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Abstract: Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much
of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars
remains valid for combinatorially symmetric matrices over a �eld. A characterization of generalized stars in
the case of combinatorially symmetric matrices is given.

Keywords: Combinatorially symmetric matrix; Eigenvalue; Generalized star; Geometric multiplicity; Graph
of a matrix; Path

MSC: 05C38; 05C50 (primary); 05C05; 15A18 (secondary)

Introduction
The graph of the real symmetric matrix A = (aij) ∈ Mn(R) is the graph G on n vertices 1, . . . , n, with an edge
{i, j} if and only if aij ≠ 0. Denote by S(G) the set of all n-by-n real symmetric matrices whose graph is G. No
restriction is placed upon the diagonal entries. The case in which G is a tree T is especially interesting. The
recent book [6] develops much of the notation and theory that is relevant.

For a real symmetric (or complexHermitian)matrixwhose graph is a tree, T, on n vertices,much is known
about the possible unordered eigenvaluemultiplicity lists. Recently, it has been shown thatmuch of thismul-
tiplicity theory generalizes to geometric multiplicity for eigenvalues of combinatorially symmetric matrices
(i.e., matrices A = (aij) with aij ≠ 0 if and only if aji ≠ 0) over a �eld F. Denote by F(T) the set of combinatori-
ally symmetricmatrices over a general �eldwhose graph is T. For A ∈ F(T), denote the geometricmultiplicity
of λ in A as gmA(λ). Given a set α ⊆ {1, . . . , n}, denote by A[α] the principal submatrix of A resulting from
including only the rows and columns of A indexed by α. Similarly, A(α) is the principal submatrix resulting
from excluding those same rows and columns. If v is a vertex of T, then A[v] and A(v) are de�ned analogously.
Similar notation is used for branches Ti of T (at a vertex v), writing A[Ti] and A(Ti), respectively.

Crucial to the study of eignenvalue multiplicity theory is the Parter-Weiner, etc. theorem (and related
notions/results). The most general version is given in [2]. For more background, see this source. In [5], it is
shown that the theorem is valid for geometricmultiplicities ofmatrices inF(T) (see also [4]). This is theorem2,
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below. Several other known results generalize tomatrices inF(T) as well: the downer branchmechanism and
that the maximum geometric multiplicity gM(T) (�rst discussed in [1]) of an eigenvalue of a matrix in F(T) is
equal to the path cover number P(T), [4], [5]. These results, among others, are restated below for convenience.
Their proofs, although not provided here, are markedly di�erent from the proofs of the analogous results
concerning real symmetric matrices (with the exception of some graph theoretic commonalities).

Unlike real symmetric matrices, however, the interlacing inequalities for eigenvalues do not hold for ma-
trices in F(T). Consequently, the smallest and largest eigenvalues of A ∈ F(T) are not required (as for real
symmetric matrices) to have multiplicity 1, and they may occur as eigenvalues of a proper submatrix of A
of size one smaller. Despite these di�erences (see [7] for one prominent example), we show here that using
the important results established in [5], much of the remaining speci�cmultiplicity theory for real symmetric
matrices [2] may be generalized. This includes both general results and the highly speci�c results about paths
and stars that we give here. These results emphasize the close relationship between symmetric and geometric
multiplicity theory.

Throughout this document, we denote by Pn a path on n vertices. A branch of a tree T at v that is a path,
with the neighbor of v in this branch a degree 1 vertex of this path, is called a pendent path at v. We also refer
to a vertex v of a given tree T with degT(v) ≥ 3 as a high-degree vertex (HDV).

A generalized star (or g-star) is a tree T having at most one HDV. We call a vertex v of a g-star a central
vertex if its neighbors u1, . . . , uk are pendent vertices in their branches (called arms) T1, . . . , Tk, respectively,
and each of these branches is a path. We generalize the results from [3] necessary to characterize generalized
stars in the case A ∈ R(T).

Preliminaries
We now record some important results from [5] (theorem 2 is also proven in [4]).

