
João Ricardo Alpoim Gonçalves

Bachelor in Computer Science

A model for widget composition
in the OutSystems Platform

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: João Costa Seco, Assistant Professor,
Faculdade de Ciências e Tecnologias da
Universidade de Lisboa

Co-adviser: Hugo Lourenço, R&D Principal Software Engineer,
OutSystems

Examination Committee

Chairperson: Fernanda Barbosa
Raporteur: Alcides Miguel C. Aguiar Fonseca

Member: João Ricardo Viegas da Costa Seco

December, 2019

Amodel for widget composition in the OutSystems Platform

Copyright © João Ricardo Alpoim Gonçalves, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to thank Faculdade de Ciências e Tecnologias from the Universidade Nova de

Lisboa for giving me the fundamental tools over the past five years that will now allow me

to start my professional career. Thank you also to OutSystems for funding a scholarship

for this dissertation and for allowing me to work beside them.

Thank you, Hugo Lourenço and João Costa Seco, for allowing me to enter on such a

big project. A year has passed, but it felt much less. I will be forever grateful.

Thank you to my new friends: António Ferreira, David Mendes, Francisco Cunha,

Francisco Gracias, Francisco Magalhães, Joana Tavares, Lara Borisoglebski, Mariana

Cabeda, Michael Silva, Miguel Loureiro, Miguel Madeira, Nuno Calejo, Nuno Pulido,

and a lot more people I got the chance to meet. If it hadn’t been for you, this past year

wouldn’t have been so much fun.

Thank you, my best friends, for being the most fun people I have in my life.

The biggest thank you to my parents for sacrificing so much so that I got the chance to

have a better life. Thank you, Hélder and Sara, who raised me and helped me whenever I

asked them to. And last but not least, thank you, Carolina, for being with me when we

had the time, hearing me grinding about writing when I just wanted to be with you.

This work is for all of you.

v

Abstract

Developers use visual programming languages for faster development of user inter-

faces due to better ease of use, readability, component reusability – widgets –, and an

instant preview of the desired effects. However, the most common composition models

to form user interfaces are black-box: combine existing widgets to form new widgets, but

generally do not allow indiscriminate modification of their internal components.

The OutSystems platform provides a What You See Is What You Get (WYSIWYG) expe-

rience where developers can build user interfaces by assembling user interface elements

from predefined building blocks: the more fundamental and native components (wid-

gets) represent HTML elements, and custom-made building blocks (web blocks) represent

reusable compositions. However, web blocks and widgets are not uniform. Currently,

through some workarounds, creators can define compositions that, after instantiated,

their inside components can be customizable by other developers, but they either do not

follow OutSystems’ good practices for creating web applications, do not show the user’s

customizations – no preview –, or need expertise that citizen developers do not have.

Our objectives with this work are to develop a new composition model for user inter-

face components that allows to customize the properties of the inner elements of reusable

compositions at the places where they are instantiated, integrate the model with the plat-

form in a visual and interactive way where creators can control what can be modified,

and users can customize respectively while getting a consistent preview.

Reusable compositions in the OutSystems language are unique and static. Thus, for

developers to be able to change internal components of a composition and get a preview

of that change, the underlying models must explicitly receive and transmit properties of

the components internal state to the composition elements.

The work was validated by usability testing and by comparison between our solution

with widgets that are specialized by OutSystems for specific use cases. The new presented

approach is faster and more intuitive to use than what is currently offered by OutSystems.

We also observed it works best in tandem with mechanisms already in place (e.g., input

parameters) to offer more complete reusable compositions.

In the end, all objectives were met, providing a working solution which enables users

to customize their or other’s web blocks. With this work, reusable composition creators

and users will get more control, customization possibilities, and user experience more

intuitive, increasing productivity and user satisfaction.

Keywords: Low-code Development Platform, Visual Programming Languages, White

box Composition Model, Component-Based Design, Component customization

vii

viii

Resumo

Os programadores usam linguagens de programação visual para um desenvolvimento

mais rápido das interfaces de utilizador devido à maior facilidade de uso, legibilidade,

reutilização de componentes – widgets – e uma visualização instantânea dos efeitos de-

sejados. No entanto, os modelos de composição mais comuns para formar interfaces de

utilizador são black-box: combinam os widgets existentes para formar novos widgets, mas

geralmente não permitem modificações indiscriminadas dos seus componentes internos.

A plataforma OutSystems fornece uma experiência What You See Is What You Get
(WYSIWYG), na qual os programadores podem criar interfaces de utilizador ao montar

elementos da interface de utilizador a partir de blocos de construção predefinidos: os

componentes mais básicos e nativos (widgets) representam elementos HTML e blocos

de construção personalizados (web blocks) representam composições reutilizáveis. No

entanto, web blocks e widgets não são uniformes. Atualmente, por meio de soluções alter-

nativas, os criadores podem definir composições que, após instanciadas, os componentes

internos podem ser customizados por outros programadores, mas estas não seguem as

boas práticas da OutSystems para criar aplicações Web, não mostram as customizações

do utilizador – sem preview –, ou são necessários conhecimentos que os programadores

podem não possuem.

Os nossos objetivos com este trabalho são desenvolver um novo modelo de composição

para componentes da interfaces de utilizador que permita customizar as propriedades

dos elementos internos das composições reutilizáveis nos locais em que são instanciadas,

integrar o modelo à plataforma de maneira visual e interativa, onde os criadores podem

controlar o que pode ser modificado e os utilizadores podem customizar respectivamente

enquanto obtêm uma visualização consistente.

As composições reutilizáveis na linguagem OutSystems são únicas e estáticas. Assim,

para que os programadores possam alterar os componentes internos de uma composição

e obter um preview dessa alteração, os modelos subjacentes devem receber e transmitir

explicitamente propriedades do estado interno dos componentes para os elementos da

composição.

O trabalho foi validado através de testes de usabilidade e comparação entre a nossa

solução e com widgets especializados pela OutSystems para casos de uso específicos. A

nova abordagem apresentada é mais rápida e mais intuitiva para usar do que o modelo

de composição que é atualmente oferecido pela OutSystems. Também observámos que

é mais eficiente usar em conjunto com os mecanismos já existentes (e.g., parâmetros de

entrada) para oferecer composições reutilizáveis mais completas.

No final, todos os objetivos foram alcançados, fornecendo uma solução funcional que

permite aos utilizadores customizar os seus web blocks ou os de outros. Com este trabalho,

ix

criadores e utilizadores de composições reutilizáveis terão mais controlo, possibilidades

de customização e experiência do utilizador mais intuitiva, aumentando a produtividade

e a satisfação do programador.

Palavras-chave: Plataforma de Desenvolvimento Low-code, Linguagens de Programação

Visual, Modelo de Composição White-box, Design baseado em Componentes, Customiza-

ção de componentes

x

Contents

List of Figures xv

List of Tables xvii

Listings xix

Glossary xxi

Acronyms xxiii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 4

1.3 Objectives . 4

1.4 Contributions . 6

1.5 Structure . 6

2 Background 7

2.1 Component-Oriented Programming . 7

2.1.1 Motivation . 8

2.1.2 Component Characteristics . 8

2.1.3 Comparison with OOP . 10

2.2 Composition . 10

2.2.1 Views . 11

2.2.2 Categories . 11

3 Compositions in OutSystems 13

3.1 OutSystems Platform . 13

3.1.1 Service Studio . 13

3.1.2 Platform Server . 14

3.2 Workspace . 15

3.2.1 Actions . 15

3.2.2 Screens . 15

3.2.3 Widgets . 16

xi

CONTENTS

3.2.4 Web Blocks . 16

3.3 Web Block Customization . 17

3.3.1 Input Parameters . 18

3.3.2 CSS Styling . 19

3.3.3 Duplication . 20

3.3.4 Comparison between Workarounds 20

4 Related work 23

4.1 Composition Models . 23

4.1.1 UI Families . 24

4.1.2 Customization by input . 25

4.2 Composition in Visual Languages . 25

5 New Composition model 27

5.1 Current model . 27

5.1.1 Widgets . 28

5.1.2 Web Blocks . 29

5.1.3 Web Block Instances . 30

5.2 Enabling customization . 31

5.2.1 Requirements . 31

5.2.2 New Model . 32

5.3 Model comparison . 33

5.4 Summary . 37

6 Implementation 39

6.1 Architecture . 40

6.1.1 Model . 41

6.1.2 View . 44

6.1.3 Presenter . 45

6.2 Compiler . 50

7 Evaluation 59

7.1 Usability Testing . 59

7.2 Solution comparison . 62

7.2.1 Analysis methodology . 62

7.2.2 OutSystemsUI . 63

7.2.3 Examples . 63

7.2.4 Comparison . 64

8 Conclusions 65

Bibliography 69

xii

CONTENTS

A Proof of concept 71

B Usability Testing: Script 75

C Usability Testing: Results 79

D Solution Comparison: Results 81

I Short article 83

xiii

List of Figures

1.1 Widget selected in a web block’s definition. 2

1.2 Web block’s instance on a screen. 3

3.1 Service Studio sends the application to the Platform Server to be compiled and

deployed [12]. 14

3.2 Service Studio’s Workplace . 15

3.3 Widget tree of a web screen . 16

3.4 Widget toolbox. 17

3.5 Input widget’s exposed properties. 17

3.6 Button widget’s exposed properties. 17

3.7 Web block instance with custom parameters. 18

3.8 Input widget inside the Web block definition with parameters bound to it. . 19

3.9 Screen’s style sheet with customized selector (red box). 20

4.1 Differences between a building block’s definition and corresponding instance 26

5.1 Model of OutSystems’ building blocks. 28

5.2 New structures added to support web block customization. 32

5.3 Web block for requesting a user’s address - Address web block. 33

6.1 MVC design pattern. 40

6.2 MVP design pattern. 40

6.3 Time line of when a widget is changed. 41

6.4 The command turns the widget Input_Name properties customizable. 46

6.5 Properties Editor with Input_ZipCode selected. 49

6.6 How the preview is drawn by the View. 51

6.7 How the compiled application draws its web blocks. 51

6.8 Order of compilation for the components of an application model. 52

7.1 Average and standard deviation of SUS for each group (higher is better). . . . 61

7.2 Average and standard deviation of time taken to complete each group’s task

(lower is better). 61

D.1 OutSystemsUI widgets results. 82

xv

List of Tables

2.1 Comparison between structured programming (SP), object oriented program-

ming (OOP) and component oriented programming (COP) [23]. 10

3.1 Approaches comparison. Best ones are the ones that have the most check marks. 21

7.1 Average SUS and time taken to complete the task for each group. 60

C.1 Beta group results. 80

C.2 Alfa group results. 80

C.3 System Usability Scale questions. 80

D.1 Indexes abbreviations. 81

xvii

Listings

1.1 Improved composition model . 5

4.1 Bean example [23]. 24

5.1 Simplified widget model instanced for the "Input.ZipCode"widget in XML. 29

5.2 Input widget HTML template. 29

5.3 Simplified web block model instanced for the web block "Address"in XML. 30

5.4 Simplified web block instance model for the instance of the web block

"Address"in XML. 30

5.5 Address Web Block’s child widgets in the current model. 34

5.6 Address Web Block’s child widgets in the new model. 34

5.7 Address Web Block instance in the current model. 35

5.8 Address Web Block instance in the new model. 36

6.1 New structures added to ObjectDefinitions. 42

6.2 New web block class definition. 43

6.3 New web block instance class definition. 44

6.4 Screen in Figure 5.3 from the UPPS app compiled. 53

6.5 Web block Address from the UPPS app compiled. 54

6.6 The new formatted property value. 56

6.7 The new compiled property. 56

6.8 Address component in Listing 6.5 after adaptation. 58

6.9 Screen component in Listing 6.4 after adaptation. 58

A.1 The component Address with the hook zipCode which is instantiated with

the parameter passed in the state. 71

A.2 The component Address adapted to the new model. 72

A.3 The component App that instantiates the component Address with the state. 73

A.4 The component App adapted to the new model. 73

xix

Glossary

action Logic that runs either on server or client side and can be either Prepa-

ration or Data actions, depending on the type of app - web or mobile,

respectively, client or server actions .

black-box Device, system or object which can be viewed in terms of its inputs

and outputs (or transfer characteristics), without any knowledge of its

internal workings.

component Web resource that encapsulates a set of related functions and data.

Component-Based Design Development approach based on reusability that composes systems

with loosely independent components.

web block Developer made reusable screen composed with widgets or web blocks.

white-box Contrary to black-boxes, these expose everything to the outside scope.

widget A unitary screen element that can be either a HTML element or a

reusable component (web block).

xxi

Acronyms

COP Component-Oriented Programming.

DSL Domain-Specific Language.

GPPL General-Purpose Programming Language.

GUI Graphical User Interface.

IDE Integrated Development Environment.

LCDP Low-Code Development Platform.

OOP Object-Oriented Programming.

PL Programming Language.

UI User Interface.

VPL Visual Programming Language.

WYSIWYG What You See Is What You Get.

xxiii

C
h
a
p
t
e
r

1
Introduction

Developers can create applications faster with Low-Code Development Platforms that

replace textual code environments with easy to learn Graphical User Interfaces (GUIs)

abstractions and reusable components already implemented and fully tested before re-

lease. In Component-Based Design, components encapsulate related functions and data,

restricting access to their details (abstraction), and composition mechanisms, that may

compromise the passing of information necessary to inspect and change some aspects of

the components.

However, Low-Code Development Platforms (LCDPs) require some degree of para-

metricity of components to fit every possible use case of component instantiation and

configuration. Since component mechanisms are usually black-box, we seek a new form

of composition to be applied to UI components in the OutSystems Platform.

1.1 Context

An LCDP is an environment for application development that relies on declarative and

visual methods with minimal textual and manual coding. It offers software development

companies many advantages over traditional alternatives (e.g., reduced amount of textual

and manual coding and more emphasis on business logic), resulting in faster development.

Citizen, business and pro developers can cooperate in this way as there’s no longer the

restriction that only skilled programmers can implement feature-rich applications [16].

For citizen developers, LCDPs provide easy to learn visual languages with pre-defined

native components that replace many web resources (e.g., HTML elements) with visual

elements, granting more time for developers to define user interfaces for all kinds of

devices, data models, business logic and workflow. Therefore, development in a visual

1

CHAPTER 1. INTRODUCTION

language that does not support customization of all components limits the user expe-

rience, because component implementation is encapsulated in visual elements with a

limited interface. Although, systems are developed in a DSL, mainstream tecnologies are

used to produce the actual systems’s code and deploy it.

In a Component-Based Design, components encapsulate their implementation, re-

vealing no details to the outside scope (black-box) [4], connecting to other components

by interfaces. However, for components that have a visual representation, customizable

details should be visible from the outside. A way of having a disciplined and consistent

way of manipulating componets’ details is through a novel composition mechanism that

encapsulates and parameterizes one component as a functional abstraction [11], and a

visual editor ready for the added information exchange.

Even though LCDP for front-end web that provide many components that replace

current web resources (e.g., HTML elements), it is not wise to deliver every possible

scenario, but rather giving the user the ability to create their own. In the front-end

development, screens compose the User Interface (UI) with which end-users will interact

with visual components. If a part of a screen can be used on more screens, then users

should be able to create a reusable component out of it and use it on any other application.

Composition of components means combining two or more components to create a more

complex one, merging the best of both worlds: component’s reusability with screen’s

composability.

Low-code environments for front-end web development provide customization tools

for the end-user UI, supported by screen editors where developers compose screens by

dragging and dropping visual elements. OutSystems delivers an editor where the de-

veloper can customize the components inside screens. Service Studio1 contains many

widgets (OutSystems’ visual native components) that represent many of the existent web

resources today and allows the definition of web blocks, that are reusable screen parts.

Figure 1.1: Widget selected in a web block’s definition.

1OutSystems development environment.

2

1.1. CONTEXT

In Figure 1.1, while defining a web block, a user can access every property of the

selected (small blue box) widget in the list of parameters passed to the block on the

properties editor on the right of Figure 1.1, which is a visual representation of an Input

HTML element.

Figure 1.2: Web block’s instance on a screen.

In Figure 1.2, when the user tries to select inside the block, the platform can only select

the block as a whole (big blue box). The block becomes a black-box: developers have no

access to the inside scope, and the only explicit parameters of the internal representation

are available (RoomNumber, Title and BookingId in the properties editor of the block

in Figure 1.2). Web blocks were created to replace a repeated pattern used on other

screens, but as customization was not affected while using normal screens, using web

blocks compromise customization, due to a composition model that does not respect the

platform’s consistency.

The current version of Service Studio supports customization for widgets, but web

blocks lack in ease of use. When trying to customize an instance of a web block, the

platform disables all access to widgets inside (Figure 1.2). There are ways to do it, but

they either lack a preview feature, which is a big letdown for a visual editor that should

show in real time the changes being made, require knowledge of complex languages, are

hard to maintain or duplicate code.

Both in text-based and visual programming languages, component customization is

limited by how the creator predicted the component would be used and the language used

(text-based Programming Languages (PLs) have encapsulation, visual may not have). In

the OutSystems platform, web blocks aren’t black-boxes because in design-time the user

can define them and get a consistent visual representation, but when instantiating one on

a screen, the developer loses this capability, breaking the user expectations to customize

a block wherever it is.

Thus, the problem in which we will try to solve in this thesis is how to make a vi-

sual language capable of safely customizing component compositions without losing

platform’s consistency.

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

Visual UI components with black-box composition raises difficulties for developers to

customize instantiated compositions. Workarounds exist, but none follows a white-box

model that is easy to configure. Thus, a composition model with a white-box reuse

paradigm provides developers the fastest development experience.

Consider the following message exchange between two people on an OutSystems’

forum discussion:

"How to chanage web block background

color?? Help me resolve this. i inned to

change web block bg color [sic]"

"(...) if you put a container around your

content inside your web block, you can change

the background color applying CSS to this

container, using the Style Editor.

What exactly is blocking you?"

For an LCDP, the solution given by the second person should not be the right one, but

instead only having to select the top container of the web block and change the parame-

ter responsible for the color inside the styles editor should be enough. Even though the

solution works, it is not intuitive and breaks the platform’s consistency, resulting in frus-

tration. Consequently, the user could opt for duplicated code, compromising reusability.

Thus, in this work’s context, reusable user-defined components are a must have be-

cause using other people’s components is faster than implementing them from scratch.

Real-time preview is also a very important requirement as interaction on a visual lan-

guage should be responsive, otherwise, developers cannot have feedback of their changes.

1.3 Objectives

The objectives of this work are to revise and improve the existent composition of user

interface elements in the OutSystems platform, with the same standards of any other com-

ponent (reusability, instant preview). Therefore, the key objective is to make component

compositions into white-boxes (access to every component’s instance inside).

