datasets for k = 5 and k = 10. The results are averaged over 100 independent
runs. The running time is in seconds.

Students Enron Facebook Twitter
k = 5 k = 10 k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

TDGA
g=5&h=10 Time 37.85 42.36 24.48 31.82 102.84 131.20 106.80 129.53

Den. 26.05 39.48 41.66 62.60 14.23 24.38 23.30 34.61
g=5&h=100 Time 288.54 347.49 246.44 273.29 1099.87 1234.25 1082.30 1237.83

Den. 26.71 40.43 42.65 63.41 15.65 25.46 23.90 35.49
g=10&h=10 Time 49.08 60.57 42.28 47.64 181.37 201.95 183.24 199.42

Den. 26.56 38.67 41.66 62.43 14.26 24.36 23.34 34.62
g=10&h=100 Time 515.30 612.60 454.02 511.83 2225.32 2450.81 2255.06 2404.92

Den. 26.68 40.50 42.97 65.24 15.67 25.86 24.09 35.99
KGAPPROX
ε1 = ε2 = 0.01 Time 1660.40 7696.06 2314.33 8597.59 88.05 223.98 8357.91 –

Den. 25.13 38.40 41.83 63.27 10.43 15.45 20.44 –
ε1 = ε2 = 0.1 Time 39.19 163.82 47.95 186.19 35.59 100.35 180.88 670.83

Den. 21.83 34.95 39.71 55.93 10.43 15.45 19.96 30.07
ε1 = ε2 = 2 Time 4.19 11.22 4.93 17.63 9.68 32.42 6.63 19.78

Den. 15.34 20.30 18.72 24.55 9.20 14.2 14.45 19.45

Table 4. Comparison between TDGA with g=5&h=10 and KGAPPROX with ε1 = ε2 = 2 on real-world datasets for k = 20. The results are
averaged over 100 independent runs. Running time is in seconds.

Students Enron Facebook Twitter
k = 20 k = 20 k = 20 k = 20

TDGA
g=5&h=10 Time 40.97 38.01 145.91 153.20

Den. 62.66 94.39 42.06 55.96
KGAPPROX
ε1 = ε2 = 2 Time 36.18 65.95 123.77 67.49

Den. 30.29 38.49 24.20 29.79

of KGAPPROX (with ε1 = ε2 = 2) is always faster than TDGA for all values of h and g, but in this case, as reported
before, the quality of the solutions of KGAPPROX is considerably lower compared with TDGA.

For a larger value of k (k = 20), we consider only the fastest variants of the two methods, TDGA with g=5&h=10
and KGAPPROX with ε1 = ε2 = 2. The results in Table 4 show that the running time of the two methods are
comparable, and only in one case TDGA is significantly slower than KGAPPROX (2.27 times slower for the Twitter
dataset). Notice also that in one case (Enron dataset) TDGA is faster than KGAPPROX. Moreover, notice that the gap
in the running time is reduced with respect to the case k = 5 and k = 10, where TDGA was on average 10.28 and
4.05, respectively, slower than KGAPPROX (with the considered parameters’ values). This confirms that the running
time of KGAPPROX is more influenced by the value of k than TDGA. The comparison of the density shows that also
for k = 20 TDGA returns denser solutions. More precisely, TDGA returns solutions that are at least 1.75 denser than
KGAPPROX (Facebook dataset) and at most 2.42 denser that KGAPPROX (Enron dataset).

5. Conclusion

In this paper, we considered a computational approach, called TDGA, based on genetic algorithm and Charikar’s
greedy algorithm for the k-Densest-Episodes problem in temporal networks. We presented experimental results on
synthetic and real-world data sets, where we varied two parameters of the genetic algorithm, the size of the populations
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and the number of generations. The experimental results showed that by increasing the size of the population, the
quality of the solution increases, but this comes at the cost of a significant amount of computational time.

We also presented an experimental comparison with a previous computational approach (KGAPPROX) for k-
Densest-Episodes, showing that our approach produces denser solutions and, even if it runs slower than the fastest
variant of KGAPPROX, it has a comparable running time when k increases.

Future work on TDGA include expanding the experimental work, considering more combinations of parameters
g and h and larger datasets of synthetic networks, varying for example the background graph model. Moreover, we
plan to extend the experimentation to larger real networks. Finally, another future direction is the application of other
evolutionary computational approaches to k-Densest-Episodes and the comparison with TDGA.
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