Lemma 1. Let G be a graph and F a �eld. For A ∈ F(G), v a vertex of G, and λ ∈ F,

|gmA(v)(λ) − gmA(λ)| ≤ 1.

More precisely, in A(v) there are three possibilities, the third occurring only in case gmA(λ) ≥ 1 :

1. gmA(v)(λ) = gmA(λ) + 1, which occurs if and only if

rank(A(v) − λI) = rank(A − λI) − 2;

2. gmA(v)(λ) = gmA(λ), which occurs if and only if

rank(A(v) − λI) = rank(A − λI) − 1;

3. gmA(v)(λ) = gmA(λ) − 1, which occurs if and only if

rank(A(v) − λI) = rank(A − λI).

Thus, removing a vertex vmay cause the geometric multiplicity of λ in A ∈ F(G) to increase by 1, decrease by
1, or stay the same. We call v a g-Parter, g-downer or g-neutral vertex, respectively, for λ in A ∈ F(G). Below is
the geometric Parter-Wiener, etc. theorem.

Theorem 2. Let F be a �eld, T a tree, and A ∈ F(T). Suppose that there is a vertex v of T such that λ ∈
σ(A) ∩ σ(A(v)). Then

1. there is a vertex u of T such that gmA(u)(λ) = gmA(λ) + 1, i.e., u is g-Parter for λ (with respect to A and T);
2. if gmA(λ) ≥ 2, then u may be chosen so that degT(u) ≥ 3 and so that there are at least three components
T1, T2, T3 of T − u such that gmA[Ti ](λ) ≥ 1, i = 1, 2, 3; and
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3. if gmA(λ) = 1, then u may be chosen so that degT(u) ≥ 2 and so that there are two components T1, T2 of
T − u such that gmA[Ti ](λ) = 1, i = 1, 2.

We also have the following result for paths.

Lemma 3. If F is a �eld and A ∈ F(Pn), then for any λ ∈ σ(A), gmA(λ) = n − rank(A − λI) = 1.

Lastly, we present what is often referred to as the “downer branch mechanism."

Theorem 4. Let T be a tree, A ∈ F(T), and λ ∈ σ(A). Then a vertex v of T is g-Parter for λ (with respect to A
and T) if and only if there is a neighbor u of v in T in whose branch (Tu) u is a g-downer vertex for λ (with respect
to A[Tu] and Tu).

We call a branch guaranteed by the above theorem a g-downer branch at v.

Results
The following results generalize those from [2] to the case in which A ∈ F(T).

Lemma 5. If A ∈ F(Pn), then σ(A) ∩ σ(A(1)) = σ(A) ∩ σ(A(n)) = ∅.

Proof. We induct on n. By symmetry, we only need to verify the claim for A(n). If n = 1, the claim is trivial.
If n = 2, we suppose for the sake of contradiction that λ ∈ σ(A) ∩ σ(A(2)). This implies by Theorem 2 that a
g-Parter vertex exists, but clearly neither vertex 1 or 2 can be g-Parter. If n = 3, we again suppose for the sake
of contradiction that λ ∈ σ(A) ∩ σ(A(3)). Since gmA(λ) = 1, by Theorem 2, vertex 2 must be g-Parter. Then,
however, λ ∈ σ(A(3)) ∩ σ(A({2, 3})), by part three of Theorem 2, which is contradictory as shown above for
n = 2.

Now let n > 3 and assume the claim holds for A ∈ F(Pi), i < n. Suppose for the sake of contradiction that
λ ∈ σ(A)∩ σ(A(n)). By the induction hypothesis, λ /∈ σ(A({n − 1, n})), so that n − 1 is a g-downer vertex for λ
at n. By Theorem 4, then, vertex n is g-Parter and gmA(n)(λ) = 1 + 1, which contradicts Lemma 3.

This leads to the following corollary, which follows from Theorem 4 and Lemma 5.