We will develop a component model based on the syntax presented in Listing 1.1

for the representation of web resources. So instead of delegating only the mandatory

information to components’ explicitly exposed properties so these can be rendered, they

will have a rich interface to change its instance just like changing its definition. In this

process, it is important to define what component properties can be exposed in the com-

position model’s interface, even though, as default, it is expected to expose all properties

4

1.3. OBJECTIVES

responsible for appearance and component behavior, so that we have a uniform model

for every component.

Our next objective is to extend the OutSystems Domain-Specific Language (DSL) to be

compatible with the new revised model, and then adapting the compiler that translates

the model into mainstream languages and frameworks (TypeScript and React).

1 Component2Props {

2 name: string

3 color: string

4 }

5

6 Component 2 (c2p){

7 public property props:Component2Props = {

8 name = if c2p.name is null then "Default hello" else c2p.name

9 color = if c2p.color is null then "gray" else c2p.name

10 ...

11 };

12 ...

13 render() {...}

14 }

15

16 Component 1 {

17 public property name:string;

18 private property color:string; //private as so defined by the creator

19 render() {

20 ...

21 Component 2 as c2 with {

22 c2p of type Component2Props with {

23 name = this.name,

24 color = red

25 }

26 }

27 }

28 }

29

30 render Component 1 with {

31 name = "Hello World"

32 }

Listing 1.1: Improved composition model

The solution should provide a way to customize compositions like a developer edits

a component, delivering each with their own definition to the outside: every aspect

customizable made possible by the creator.

5

CHAPTER 1. INTRODUCTION

1.4 Contributions

This work contributes with new ways of visual element composition that in a composition

mechanism can provide a visual representation loyal to their implementation, delivering

an intuitive and satisfactory experience to the user.

In the end, we provide a working prototype capable of being easier and faster to use

than current solutions provided by the OutSystems platform and also be integrated into

the environment. From the creator to the user, we reinvented the whole process that

involves reusable compositions. Our solution also completes the user experience, since

many of the mechanisms already implemented by OutSystems help developers to create

their applications faster.

Finally, the adapted compiler allows to connect the final link between designing ap-

plication and deploying them.

1.5 Structure

The work has the upcoming order of sections:

• Chapter 2 - Background: Research of the platform and knowledge about Component-

Based Design, Composition Mechanisms and Models, and Visual Programming

Languages;

• Chapter 3 - Compositions in OutSystems: Introduction to the OutSystems platform,

definitions related to this work and solutions for this thesis problem;

• Chapter 4 - Related work: In this chapter we presented literature review of works

that address this issue;

• Chapter 5 - New Composition model: After discovering the problem, we designed

a new composition model, which we discuss in here;

• Chapter 6 - Implementation: After designing came the implementation, where we

started by changing the OutSystems platform architecture, and then the compiler;

• Chapter 7 - Evaluation: To validate our work and attest that our solution offered

improvements, we gathered a group sample to follow a simple task and compared

their results when using our approach and what is already provided by the plat-

form. We also compare our solution with some specialized widgets provided by the

platform.

6

C
h
a
p
t
e
r

2
Background

Before discussing any solution to the problem, we explore the background crucial to its

understanding. In this Chapter, we will discuss component-oriented programming, com-

position mechanisms both in programming languages and frameworks, visual languages

for UI and solutions for composing reusable components for a visual language.

2.1 Component-Oriented Programming

The "Majority of software engineers prefer to build software products from the ground

up"[9], using for their assistance frameworks, design patterns and programming idioms.

Component-Oriented Programming (COP) is a programming paradigm for software de-

velopment [23], with a divide and conquer1 approach that reduces as much as possible

the development effort by encouraging the reuse of pre-built components (subproblems)

to create applications (problem).

As the name suggests, components are parts of a whole (system). In a software context,

components can be attached or not to a system [23], because they are designed to be so,

as these represent higher level abstractions of self-contained, highly coupled functions

[11] and can be assembled with other components through their interfaces [23]. Thus,

systems in Component-Based Design are compositions of components.

Compared to other approaches, COP offers higher reusability and better modular

structure with greater flexibility. By usign interfaces, programmers no longer need to

know how components are implemented, as long interfaces remain unchanged, changes

in interface implementations do not affect the soundness of programs [23].

1Breaks down a problem into subproblems, smaller in size, and combines the solutions of these subprob-
lems to come up with a solution for the original problem [2].

7

CHAPTER 2. BACKGROUND

2.1.1 Motivation

Since the Industrial Revolution, businesses "have adopted component standards for inter-

changeable parts and streamlined assembly tools"[23] for a faster development of complex

products, replacing skilled with unskilled workers. In the software industry, however,

products are still mainly manually made, resulting in tendencies of low-productivity,

low-quality and overrun projects [23].

Creating quality software is a key issue of software engineering, even more for Plat-

forms as a Service (PaaS) (e.g., OutSystems) because they are liable for any faults that may

happen after deployment. Components are a way to create quality software because they

are independent of context [23]: if a fault exists, just fix the problem and deploy, instead

of worrying about changing accidentally other software or running entire systems just to

test the proposed correction.

According to An Wang et al. [23], Component-Based Design has three major goals:

conquering complexity, managing change, and reuse.

• Conquering complexity: The size and complexity of software is increasing and

Component-Based Design deals with this with a divide and conquer approach.

• Managing Change: Software is always changing, and at every moment a program-

mer can deploy a new version with a fault if they are not careful. Components are

best suited for constant software changes because they are easy to adapt. Software

engineers agree that the best way for managing changes is to build systems out of

reusable components.

• Reuse: Software reuse decreases development time and has increased quality be-

cause design and implementation are done only once (may suffer consequent up-

dates). Reuse also means software can be used many times in different contexts,

which allows large productivity gains. Component-Based Design compared to other

solutions (e.g. Class libraries, Object-Oriented Programming Languages) delivers

the highest level of software reuse because it supports more types of reuse (white-

box, black-box, gray-box) that help determine if components can be modified.

Thus, Component-Based Design is the best solution for large software systems as it

ensures a "manageable solution to deal with the complexity of software, the constant

change of systems, and the problems of software reuse"[23].

2.1.2 Component Characteristics

A software component is a piece of self-contained, self-deployable computer code with

well-defined functionality and can be assembled with other components through its in-

terface [23]. Manickam et al. [9] define components with the following characteristics:

8

2.1. COMPONENT-ORIENTED PROGRAMMING

• Part of a whole: the most fundamental aspect of components is they are the product

of decomposition of a system. Their composition should result in a complete func-

tional system. According to Sametinger [19], "components describe and/or perform

specific functions". Thus, part of a whole can also be compatible with Sametinger’s

definition of functionality.

• Component Ecosystem: Sametinger defines components as self-contained: reusable

without the need to use other components. Manickam et al. notes "components are

designed to be used in a compositional way together with other components"(not

in isolation). Although components are meant to be independent of other compo-

nents to be reusable, their composition in a "framework governed by a component

model"form a component ecosystem.

• Component Framework: frameworks provide environments where components

may be composed, because they have "well-defined interfaces that establish the

protocols for component cooperation within the framework" [24].

• Component Model: defines what components represent, how they are built, how

they can be composed and deployed. Frameworks use component models to estab-

lish protocols necessary for component compatibility.

• Component Interfaces: components can specify one or more interfaces with which

other components can use for composition and, in turn, interfaces follow the com-

position standards established in the component model so that components can

compose with others.

• Provided and required Interfaces: components can have two types of interface.

Interfaces for other components to use are provided interfaces. Interfaces which

other components use to compose with and add functionality are required interfaces.
A component’s interface would include the two types of interface to specify it.

• Component Compatibility: if one component’s provided interface is compatible

with another’s required interface, then they are compatible and can be composed

together.

• Implementation Independence: Changes to a component’s implementation should

not interfere with its compositionality: two components with compatible interfaces

will always be composable if one is because the composition operation only uses

their interfaces.

• Producer-Consumer Independence: as long as the producer of components and

its consumer have a common interface definition for it, then components can be

exchanged between the two. Sametinger also defines documentation to be of im-

portance, as "The most useful component is rendered useless (...) when appropriate

documentation is not available".

9

CHAPTER 2. BACKGROUND

Capabilities SP OOP COP
Divide and Conquer X X X
Unification of Data and Function X X
Identity X X
Encapsulation X
Deployment X

Table 2.1: Comparison between structured programming (SP), object oriented program-
ming (OOP) and component oriented programming (COP) [23].

2.1.3 Comparison with OOP

In Object-Oriented Programming, objects are the basic programming elements to encap-

sulate data and behavior [23]. Much like components, objects are used to breaks problems

into manageable pieces (divide and conquer). Classes are the objects specifications. Both

provide an abstraction ideal for reuse. But, components surpass objects in many ways, as

we will demonstrate.

In Table 2.1, Wang [23] presents a summary between structured programming 2 (SP),

with a low level of reuse; OOP, a high level of reuse; and COP with the highest level.

Structured programming was the first to break a large problem into smaller ones, but

lacks in every other category: unification of data and function allows for better cohesion

between logic that is highly coupled; encapsulation enables abstraction of concepts –

client does not need to know what the software does –; identity allows for each software

entity to have a unique identity.

Components are self-deployable because they can be installed and executed in any

end user’s environment. Objects are not, since they are bound to OO languages. Object-

Oriented Programming (OOP) supports interfaces, but, according to Wang, these don’t

have a clear relationship among superclasses and subclasses.

But what differentiates the most the two approaches is the coupling between elements:

COP offers loosely coupled components, and OOP tightly coupled objects because of

inheritance. Low coupling ensures self-containedness (independent of other constructs

to be deployed). Thus, COP has the highest level reuse paradigm.

2.2 Composition

Software composition [10] means combining software constructs of a particular problem

domain to create software applications [6]. Composition is the key factor in a Component-

Based Design because it is the interaction between units of composition - software units

that define behavior - and through standard mechanisms, larger units of behavior can be

built [6].

2Lowest level of a divide and conquer approach, a precursor to OOP [3].

10

2.2. COMPOSITION

In the coming sections, we will introduce how systems are separated into compo-

nents through every existing manner (view) of accomplishing software composition, ev-

ery mechanism that follows a specific view and a summary of which should be a good

composition mechanism for our problem.

2.2.1 Views

Views of software composition determine what units of composition are meaningful. Ac-

cording to Kung-Liu and Tauseef [6], there are three views in which software composition

is modeled:

• Programming View: In this view, "any programming language construct is a unit of

composition". To combine these is with another construct of the programming lan-

guage. It is the smallest level of a composition and overlooks many of the problems

a Component-Based Design thrives to solve (e.g. software reuse).

• Construction View: According to Nierstrasz et al. [11], software composition "is

the process of constructing applications by interconnecting software components

through their plugs"; presenting the next view. Here composition is at an higher-

level of abstraction than the Programming View, since units of composition are

pre-existing program units that connect each other through scripting languages

(e.g., glue). Although, reuse is perceived as possible, the view does not assume

components are external to the system development, and neither does the software

architecture of the system mentions their reuse.

• Component-Based Development (CBD) View: In the CBD view, components have

a model that defines their syntax and semantics; and how they can be composed.

Thus, the model must follow a composition standard so that it can be highly com-

posable. It is very similar to the previous view, but in here components are assumed

to be from third-parties.

2.2.2 Categories

The views presented before relate to how components can be designed, but composition

mechanisms can be further categorized into four groups:

• Containment: refers to nested definition; container unit’s behavior is defined from

their contained units. Composition model of several widgets is an example of con-

tainment;

• Extension: the behavior of a unit extends behaviors of other units. Multiple inheri-

tance is an example of this;

11

CHAPTER 2. BACKGROUND

• Connection: a behavior defined through the interaction of multiple units. Thus,

Connection is message passing. This includes object delegation, where objects that

send each other messages have a tight coupling;

• Coordination: defines a unit’s behavior that coordinates the behaviors of multiples

units. The difference with connection is that units do not communicate between

themselves and only with the coordinator, removing all the coupling. Examples

focus in data coordination and not in a composition model for nested units, so we

will not pursue this way of thinking.

12

C
h
a
p
t
e
r

3
Compositions in OutSystems

OutSystems is a founder of the Low-Code Development Platforms market [16], delivering

visual models that rely on a higher abstraction language easy to learn. Helps users to

develop without the worry of writing bad code and to create fast, secure, reliable, highly

available and scalable web and mobile applications.

In this Chapter, we will introduce the platform, relevant definitions and explain how

compositions of components are implemented.

3.1 OutSystems Platform

The OutSystems platform covers every step of application lifecycle management process

with development and deployment environments and management consoles [13]. The

user interacts with these to create their applications in OutSystems language that end up

being compiled and deployed on the platform server as demonstrated in Figure 3.1.

3.1.1 Service Studio

Service Studio is the Integrated Development Environment (IDE) where users create all

the layers of the application mostly by dragging and dropping visual elements. These

layers are: the data model (what will be stored), application logic (how the application

will behave), UI (what the end-product will look like to the end-user), business process

flows (representations of business processes), integrations (components from outside the

environment integrated into the application), security policies (restrict access to certain

pages to certain people). Applications can consume and expose also SOAP and REST web

services.

Wrong usage can evolve into errors, even on visual languages (e.g., missing infor-

mation required to deploy correctly the application), and for this Service Studio uses

13

CHAPTER 3. COMPOSITIONS IN OUTSYSTEMS

Figure 3.1: Service Studio sends the application to the Platform Server to be compiled
and deployed [12].

a full self-healing and reference-checking engine to catch errors and changes that can

impact existing applications, alerting the developer if it catches one. To ensure perfor-

mance, the environment displaces work from the user, sending a compressed version of

the application to the Platform Server [13].

3.1.2 Platform Server

This server component handles every task related to the compilation and deployment

of applications. It’s the backbone of the OutSystems platform. It generates, optimizes,

compiles and deploys an OutSystems application to a standard web application server.

Before compilation starts, Service Studio validates the application model (first error

caught stops the deployment) and sends it to the Platform Server. In the Code Gen-

erator, the application will be versioned, compiled to native .NET, allowing generated

applications optimized for performance, secure and run on top of standard technologies;

and deploy to all front-end servers in the developer’s server farm (where developer’s

applications are stored) [13].

14

3.2. WORKSPACE

3.2 Workspace

Modules in Service Studio allow to structure applications into pieces with different pur-

poses. The editor area has a number of different containers that help editing the screen

as seen on fig. 3.2.

Figure 3.2: Service Studio’s Workplace
1: Widget Toolbox 2: Canvas 3: Widget tree

The canvas, or the What You See Is What You Get (WYSIWYG) editor, is where the

preview of the module happens and in real-time shows the aspect of a web screen. In here,

it is shown how widgets are to be rendered when deploying, as one can add or remove

elements and select each presented on the screen to edit further on adjacent editors.

On the right, the tree area can either show the interface of the module (application

logic) or the composition of a screen. Below this resides the properties area when a screen

or a widget is selected, where the user can define the parameters of it.

3.2.1 Actions

Actions are business logic that a user can create to be activated by the end-user for when

accessing a screen (preparation) or interacting with a screen (client actions). Actions that

execute on server (server actions) are defined in the Logic tab and not the Interface, as

these are to be called from any screens’ preparation or client actions.

3.2.2 Screens

Screens are the UIs that end-users interact with. They can be composed of widgets or web

blocks. This composition is a tree of elements (Figure 3.3), resembling the structure seen

15

CHAPTER 3. COMPOSITIONS IN OUTSYSTEMS

on a markup language, which can be changed by dragging components inside or outside

of other component scopes. They can also have their own actions, input parameters and

local variables.

Figure 3.3: Widget tree of a web screen

3.2.3 Widgets

Widgets are the building blocks of the platform to create the UI. Each one represents ele-

ments of the UI presented to the end-users that display information and/or are interacted

with.

The widget toolbox (Figure 3.4) houses every native building block provided by Out-

Systems. Despite complex building blocks (e.g., charts) or even web blocks residing here,

they are all considered widgets. Thus, to create a form in a screen, the user drags the

Form widget to the canvas and fills the information required for it to function. The Input

widget allows users to extend forms even further with one more space for end-users to

fill. It also has its properties (Figure 3.5). Mandatory properties are highlighted in red,

and, in Figure 3.5, Variable needs to be filled, because it is where the widget will store the

value entered by the user and send on a request.

Buttons may also be added to forms. Buttons widgets have their own properties

(Figure 3.6), with Destination being highlighted because it is necessary to know what does

that button do (trigger actions or navigate to a screen).

3.2.4 Web Blocks

To create screen parts that are reusable (can be used more than once for other purposes)

web blocks are the answer. This means that a web block can have its own actions, logic,

input and output parameters, and variables. Web blocks encapsulate multiple widgets,

which means they can be either native widgets or other web blocks.

In Figure 1.2, the blue box around the web block is the most a developer can select

of a web block. Web blocks’ properties are Name (unique name that helps identifying

the web block), the Source Web Block (which web block is the instance based on), the ones

16

3.3. WEB BLOCK CUSTOMIZATION

Figure 3.4: Widget toolbox.

Figure 3.5: Input widget’s exposed properties.

Figure 3.6: Button widget’s exposed properties.

defined by the developer and events (logic triggered by the inside widgets to execute a

handler outside the web block’s scope).

3.3 Web Block Customization

Native widgets allow users access to all relevant properties to customize the visual rep-

resentations, just like in a text-based programming language (Figure 1.1). Customizing

17

CHAPTER 3. COMPOSITIONS IN OUTSYSTEMS

inside a normal screen or in a web block is the same: users can access the same properties

in both situations.

In an application with several instances of the same web block, users may want to cus-

tomize differently each according to their surroundings. However, as seen in Figure 1.2,

access to the inside components is not possible because it is restricted by the platform.

Some workarounds exist to tackle this issue and in the next subsections we will present

some of them, but as we will see, they are undesirable because they increase application

complexity and are not easy to use for every developer.

3.3.1 Input Parameters

Like any other screen, web blocks can have multiple input parameters. So, a developer cre-

ating a web block can use input parameters to expose properties of the widgets. However,

this is only possible for properties that are expressions, and, thus, evaluated at runtime.

In Figure 3.8, Mandatory receives an input parameter because it is not evaluated at design

time. Max Length, however, is evaluated at design time because, without it, the platform

cannot display the widget with an incomplete visual representation. So, Max Length is not

an expression, meaning it cannot accept parameters which only provide information at

runtime. Thus, developers cannot customize properties outside a web block’s definition

that does not accept expressions, compromising the user experience.

In the example presented in Figure 3.7, the developer can pass one boolean parameter

to make an Input widget inside the scope of the block mandatory or a number parameter

for the width.

Figure 3.7: Web block instance with custom parameters.

To prepare web blocks for parametricity, parameters must be declared inside the

block and then they have to be assigned to the widget properties inside the scope of it

(Figure 3.8). For the example above, the boolean parameter will have to be assigned

to the Mandatory parameter inside the Input widget. In the case of any style related

parameters, the developer must declare what is called an Extended Property, which allows

to customize certain properties with JavaScript expressions (can receive parameters). So,

18

3.3. WEB BLOCK CUSTOMIZATION

for the width parameter, the extended style property must be declared in order to receive

the parameter.

