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Abstract: The interaction between the stress-induced martensitic transformation and resistivity
behavior of superelastic NiTi shape memory alloy (SMA) was studied. Strain-controlled low-cycle
fatigue up to 6% was monitored by in situ electrical resistivity measurements. The experimental
results show that a great motion of martensite fronts results in a significant accumulation of defects,
as evidenced by transmission electron microscopy (TEM), before and after the tensile cycles. This
gives rise to an overall increase of the resistivity values up to the maximum deformation. Therefore,
the research suggests that shape memory alloy wire has great potential as a stress sensor inside bulk
materials.

Keywords: NiTi; shape memory alloy; stress-induced martensite; resistivity

1. Introduction

Shape memory alloy (SMA) phase transformations can be used to identify environmen-
tal changes around them and react immediately to external stimuli. SMAs have interesting
characteristics such as large deformation ability, as well as actuating function, in particular,
where SMA structures are subjected to cyclic loading [1,2]. Among the SMAs, the most
investigated one is the NiTi alloy due to its peculiar functional properties—superelasticity
and shape memory effect. The superelasticity is observed as a result of the stress-induced
martensitic transformation (SIM) between austenite and oriented martensite [3,4].

When loaded under isothermal conditions, SMAs first show the elastic deformation in
the austenite phase, followed by a maximum plateau associated with the stress-induced
transformation from austenite (A) to martensite (M). Upon unloading, the material un-
dergoes the reverse phase transformation from martensite to austenite, which occurs at
lower values of stress plateau than those observed in forward transformation. The plastic
deformation affects the SMAs superelastic cyclic behavior due to the local stress field
created at the phase transformation fronts, promoting dislocation slips, which corresponds
to irreversible deformations in A-M interfaces. The internal stress field supports the nu-
cleation of martensite variants. Therefore, the residual martensite (associated with the
accumulated residual strain during cycling) is responsible for a reduction of the critical
stress to promote the phase transformation and decreases the hysteresis loop area during
subsequent cycles [3]. For the strain-controlled loading, the degradation mechanism oc-
curs due to the accumulation of the residual strain that gives rise to a reduction of the
recoverable strain [4,5].

The electrical resistivity of SMA wires may be evaluated during mechanical or even
thermomechanical tests to detect the onset and end of the stress-induced martensitic
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transformation and/or reorientation processes. According to the state of the art, the
mechanical tests performed (isothermic) suggest that the stress–strain behavior can be
related to the mechanisms of the variant reorientation induced by the stress state. In
addition, during the thermoelastic martensitic transformation, there is an excellent linear
relationship between the electrical resistivity and the strain [6–9]. The relative change of
electrical resistivity versus strain reflects the structural evolution of the NiTi during tensile
tests such as defect density upon tensile loading, e.g., the occurrence of austenite twins in
the microstructure of deformed NiTi during the tensile test. Furthermore, the correlation
between the electrical resistivity and applied strain suggests the potential of NiTi alloys
as sensors inserted in parts subjected to cyclic loadings. The objective could be to detect
cracks and contribute to the self-healing of metallic materials [10].

However, many aspects need a deeper analysis, in particular why the hysteretic
stress-induced phase transformations significantly affect the damage mechanisms occur-
ring under cyclic tensile loadings. Moreover, it should also be investigated how these
transformations can be reflected in the resistivity behavior during the isothermal cyclic
tensile load/unload tests [3,11–16].

The aim of the present work was to explore the damage mechanisms by studying
the structural and functional characteristics of NiTi wires and their influence on electrical
resistance. Thus, 300 cyclic tensile loading tests (low-cycle fatigue) were performed on
a superelastic NiTi SMA wire, while measuring the electrical resistance. In the available
literature, electrical resistivity measurements at constant temperature (room temperature)
up to a similar number of cycles in NiTi alloys have not been reported. Ex situ TEM was
carried out to analyze the deformation/transformation processes at controlled deformation.