Corollary 6. Let T be a tree, v a vertex of T, and A ∈ F(T). If there is a direct summand of A(v) whose graph is
a pendant path at v and which has λ as an eigenvalue, then gmA(v)(λ) = gmA(λ) + 1.

We now extend an important result of [2] to the general setting.

Theorem 7. Let i ∈ {1, . . . , n} and A ∈ F(Pn). Then λ ∈ σ(A)∩ σ(A(i)) if and only if 1 < i < n and i is g-Parter
for λ, with λ ∈ σ(A[{1, . . . , i − 1}]) and λ ∈ σ(A[{i + 1, . . . , n}]).

Proof. If λ ∈ σ(A) ∩ σ(A(i)) then by Lemma 5, 1 < i < n and, thus, λ is an eigenvalue of at least one of the
two summands of A(i). By Corollary 6, we have gmA(i)(λ) = gmA(λ) + 1. Since Pn is a path gmA(i)(λ) = 2 and,
because the two branches of Pn at i are paths, gmA[{1,...,i−1}](λ) = gmA[{i+1,...,n}](λ) = 1.

For the converse, since λ is an eigenvalue of the two summands of A(i), 1 < i < n, we can conclude by
Lemma 1 that λ ∈ σ(A).

From Lemma 3 and Theorem 7, the following corollary is immediate.

Corollary 8. If A ∈ F(Pn), then there are at most min{i − 1, n − i} di�erent eigenvalues that are common to
both A and A(i).
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By Lemma 5 and Theorem 7, when T is a path and A ∈ F(T), if λ ∈ σ(A) ∩ σ(A(v)), then v must be a degree
2 vertex of T and v is necessarily g-Parter for λ. When F = R, this property characterizes the path, as in the
case of real symmetric matrices. We refer to the set of combinatorially symmetric matrices over the real �eld
whose graph is a given tree T as R(T).

Theorem 9. Let T be a tree and v a vertex of T such that, for any A ∈ R(T), if λ ∈ σ(A) ∩ σ(A(v)) then
gmA(v)(λ) = gmA(λ) + 1. Then T is a path and v is a degree 2 vertex of T.

Proof. Suppose that T is a tree but not a path, i.e., T is a tree with at least one HDV. We show that there exists
a vertex v of T and amatrix A ∈ R(T) with an eigenvalue λ ∈ σ(A)∩σ(A(v)) satisfying gmA(v)(λ) = gmA(λ)−1.
Since S(T) ⊆ R(T), it is enough to look in S(T). In order to construct A, consider anHDV u of T whose removal
leaves k ≥ 3 components T1, . . . , Tk. For each of these components, construct Ai ∈ S(Ti) whose smallest
eigenvalue is λ and let A be any matrix in S(T) with the submatrices Ai in appropriate positions. Since the
smallest eigenvalue of a real symmetric matrix whose graph is a tree does not occur as an eigenvalue of any
principle submatrix of size one smaller (due to interlacing, see [2]), any Ti is a g-downer branch at u for λ.
Since gmA(u)(λ) = k, by the real symmetric analogue to Theorem 4, it follows that gmA(λ) = k − 1 ≥ 2 and, by
interlacing, λ ∈ σ(A) ∩ σ(A(v)) for any vertex v of T.

Considering a vertex v of T, with v ≠ u, let us show that gmA(v)(λ) = gmA(λ) − 1. Observe that λ occurs
as an eigenvalue of only one of the direct summands of A(v), corresponding to the component T′ of T − v
containing the vertex u. Since λ is now an eigenvalue of k − 1 components of A[T′ − u] (in each one with
multiplicity 1), again, by the analogue to Theorem 4, it follows that gmA[T′](λ) = gmA[T′−u](λ) − 1 = k − 2.
Since gmA(v)(λ) = gmA[T′](λ), we have gmA(v)(λ) = gmA(λ) − 1.

We now generalize two results from [3], which characterize generalized stars for the case in which A ∈ R(T).
We �rst present a lemma, which holds for any �eld.