Figure 3.8: Input widget inside the Web block definition with parameters bound to it.

One of the advantages to this approach is that it makes the block fully customizable:

it only requires the developer to change a parameter to customize one aspect of the

block, but this ends up being a big weakness because if the developer wants to allow the

customization of any widget of the block, then it will have as many parameters as the

total of elements’ properties. A very complex block with more than one Input, having

every possible parameter declared, would make the properties editor overpopulated and

very unappealing to edit.

The biggest disadvantage is that there is no preview on the WYSIWYG editor for the

changes made by altering the input parameters; if the developer wants to preview their

work they have to publish and only then check their changes by running the application.

3.3.2 CSS Styling

Another way to customize a web block is by the use of style sheets. However, this approach

is applicable only to appearance-related properties.

The biggest advantage is one that is inherited by CSS: instant preview of the UI. The

biggest disadvantage is also one that is inherited by CSS: CSS is hard to maintain. This

approach requires the developer to know how to use style sheets and also maintain CSS

selectors, that have to be unique. This is bad because people make mistakes. If devel-

opers have to maintain the code themselves, the platform cannot guarantee a consistent

experience and prevent errors from happening.

To do this, the developer must create a unique selector and pass it to the Style Classes
property of the element (Style Classes in Figure 3.8). Then, declare the style of the selector

on the screen where the block is instantiated (Figure 3.9).

19

CHAPTER 3. COMPOSITIONS IN OUTSYSTEMS

Figure 3.9: Screen’s style sheet with customized selector (red box).

3.3.3 Duplication

It’s easy to follow temptation and just duplicate the web block and customize it for another

application, but it’s not advised, as it is a way to deal with things rather neglectfully.

The advantages are quick customization of the block inside it’s scope and its usage on

another web screen (it can be the same used previously). The preview works (that’s why

it is tempting), but only because customization is done where it still was possible (web

block’s definition).

But the disadvantages can outweigh the advantages very quickly: if the developer

were to create every possible scenario for the web block it wouldn’t be possible, because

they would have to create a duplicate for every one. Also, there would be a lot of code

repetition. This is bad because if the developer wants to change the implementation of

one of the duplicates, they have to change in every one of them.

3.3.4 Comparison between Workarounds

One approach can be evaluated from 7 stand points: only requires one block, is consistent

with the platform, most reusable (allows to customize and updates every instance), has

preview, no extra knowledge required, can change logic and can change style.

Duplicate can be used for faster implementation, but it will cost developer’s time when

changing one of the duplicates, because then they will have to change them all. Input

parameters are good for reusability, but take a lot of time to make a feature customizable;

they are best for logic features and not for styling as it doesn’t allow preview. Style sheets

allow to customize blocks very quickly and with preview, so, for this end, it is the best

20

3.3. WEB BLOCK CUSTOMIZATION

Table 3.1: Approaches comparison. Best ones are the ones that have the most check
marks.

Approach Input Parameters CSS Styling Duplication

Only one block X X -
Consistency X - -
Most reusable X - -
Has preview - X X
No extra knowledge X - X
Logic X - X
Style - X X

option; only works for styling though, so no logic parameters can be changed in this way.

Even though the workarounds presented enable some customization in web blocks,

the disadvantages compromise all. None gives the developer the user experience that

the rest of the platform provides. However, each has their piece of the puzzle, which,

combined, would provide the ideal solution we are looking for. Input parameters expose

the web blocks ability to pass information to the widgets inside; CSS styling provides

a preview consistent with the platform; and Duplication shows how much quicker it is

to customize a screen (customization of a web block’s definition offers the same user

experience as a screen’s definition) than a web block.

21

C
h
a
p
t
e
r

4
Related work

OOne of our objectives is to standardize a visual language so that it is not only easier to

use, but also achieves the highest levels of quality. Support for variability in user interface

development is important because it allows creating products that are more specific to

the user needs.

Customizing user interfaces helps in this respect to create more valuable products.

Since the programmer manually enters widgets customization, composition customiza-

tion should follow the same rule so that all use cases are still possible. For this, we used

the parametrization paradigm to pass the new values to the properties of the widgets to

be customized.

The work related to this solution we aim to introduce can be divided into two cat-

egories: composition models and Visual Programming Languages (VPLs) for front-end

development.

4.1 Composition Models

Java Beans

Java is an Object-Oriented Programming Language and became popular because of the

concept of applets: small applications that were launched from a web page, motivating

reusability of small parts and composition to extend a web application. However, com-

position models had some issues (e.g., lack of static type checking of applets being called

from inside other applets) [20].

JavaBeans are software components (beans) that were an improvement over applets

in terms of composition because they were made to be reused in many applications. One

extra feature allows users to construct beans through visual tools [23]. Beans have the

following aspects [20]:

23

CHAPTER 4. RELATED WORK

• Event Beans can listen or trigger events (Connection 2.2.2).

• Properties Exposed instance properties with getter and setter methods responsible

for changing the bean’s behavior that can trigger events and also be constrained.

• Introspection Properties, events and methods can be inspected from the outside by

an assembly tool (e.g., Jasmin [5])

• Customization "Exposed properties could be modified at design time by a property

editor or bean customizers"[23]

• Persistence Customized bean instances are serializable: can be saved and restored

In Listing 4.1, we present an example of a bean implementation, where its state

(instance variable theValue) will be "saved by the JavaBeans persistence mechanism" [23].

For this to happen, every bean has to implement the Serializable interface, methods must

be public and have to be thread-safe1. Events can be fired by beans to notify interested

beans on something. When an event is fired by a bean, it has to be able to notify every

listening bean.

1 public class MyBean implements java.io.Serializable {

2 protected int theValue;

3 public MyBean (){}

4 public void setMyValue(int newValue) {

5 theValue = newValue;

6 }

7 public int getMyValue() {

8 return theValue;

9 }

10 }

Listing 4.1: Bean example [23].

JavaBeans can be white-box components, just like the ones we aim to model in this

work. Exposed properties, methods and events are necessary in a white-box reuse because

compositions need this information so that users can customize the inside components.

Any Java program can be a JavaBean, but one of the differences with JavaBeans is that must

provide information at design time to "edit its properties and customize its behavior" [23].

Similarly, web blocks will have to expose this information in order for the design tool

(Service Studio) can interact with the block in real time.

4.1.1 UI Families

Similarly, Pleuss et al. [14] introduce a new concept, Family UI, which consists of full

screens to meet user requirements, which tend to use similar screens in their applications.

However, users can request unforeseen use cases by implementing the user interface. In

1"(...) prevents more than one thread from calling a method at any given time"[23].

24

4.2. COMPOSITION IN VISUAL LANGUAGES

this case, the user must enter the customization manually. For this, Pleuss et al. use

templates associated with the user interface to customize it. Although the motivation is

different – screen customization rather than widgets sets – the concepts are the same as

presented in this paper: new templates are added where it can save the customization

the developer wants to make to the object, be it a screen or a block.

4.1.2 Customization by input

Using parameterization as a basis to solve the problem presented here is not new. Lizcano

et al. [7] introduced a composition model for user interface components following a

parameterization paradigm. Component views are black-box, so future modifications

can only be made through parameters. Therefore, it is advisable to create components

already prepared for eventual customizations.

4.2 Composition in Visual Languages

Composition in itself means gathering parts and connect them in a certain way. We

present a very known tool in the Graphical Design community that has a simple compo-

sition model for composing images with several parts (Photoshop), and a similar LCDP

to OutSystems which tries to turn compositions into white-boxes (Mendix).

Photoshop

Visual languages are not exclusive to application development. Actually, first ones were

created to develop graphics. Photoshop [1] is a raster (dot matrix data structure) graphics

editor with an interactive experience where users can edit images. One big feature is

the concept of layers that compose an image. Layers are blocking, which means if one

is on top of the layer tree, than it is rendered instead of the other one below. So, despite

renderization being in 2D, layers give another dimension for designers to compose their

projects.

A big advantage in using layers is a user can separate and combine several images to

create another one without loosing the ability to edit each one. The layer panel houses

every layer of the project and follows a directory structure so that users can organize

layers in folders. To select a layer, a user can either select it directly in the layer panel or

in the canvas, but only if the layer is visible, and then the program will search for the first

layer in that selected spot.

Smart objects are layers that preserve the image’s source content allowing a nonde-

structive editing by the user and can be compositions of multiple layers. The composition

model allows editing of the layers inside a smart object and after saving the changes

Photoshop updates every instance [22]. Because of this, smart objects maintain a master

definition and ensure reusability.

25

CHAPTER 4. RELATED WORK

This is what is known as black-box reuse, because users cannot edit the inside layers of

a smart object instance. However, this approach is closer to what we are trying to achieve

than the one presented in the next Section, as this one preserves a main definition of the

smart object.

Mendix

Visual front-end development solutions are increasing every year, and OutSystems is not

alone. Mendix [8] is a software company that, much like OutSystems, provides an LCDP

for Rapid Application Development. Their platform (Mendix Modeler) delivers a very

different experience from Service Studio; project explorer resembles the old-fashioned File

Explorer from Windows and has every resource of the architecture located in one place

instead of separating each development layer components like Service Studio.

(a) Title is changed in definition (b) Instance does not receive the update

Figure 4.1: Differences between a building block’s definition and corresponding instance

Building blocks allow users to create their own reusable components from scratch,

or can choose from existing templates of some popular use cases that after instantiation

can change every aspect of the block. In Figure 4.1a, a user changes the title inside the

building block definition, but the change does not get to the already existing instance

(Figure 4.1b). This means the instance is instead a duplicate of the original and not linked

to a central definition. Thus, when using one building block on a screen, the block is

duplicated and used as a template, because changes to the original do not propagate to

already existing instances.

This is not the composition model we will try to achieve, because when a building

block is used and the connection to the original is lost, reusability is not guaranteed. The

idea behind the use of web blocks in OutSystems was always to allow users to reuse

screen parts that were maintained by someone else; if the connection between the used

block and the block’s definition doesn’t exist, then consequent updates to the block are

lost. The ideal model would be a mix of the customization offered by Mendix’s copy paste

paradigm, and the reusability of Photoshop’s smart objects, which Photoshop keeps a

main definition of the component and when changed, instances get updated.

26

C
h
a
p
t
e
r

5
New Composition model

A model defines each component and composition. These models determine the rules in

which components and compositions must follow so that they can be combined.

Changing component properties through a visual programming language carries out

a chain of events before assigning the new values to the component. Likewise, changing

composition properties requires a similar process. For the customization of inner compo-

nents inside a composition to happen, and this chain to succeed, the underlying models

must be first adapted to this new feature.

In this chapter, the current composition model in the OutSystems’ platform is pre-

sented, following an introduction to the component model, which defines widgets, web

blocks, and web block instances. Next, we present the new composition model and the

changes made to the original one to allow customization on compositions. We also deliver

a proof of concept that validates our approach.

5.1 Current model

In this section, we explain the current models in use and what is currently missing for

direct customization through the canvas of reusable compositions to be supported. Before

introducing the new composition model, it is necessary to explain the existing model for

the description of user interfaces. The study of the composition model already in use

allowed the better understanding of the problem in question, necessary to assert what

was the best way to intervene accordingly.

Service Studio follows a similar model to the one in Figure 5.1 for its building blocks.

The ContentNode is the top most component in the model and composes other building

blocks into one. These can be either Screens or Web blocks.

The model for ContentNodes follows the OutSystems language, which is used to

27

CHAPTER 5. NEW COMPOSITION MODEL

change the model. In Figure 5.1, a very simple metamodel of the original is illustrated.

Service Studio delivers many widgets, but here we highlight the Input and WebBlockIn-

stance. Contrary to widgets, the web block is not instantiated directly into the canvas

when it is dragged into another ContentNode. Instead, it is referenced by another class,

WebBlockInstance, that follows a different model from the web block. Because of this,

WebBlockInstance is considered a widget in Service Studio. The web block, when created,

is unique and can be referenced by any WebBlockInstance, just like screens.

Widget

+ CustomStyle: Text

+ name: Text

+ Key: Text

ContentNode

+ name: Text

+ arguments: [Argument]

+ Key: Text

Input

+ Variable: Placeholder

+ MaxLength: Number

+ Prompt: Expression

+ ...

+ Typedvalue: Text

WebBlockInstance

+ childrenPlaceholders: [Placeholder]

+ arguments: [Argument]

+ Id: Text

Screen

+ Title: Text

+ Image: Icon

+ StyleSheet: Expression

+ JavaScript: Expression

WebBlock

+ RuntimeId: Text

+ Icon: Icon

Extends Extends Extends Extends

Use

0..* 1

Figure 5.1: Model of OutSystems’ building blocks.

In this simplified model, highlighted properties are run-time properties and the ones

that are not are design-time properties. While their children widgets define web blocks,

these inner components can not receive new values from outside the web blocks.

5.1.1 Widgets

Widgets follow a component model which dictates their description and how they can

be composed either on web blocks or screens. Through properties, the developer can

alter widgets as they best intend. Their simplified syntax in Figure 5.1 shows this, as the

developer can pass parameters to determine the widgets’ properties.

These properties can be design-time or run-time. What distinguishes one from the

other is at what which point in time they are evaluated. Static properties are design-time

because when they are assigned, they affect the preview instantly. Properties that can

only be evaluated when the application is running or that are dynamic are defined at

run-time.

28

5.1. CURRENT MODEL

1 <Input Key="1" Name="Input.ZipCode">

2 <Design-Time Properties>

3 <Variable Value="Address.ZipCode"/>

4 <MaxLength Value=5/>

5 <Prompt Value=Expression("55555")/>

6 <CustomStyle Value=""/>

7 </Design-Time Properties>

8 <Run-Time Properties>

9 <TypedValue Value=""/>

10 </Run-Time Properties>

11 </Input>

Listing 5.1: Simplified widget model instanced for the "Input.ZipCode"widget in

XML.

1 <input type='{{:Type}}' class='{{internalClass}}'

2 placeholder= '{{:Prompt}}' maxlength= '{{:MaxLength}}' style='{{internalStyle}}'

3 {{&internalProperties}} value= '{{:Variable}}'>

4 </input>

Listing 5.2: Input widget HTML template.

For example, the widget for receiving information from the user into a text box - Input,

Listing 5.1 - has several properties that are design-time with the exception of TypedValue

that is run-time, which is where the inputted text from the user is to be saved, because

its value is dynamic and can not be known at the point of design. Every widget class has

a template for it to be displayed on to the canvas and a different one to be compiled into

the end application. The template for the canvas of the Input widget is demonstrated in

Listing 5.2. When the canvas instantiates a widget, the placeholders on the template are

replaced with the respective properties and it is given to the canvas to be displayed.

5.1.2 Web Blocks

Web blocks are reusable compositions – the developer can define templates with multiple

widgets without losing the reusability of a widget. Thus, web blocks are important to

maintain a central definition so that changes made to these are seen on all of their in-

stances. By following a standpoint in reusability, ensuring reuse of constructs guarantees

good practices, resulting in faster development and less maintainability.

In this context, web block is the model to define reusable compositions. The Web-

BlockInstance class, which has a different model, defines WebBlock instantiation.

Widgets use existing templates to determine their appearances. Web blocks use the

widgets templates for their appearance because widgets define web blocks. Therefore, the

web block model is dependent on the widgets that define the web block and the widgets’

visual representations that give web blocks their appearance. In Listing 5.3, a simplified

web block model illustrates what defines web blocks. The widgets that compose them are

the children.

29

CHAPTER 5. NEW COMPOSITION MODEL

1 <WebBlock Key="2" RunTimeId=123 Name="Address">

2 <Icon Value="StreeSign">

3 <arguments/>

4 <children>

5 <Widgets>

6 <Input Key="1" Name="Input.ZipCode">

7 <Design-Time Properties>

8 <Variable Value="Address.ZipCode"/>

9 <MaxLength Value=5/>

10 <Prompt Value=Expression("55555")/>

11 <CustomStyle Value=""/>

12 </Design-Time Properties>

13 <Run-Time Properties>

14 <TypedValue Value=""/>

15 </Run-Time Properties>

16 </Input>

17 </Widgets>

18 </children>

19 </WebBlock>

Listing 5.3: Simplified web block model instanced for the web block "Address"in

XML.

Although web blocks assure some reusability of patterns found in multiple use cases,

these are insufficient to address all of the developers’ needs, because just like screens,

web blocks are static and do not generally allow to change their inner components from

the outside - exceptions explained in section 3.3.

5.1.3 Web Block Instances

In Listing 5.4, a simplified model of web block instances is illustrated. This model refer-

ences the web block which it will instantiate – the source web block. The visual represen-

tation of the instance is the same as the source web block’s visual representation.

1 <WebBlockInstance Id=124 Key="3">

2 <SourceWebBlock Key="2" Name="Address"/>

3 <arguments/>

4 <children/>

5 </WebBlockInstance>

Listing 5.4: Simplified web block instance model for the instance of the web block

"Address"in XML.

This model is used when a user drags a web block onto a screen. Web blocks can not

be instantiated since it is impossible to reference duplicate widgets. If a developer instan-

tiated two web blocks on the same screen, then Service Studio could not reference their

widgets because there would be two of every widget (Duplicate Key Exception). Web-

BlockInstance solves this by separating the two web blocks into two different instances.

Although there are widget duplicates, Service Studio can not access them.

30

5.2. ENABLING CUSTOMIZATION

5.2 Enabling customization

A quick analysis of the model of reusable compositions shows that there is not a way to

change their inner components. Therefore, the problem is finding a way to link the inner

components to the outside scope.

A composition’s representation is dependent on the uniqueness of its components

because it references them at the component level. Thus, components need to be unique

for conflict reasons - cannot reference a duplicated component. A new model to define

how to instantiate web blocks is needed, because widgets in web blocks are unique to the

web block’s definition – if a web block were to be instantiated twice at the same scope,

accessing the inner widgets would be impossible because they would be duplicated.

Since web block instances only reference the source web block, it is not possible to

have instances with different visual representations of the same web block - different

appearance. Thus, a new model for web block instances is necessary because among all

instances of a web block, there is not a way to assign new values to each of the web block’s

children. The new model addresses this by incorporating new structures for each web

block instance, in order to keep track of possible customizations made by the developer, as

well as new structures in web blocks to assert what can be customized when instantiated.

5.2.1 Requirements

However, first, we determined the requirements for the customization that both user and

creator of web blocks would be able to do and not do so that we could break apart the

problem into smaller sub-problems and validate the prototype’s success by checking the

correctness of every solution to each sub-problem.

Anyone can define web blocks. Creators are the ones who define web blocks to be

later used by themselves or another person. Web block users are the developers who use

web blocks defined either by them or another person.