2. Materials and Methods
2.1. Material

A superelastic NiTi wire (Fort Wayne Metals-FWM #4-50.7 at % Ni) with a diameter of
0.5 mm was selected for this investigation. The wire is a mixed structure of austenite and R
phase at room temperature (25 ◦C), as shown by DSC (differential scanning calorimetry).
Measurements were carried out at temperatures ranging from −150 ◦C to 150 ◦C under a
controlled heating/cooling rate of 10 ◦C/min. Before examination by DSC, the samples
(~15 mg) were cut and then chemically etched (10 vol% HF + 45 vol% HNO3 + 45 vol% H2O)
in order to remove the oxide, as well as the layer deformed by the cutting operation (final
mass: 17 mg). The results are shown in Figure 1. The phase transformation temperatures
were determined: Rs = 25.9 ◦C; Rf = −10.0 ◦C; Ms = −76 ◦C; Mf = −110 ◦C; As = −16.2 ◦C
and Af = 27.9 ◦C. The as-received wire condition also was verified by the electrical resistivity
test, which confirmed a mixture between austenite and R phase values at 8.36 × 10−7 Ω·m,
without applied stress [2,17].
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Figure 1. DSC results for NiTi wire as-received condition.

2.2. Experimental Conditions

The NiTi wire functional characteristics were studied in 300 complete tensile cycles at
room temperature, during which the electrical resistivity was measured; particularly, the
onset of the stress-induced martensitic transformation (σs

AM) was evaluated. The evolution
of global stress–strain, as well as stress, strain and electrical resistivity as a function of time,
was measured during the 300 cycles at room temperature. The tensile loading/unloading
tests (Instron Eletroplus 10000E testing machine) were performed at a deformation rate
of 1 mm/min, up to 6% strain using a gauge length of 44 mm. In order to avoid the
introduction of another parameter, such as the temperature, a strain-controlled mode at a
frequency of ~0.003 Hz was adopted.

The in situ electrical resistivity was performed along the 300 cycles. The four-probe
method is one of the most used methods for the accurate measurement of resistivity [18].
The configuration applied was carefully projected to remove the influence of contact resis-
tance on NiTi and electrical probes. The precision of the electrical resistivity measurement
was ±1 × 10−9 Ω·m.

The phases and the microstructural defects created by tensile deformation were iden-
tified by transmission electron microscopy (TEM, FEI, Hillsboro, OR, USA) of samples of
the wire cut from both commercial condition (unloaded) and after 300 superelastic cycles.
TEM tests were performed using a FEI Tecnai G2 SuperTWIN FEG microscope operated
at 200 kV. Selected area electron diffraction (SAED) patterns were acquired with a camera
length of 860 mm and indexed with the lattice constant of the B2 austenite (a = 0.3015 nm)
and the lattice constant of the B19′ martensite (a = 0.2889 nm, b = 0.4120, c = 0.4622 e
β = 96.8◦) [19]. The images and the SAED patterns were recorded with the use of the SIS
MegaView camera. Process Diffraction® software was used for the indexation of the SAED
patterns. The samples for TEM investigations were cut using a FEI Quanta 3D 200 focused
ion beam (FIB) equipment.

3. Results
3.1. Functional Behavior

Since the cyclic deformation of the NiTi wire promotes the accumulation of residual
deformation during the first mechanical cycles, the analysis of low-cycle fatigue behavior
was performed up to the 300th cycle. The main objective is to analyze the loss of functional
properties of the wire (Figure 2) and to correlate it to the electrical resistivity variation.
Some parameters vary along the tensile cycles, such as maximum stress plateau (direct
transformation), minimum stress plateau (reverse transformation), and non-recoverable
transformation (Figure 2) [15,17,20].
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Figure 2. Stress-strain superelastic behavior up to 300th loading/unloading cycle of the NiTi (SMA
wire) at room temperature.

The difference in stress–strain hysteresis behavior, which involves stress-induced
transformations, can be attributed to several mechanisms, as follows: (i) formation of
stabilized martensite [5], (ii) detwinning [21], (iii) grain reorientation [3], (iv) shear defor-
mation [22] and (v) formation of lattice defects [5]. Upon repeated cycle loadings, several
preferentially oriented martensite variants achieve conditions that inhibit the possibility to
recover the pristine condition. This results from increasing dislocation density due to shear
deformation at B2–B19′ interfaces [23]. This condition is shown through the initial loop
deformation value (εi) at the end of the first cycle εi = 0.2% and for the 300th cycle εi = 1.2%.
Figure 3 displays the correlation between transformation reversibility degradation and
corresponding loss of functional properties. Figure 3a shows the gradual degradation of
functional properties along the 300 cycles, by the trend of the residual strain. Figure 3b
emphasizes the trend of the recovered strain. When the number of cycles increases, the
influence on the transformation is more apparent; the content of austenite to be transformed
is reduced due to the residual martensite present. After SIM, the residual martensite is
not involved in the phase transformation, which can cause a reverse phase transformation
degradation. As the number of cycles increases, the residual strain increases, while decreas-
ing the recoverable strain and direct transformation stress (Figure 3a–c). The internal stress
may explain this behavior due to the presence of dislocations and corresponding strain
induced in neighboring grains; therefore, a part of the material remains in martensitic
condition after unloading. These microstructural evolutions promote a gradual loss of
functional properties [20]. Functional degradation of the material can be observed, but still
keeping superelastic characteristics. However, an amount of non-recoverable transforma-
tion was already confirmed by recovered strain evolution (Figure 3b). Figure 3c shows the
evolution of the direct transformation stress, σs