Lemma 10. Let T be a g-star with central vertex v. If A ∈ F(T) and λ is an eigenvalue of A(v), then gmA(v)(λ) =
gmA(λ) + 1

Proof. Observe that if degT(v) = k and A ∈ F(T), then A(v) = A[T1]⊕ · · ·⊕ A[Tk], in which each Ti is a path.
By Lemmas 3 and 5, if λ is an eigenvalue of A(v), then at least one arm Ti of T is a g-downer branch for λ, and
the result follows from Theorem 4.

Theorem 11. Let T be a tree and v a vertex of T such that, for any A ∈ R(T) and any eigenvalue λ of A(v),
gmA(v)(λ) = gmA(λ) + 1. Then T is a g-star and v is a central vertex of T.

Proof. Suppose that T is a tree but not a g-star. Then T has at least two HDVs. Let v be any vertex of T and
choose a vertex u of degree k ≥ 3 of T, u ≠ v. We show that there exists A ∈ R(T) such that λ is an eigenvalue
of A(v) satisfying gmA(v)(λ) = gmA(λ) −1. Since S(T) ⊆ R(T), it is enough to look in S(T). In order to construct
A, consider the vertex u whose removal leaves k ≥ 3 components T1, . . . , Tk. For each of these components,
construct Ai ∈ S(Ti) whose smallest eigenvalue is λ. Let A ∈ S(T) be any matrix such that A[Ti] = Ai , i =
1, . . . , k. Recall that the smallest eigenvalue of a real symmetric matrix whose graph is a tree does not occur
as an eigenvalue of any principle submatrix of size one smaller (see [2]). Thus any Ti is a g-downer branch at
u for λ. Thus, gmA(u)(λ) = k, and, by Theorem 4, it follows that gmA(λ) = k − 1.

Let us see that gmA(v)(λ) = gmA(λ) − 1. Observe that λ occurs as an eigenvalue of only one of the direct
summands of A(v), corresponding to the component T′ of T − v containing the vertex u. Since now λ is an
eigenvalue of k − 1 components of A[T′ − u] (in each one with multiplicity 1), again, by Theorem 4, it follows
gmA[T′−u](λ) = gmA[T′](λ) + 1, i.e., gmA[T′](λ) = k − 2. Since gmA(v)(λ) = gmA[T′](λ), we have gmA(v)(λ) =
gmA(λ) − 1.

If we assume that T is a g-star and v is not a central vertex, the same argument holds to prove the claimed
statement.



Further generalization of symmetric multiplicity theory | 35

Acknowledgements: This work was supported by the National Science Foundation Grant DMS #0751964.
Further, this work was carried out within the activities of CMA/FCT/UNL and it was partially supported by
the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through
the project UIDB/00297/2020.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.

References
[1] C.R. Johnson and A. Leal-Duarte. The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree. Linear and

Multilinear Algebra 46:139–144 (1999).
[2] C.R. Johnson, A. Leal-Duarte, and C.M. Saiago. The Parter-Wiener theorem: re�nement and generalization. SIAM Journal on

Matrix Analysis and Applications 25(2):352–361 (2003).
[3] C.R. Johnson, A. Leal-Duarte, and C.M. Saiago. Inverse eigenvalue problems and lists of multiplicities of eigenvalues for

matriceswhosegraph is a tree: the caseof generalized stars anddouble generalized stars. Linear Algebraand its Applications
373:311-330 (2003).

[4] A. Mohammadian. Trees and acyclic matrices over arbitrary �elds. Linear and Multilinear Algebra 64(3):466-476 (2016).
[5] C.R. Johnson, C.M. Saiago. Geometric Parter–Wiener, etc. theory. Linear Algebra and Its Applications 537:332-347 (2018).
[6] C.R. Johnson, C.M. Saiago, Eigenvalues, Multiplicities and Graphs, Cambridge University Press, New York, 2018.
[7] C.M. Saiago. Diagonalizable matrices whose graph is a tree: the minimum number of distinct eigenvalues and the feasibility

of eigenvalue assignments. Special Matrices 7:316-326 (2019).