At this time, creators can only define black-box web blocks where users can only

drag and drop these to their canvases without being able to change them directly. The

only control the creator has on its web blocks is assigning input parameters to widget

properties so that the user can input new values for these. On our approach, creators must

be able to determine which widgets are customizable - can be changed - to control the

ones they do not want to be changed. Visually, the customizable widget with customizable

properties should respectively show what properties are customizable and the ones that

are not. The ones that are not customizable should not appear or appear as they could

not be customized - greyed out.

As for the user, right now, their ability to change web blocks is lacking. Ideally, users

must be able to access and change customizable widget properties inside a web block’s

instance and get an instant preview of the changes, similarly to developing inside the web

block definition. Also, widgets must be able to affect other widgets through dependencies

31

CHAPTER 5. NEW COMPOSITION MODEL

for a more intuitive experience (e.g., input widget below another one may reflect inherent

the width of the upper one).

5.2.2 NewModel

Concerning our requirements, new structures must be added to the existing models to

save the new information needed to convey customization. In reality, the user will not be

changing the original web block but instead changing a new representation of it.

As the creator cannot determine what can be customizable on their web blocks, a

structure to establish what properties can be customized when instantiated - Customiz-
ableWidget, Figure 5.2 - was added in the class that defines web blocks. A collection of

these allows storing one CustomizableWidget per widget in the web block. This new class

determines what widgets can be customizable. In here, another structure saves the cus-

tomizable properties (CustomizableWidgetProperty) - only the name is necessary - and the

parent widget, for search purposes. When using the web block, the properties present in

the respective CustomizableWidget allow the user to change their duplicate representation

on the web block instance.

CustomizedWidget

+ Key: Text

CustomizedWidgetProperty

+ PropertyName: Text

+ Value: Text

CustomizableWidget

+ Key: Text

CustomizableWidgetProperty

+ PropertyName: Text

Use

Widget

+ CustomStyle: Text

+ name: Text

+ Key: Text

ContentNode

+ name: Text

+ arguments: [Argument]

+ Key: Text

Input

+ Variable: Placeholder

+ MaxLength: Number

+ Prompt: Expression

+ ...

+ Typedvalue: Text

WebBlockInstance

+ childrenPlaceholders: [Placeholder]

+ arguments: [Argument]

+ Id: Text

Screen

+ Title: Text

+ Image: Icon

+ StyleSheet: Expression

+ JavaScript: Expression

WebBlock

+ RuntimeId: Text

+ Icon: Icon

Extends Extends Extends Extends

Use

0..* 1

1

0..*
Use

1

0..*

1

0..*

1

0..*

Figure 5.2: New structures added to support web block customization.

The web block instance has properties distinct from other instances of the same web
block, so it has its class to represent it. However, the definition retains the composition’s

visual representation, and it is necessary to save the values for customization in the

instance.

Similarly to the WebBlock class, in the WebBlockInstance class, the structure Cus-
tomizedWidget (Figure 5.2) was added to save the new customizations that the user desires

32

5.3. MODEL COMPARISON

to make to a web block. The new structure saves every user customized widget, which

is represented with another class, CustomizedWidget, allowing the connection between

the widget to customize and the respective properties. The difference to the Customiz-
ableWidgetProperty, is that the CustomizedWidgetProperty links the property name to the

new value inserted by the user to customize the property.

In our solution, the new value placeholder is a simple string variable, but the best

way to make the model fully integrated would be to make the new value an expression.

Expressions are compositions of operands and operators that need to be evaluated before-

hand to get a value. This allows attributing calculations directly to properties without

the need of assigning to a static variable. By turning the new value placeholder into an

expression, the user could assign it any calculation, as long as it had the same type of

property to customize.

5.3 Model comparison

To better understand how our approach affects the current model in use, we illustrate

the differences between before and after the adaptation with a use case. A possible use

case relevant to this problem could be the following: in a home delivery application

developed on Service Studio, it is necessary to request the user’s address. It makes sense

that the form in Figure 5.3 is a web block – Address –, as it is used on more than one

screen. However, initially, the web block was designed for the U.S. address, which has a

five-character zip code, while the Portuguese address has eight.

Figure 5.3: Web block for requesting a user’s address - Address web block.

In the current model, the Address web block has the order of components presented

in Listing 5.5. The widget Input that receives the zip code of the user is on line sixteen,

and it has a maximum allowed length of five – the widget Input can not receive more

than five characters.

33

CHAPTER 5. NEW COMPOSITION MODEL

1 <WebBlock Name="Address">

2 <Form Name="Form1">

3 <Container Name="Input_Name">...

4 </Container>

5 <Container Name="Input_Street">...

6 </Container>

7 <Container Name="Input_ZipCode">

8 <ChildWidgets Count="2">

9 <Label>

10 <Text Value="Name"/>

11 </Label>

12 <Input Name="ZipCode" MaxLength="5"/>

13 </ChildWidgets>

14 </Container>

15 <Container Name="SaveButton">...

16 </Container>

17 </Form>

18 </WebBlock>

Listing 5.5: Address Web Block’s child widgets in the current model.

1 <WebBlock Name="Address">

2 <CustomizableWidgets >

3 ...

4 <CustomizableWidget Key="xxxxxxx">

5 <Widget Name="ZipCode">

6 <CustomizableWidgetProperties >

7 <CustomizableWidgetProperty >

8 <PropertyName>"MaxLength"</PropertyName>

9 </CustomizableWidgetProperty >

10 ...

11 </CustomizableWidgetProperties >

12 </CustomizableWidget >

13 ...

14 </CustomizableWidgets >

15 <Form Name="Form1">

16 <Container Name="Input_Name">...

17 </Container>

18 <Container Name="Input_Street">...

19 </Container>

20 <Container Name="Input_ZipCode">

21 <ChildWidgets Count="2">

22 <Label>

23 <Text Value="Name"/>

24 </Label>

25 <Input Name="ZipCode" MaxLength="5"/>

26 </ChildWidgets>

27 </Container>

28 <Container Name="SaveButton">...

29 </Container>

30 </Form>

31 </WebBlock>

Listing 5.6: Address Web Block’s child widgets in the new model.

34

5.3. MODEL COMPARISON

If we want to customize the widget for the input of the user’s zip code, it is not possible

without having to change the original model and affecting all web block instances, which

we do not want.

In the new model, Listing 5.6, the collection CustomizableWidgets allows the creator to

define what can be customized in the web block. We need this because otherwise, the web

block user could customize anything. Before the web block creator had to actively define

input parameters and assign them to widgets so that the user could customize them. That

control is essential for the web block experience, and with this, we can enable just that.

The current model for web block instances is defined in Listing 5.7. The instance is

a child of the Homepage screen, and references the Address web block. From here, it

is also impossible to customize the web block, since the widget WebBlockInstance only

references the web block and passes input parameters.

1 <Screen Name="Homepage" Key="5" Title="Homepage">

2 <Image Value="">

3 <Stylesheet/>

4 <JavaScript/>

5 <WebBlockInstance Key="xxxxxxx" SourceWebBlock="Address">

6 <Arguments>

7 ...

8 </Arguments>

9 <Placeholders>

10 ...

11 </Placeholders>

12 ...

13 </WebBlockInstance>

14 </Screen>

Listing 5.7: Address Web Block instance in the current model.

With our approach, we can successfully store the new values that will replace the

default ones of the widgets the user wishes to customize. On line eleven of Listing 5.8,

the CustomizedWidgetProperty for MaxLength is defined with the value "8", which on a

later time, will replace the default value "5", stored in the Input widget ZipCode of the

original web block, in both the view and compiled application.

35

CHAPTER 5. NEW COMPOSITION MODEL

1 <Screen Name="Homepage" Key="5" Title="Homepage">

2 <Image Value="">

3 <Stylesheet/>

4 <JavaScript/>

5 <WebBlockInstance Key="xxxxxxx" SourceWebBlock="Address">

6 <CustomizedWidgets >

7 ...

8 <CustomizedWidget>

9 <Widget Name="ZipCode"/>

10 <CustomizedWidgetProperties >

11 <CustomizedWidgetProperty >

12 <PropertyName>"MaxLength"</PropertyName>

13 <Value>"8"</Value>

14 </CustomizedWidgetProperty >

15 ...

16 </CustomizedWidgetProperties >

17 </CustomizedWidget>

18 ...

19 </CustomizedWidgets >

20 <Arguments>

21 ...

22 </Arguments>

23 <Placeholders>

24 ...

25 </Placeholders>

26 ...

27 </WebBlockInstance>

28 </Screen>

Listing 5.8: Address Web Block instance in the new model.

36

5.4. SUMMARY

5.4 Summary

We presented the existing model and its compromises facing customization of composi-

tions. The lack of support for new values to be assigned to widgets inside web blocks

required changes to the model.

The new model takes this into account, with the introduction of new structures capa-

ble of containing the new information relative to possible customizations done to web

blocks by the user. Not only to save customizations in separate constructs, but to al-

low a safe environment where web block creators have the power to dictate what can be

changed on their reusable compositions and maybe more important what can not.

Our approach would be complete if we used Expressions instead of Text for the new

values that the new structures can handle. But it would require more resources and the

aim of this thesis was to validate that it was possible to customize reusable composi-

tions. It was more important for us to deliver a solution that scaled through the entire

development of an application then mastering every part.

The proof of concept in Chapter A helped us prove our solution was feasible, allowing

us to proceed adapting the OutSystems platform. Furthermore, using the React library

proved application model could be compiled to the end application, since the platform

compiles directly to React.

37

C
h
a
p
t
e
r

6
Implementation

In this chapter we discuss the implementation of the prototype into Service Studio. At

first, it was important to achieve a solution that expanded through the development of

an application to prove its feasibility.

For this, we made a list of tasks to complete, splitting the development of an applica-

tion in Service Studio into several phases. In order to implement direct customization to

web block instances with an instant preview, interactive experience, and also support to

compile the application model to the end application ready to be deployed, these phases

were organized as follows:

• Architecture: Service Studio’s architecture follows an MVC pattern - Model-View-

Presenter -, and changing all parts was necessary to reach our goals;

– Model: changing the underlining models to support firstly from the lowest

level of implementation that disables customization;

– View: extend platform’s View to support the changes previously made;

– Presenter: new ways to request changes in the Model and to receive requests

from the View;

• Compiler: compile the application model into a deployable application ready to

receive customizations and to pass new values for web block instances.

Having a prototype that expanded not only to the development phase of an appli-

cation but also to the end phase of compiling allowed the further development into the

interaction aspect of the platform, which at that point was done by a couple of commands.

The prototype still needs some work to fully support every use case expected, which

will be presented in the end.

39

CHAPTER 6. IMPLEMENTATION

6.1 Architecture

Although this thesis’ expectations are to deliver a new composition model capable of

customizable reusable compositions, is also very important to deliver a solution capable

of handling every aspect of visual programming languages. Not only the Model was

adapted, but also the three layers of the architecture used in Service Studio, since changes

were needed in the canvas the developer sees, the way they can interact with it, how the

platform processes the developer’s request and how the platform responds.

Service Studio’s architecture follows an MVP pattern (Model-View-Presenter) as a way

for the developer to create applications (Figure 6.2). The more known MVC (Model-View-

Controller) is a similar design pattern used for implementing graphical user interface

objects (Figure 6.1).

Controller

Model View

Access Data

Redraw

Gestures + eventsUpdate Data

User interaction

Figure 6.1: MVC design pattern.

In both patterns, three different parts split a common programming problem: imple-

menting a user interactive system. The user interface objects have associated data that

helps drawing them on the screen. This data is stored in the component Model and then

the View uses the data to draw the object on the screen. In the MVC pattern, the controller

changes the object’s data stored in the Model as the user interacts with the View with

gestures and by triggering events [15].

Presenter

Model View

AccessAccess

UpdateUpdate

Notify Update

User interaction

Figure 6.2: MVP design pattern.

40

6.1. ARCHITECTURE

In the MVP pattern, the controller is replaced with the Presenter, becoming a middle-

man between the Model and View - both only communicate with the Presenter and never

with each other. Because of this, MVP has several benefits for separating data manage-

ment from user interface (e.g., encapsulation allows for more maintainability between

the Model and View).

In Figure 6.3, it is shown what happens when a developer tries to change a widget,

where the developer’s action propagates through the platform and returns back to them.

When the developer changes an object (e.g., widget) by interacting with the View, an event

is raised. These events are in turn subscribed by the Presenter which uses Commands to

modify the Model. The Presenter uses generation counters for every object to keep track

of changes, so when an object’s data is changed in the Model, the respective generation

counter will be incremented, resulting in a refresh of the View.

Model Presenter View

Change widget

Command

Increment generation

Update preview

1

2

3

4

Figure 6.3: Time line of when a widget is changed.

Because of encapsulation, adapting the Service Studio to our Model was easier than

if it would have been using an MVC paradigm. It was not necessary to change how the

Presenter interacted with the Model or the View with the Presenter, but only how each

processed the requests made by each other.

6.1.1 Model

After designing the new Model, we proceeded to adapt the current composition model

to support directly customization of web blocks. The existing architecture allowed an

easy integration with the new designed structures to save the new information related to

customization. The platform keeps a record of many types of building blocks in a separate

file in order to generate the code for each one, requiring only the platform developer to

change this file - ObjectDefinitions.

41

CHAPTER 6. IMPLEMENTATION

1 <!-- CustomizableWidget object definition -->

2 <AbstractObject name="CustomizableWidget">

3 <Properties>

4 <Property name="Widget" type="AbstractWidget"/>

5 </Properties>

6 <Children>

7 <Child type="CustomizableWidgetProperty" prop="CustomizableWidgetProperties"/>

8 </Children>

9 </AbstractObject>

10 <AbstractObject name="CustomizableWidgetProperty">

11 <Properties>

12 <Property name="PropertyName" type="Text"/>

13 </Properties>

14 </AbstractObject>

15 <!-- CustomizedWidget object definition -->

16 <AbstractObject name="CustomizedWidget">

17 <Properties>

18 <Property name="Widget" type="AbstractWidget"/>

19 </Properties>

20 <Children>

21 <Child type="CustomizedWidgetProperty" prop="CustomizedWidgetProperties"/>

22 </Children>

23 </AbstractObject>

24 <AbstractObject name="CustomizedWidgetProperty">

25 <Properties>

26 <Property name="PropertyName" type="Text"/>

27 <Property name="Value" type="Text" affectsPreview="true"/>

28 </Properties>

29 </AbstractObject>

Listing 6.1: New structures added to ObjectDefinitions.

In Listing 6.1, the new classes to represent widgets on web blocks or web block in-

stances, CustomizableWidget and CustomizedWidget, are added to ObjectDefinitions in the

form of XML. In the case of CustomizableWidget - determines if a widget is customizable

inside a web block’s definition - the property Widget stores the widget that is referenced.

Besides this, the CustomizableWidgetProperty is also referenced with the name Customiz-
ableWidgetProperties, as this is a collection stored inside the customizable widget. In this

context, the term child means the object can store multiple objects of the same type into

a collection, which is referenced through a property. This collection references the class

CustomizableWidgetProperty, which only stores the name of a widget’s property that can

be customizable.

For the case of CustomizedWidget - determines the new values to be given to a widget

in a web block’s instance - it is also store the reference to the widget the web block

instantiates, and the collection of CustomizedWidgetProperties. This collection references

the class CustomizedWidgetProperty, which similarly to the CustomizableWidgetProperty
class, storing the name of the property to be customized, it also stores the new value to

replace the property’s default one.

The tag affectsPreview determines if the property should increment the object’s gen-

eration counter when it is changed. If the affectsPreview is true and the property is

42

6.1. ARCHITECTURE

changed, then the generation counter for that property’s object will be incremented and

the preview will eventually be refreshed. The tag is used in the property Value because

the property can be changed several times inside the CustomizedWidgetProperty. For this,

it was necessary to extend the compiled class of CustomizedWidgetProperty to store a self

preview generation counter that would be incremented if the property were to change.

When the property changes, a request to refresh the preview is propagated to the prop-

erty’s parent, and then to the parent’s parent until it reaches the root, and only then will

Service Studio check if the preview is to be refreshed - in this case, it would be.
1 <Node name="WebBlock">

2 <Properties>

3 <PropertyPlaceholder name="Public"/>

4

5 <!-- Group: Events -->

6 <ChildPlaceholder name="OnInitialize"/>

7 <ChildPlaceholder name="OnReady"/>

8 <ChildPlaceholder name="OnRender"/>

9 <ChildPlaceholder name="OnParametersChanged"/>

10 <ChildPlaceholder name="OnDestroy"/>

11

12 <!-- Group: Advanced -->

13 <ChildPlaceholder name="StyleSheet" />

14 <ChildPlaceholder name="ScriptDependencies" />

15 <ChildPlaceholder name="JavaScript"/>

16 </Properties>

17 <Children>

18 <Child type="JavaScript" property="JavaScript" />

19 <Child type="CustomizableWidget" property="CustomizableWidgets"/>

20 </Children>

21 </Node>

Listing 6.2: New web block class definition.

It matters only to properties that will change overtime because properties that do not

change can not influence the preview. PropertyName is static - it is the same from the

beginning till the end of the CustomizableWidgetProperty and CustomizedWidgetProperty
classes -, which means that the preview is only influenced by the creation of the parent

objects.

Defining which widgets are customizable and customizing them requires changes in

the preview and adjacent editors of Service Studio. Therefore, instantiating either one of

the classes requires incrementing the respective generation counter.

In the Service Studio architecture there are two types of compositions that can be

instantiated in an application model - web blocks and screens. These compositions follow

a tree paradigm inside the Model, where each one can be viewed as a node.

In Listing 6.2, the class for web blocks is adapted to fit our requirements to reach our

new composition model. The new child represents the new collection CustomizableWid-

gets and references objects of type CustomizableWidget. When a web block creator deter-

mines a widget and respective properties to be customizable, a CustomizableWidget object

43

CHAPTER 6. IMPLEMENTATION

is created and stored inside the CustomizableWidgets collection, as well as a Customiz-
ableWidgetProperty object is created for every property that is to be customizable.

1 <AbstractWidget name="WebBlockInstance">

2 <Properties>

3 <Property name="SourceWebBlock"/>

4 <ChildPlaceholder name="Arguments"/>

5 </Properties>

6 <Children>

7 <Child type="Argument" property="Arguments"/>

8 <Child property="PlaceholderArguments"/>

9 <Child type="CustomizedWidget" property="CustomizedWidgets"/>

10 </Children>

11 </AbstractWidget>

Listing 6.3: New web block instance class definition.

The WebBlockInstance class in Listing 6.3 references the web block in the SourceWeb-

Block property, since the instantiation of web blocks must be through another class. The

new child CustomizedWidgets will allow to store new values for the web block widgets.

When a web block user customizes a web block instance, a CustomizedWidget object is

created and stored inside the CustomizedWidgets collection, as well as a CustomizedWid-
getProperty object is created for the new value given by the user to be stored in the object.