AM. This property exhibits a sharp decrease
in the initial cycles (up to the 20th cycle), then it continues to decrease at a slower rate and
stabilizes after 150 cycles. This behavior may be attributed to multiple microstructural
mechanisms occurring during martensite phase formatio: (i) the accumulated damage
stabilization along with the deformation cycles, (ii) the grain reorientation and (iii) the shear
deformation [8]. The heterogeneous structure can promote a decrease in the critical stress
to transform the austenite into martensite, and dislocation density can affect the internal
stresses, which can assist the SIM transformation [5,13,24]. The dissipated energy shown
in Figure 3d is related to the hysteresis in the mechanism of the SIM transformation, which
decreases and converges to a stable value with increasing number of cycles. The change
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in the superelastic loop is noticeable for cycle 150, where it is possible to identify the Ediss
stabilization [2,25]. The highest reduction rate of the dissipated energy may be attributed to
the plastic deformation and the increase of the dislocation density. The dislocations might
lead to the formation of stress fields and, subsequently, to the development of stabilized
stress-induced martensite. This behavior shows the influence of the B19′ deformation
twinning in functional low-cycle fatigue of NiTi wire [5]. The stabilized values of Ediss are
about 25% of the first cycle value. All the characteristics (Figure 3) show noticeable changes
up to the 150th cycle; this behavior suggests the possibility of fatigue crack initiation [21].
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3.2. In Situ Electrical Resistivity versus Low-Cycle Fatigue

The values and the behavior of the electrical resistivity measurements in uniaxial
deformation of 1st, 5th, 10th, 50th, 100th, 200th and 300th cycles among 300 cycles are
summarized in Table 1 and in Figure 4, respectively. There is a slight decrease in the
maximum stress plateau value during the tensile cycles where SIM transformation occurs.
This behavior is also observed in the electrical resistivity values at 6% of deformation,
where an increase of about 9% is observed between the first cycle (11.21 × 10−7 Ω·m) and
the 300th cycle (12.35 × 10−7 Ω·m).

Figure 4 shows that the resistivity has a linear behavior in the deformation direction.
The applied strain increases the resistivity values; the curve of resistivity–deformation is
linear with stress–deformation curves (Figure 4). This behavior is related to the mechanism
observed during the low-cycle fatigue test performed. During SIM, the electrical resistivity
increases with strain as a consequence of the lattice defects involved. The amount of B19′

grows linearly with deformation and both phases (B2 and B19′) must be considered, then
the resistivity must be the linear combination of the contribution of each phase.
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The resistivity changes with the applied strain during the stress-induced transforma-
tion plateau, while small changes are observed during elastic deformation. This behavior
confirms that the resistivity of the shape memory alloy (NiTi) is a function of the volume
fraction of each phase [26]. Figure 4 shows that the stress applied is high enough to induce
the B2–B19′ transformation, which occurs with an observation of the R phase presence due
to a change in the resistivity values measured (blue square in first cycle) [27].

The beginning (close to 1%, marked by b) and the end part (at 6%, marked by c) of the
SIM transformation plateau, associated with the transformation B2→ B19′, is as evidenced
by the resistivity change (Figure 4). Taking into account that there is austenite to transform
and the reorientation of the martensite associated with the Lüders-like deformations,
this change is probably related to the coalescence of one or more bands of Lüders-like
transformation [28,29]. The resistivity plateau at the first cycle (green circle) between
1.25% and 2.5% strain can be associated with the Lüders-like band stabilization during
SIM transformation. Similar behavior was not observed in the 300th cycle. The residual
martensite formed along the low-cyle fatigue test was observed and confirmed by resistivity
values.