6.1.2 View

The View is the part of the MVP paradigm which the user interacts with. Through this

component, the user gets a visual representation of the Model - preview - and can change

it by interacting with it. Currently, the View writes the preview in HTML, and the View

transforms each object in the Model to a visual representation in HTML to later insert

into the preview. However, we want to check first for customizations on widgets inside

web block instances so that we can replace the preview of the original widget with a new

one.

After adapting the Model so that it could retain customizations of web blocks, we

could use the new Model to affect the View. We can change the View so that it can show

a preview of the customized widgets because we have access to children objects of web

blocks and web block instances.

Service Studio’s View component uses templates to render each widget, and each type

of widget has its unique template. The templates are written in HTML and have place-

holders for the properties that the developer can change inside the platform - placeholders

are between the double curly brackets. When rendering a widget, the View will access

the template for that type of widget (e.g., the Input widget in Figure 5.2) and replace its

placeholders with the widget’s properties.

After the Model changes, the Presenter is notified, and in turn, it notifies the View to

refresh. The way that the View is refreshed is through a visitor pattern, where it begins

with the highest node of the application model and does a depth-first search [2] of every

44

6.1. ARCHITECTURE

widget. When the View arrives at a widget, it requests the widget’s template and formats

it by replacing the placeholders with the widget’s data respectively.

Therefore, to show a widget inside a web block instance customized as the user wants,

the formatted template must have the new values before it is rendered. To achieve this, it

is necessary to replace at the time the template is being formatted or after, provided the

default value are replaced before returning the final format to render. Before formatting

would mean changing the widget of the original web block, which we do not want. We

want to preserve the modification of web blocks only to their creators.

Algorithm 1
Checks for pending customizations and replaces the properties’ default values.

1: widgetRepresentation← currentState.W idgetRepresentation;
2: customizedP roperties← newDictionary < string, string > ();
3: sourceW idget← widgetRepresentation.SourceW idget;
4: if sourceW idget not equal null and visitedWBI.Count > 0 then
5: cedW idget← visitedWBI.P eek()).CustomizedW idgets.Where(w => {
6: w.W idget.Equals(sourceW idget).FirstOrDef ault();
7: if cedW idget not equal null then
8: for each c ∈ cedW idget.CustomizedW idgetP roperties do
9: customizedP roperties.Add(c.P ropertyName,c.V alue);

});
10: htmlElement← FormatHtmlT emplate(widget,customizedP roperties);

The Algorithm 1 is a simplified version of what was implemented to achieve this. The

currentState relates to the state of the visitor. WidgetRepresentation (source widget) is the

widget it is on at any moment. Because the source widget can be null, we must check this

- if the visitor is at a node, the source widget will be null.

Next, we check if the widget belongs to a web block. VisitedWBI stores the last web

block instances visited. If there are any, the first one is the last one, which means the

widget belongs to the source web block of that web block instance.

By accessing the last visited web block instance, it is possible to access its Customized-
Widgets. So, the next step is checking for a CustomizedWidget on CustomizedWidgets with

its widget equal to the source widget.

If there is one, then we search for customized widget properties and add them to the

customizedProperties collection. Lastly, we send the collection along with the widget that

holds the template to be formatted (FormatHtmlTemplate), so that when the placeholders

are replaced with the respective properties in the collection, the new values replace the

placeholders rather than the default ones.

6.1.3 Presenter

In an MVP paradigm, the Presenter is the middle layer between the Model and View.

Developers interacting with the screen triggers events which are sent from the View to

45

CHAPTER 6. IMPLEMENTATION

the Presenter. Every event sent to the View is sent to the Presenter, be either a change or

an access to the Model, because the Presenter subscribes these events. The Presenter then

issues requests to change the Model and after receiving confirmation from the Model it

sends an update to the View.

The next step of the solution development was allowing the developer to interact with

the widgets inside a web block instance. In Subsection 5.2.1, we discuss the requirements

needed to be achieved. The web block creator should be able to determine somehow that

a widget can be customized.

Figure 6.4: The command turns the widget Input_Name properties customizable.

To request the Model to change, the Presenter uses Commands. The Algorithm 2 is

the operation the Presenter requests when the user chooses from the dropdown menu in

Figure 6.4, when selecting a widget inside a web block definition. This way, only the web

block creators can determine what is customizable.

It is necessary to pass a widget as target, since the command is bound to a widget This

widget will be the starting object in which the command will execute its procedure. The

widget’s parent must not be null, because the command will only execute on widgets that

belong to web blocks.

In this case, the command will request the Model to insert the widget selected in the

new created collection CustomizableWidgets inside the parent web block. Because of this,

the command traverses through the widget parents until it finds a web block.

When the parent web block is found, a new CustomizableWidget pointing to the ini-

tially selected widget is assigned to the web block so that the new CustomizableWidget-
Propertys can be assigned to the former. Considering it is created a CustomizableWidget-
Property for every widget property, every property belonging to the widget will become

customizable.

46

6.1. ARCHITECTURE

Algorithm 2
Command to expose a widget’s properties to the outside of a web block.

1: procedure Command(Widget target)
2: if target.P arent not equal null then
3: parentWebBlock← widget.GetP arent();
4: while parentWebBlock is not WebBlock do
5: parentWebBlock← parentWebBlock.GetP arent();
6: if parentWebBlock equal null then
7: return null;
8: cw← newCustomizableW idget(parentWebBlock);
9: cw.W idget← widget;

10: for each prop ∈ widget.CustomP roperties do
11: p← newCustomizableW idgetP roperty(cw);
12: p.P ropertyName← prop.P ropertyName;

13: return null;

Now that web blocks are customizable, developers that will use these do not still have

a way to interact with web block instances. As stated in Subsection 5.2.1, the user should

be able to access customizable properties of customizable widgets inside a web block

instance.

The next point of focus was the selection of widgets inside web block instances. Se-

lecting widgets and the whole interaction supported in Service Studio does not take into

account web blocks. A user can only select the web block instance on a screen, where

as for other widgets on the screen, the user can select them, change their properties and

drag and drop widgets around the screen. To solve this, the Presenter had to be changed

in order to support the selection of every widget, since it is responsible for processing

what happens after an event is triggered by the View.

When something is selected, Service Studio can get the exact or closest object to where

the user selected, triggering an event which is subscribed by the Presenter. The Presenter

then receives a representation of the widget - WidgetRepresentation - which it will insert

into the selected objects collection. The reason why a collection is used is that it is possible

to select more than one object. The class WidgetRepresentation apart from the widget, it

also stores the path to the root of the widget. This is necessary because the widget only

stores its direct parent, which in the case of web blocks, the widget would reference the

parent web block and not the web block instance. It is essential to know the web block

instance where the widget is being instantiated because when selecting the widget, it is

fundamental to know if the selected widget was selected inside the web block definition

or in one of its instances. When the object belongs to a web block, it is the web block that

is inserted into this collection. Because of this, it is impossible to select a widget, since

the web block is selected instead.

By inserting the WidgetRepresentation of the selected widget and not its web block

parent into the selected objects collection, the Presenter will show the correct selected

47

CHAPTER 6. IMPLEMENTATION

widget when the checking for selected objects. However, we do not want to select all

widgets, only the customizable ones. The Algorithm 3 returns a selected widget if it is

customizable or not for it to be edited in the properties editor (Figure 6.5). To check this,

we have to traverse the WidgetRepresentation parents until we reach a web block instance.

If not, the procedure returns null, and the widget can not be customized or selected. If

the procedure gets to a web block instance, the CustomizableWidgets collection is checked

for having the selected widget. By being inside the collection, the widget is customizable

and can be selected.

Algorithm 3
Returns selected widget if it is customizable.

1: selectedW idgetRepresentations← view.SelectedW idgetRepresentations;
2: return selectedW idgetRepresentations.Select((widgetRepresentation) => {
3: widget← widgetRepresentation.W idget;
4: parent = widgetRepresentation.P arent;
5: while parent not equal null and parent.W idget is not WebBlockInstance do
6: parent← parent.P arent;

7: if parent not equal null then
8: webBlockInstance← parent.W idget;
9: webBlock← webBlockInstance.SourceWebBlock;

10: customizableW idget← webBlock.CustomizableW idgets.Where(w =>

11: w.W idget equal widget);

12: if customizableW idget not equal null then
13: return widgetRepresentation.W idget;
14: else
15: return null;
16: return widgetRepresentation.W idget;

17: });

After selecting the widget, the developer should have access to the object’s data and

permission to customize it. The properties editor in Figure 6.5 is responsible for showing

widget properties and was adapted to the new Model since we want to access the newly

created structure - CustomizedWidget -, to check for new values to replace the original

default ones assigned to the widget.

Properties have structures to define them, and widgets have several properties on their

behalf. When a widget is selected, the properties editor accesses the widget’s properties

and displays them. However, selecting a widget that we do not want to change, but rather

change a representation of it - CustomizedWidget -, we must first select the representation,

and only then we can change its data.

The Algorithm 4 is responsible for checking if there are customizations from the user

and creating new properties for these to be given to the properties editor. Traversing the

widget parents until reaching a web block instance ensures that the widget is from a web

block and thus is not meant to be changed. When a web block instance is reached, the

48

6.1. ARCHITECTURE

Figure 6.5: Properties Editor with Input_ZipCode selected.

next step is to check that the widget is customizable by accessing the CustomizableWidgets
collection inside the SourceWebBlock referenced by the web block instance. If the widget

is not customizable, then the properties editor will be empty.

Following this, we check for customizations - searching for the customized widget of

the selected widget inside the web block instance. If a CustomizedWidget does not exist for

the selected widget, then the properties editor will be empty. If not, each widget property

will be given a new property with the propDescriptor of the respective property of the

selected widget, and the customized widget object as its parent.

Every property has a propDescriptor which has the entire description of the property.

Giving this to the new property ensures nothing from the original property is lost, and

we only have to assign the new value to the new property. The alternative would be to

copy all data values one by one from the original to the new property. New properties

for every widget property is necessary because when the developer changes them, the

request to change them must be sent with the new property and not the original.

Now that we can change a widget inside a web block instance without changing the

original widget inside the web block, the View must be updated so that it can show the

developer in real-time the changes they make through the properties editor.

To update the View, objects must have generation counters, that they can increment af-

ter being changed, to request for a refresh. In Subsection 6.1.1, affectsPreview determines

that if the property is changed, then the preview should be updated. The newly created

properties do not have this feature because it is exclusive to higher hierarchy objects -

CustomizedWidgetProperty.

To solve this, the properties’ parent must have a generation counter that increments

when the property changes. Thus, CustomizedWidget class received a generation counter

to increment when one of its properties changes.

49

CHAPTER 6. IMPLEMENTATION

Algorithm 4
Checks for pending customizations and replaces the properties’ default values.

1: widget← widgetRepresentation.W idget;
2: parent← widgetRepresentation.P arent;
3: while parent not equal null and (parent.W idget is not WebBlockInstance) do
4: parent← parent.P arent;

5: wbi← parent.W idget;
6: wb← webBlockInstance.SourceWebBlock;
7: if parent not equal null and wb.CustomizableW idgets.Where(w =>
8: w.W idget equal widget) is caw then
9: customizableP roperties← caw.CWP sa.Select(cawP rop =>

10: cawP rop.P ropertyName);

11: cP roperties← cP roperties.Where(prop =>

12: customizableP roperties.Contains(prop.Name));

13: if wbi.CustomizedW idgets.Where(ceW =>
14: ceW .W idget equal widget) is CustomizedW idgetcw then
15: cP roperties← cP roperties.Select(prop => {
16: propDescriptor← prop.P ropertyDescriptor;
17: newP rop← newP roperty(propDescriptor,cw);
18: if cw.CustomizedW idgetP roperties.Where(
19: cwP rop => cwP rop.P ropertyName equal prop.Name) is cwp then
20: newP rop.V alue← cwp.V alue;

21: return newP rop;
});

aCustomizableWidgetProperties.

6.2 Compiler

The last step of application development is deployment. Developers can do this by just

clicking a button in Service Studio, but behind it all, much work is being done. From

the beginning till the point of deployment Service Studio stores a simplified model of

the application so that it can be sent to the Platform Server and be the basis of a new

application built upon current technologies that are ready for every browser or smart

device. This process contains compiling which, by accessing the Model of the application

developed in Service Studio, formats templates of every building block with the data

obtained from the Model into a fully deployable application.

Just like what was done in Subsection 6.1.2, where the View formats web block tem-

plates with the data stored in the web block instances - Figure 6.6 -, we want to com-

pile the application model into an application that supports web block customization.

However, the View replaces the default values on widget properties with customizations

actively, which means for the same screen with two web block instances of the same web

50

6.2. COMPILER

Formatted Web Block
Template

Formatted Web Block
Template

Web Block Template

Format Template

PreviewViewModel

Web Block Instance

Web Block Instance

Figure 6.6: How the preview is drawn by the View.

block, the generated preview of both web block instances are different. The Compiler can

not do this because web blocks are compiled into components that are instantiated onto

screens, which means it is impossible to have two different web block instances of the

same web block - Figure 6.7.

Non-visible widgets

Compiled Application

new Web Block

new Web Block

Web Block

Screen

Figure 6.7: How the compiled application draws its web blocks.

The compiled artifacts are written mostly in JavaScript, and all building blocks remain

as whole units because the Compiler uses the React library to structure the application

compositionally. In this case, web blocks are compiled into React components, which

screens or other web blocks will instantiate - no web block instance class needed. There-

fore, we needed a way to customize in real-time instances of web blocks because we did

not want to create more than one component for a web block: that would not be feasible

as an application can have many instances of one web block.

To solve this, we parameterize the web block components, and store the customiza-

tions where the web block instance would be in the original application model (e.g.,

screens). Then, screens or web blocks can pass the new values to the web block com-

ponents where they can assign these to the respective widgets. So, it was necessary to

determine a way to assign these new parameters to the inner components of web blocks,

51

CHAPTER 6. IMPLEMENTATION

and how screens or web blocks store these.

Current Compiler

Since web block components can be instantiated many times, and used in many appli-

cations, assigning parameters to the respective widgets is essential as to guarantee all

possible customizations. However, if there are widgets that are not customizable, we do

not have to assign any parameters to customize them, saving resources and complexity.

Ideally, we would want to only assign the parameters that we know a screen or web block

will use to pass customizations. Widgets can be customizable but may not have been

customized, so not creating parameters and not having to assign them would decrease

resources used. However, complexity may have an impact, since we had to look up for

every customized widget to determine what parameters could be ruled out. We did not

choose to follow this path, and instead assign all customizable widgets with parameters,

to keep our solution simple.

Following this, we had to change the Compiler to check for customizable widgets

and generate the components accordingly, so that at run-time web block components are

ready for any customization coming from their instances, and their customizable widgets

assigned to the respective parameters or default values. If the widget is not customized,

we want to assign the default value.

ESpace

Flow

Screen WebBlock#1

Widget Web Block
#1 Instance

Widget Web Block
#2 Instance

WebBlock#2

Widget1

2

3 4

5

6

Figure 6.8: Order of compilation for the components of an application model.
: CompileBlockInstance Straight line : branch traversed
: CompileBlock Dashed line : branch not yet traversed
: CompileWidget

The Compiler follows a visitor design pattern where it compiles each widget as its

traversing the application model tree, just like the View in Subsection 6.1.2. However,

as the View keeps a record of the nodes above the one it is visiting, the Compiler does

not. Although it is possible to access the highest parent node of a widget, by traversing

through its parents, in the case of widgets belonging to web blocks, this only gets us

the parent web blocks, and not the web block instances that store the customizations. So

52

6.2. COMPILER

when a widget from a web block is being compiled, we can not check directly if the widget

is customizable, let alone access the customizations stored in the web block instance.

Figure 6.8 demonstrates how the Compiler traverses an application model tree. ES-
paces are the root of an application model, and they store everything related to an appli-

cation needed for the Platform Server to compile into a deployable application. Flows are

groups of compositions - web blocks and screens -, so that the developer can organize

their applications by user interfaces and logic that is more closer together [21]. After

traversing the tree, the Compiler reached the web block instance, which is the first step

of the demonstration.

The Compiler starts by compiling the web block instance into the artifact shown in

Listing 6.4, which is a call to instantiate the Address web block. In here, for simplicity,

only a few parameters are sent to create the element, but no parameter to customize

the web block. Elements in React are immutable objects that describe component in-

stances [18]. These only have two fields:

type : (string | ReactClass) and props : Object.

So, the first parameter is the type, which is the React component for the Address web

block, and the second are the properties that describe the component.

The web block is not compiled just yet since the Compiler will visit screen to screen

and web block to web block. When compiling widgets, the Compiler has reached the end

of that tree path and will move on to other nodes. Unless it is a web block instance, which

can have placeholders, in that case, the Compiler will traverse to those.

1 View.prototype.internalRender = function () {

2

3 return React.DOM.div(React.createElement(AddressWebBlock, {

4 id: { uuid: "1" }

5 });

6 };

Listing 6.4: Screen in Figure 5.3 from the UPPS app compiled.

AddressWebBlock is the compiled component in Listing 6.5 and has all the code

needed to create elements for every widget inside the web block. The first element is

to create the element for the component Form, a compiled widget provided by another

script, as all other widgets are. Inside, a container is created with a label and an input

inside. The input is responsible for the input of the zip code by the user. All the properties

that belong to the widget in the application model are written in the properties of the

new element.

53

CHAPTER 6. IMPLEMENTATION

1 View.prototype.internalRender = function () {

2

3 return React.DOM.div(this.getRootNodeProperties(),

4 React.createElement(OSWidgets.Form, {

5 _idProps: { name: "Form1" }

6 }, (...)

7 React.createElement(OSWidgets.Container, {

8 id: { uuid: "7" },

9 React.createElement(OSWidgets.Label, {

10 targetWidget: "Input_ZipCode",

11 id: { uuid: "8" }

12 }, "Zip Code"),

13 React.createElement(OSWidgets.Input, {

14 enabled: true,

15 inputType: /*Text*/ 0,

16 mandatory: false,

17 maxLength: 5,

18 prompt: "55555",

19 id: { name: "Input_ZipCode" }

20 })

21 }), (...)

22 }));

23 };

Listing 6.5: Web block Address from the UPPS app compiled.

New Compiler

Understanding how the current Compiler works allowed us to develop a solution that

works, using what has been already done and adding new logic to ensure customization

control is guaranteed and safe, but most importantly that changes made by the user can

be deployable. So that developers can customize web blocks, publish their applications,

and see their results on the end application. The three already mentioned procedures in

Table 6.8, are used to compile the respective building blocks. Each one was modified to

enable customization.

Since the Compiler does not store a state of the tree while traversing it, we need a

state to store at least the last node visited. When visiting a widget, we will only need

the web block, or node, directly above to check if it is customizable. Thus, in Figure 6.8,

in step one, the last node visited would be the screen, in step three, the first web block,

and in step six, the second web block. In our new model, web blocks determine what is

customizable in their scope, which means a web block does not keep a record of what is

customizable on another web block, allowing us to only need the last web block visited.