Although the resistivity behavior is predictable, as desired, it presents changes related
to the transformation. The resistivity at the beginning of each new cycle (point a in Figure 4)
is continuously increasing with increasing number of cycles (Table 1, Figure 4). The values
ranging from 8.2 × 10−7 Ω·m to 10.0 × 10−7 may indicate the presence of mixed-phase B2
and B19′, but the superelastic behavior of the material is still preserved.

Since the resistivity depends on the volume fractions of the martensitic and austenitic
phases (Figure 4 (points a, b, c and d) and Table 1), a linear relationship is observed between
the resistivity and strain. Usually, the resistivity–strain curve does not show a significant
hysteresis [26]. This behavior allows the use of the resistivity values as a parameter of
strain variation.

Table 1. Evolution of the stress, strain and resistivity values of the NiTi wire corresponding to points a, b, c and d.

Stress (MPa) Strain (%) Resistivity (10−7 Ω·m)

Cycle/Points a b c d a b c d a b c d

1 0.00 362.00 386.00 0.00 0.00 1.25 6.00 0.20 8.16 9.36 11.21 8.29

5 0.00 328.10 349.80 0.00 0.34 1.37 6.00 0.38 8.28 8.77 10.42 8.29

10 0.00 314.00 349.01 0.00 0.50 1.68 6.00 0.50 8.68 9.51 10.85 9.05

50 0.00 310.80 406.92 0.00 0.80 1.72 6.00 0.90 9.37 10.16 11.72 9.37

100 0.00 237.00 321.00 0.00 0.97 1.96 6.00 1.00 9.78 10.70 12.25 9.83

200 0.00 217.00 319.00 0.00 1.14 2.00 6.00 1.12 9.84 10.84 12.35 9.85

300 0.00 216.00 327.00 0.00 1.20 2.15 6.00 1.25 10.03 10.90 12.35 10.04
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b-beginning of the phase transformation plateau; c-end of the phase transformation plateau; d-end of each cycle).

3.3. TEM Analysis

Microstructures before and after the low-cycle fatigue test were analyzed by TEM.
The bright-field (BF) image before deformation (Figure 5a) consists of homogeneously
distributed equiaxed grains of different sizes. It can be observed that all grains have
dimensions in the range of a few hundred nanometers. In the as-received wire, it is possible
to observe (110), (200) and (211) reflections corresponding to the B2 NiTi phase (Figure
5b), as well as the superlattice appearance of reflections in the 1/3 position along the
direction <110>, indicated by the yellow arrows. These reflections are characteristic of
the R phase [30]. Figure 5c shows the microstructure after the cyclic tensile test. The BF
image reveals a lamellar microstructure with band widths ranging between 50 and 80
nm, which confirms that plastic deformation occurred. Inside the bands, there were even
smaller twin lamellae, suggesting the presence of stress-induced B19′ (blue square). SAED
pattern (Figure 5d) shows the presence of the B19′ phase. This phase is represented by
the weak diffraction points highlighted by the blue arrows. In addition, it is possible to
observe incomplete rings corresponding to (110), (200) and (211) reflections of the B2 phase.
These results are corroborated by the recovered strain values (Figure 3b) and the resistivity
behavior (Table 1), which indicate a mixed-phase structure after the low-cycle fatigue tests.
The indexation of the diffraction patterns indicates the presence of B2 before deformation
(Figure 5e), and a mixed-phase structure of B2 and B19′ after deformation (Figure 5f). The
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TEM analysis also confirms the presence of dislocations as a result of the deformation
process after tensile testing [31].
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4. Conclusions

The present study contributes to establish the low-cycle fatigue behavior at room
temperature of NiTi wires, as summarized below:

• The functional degradation as evidenced by the residual strain evolution is the result
of untransformed austenite and remaining martensite formed during cycling; more
B2–B19′ interfaces and a higher dislocation density are present in the material as the
number of cycles progresses;

• The electrical resistivity increases linearly with strain; the electrical resistivity at the
beginning of each cycle increases with the number of cycles, revealing the presence of
a mixture of phases (B2 and B19′);

• During cycling, the resistivity at the beginning of each new loading cycle, as well
as the resistivity at the beginning of each upper SIM plateau, gradually change; this
shows that NiTi may be effectively used as a crack propagation sensor when inserted
inside a component subjected to low-cycle fatigue.
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