To access customizations stored in web block instances, we also need to keep a state for

the last visited web block instance. Thus, in step three, the last web block instance visited

would be the first web block instance, and in step six, the last one would be the second

web block instance. Just like web blocks, their instances do not store information of other

objects just because the objects are in their scope, in this case, customizations of other

instances, since they only store the customizations for the web block they instantiate. So,

54

6.2. COMPILER

we only need the last web block instance visited to customize a widget of that web block.

The Algorithm 5 portraits the new procedure for compiling blocks, whereas of now it

keeps a state of the current content node being visited. After saving the web block, the

View is compiled. In this case, View means screens or web blocks. The boolean isBlock
determines if the View is a screen or a web block. CompileView is also used to compile

screens, so the first parameter, isBlock, determines if the node is a web block or a screen.

Algorithm 5
New procedure for compiling web blocks.

1: procedure CompileBlock(contentNode)
2: currentCN ← contentNode;
3: CompileV iew(/ ∗ isBlock ∗ /true,contentNode);
4: currentCN = null;

Inside the CompileView procedure, the Compiler visits every child node. Only when

it visits a widget that it calls CompileWidget and calls the procedure in the Algorithm 7.

When the widget is a web block instance, the Compiler calls the procedure CompileBlock-
Instance in the Algorithm 6. In here is where we store the web block instance to have

access to potential customizations later when visiting the widgets inside the web block.

Just like CompileView, CompileBlockInstance sends a flag, isWebBlockInstance, to indicate

to the CompileWidget procedure that it is a web block instance.

Algorithm 6
New procedure for compiling web block instances.

1: procedure CompileBlockInstance(widget, wbi)
2: currentWebBlockInstance← wbi;
3: ...
4: CompileW idget(widget, / ∗ isWebBlockInstance ∗ /true);
5: ...-
6: currentWebBlockInstance = null;

Before, the Compiler transformed widgets into components only by their properties,

without accessing data from other building blocks. Now, we want to access their parent

web block, if they have one, and if so, the web block instance where they have been

instantiated. In Algorithm 7, we demonstrate the changes made to the CompileWidget
procedure, now with currentCN and currentWebBlockInstance, guaranteeing access to the

last visited node and web block instance.

CompileProperties on line four, is the function which transforms the widget’s proper-

ties into the wanted standard:

< P ropertyName, V alue >.

This way, we can reference the property by its name or key. The function receives the new

empty dictionary props in order to fill with the new data type properties, and receives the

55

CHAPTER 6. IMPLEMENTATION

widget properties.

Next, we need to check if the widget is a web block instance or an atomic widget(i.e.,

a widget with a visual representation and can not compose any other widgets). If it is an

atomic widget, then we search for potential customization on the last visited web block

instance so that we can compile the widget based on the new values given by the user.

At the same time, it is crucial to check what kind of node is stored in the state, since

the last visited node can be a screen and not a web block. CurrentCN can also be null if the

widget is inside another data type other than a screen or a web block. Ideally, we check if

it is not null, and if it is, we know the widget does not have any potential customizations

since it is not inside a web block. Then, we check if it is a web block and assign it to a

new variable if so, wb on line five. Entering the if statement means the procedure is in

the presence of a widget.

Now that we have the web block parent, we access to its CustomizableWidgets collection

to check if the widget is customizable. If the collection contains the widget, then we

proceed to check the CustomizableWidgetProperties collection of the found customizable

widget object for existing customizations. However, it is necessary to discard properties

that have no value expression associated. For simplicity sake, we do not customize these

properties.

For every customizable widget property found, the procedure formats it into the

following string:

1 string.Format("this.props.customizedWidgets &&

2 this.props.customizedWidgets[\"{0}\"]\" {1}, widgetProperty, defaultValue)

Listing 6.6: The new formatted property value.

The new string allows us to check the new structure, customizedWidgets, for any cus-

tomized widgets when the application is running – if we called right away from the

structure for a specific property and it did not exist, it would trigger a null pointer excep-

tion. The dictionary customizedWidgets is created while the procedure is compiling a web

block instance. After compilation, the property would be presented as follows:

1 maxLength: this.props.customizedWidgets && this.props.customizedWidgets["

Input_ZipCode.MaxLength"] 5

Listing 6.7: The new compiled property.

The first placeholder with the tag "0"in Listing 6.6 replaces with the string

"Input_ZipCode.MaxLength", which is the way we designed the props dictionary so that

we can access the respective property with ease. The second placeholder with the tag

"1"replaces with the default property value. If the widget is not customizable, customized-
Widgets will be empty, and the expression will go for the default value, in this case, "5".

If it is customizable, but the property was not customized, then the expression will be

56

6.2. COMPILER

false in the second parcel and will decide for the default value. In case that the customiz-

able widget property does not exist, then the property will be compiled as it was already

before.

Algorithm 7
Checks for pending customizations and replaces the properties’ default values.

1: procedure CompileWidget(widget, isWebBlockInstance)
2: ...
3: props← new Dictionary < P ropertyName, V alue > ();
4: props← CompileP roperties(props,widget.props);
5: if widget is AtomicW idget aw and currentCN is not null
6: and (currentCN is WebBlock wb) then
7: cw← wb.CustomizableW idgets.First(cwt => cwt.W idget equal aw);
8: props← props.Where(p => p.V alue is not null).Select(p => {
9: if cw is not null then

10: cwp← cw.cwP rops.First(cwpt => cwpt.pName equal p.Name);
11: if cwp is not null then
12: return {
13: ”this.props.cws is not null and this.props.cws[\”
14: < cW .W idget.Name >.< cwp.pName >\”]” not null
15: ,p.V alue.V alue

}
16: if p.V alue.V alue is not null then
17: return {p.Name,p.V alue.V alue};
18: else
19: return null;

});
20: else if isWebBlockInstance then
21: cP rops← newDictionary < P ropertyName,V alue > ();
22: for each w ∈ currentWebBlockInstance.CustomizedW idgets do
23: for each wp ∈ w.CustomizedW idgetP roperties do
24: cP rops.Add({
25: ” < w.W idget.Name > . < wp.pName > ”,
26: wp.V alue

27: });
28: props.Add(”customizedW idgets”, cP rops);
29: else
30: props← props.Where(p => p.V alue is not null);
31: props← props.Select(p => {prop.Key,prop.V alue});
32: ...

If the widget is a web block instance, the procedure will enter in line 20 of the algo-

rithm to create a new structure, customizedWidgets, to store the customizations of that

web block instance. We search for all customized widgets inside the last visited web block

instance until we get the correspondent customized widget, and then for each property,

the procedure adds the property to the new structure. If the widget is not in a web block,

57

CHAPTER 6. IMPLEMENTATION

then the procedure enters the last else statement, where it cleans up the props dictionary

for any properties without any expressions and transforms it into the correct standard.

1 View.prototype.internalRender = function () {

2 return React.DOM.div(React.createElement(OSWidgets.Form, {

3 _idProps: { name: "Form1" }

4 },(...)

5 React.createElement(OSWidgets.Container, {

6 id: { uuid: "7" },

7 React.createElement(OSWidgets.Label, {

8 mandatory: false,

9 targetWidget: "Input_ZipCode",

10 id: { uuid: "8" }

11 }, "Zip Code"),

12 React.createElement(OSWidgets.Input, {

13 enabled: true,

14 inputType: /*Text*/ 0,

15 mandatory: false,

16 maxLength: this.props.customizedWidgets &&

17 this.props.customizedWidgets["Input_ZipCode.MaxLength"] 5,

18 prompt: this.props.customizedWidgets &&

19 this.props.customizedWidgets["Input_ZipCode.Prompt"] "55555",

20 id: { name: "Input_ZipCode" }

21 })

22 }), (...)

23 }));

24 };

Listing 6.8: Address component in Listing 6.5 after adaptation.

In Listing 6.8, the Address web block from Listing 6.5 is demonstrated with the new

changes implemented. MaxLenght and Prompt are customizable now, and at run-time, if

there are new values, they will be chosen instead of the default ones. The other properties

do not have this access to the new structure, and therefore can not receive customizations.

1 View.prototype.internalRender = function () {

2 return React.DOM.div(React.createElement(AddressWebBlock, {

3 customizedWidgets: {

4 "Input_TextVar.MaxLength": "8",

5 "Input_TextVar.Prompt": "88888888"

6 },

7 id: { uuid: "1" }

8 });

9 };

Listing 6.9: Screen component in Listing 6.4 after adaptation.

In Listing 6.9, the screen from Listing 6.4 now has a new structure to send to the web

block. Through here can pass as many values as there are customizable widget properties.

The syntax is simple: the property name comes first so that it is easy to find inside the

dictionary, and the new value comes in second.

58

C
h
a
p
t
e
r

7
Evaluation

After we finish implementing the prototype, we began by evaluating if our solution

worked and contributed to the OutSystems Platform. It is essential to establish this

to validate the work we have done until now.

The following sections will be explaining the methodology used to evaluate the suc-

cess of the solution; then we will proceed to the analysis, and finally, we will present the

results, as we will discuss them.

7.1 Usability Testing

Given that our problem is based on visual interaction, usability testing is very important

to validate our work. Because of this, we gathered a group sample to represent all OutSys-

tems developers, with the only important difference being their experience using Service

Studio since not many people know how to customize web blocks.

In this work, it is important to not only score how our approach is intuitive but also

to compare with what is currently offered by OutSystems. Since we want to compare

the two approaches, we divided the group sample into two: the Beta group and the

Alfa group. The Beta group used the current approach by OutSystems to customize web

blocks, whereas the Alfa group used our approach.

After this, we created a script to guide each participant to do a simple task and achieve

the same outcome. We present the script in Appendix B. The script is made of a descrip-

tion and a task at the end. Both groups were given the same description of an application

where it was required to change a field inside a web block. The only conditions given to

both groups were they could not duplicate the web block or change other screens that

were instantiating the web block. Since we do not want to influence each group differently

in any way, both tasks have to meet equal outcomes. However, we want participants in the

59

CHAPTER 7. EVALUATION

Alfa group to achieve the task by using our approach. Alfa group could achieve the task

by choosing the current approach delivered by OutSystems, so we added as a condition

that they could not access the web block definition, since creating parameters in the web

block requires accessing the web block definition.

After all, participants finished their task, we requested them to fill in a System Us-

ability Scale quiz. The questions are presented in Appendix C. The SUS score helps

us determine if our approach is intuitive and also helps us compare with OutSystems’

current approach. The score is calculated by the following equation:

score = ((I − 1) + (5− II) + (III − 1) + (5− IV) + (V − 1)+

(5−V I) + (V II − 1) + (5−V III) + (IX − 1) + (5−X)) ∗ 2,5 (7.1)

Another important metric is how much time did the participant take to accomplish

the task. The time was measured from the moment the participant understood the task

to the moment they published the application and verified the task was complete.

In table 7.1, we show the respective SUS scores and times for both groups. In Fig-

ures 7.1 and 7.2 we plot these results, with the respective standard deviations. With our

approach participants completed their tasks in less time, with a difference of 5.45 times

on average. SUS scores also increased with our approach, with one of the participants

scoring 100 and another scoring the lowest with 87.5, the average resulted in 95. As for

the Beta group, the average SUS score is 37.5, the lowest being 17.5 and the highest 50.

The scores were not as concentrated as the Alfa group, but they all fell under the fifties.

The scores can be viewed in Appendix C.

Average Beta Average Alfa
SUS (0 – 100) 37,5 95
Time (s) 300 55

Table 7.1: Average SUS and time taken to complete the task for each group.

60

7.1. USABILITY TESTING

S
U
S

0

25

50

75

100

Current New

Figure 7.1: Average and standard deviation of SUS for each group (higher is better).

T
i
m
e

(
s
)

0

100

200

300

400

500

Current New

Figure 7.2: Average and standard deviation of time taken to complete each group’s task
(lower is better).

As expected, the Alfa group took less time to complete the task and scored our ap-

proach as more intuitive than what the Beta group scored the currently offered solution.

Note that it was the first time the participants had to interact with our approach, so we

expect experienced participants to need even less time to finish the task.

The Alfa group participants also commented widgets should be highlighted when

they are selected, an aspect we did not implement. We verified some of the participants

did not understand the widgets were being selected, and because of this took more time

to finish the task. Because of this, we can expect even less time required to complete the

task on a more fluid experience with widgets being highlighted when being selected.

61

CHAPTER 7. EVALUATION

7.2 Solution comparison

In this section, we compare a solution offered by the OutSystems’ repository of reusable

modules and user interface components, with our approach. We analyzed several widgets,

which in reality are disguised web blocks, on how it allows customization on reusable

compositions. The results can be observed on Appendix D.

To validate our approach, we began by analyzing what is offered currently by Service

Studio, and then how much we can improve on customization. Besides giving us an

insight on how customizable can these widgets be, it also allowed us to perceive the

work necessary by the platform developers to continue to implement new widgets on an

architecture that is outdated and with a much due revision.

Our study included 29 of the 64 widgets of the OutSystemsUIMobile module. The

criteria to analyze was the following:

• Similar Widgets: many of the UI patterns have duplicated widgets with small dif-

ferences;

• Property Parameters: input parameters used to link the user directly with widget

properties;

• Action Parameters: input parameters used for actions;

• Style Parameters: input parameters used on stylesheets;

• Potential Customizable Widgets: widgets inside web blocks that could be cus-

tomized but are not;

• Preview: does the input parameters affect the preview when changed.

7.2.1 Analysis methodology

We analyzed the widgets inside the module based on the criteria previously mentioned,

to measure how much customization is allowed on them.

One of our objectives since the beginning was to reassure reusability was not affected.

However, some widgets offered in the module have similar widgets, with small differences.

These should account for customization, since duplicating a widget because there is not

another way to allow customization, is, in fact, a compromise on customization.

Input parameters are used on many of the widgets provided, and these have varied

on how they are used. We divided these into three groups: property parameters, action

parameters, and style parameters.

Another one of our objectives was to make the preview reactive to the changes made

to widgets inside web blocks. So, if the preview is affected or not is another factor to take

into account when measuring customization.

62

7.2. SOLUTION COMPARISON

7.2.2 OutSystemsUI

OutSystemsUI is a module that offers several pre-built widgets that in reality are compo-

sitions. But, they bring many limitations. Widgets reference pre-built web blocks. The

user customizes these through pre-defined input parameters on each web block. When

instantiating several widgets, we can analyze their design is not uniform – some refresh

the preview, while others do not. None have styles associated because web blocks do not

have them.

In comparison, our solution is intuitive – delivers what is expected. The creator should

be able to create widgets just like the ones offered in OutSystems, and the user should be

able to select whatever widget they want.

7.2.3 Examples

These are some of the widgets the module provides to the developer, each with their own

compromise.

Adaptive UI Columns

Adaptive UI Columns are patterns for the developer to implement a multi-grid layout

inside their application. These are pre-built web blocks of many column arrangements,

ending up with widgets very similar. However, with our approach, we could create more

columns, each with different sizes.

Badge/UserAvatar

The badge allows putting a number inside a round background; good for counters. When

changing its properties, the preview is instant, which means it has been hard-coded into

the platform.

The number and background color are the only things that the user can change. It

would be nice to change its size. With our approach, we can change everything inside.

Icon Badge

This widget is composed of a placeholder with a badge on top of it. As observed in the

widget Badge, we can change its background color and the number it shows through input

parameters. However, the widget Icon Badge cannot link its two input parameters with

the widget Badge because input parameters are only evaluated at run-time. The widget

Badge can show instant preview when changing its parameters because its developer

hard-coded it into Service Studio to refresh the preview.

63

CHAPTER 7. EVALUATION

7.2.4 Comparison

The gathered results from our study of 29 of the 64 widgets of the OutSystemsUIMobile

module can be seen in the Appendix D. Service Studio offers many use cases in the form

of pre-built static web blocks. However, these have limited customization. Our approach

is ideal for customization, since comparing the both ours deliver the aspects offered in

every pre-built widget.

Based on our evaluation, our approach is expected to help not only developers, but

also platform developers, because our approach fills a hole inside Service Studio, and

completes the whole process flow between module developers and users.

Input parameters will still be important because they allow the user to enable some

feature in the widget by toggling it, instead of having to design the logic behind it. The

user only has to ask the widget to do something without worrying how it is done.

64

C
h
a
p
t
e
r

8
Conclusions

This work presents a new composition model inspired by the present model of the OutSys-

tems platform. The resulting prototype proves that it is possible to customize components

within a composition, without compromising the preview of changes and without losing

the uniqueness of the definition of a block.

The results we obtained prove our solution gives users more freedom to do what they

want, but not an exclusive alternative to the platform. All mechanisms provided by the

platform help create an environment easy to develop with, and with efficiency and quality

in mind.

Impact analysis

Analyzing the results, we gather there is a significant gain for platforms like OutSystems

by adopting our solution.

From the usability tests, our approach proves developers customizing reusable com-

positions can gain more than 80% of their time compared to using what is currently

offered by OutSystems. Not only this, but the participants also scored our approach as

being more intuitive and easy to use, with higher than double the score given to what is

currently offered.

By analyzing the OutSystemsUI module, which was created by specialized developers,

we conclude our approach can help with many of the implementations offered in this

module while saving up resources like hiring specialized developers to create modules

highly specialized and not that much customizable. However, some widgets in this mod-

ule offer other possibilities that with our approach we can not achieve. Meaning many

of the patterns implemented provide widgets with a complex logic that is difficult for a

citizen developer to implement. This allows more customization since these web blocks

65

CHAPTER 8. CONCLUSIONS

offer more use cases where before developers wanted but did not have the resources.

Lastly, with our approach, we can still have a live preview, whilst OutSystemsUI is

not consistent throughout its widgets. For widgets to have a live preview, a specialized

developer is necessary to hard-code to refresh the view when an input parameter changes.

As shown in Appendix D, almost half of the widgets have an inconsistent live preview.

Future Work

As for future work, it is expected to build a more comprehensive interaction, meeting

the needs of the creators and users of compositions. Also, customizations with run-time

properties would allow new situations to explore, as discussed in Section 3.1.

Our approach would allow direct customization of web blocks, but at the moment,

there are still several things to be worked on in order to make our solution reach the level

we would like to achieve.

Model

Right now, the template is prepared for design-time properties, but not for run-time prop-

erties, because the customization is saved as text. As for the next step, we intend to use

expressions to extend customization to all properties. This way, it would also be possible

to introduce dependencies between widgets. This problem is interesting because passing

information between components creates new opportunities: one component will inherit

properties from another automatically (e.g., width); a programmer having access to one

component’s data model and being able to insert it into another (e.g., one component

sharing one user’s data access to another component would decrease redundant accesses).

Presenter

The Presenter is responsible for receiving requests by the View and process them accord-

ingly. When web blocks creator wants to make their web blocks customizable on our

solution, they only need to select the widget and select the command to make it customiz-

able. In the future, we would like to have more control over what can be customizable.

Not only the widget, but we would also like to decide if we only want a property to be

customizable.

As for the users, at the moment, they can only customize some properties in the

widgets. Ideally, they could customize all properties that were decided to be customizable

by the creator and not be restricted by only those that are supported.

66

View

From the beginning, we knew interaction would be the final stage of development since

we had to have a general solution that covered the entire process of developing applica-

tions.

Because of this, interaction is the part with the most work to be done. Still, what we

offer right now enables us to reach inside web blocks and customize their inner widgets,

something that was impossible to do from the beginning. This was difficult at first since

the architecture is not built to handle the widgets inside the web blocks. However, we

managed to get past some obstacles, and now it would be easier to implement what is

left.

At the moment, interaction is mostly done by menus, especially from the creator’s

point of view. Selecting widgets still is not perfected. It only works in some use cases.

Compiler

The compiler was the most developed part of this work, besides the model. However, we

would like to have the opportunity to test with expressions instead of using text. It would

have allowed many possibilities because most properties use expressions.

67

Bibliography

[1] Adobe Photoshop CC | Best photo, image, and design editing software. url: https:

//www.adobe.com/products/photoshop.html (visited on 02/17/2019).

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 2009. isbn: 9780262033848.

[3] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds. Structured Programming. London,

UK, UK: Academic Press Ltd., 1972. isbn: 0-12-200550-3.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1995. isbn: 0-201-63361-2.

[6] K.-K. Lau and T. Rana. “A Taxonomy of Software Composition Mechanisms.” In:

Proceedings of the 2010 36th EUROMICRO Conference on Software Engineering and
Advanced Applications. SEAA ’10. Washington, DC, USA: IEEE Computer Society,

2010, pp. 102–110. isbn: 978-0-7695-4170-9. doi: 10.1109/SEAA.2010.36.

[7] D. Lizcano, F. Alonso, J. Soriano, and G. López. “A New End-user Composition

Model to Empower Knowledge Workers to Develop Rich Internet Applications.”

In: J. Web Eng. 10.3 (Sept. 2011), pp. 197–233. issn: 1540-9589. url: http:

//dl.acm.org/citation.cfm?id=2230836.2230838.

[8] Low-code Application Development Platform - Build Apps Fast & Efficiently | Mendix.

url: https://www.mendix.com/ (visited on 02/17/2019).

[9] P. Manickam, S. Sangeetha, and S. V. Subrahmanya. Component-Oriented Develop-
ment and Assembly: Paradigm, Principles, and Practice Using Java. Boston, MA, USA:

Auerbach Publications, 2013. isbn: 9781466580992.

[5] J. Meyer. JASMIN USER GUIDE. 1996. url: http://jasmin.sourceforge.net/

guide.html (visited on 12/17/2019).

[10] O. Nierstrasz and T. D. Meijler. Research Directions in Software Composition. Tech.

rep. 1995.

[11] O. Nierstrasz and D. Tsichritzis, eds. Object-oriented Software Composition. Hertford-

shire, UK, UK: Prentice Hall International (UK) Ltd., 1995. isbn: 0-13-220674-9.

69

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://doi.org/10.1109/SEAA.2010.36
http://dl.acm.org/citation.cfm?id=2230836.2230838
http://dl.acm.org/citation.cfm?id=2230836.2230838
https://www.mendix.com/
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/guide.html

BIBLIOGRAPHY

[12] OutSystems tools and components. url: https : / / success . outsystems . com /

Evaluation/Architecture/1_OutSystems_Platform_tools_and_components

(visited on 01/07/2019).

[13] OutSystems tools and components - OutSystems. url: https://success.outsystems.

com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components

(visited on 01/29/2019).

[14] Model-driven Development and Evolution of Customized User Interfaces. EICS ’13.

London, United Kingdom: ACM, 2013, pp. 13–22. isbn: 978-1-4503-2138-9. doi:

10.1145/2494603.2480298. url: http://doi.acm.org/10.1145/2494603.

2480298.

[15] M. Potel. “MVP: Model-View-Presenter The Taligent Programming Model for C++

and Java", Taligent Inc.” In: (May 2011).

[16] J. R. Rymer. The Forrester Wave™: Low-Code Development Platforms For AD&D Pros,
Q4 2017. Tech. rep. url: https://www.outsystems.com/low-code-platforms

(visited on 02/17/2019).

[17] React – A JavaScript library for building user interfaces. url: https://reactjs.org/

(visited on 02/17/2019).

[18] React Components, Elements, and Instances. url: reactjs.org/blog/2015/12/18/

react-components-elements-and-instances.html (visited on 09/19/2019).

[19] J. Sametinger. Software Engineering with Reusable Components. Berlin, Heidelberg:

Springer-Verlag, 1997. isbn: 3-540-62695-6.

[20] C. Szyperski. Component Software: Beyond Object-Oriented Programming. 2nd.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002. isbn:

0201745720.

[21] UI Flows - OutSystems. url: https://success.outsystems.com/Documentation/

11/Developing{_}an{_}Application/Design{_}UI/Navigation/UI{_

}Flows (visited on 09/20/2019).

[22] M. Wagner. Genius Ways To Use Photoshop Smart Objects | Viget. url: https:

//www.viget.com/articles/smart-ways-to-use-adobe-photoshops-smart-

objects/ (visited on 02/17/2019).

[23] A. J. A. Wang and K. Qian. Component-Oriented Programming. New York, NY, USA:

Wiley-Interscience, 2005. isbn: 0471644463.

[24] What is Component Framework | IGI Global. url: https://www.igi-global.com/

dictionary/component-framework/4912 (visited on 02/17/2019).

70

https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components
https://doi.org/10.1145/2494603.2480298
http://doi.acm.org/10.1145/2494603.2480298
http://doi.acm.org/10.1145/2494603.2480298
https://www.outsystems.com/low-code-platforms
https://reactjs.org/
reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html
reactjs.org/blog/2015/12/18/react-components-elements-and-instances.html
https://success.outsystems.com/Documentation/11/Developing{_}an{_}Application/Design{_}UI/Navigation/UI{_}Flows
https://success.outsystems.com/Documentation/11/Developing{_}an{_}Application/Design{_}UI/Navigation/UI{_}Flows
https://success.outsystems.com/Documentation/11/Developing{_}an{_}Application/Design{_}UI/Navigation/UI{_}Flows
https://www.viget.com/articles/smart-ways-to-use-adobe-photoshops-smart-objects/
https://www.viget.com/articles/smart-ways-to-use-adobe-photoshops-smart-objects/
https://www.viget.com/articles/smart-ways-to-use-adobe-photoshops-smart-objects/
https://www.igi-global.com/dictionary/component-framework/4912
https://www.igi-global.com/dictionary/component-framework/4912

A
p
p
e
n
d
i
x

A
Proof of concept

After designing the new model, a proof of concept allowed to validate the approach. The

composition model proposed in this paper is an adaptation of the existing one in the

OutSystems platform. It uses the React [17] library for compiling widgets, web blocks and

screens to React components.
1 export interface AddressState {

2 name: string,

3 street: string,

4 zipCode: string

5 }

6

7 export function Address (state: AddressState): JSX.Element {

8 (...)

9 const [zipCode, setZipCode] = useState(state.zipCode);

10 (...)

11 return (

12 <form>

13 (...)

14 <div>

15 ZipCode

16 <input id="zipCode" value={zipCode}

17 onChange={handleZipCodeChange} />

18 </div>

19 (...)

20 </form>

21);

22 }

23

Listing A.1: The component Address with the hook zipCode which is instantiated with the

parameter passed in the state.

Listings A.1 and A.3 summarize the result of compiling the application described in

Section 3. The App component represents the screen in Figure 5.3. This screen uses the

71

APPENDIX A. PROOF OF CONCEPT

Address component. Data is kept within the scope of App (Listing A.3 lines 3-7) and is

passed to Address as state (variables) (Listing A.3 line 12). The state is received by Address
(Listing A.1 line 7) and is associated with a variable in its scope (Listing A.1 line 9), which

in turn is associated with the Input element relative to the zip code (Listing A.1 line 16).

In the context of a purely textual editor, the customization of each component is

done by introducing new properties by the developer himself. However, in the context

of a visual editor it is necessary to represent in a structured and explicit manner which

properties are subject to possible customizations, so that the editor recognizes which

should allow the developer to be able to view and edit.
1 export interface AddressProps {

2 customizedWidgets: {

3 zipCode?: {

4 maxLength?:number

5 }

6 };

7 }

8 (...)

9 export function Address (state: AddressState): JSX.Element {

10 (...)

11 const [zipCode, setZipCode] = useState(state.zipCode);

12 (...)

13 return (

14 <form>

15 (...)

16 <div>

17 ZipCode

18 <input id="zipCode"

19 maxLength={(

20 props.customizedWidgets != null and

21 props.customizedWidgets.zipCode != null and

22 props.customizedWidgets.zipCode.maxLength) or 5

23 value={zipCode}

24 onChange={handleZipCodeChange} />

25 </div>

26 (...)

27 </form>

28);

29 }

Listing A.2: The component Address adapted to the new model.

In our proposal this is done by including a subelement (customizedWidgets) in the

props of the component. By following this convention we are telling the graphic editor

which widgets and properties can be edited for an instance of a web block. Listing A.2

illustrates changes to the Address component: a new structure for hosting new informa-

tion (AddressProps) (lines 1-7) is declared. The property to modify is the character limit

accepted by the Input element (maxLength), and it is optional to provide an alternative

value for the property (lines 20-22). The next step is to associate these new fields with

the corresponding elements. This requires checks to determine if the new fields are pop-

ulated. Note that the default 5 value is not lost, which will be assigned if maxLength is not

72

populated.

In the App component in Listing A.4, a new props object is instantiated under the

AddressProps type to pass customization to Address (lines 3-9).

If the AddressProps type does not have certain parameters (e.g., size of Input), these

are not customizable, introducing a control over what properties can be changed from

outside.
1 const App: React.FC = () => {

2

3 const state : AddressState {

4 name :"Joao Goncalves",

5 street :"Rua Sem Nome",

6 zipCode :"2222-222"

7 };

8

9 return (

10 <div>

11 <header>

12 <Address {...state}/>

13 </header>

14 </div>

15);

16 };

Listing A.3: The component App that instantiates the component Address with the state.

1 const App: React.FC = () => {

2 (...)

3 const props : AddressProps = {

4 customizedWidgets:{

5 zipCode:{

6 maxLength:10

7 }

8 }

9 };

10

11 return (

12 <div className="App">

13 <header className="App-header">

14 <Address {...state} {...props}/>

15 </header>

16 </div>

17);

18 };

Listing A.4: The component App adapted to the new model.

73

A
p
p
e
n
d
i
x

B
Usability Testing: Script

One of the resources used to test if our approach was intuitive was a script. In the

following pages, we present the script read by our two sample groups, Alfa and Beta.

It was requested to the participants to read the description of the application they

would be interacting with, in order for them to understand the environment in which

they would be faced with. After this, we requested them to follow a task according to

their group.

75

UPPS Application

UPPS is an international delivery company which uses OutSystems to support their
application.

The application created in Service Studio has a screen for the user to input their address
data. The application owner wants to use the form in Figure 1 on multiple screens. The best
plan of action for the developer assigned to this task would be to create a web block for the form
and instantiate the web block in the screens the owner wants them.

Then, the developer creates the web block and instantiates them as needed. Meanwhile, a

developer assigned to the portuguese department needs to use the web block. However, they
need to change it, since the original only accepts zip codes of 5 characters.

APPENDIX B. USABILITY TESTING: SCRIPT

76

Beta group

Your task:

Change the web block Address instance in PortugueseScreen so that the prompt and
maxLength correspond to the Portuguese standard:

 prompt = “2222-222”,
 maxLength = 8,

without duplicating the web block or changing the AmericanScreen.

Note that changing the web block directly will affect the screens that instantiate it.

Alfa group

Your task:

Change the web block Address instance in PortugueseScreen so that the prompt and
maxLength correspond to the Portuguese standard:

 prompt = “2222-222”,
 maxLength = 8,

without accessing the web block definition or duplicating it.

77

A
p
p
e
n
d
i
x

C
Usability Testing: Results

In total, the sample group for our usability test was comprised of 10 people. In table C.1,

we show the results gathered from the Beta group. In table C.2, we show the results

gathered from the Alfa group.

In table C.3, we show the questions asked to the participants to determine the System

Usability Scale (SUS) score for each group approach.

79

APPENDIX C. USABILITY TESTING: RESULTS

Experience e
(months)

Question (rated from 1 to 5) Time
(mm:ss)

SUS
(0-100)I II III IV V VI VII VIII IX X

e <1 4 4 2 3 2 4 2 4 3 4 02:30 35
1 <e <6 1 4 3 2 2 3 3 4 2 2 05:00 40
1 <e <6 1 5 3 1 2 3 5 4 3 1 04:40 50

e <1 2 5 1 5 2 3 1 5 2 3 07:30 17,5
e >6 3 4 3 5 3 5 3 4 3 2 05:00 37,5

Table C.1: Beta group results.

Experience e
(months)

Question (rated from 1 to 5) Time
(mm:ss)

SUS
(0-100)I II III IV V VI VII VIII IX X

e <1 5 1 5 1 5 1 5 1 4 1 01:35 97,5
1 <e <6 4 1 5 1 5 1 5 1 4 1 00:55 95
1 <e <6 5 1 5 1 5 1 5 1 5 1 00:40 100
1 <e <6 5 1 5 2 5 1 5 1 4 1 02:20 95

e >6 5 1 5 1 4 1 5 1 3 3 00:40 87,5

Table C.2: Alfa group results.

I : I think that I would like to use this approach frequently.
II : I found this approach unnecessarily complex.

III : I thought this approach was easy to use.
IV : I think that I would need assistance to be able to use this approach.
V : I found the various functions in this approach were well integrated.

VI : I thought there was too much inconsistency in this approach.
VII : I would imagine that most people would learn to use this approach very quickly.

VIII : I found this approach very cumbersome/awkward to use.
IX : I felt very confident using this approach.
X : I needed to learn a lot of things before I could get going with this approach.

Table C.3: System Usability Scale questions.

80

A
p
p
e
n
d
i
x

D
Solution Comparison: Results

In table D.1 we present our analysis of the OutSystemsUIMobile module offered by Out-

Systems, with many UI patterns built in and ready to be used. The analysis is explained

in Chapter 7.

The color scales used help showing widgets with higher values on a given index. By

using color, it is easier to notice how many widgets we could influence positively on red

color scales. Green color scales mean widgets offer more than original widgets. In this

case, action parameters and preview are green since these are not offered in other widgets.

SW : similar widgets
PP : property parameters
AP : action parameters
SP : style parameters

PCW : potential customizable widgets
V : has preview

Table D.1: Indexes abbreviations.

81

APPENDIX D. SOLUTION COMPARISON: RESULTS

Widgets SW PP AP SP PCW V
Columns 7 0 0 5 24 1
DisplayOnDevice 0 0 0 0 8 0.5
Gallery 0 0 5 0 10 0
MasterDetail 1 0 0 0 21 0
SplitScreen 1 0 2 0 7 0.5
AppFeedBack 0 0 0 0 21 0.5
Alert 0 3 0 1 16 1
BlankSlate 0 1 0 1 5 1
Card 3 1 0 1 2 1
CardAction 0 0 0 0 5 0.5
CardBackground 3 2 0 2 4 1
CardItem 3 0 0 0 5 0.5
CardSectioned 0 1 0 1 4 0.5
ChatMessage 0 3 0 1 21 1
FlipContent 0 0 2 1 10 0.5
FloatingContent 0 4 0 4 7 1
ListItemContent 3 0 0 0 5 0.5
Section 4 1 0 1 2 1
SExpandable 0 2 1 2 9 1
SectionGroup 1 0 1 1 1 0.5
Tag 0 1 0 1 1 1
ToolTip 0 0 1 2 13 0.5
UserAvatar 0 3 0 3 6 1
ActionSheet 0 0 1 0 17 0.5
Animate 0 0 0 3 1 0.5
AnimatedLabel 0 0 0 0 3 0.5
Carousel 0 0 8 3 9 0.5
Badge 1 2 0 2 2 1

Figure D.1: OutSystemsUI widgets results.

82

A
n
n
e
x

I
Short article

The following is a short article, summarizing this thesis most important aspects, submit-

ted to INForum: Computer Science Conference, presented by Professor João Costa Seco

at the 11th INForum - Simpósio de Informática, Department of Information Systems,

University of Minho, 6/09/2019.

83

Composição e customização num modelo de
componentes para interfaces gráficas

João Gonçalves1, Hugo Lourenço2, and João Costa Seco1

1 NOVA LINCS - Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
2 OutSystems, Portugal

Resumo As linguagens de programação visual são escolhidas para o de-
senvolvimento rápido de interfaces de utilizador devido à facilidade de
uso, legibilidade, reusabilidade de componentes – widgets –, e uma pré-
visualização imediata dos efeitos pretendidos. Contudo, os modelos mais
comuns de composição para formar interfaces de utilizador são black-
box : combinam widgets existentes para formar novos widgets, mas não
permitem em geral a modificação indiscriminada dos seus componentes
internos. Para os programadores conseguirem modificar internamente os
elementos de uma composição e obterem uma pré-visualização dessa mo-
dificação, os modelos subjacentes têm que permitir receber e transmitir
explicitamente propriedades do estado interno dos componentes para os
elementos da composição.
Neste artigo apresentamos uma extensão da linguagem visual da plata-
forma OutSystems e um novo modelo de composição de componentes de
interface de utilizador que permite a adaptação direta de elementos inter-
nos de composições de forma visual e interativa. Também apresentamos
uma interação gráfica consistente com a linguagem visual, sem compro-
meter a experiência do programador. O modelo proposto é avaliado pela
implementação de um protótipo completamente integrado na plataforma
– ambiente de desenvolvimento visual e o seu compilador.

Palavras-chave: Plataformas de desenvolvimento Low-code · Lingua-
gens de programação visuais · Modelo de composição white-box · Design
baseado em componentes · Customização de componentes.

1 Introdução

O desenvolvimento de aplicações com interface de utilizador para a Internet
usando linguagens de programação visuais baseia-se habitualmente na utilização
de abstrações visuais, ou componentes, que se traduzem em artefactos básicos
ou compostos nas tecnologias subjacentes. Um modelo de componentes define as
regras a utilizar na construção das interfaces e na geração e combinação das suas
representações visuais. Num modelo uniforme, as composições são consideradas
elas próprias componentes, que podem ser usadas noutras composições. Uma das
vantagens deste paradigma é a reduzida ocorrência de erros devido à utilização de
regras bem definidas de composição. No entanto, um modelo de composição que
não prevê alterações na representação visual dos elementos de uma composição,

84

2 J. Gonçalves et al.

não facilita o desenvolvimento ou utilização de composições e requer muitas vezes
a utilização de subterfúgios da linguagem como a passagem de parâmetros ou a
manipulação das estruturas de suporte, e.g. folhas de estilo.

Num design baseado em componentes, a implementação de cada componente
é encapsulada, não revelando detalhes de implementação e configuração ao con-
texto exterior (black-box) [1], permitindo apenas que os componentes se liguem
através de conexões pré-determinadas. Contudo, num contexto visual, onde os
elementos de uma composição são observáveis, a customização (controlada) de
elementos da composição devia ser permitida, com um ganho significativo ao
nível da experiência do programador. Esta situação motiva a definição de um
novo modelo de composição que encapsula e parametriza um componente [2],
e expõe uma seleção de propriedades dos seus elementos internos para custo-
mização. A esta motivação acrescenta-se o desenvolvimento de um editor visual
capaz de configurar tais elementos e um compilador para produzir artefactos que
transmitem e configuram as composições definidas.

Uma plataforma de desenvolvimento Low-code de aplicações web é um ambi-
ente com uma linguagem de programação visual que depende de métodos decla-
rativos e visuais com reduzida necessidade para código manuscrito. Apesar de
disporem de uma grande oferta de componentes representativos de recursos en-
contrados em aplicações web (e.g., elementos HTML), as alterações na interface
de utilizador que não sejam suportadas apenas o podem ser através de custo-
mização manual [7] – esta responsabilidade deve recair no programador. Se em
vários sítios se observar na interface de utilizador um conjunto de componentes
próximos com uma lógica semelhante que os interliga (e.g., formulários), a re-
presentação única do conjunto numa só composição motivaria a reutilização de
recursos e um desenvolvimento mais rápido.

As plataformas Low-code oferecem ferramentas de customização de compo-
nentes, suportadas por editores onde os programadores compõem ecrãs ao ar-
rastar e largar elementos visuais. A OutSystems oferece um IDE deste género,
o Service Studio, com widgets que permitem a definição de ecrãs e web blocks
(conjuntos de widgets reutilizáveis).

(a) O widget selecionado na definição. (b) A instância do web block num ecrã.

Figura 1: A experiência associada a web blocks.

85

Composição e customização num modelo de componentes 3

Na Figura 1a apresenta-se a visão que um programador tem ao definir um
web block. Nesta visão as propriedades de todas as widgets estão disponíveis e
podem ser editadas. Nesta figura está selecionado um widget input (caixa azul),
e, no editor à direita, constam as suas propriedades que podem ser modificadas.

A Figura 1b ilustra o uso do web block na construção de um ecrã. Uma
instância de um web block é tratada, neste contexto, como uma black-box do
ponto de vista de edição: não é possível selecionar widgets individuais do mesmo,
mas apenas a instância como um todo (caixa grande azul). No entanto, note-
se que um web block não é uma black-box do ponto de vista da visualização:
seguindo uma abordagem WYSIWYG (What You See Is What You Get), o
conteúdo do mesmo contribui para a pré-visualização do conteúdo do ecrã.

Portanto, seria natural (e até expectável) interagir com o conteúdo do web
block apresentado no ecrã, alterando diretamente as propriedades dos widgets.
Tal não é permitido, de momento, pela plataforma OutSystems. As eventuais
customizações dos widgets obrigam a trabalho extra, tanto por parte do progra-
mador que cria o web block, como do programador que o usa. Por exemplo, é
possível usar parâmetros de entrada para fornecer valores alternativos às pro-
priedades dos widgets contidos no web block. No entanto, esta alternativa não
é compatível com uma abordagem WYSIWYG, uma vez que não é possível
determinar em tempo de edição o valor dos parâmetros, perdendo assim a pré-
visualização instantânea.

Figura 2: A aplicação de entre-
gas ao domicílio com o web block
do formulário que aceita mora-
das.

As linguagens de programação visuais
destacam-se pela sua facilidade de uso,
oferecendo a quem não tem conhecimen-
tos especializados em programação tradi-
cional ferramentas para criar aplicações
ricas. Assim, os programadores que usam
estas linguagens conseguem criar e distri-
buir aplicações em menos tempo. No en-
tanto, é difícil criar uma linguagem visual
que substitua todos os recursos que uma
linguagem textual oferece. Neste trabalho
é discutida a falta de customização direta
em composições de widgets, algo trivial de
se concretizar numa linguagem textual. A
motivação para este trabalho resulta de
uma maior facilidade de uso para este tipo
de plataformas através de um novo mo-
delo de composição, em que é expectável
acelerar ainda mais o desenvolvimento de
aplicações.

Um caso de uso possível relevante para
este problema podia ser o seguinte: numa
aplicação de entregas ao domicílio desenvolvida na plataforma OutSystems, é
necessário requisitar a morada do utilizador. Faz sentido que o formulário na

86

4 J. Gonçalves et al.

Figura 2 seja um web block, pois é usado em mais que um ecrã. Contudo, este é
desenhado tendo em conta a morada estadunidense, que tem um código postal de
cinco dígitos, enquanto que a portuguesa tem sete. Nesta situação, a propriedade
relativa ao tamanho máximo de carateres (maxLength) deve ser customizável,
tal como o criador do bloco deve poder decidir se tal é permitido.

Assim, o problema pode ser dividido em duas vertentes: que propriedades de-
vem ser expostas ao exterior nativamente pela plataforma e de que maneira estas
podem ser permitidas a customizar. Com este problema resolvido, os criadores
conseguem criar web blocks mais genéricos, preparados para mais situações, em
que os programadores possam customizá-los de acordo com o contexto em que
os blocos se inserem, resultando num desenvolvimento mais acelerado e numa
melhor utilização de recursos.

Os objetivos deste trabalho são apresentar um modelo de composição de ele-
mentos de interface de utilizador na plataforma OutSystems, com os mesmos
padrões que qualquer outro componente (reusabilidade e pré-visualização ins-
tantânea), e, consequentemente, as alterações feitas à linguagem visual para ter
um protótipo que se estendesse entre todas as vertentes da plataforma. Este
modelo permite composições de componentes white-box, com acesso à instância
e propriedades dos componentes interiores. Para isto, o modelo existente no Ser-
vice Studio foi adaptado para guardar informação relativa a que propriedades
são customizáveis e os seus potenciais valores, tal como a linguagem visual foi
alterada para expor e permitir a customização de propriedades. Para além disto,
o compilador foi igualmente alterado para criar aplicações finais que suportassem
estas modificações.

Espera-se que este trabalho contribua com novas formas de composição de
elementos visuais que, num modelo de composição, possam fornecer uma re-
presentação visual fiel à sua implementação, proporcionando uma experiência
intuitiva e satisfatória ao programador.

Nas próximas secções, será dada uma breve introdução à plataforma OutSys-
tems (2), com definições pertinentes a este trabalho, seguindo-se o modelo pro-
posto (3), alterações à linguagem visual da plataforma (4) e ao compilador (5).
De seguida, relacionamos o nosso trabalho com o de outros autores (6) e proje-
tamos algumas direções para trabalho futuro (7).

2 Plataforma OutSystems

A OutSystems é uma das fundadoras do mercado de plataformas de desenvolvi-
mento Low-code [4], fornecendo modelos visuais que dependem de uma linguagem
de abstração mais alta, fácil de aprender. Permite aos programadores desenvol-
verem sem a preocupação de escrever código defeituoso e criar aplicações web e
móveis rápidas, seguras e altamente escaláveis. A plataforma abrange todas as
etapas do ciclo de vida das aplicações, com ambientes de desenvolvimento e im-
plementação [5]. O programador interage com estes para criar as suas aplicações
na linguagem OutSystems que são posteriormente compiladas e implementadas
no servidor da plataforma.

87

Composição e customização num modelo de componentes 5

O Service Studio é o ambiente de desenvolvimento em que os programadores
criam a interface de utilizador das suas aplicações ao arrastar e soltar elementos
visuais numa tela. Para garantir o desempenho, o ambiente desloca o trabalho
do programador para o Platform Server, enviando uma versão compactada da
aplicação [5]. O Platform Server lida com todas as tarefas relacionadas à com-
pilação e à distribuição de aplicações. Gera, otimiza, compila e implementa um
aplicação OutSystems num servidor de aplicações web padrão.

2.1 Espaço de trabalho

Os módulos do Service Studio permitem estruturar aplicações em partes com fi-
nalidades diferentes. A área do editor tem várias consolas diferentes, que ajudam
a editar a tela, conforme a Figura 3.

Figura 3: Espaço de trabalho do Service Studio
1: Caixa de ferramentas de widgets 2: Tela 3: Árvore de widgets

A tela é onde a visualização do módulo acontece e, em tempo real, mostra
o aspecto de um ecrã ou web block. Aqui, é mostrado como os widgets serão
renderizados no produto final, tal como é possível interagir para se adicionar ou
remover elementos e selecionar cada um apresentado na tela para editar as suas
propriedades.

À direita, a área da árvore pode mostrar a interface do módulo (lógica da
aplicação) ou a composição de uma tela. Quando um elemento visual é seleci-
onado, a área das propriedades aparece abaixo da árvore de elementos, onde o
programador pode editá-las.

Os ecrãs são as páginas da interface de utilizador com as quais os utilizado-
res finais interagem. Estes podem ser compostos por widgets ou web blocks. A
composição é uma árvore de elementos, semelhante à estrutura de uma markup
language, que pode ser alterada ao arrastar componentes de dentro ou fora de
outros escopos de componentes. Também podem ter as suas ações (lógica que
pode ser ativada pelo utilizador), parâmetros de entrada e variáveis locais.

A caixa de ferramentas de widgets contém todos os blocos de construção
nativos fornecidos pelo Service Studio. Assim, para criar um formulário num

88

6 J. Gonçalves et al.

ecrã, o programador arrasta o widget Formulário para a tela e preenche as pro-
priedades obrigatórias para que este funcione. O widget Input permite que os
programadores estendam os formulários ainda mais com mais um espaço para
os utilizadores finais preencherem. Este, como os outros, também tem as suas
propriedades, que podem ser runTimeProperies, propriedades que são apenas
avaliadas ao correr a versão compilada, ou designTimeProperties, propriedades
simples que determinam como o widget será renderizado na tela e na versão final.

Para criar conjuntos de widgets reutilizáveis (podem ser usados mais que uma
vez em ecrãs e contextos diferentes) existem os web blocks. Tal como um ecrã,
um web block pode ter as suas próprias ações, lógica, parâmetros de entrada e
saída, e variáveis locais. Os web blocks podem encapsular vários widgets, o que
significa que podem ser widgets nativos ou outros web blocks. Ao selecionar uma
instância de um web block, o programador não tem acesso aos seus componentes.

Os widgets nativos permitem que os programadores acedam e modifiquem
as suas propriedades, tal como numa linguagem de programação textual. A cus-
tomização dentro de um ecrã ou num web block é a mesma: os programadores
podem aceder às mesmas propriedades nas duas situações. Numa aplicação com
várias instâncias do mesmo web block, existe a necessidade de customizar de
maneira diferente cada uma , de acordo com o contexto em que se inserem. No
entanto, o acesso aos componentes internos é restrito pela plataforma.

Existem alternativas para resolver este problema, mas implicam vários com-
promissos. A duplicação de web blocks oferece implementações mais rápidas, mas
muito tempo é desperdiçado cada vez que o programador alterar um dos dupli-
cados, pois terá que alterar todos os outros para manter a consistência. Usar
parâmetros de entrada garante reusabilidade, mas também é demoroso tornar
todas as propriedades customizáveis. Como estes são apenas avaliados em run
time, a pré-visualização instantânea é comprometida. Por fim, as folhas de estilo
permitem customizar web blocks muito rapidamente e com uma pré-visualização
fiel às alterações, mas para além de necessitarem de conhecimento especializado,
apenas funcionam na customização do estilo.

3 Modelo proposto

O modelo de composição proposto neste trabalho é uma adaptação do já exis-
tente na plataforma OutSystems. Esta usa a biblioteca React [3] para compilação
de widgets, web blocks e ecrãs para componentes React. Nas Listagens 1.1 e 1.3
apresenta-se de forma resumida o resultado da compilação da aplicação descrita
na Secção 1. O componente App representa o ecrã na Figura 2. Este ecrã usa o
componente Address. Os dados são mantidos no escopo da App (Listagem 1.3
linhas 3-7) e são passados ao Address como estado (variáveis) (Listagem 1.3 li-
nha 12). O estado é recebido por Address (Listagem 1.1 linha 7) e é associado a
uma variável no seu escopo (Listagem 1.1 linha 9), que por sua vez é associado
ao elemento Input relativo ao código postal (Listagem 1.1 linha 16).

No contexto de um editor puramente textual, a customização de cada com-
ponente é feita através da introdução de novas propriedades pelo próprio pro-

89

Composição e customização num modelo de componentes 7

gramador. No entanto, no contexto de um editor visual é necessário represen-
tar de forma estruturada e explícita quais as propriedades sujeitas a possíveis
customizações, por forma a que o editor reconheça quais deve permitir que o
programador possa ver e editar.

1 export interface AddressState {
2 name: string ,
3 street: string ,
4 zipCode: string
5 }
6
7 export function Address (state: AddressState): JSX.Element {
8 (...)
9 const [zipCode , setZipCode] = useState(state.zipCode);

10 (...)
11 return (
12 <form >
13 (...)
14 <div >
15 ZipCode
16 <input id="zipCode" value ={ zipCode}
17 onChange ={ handleZipCodeChange} />
18 </div >
19 (...)
20 </form >
21);
22 }

Listagem 1.1: O Componente Address com o hook zipCode que é instanciado
com o parâmetro passado no estado.

1 export interface AddressProps {
2 customizedWidgets: {
3 zipCode?: {
4 maxLength?: number
5 }
6 };
7 }
8 (...)
9 export function Address (state: AddressState): JSX.Element {

10 (...)
11 const [zipCode , setZipCode] = useState(state.zipCode);
12 (...)
13 return (
14 <form >
15 (...)
16 <div >
17 ZipCode
18 <input id="zipCode"
19 maxLength ={(
20 props.customizedWidgets != null and
21 props.customizedWidgets.zipCode != null and
22 props.customizedWidgets.zipCode.maxLength) or 5
23 value ={ zipCode}
24 onChange ={ handleZipCodeChange} />
25 </div >
26 (...)
27 </form >
28);
29 }

Listagem 1.2: O Componente Address adaptado ao novo modelo.

Na nossa proposta tal é feito através da inclusão de um subelemento (custo-
mizedWidgets) nas props do componente. Ao seguirmos esta convenção estamos

90

8 J. Gonçalves et al.

a indicar ao editor gráfico quais as widgets e propriedades que podem ser editadas
para uma instância de um web block. Na Listagem 1.2 ilustram-se as alterações
no componente Address: é declarada uma nova estrutura para albergar a nova
informação (AddressProps) (linhas 1-7). A propriedade a modificar é o limite de
caracteres aceites pelo elemento Input (maxLength), sendo opcional fornecer um
valor alternativo para a propriedade (linhas 20-22). O próximo passo é associar
estes novos campos aos elementos correspondentes. Para isto, são necessárias
verificações para determinar se os novos campos estão preenchidos. Note-se, que
não se perdeu o valor default 5 , que será atribuído caso maxLength não esteja
populado.

No componente App na Listagem 1.4, um novo objeto props é instanciado
sob o tipo AddressProps para transmitir a customização ao Address (linhas 3-9).
Se o tipo AddressProps não tiver certos parâmetros (e.g., size do Input), estes
não são customizáveis, introduzindo um controle sobre que propriedades podem
ser alteradas pelo exterior.

1 const App: React.FC = () => {
2
3 const state : AddressState {
4 name :"Joao Goncalves",
5 street :"Rua Sem Nome",
6 zipCode :"2222 -222"
7 };
8
9 return (

10 <div >
11 <header >
12 <Address {... state}/>
13 </header >
14 </div >
15);
16 };

Listagem 1.3: O Componente App que instancia o componente Address com o
estado state.

1 const App: React.FC = () => {
2 (...)
3 const props : AddressProps = {
4 customizedWidgets :{
5 zipCode :{
6 maxLength :10
7 }
8 }
9 };

10
11 return (
12 <div className="App">
13 <header className="App -header">
14 <Address {... state} {...props}/>
15 </header >
16 </div >
17);
18 };

Listagem 1.4: O Componente App adaptado ao novo modelo.

91

Composição e customização num modelo de componentes 9

3.1 Alterações ao modelo da OutSystems

O modelo proposto na secção anterior é um produto do modelo de composição
que nós adaptámos na linguagem da OutSystems. Neste modelo, os web blocks
têm uma classe que os define, e outra para a sua instância.

Figura 4: Novo modelo para a definição de blocos reutilizáveis.

Na classe que define um web block foi adicionada uma coleção a indicar que
propriedades podem ser customizadas pelo exterior (Customizable Widgets, Fi-
gura 4) - apenas as propriedades presentes podem ser alteradas. Aqui guarda-se
uma nova estrutura, CustomizableWidget, que guarda as propriedades customi-
záveis - apenas o nome é necessário - e o widget pai, para efeitos de procura.

Figura 5: Novo modelo para a instanciação de blocos reutilizáveis.

A instância do web block tem propriedades distintas de outras instâncias
do mesmo web block, pelo que tem a sua própria classe para representá-la. No
entanto, a representação visual da composição é mantida na definição, sendo
necessário guardar os valores para customização na instância. Nesta, introduziu-
se a coleção Customized Widgets (Figura 5) que guarda os widgets a customizar
e as respetivas alterações do programador.

Neste momento, o modelo está preparado para design-time properties, mas
não para runtime properties, porque a customização é guardada como string.
Como próximo passo, pretendemos usar expressões, para estender a customiza-
ção a todas as propriedades. Desta forma também seria possível introduzir de-
pendências entre widgets. Este problema é interessante, porque a passagem de

92

10 J. Gonçalves et al.

informação entre componentes cria novas oportunidades: um componente her-
dar propriedades de outro automaticamente (e.g., largura); um programador ter
acesso ao modelo de dados de um componente e poder inseri-lo noutro (e.g., um
componente partilhar o acesso aos dados de um utilizador a outro componente
diminuiria acessos redundantes).

4 Interação com o modelo

Definidas as novas estruturas para que a customização seja permitida pelo mo-
delo de composição, a geração das representações visuais foi alterada. Tal como
na Listagem 1.2, as estruturas são verificadas por potenciais customizações.

A interação no Service Studio opera segundo uma arquitetura Model-View-
Presenter (Figura 6), em que o programador interage com a tela (view), que
despoleta um evento, evento esse que é subscrito pelo presenter, que usa um
comando para modificar o model. O presenter usa um contador de gerações
para atualizar as partes da tela desatualizadas: uma alteração num objeto do
modelo incrementa o contador correspondente que faz com que a tela seja atu-
alizada. Assim, foram criados comandos para tornar as propriedades de widgets
customizáveis em web blocks, tal como customizar certas propriedades de certas
instâncias. Neste momento, conseguimos apenas tornar todas as propriedades de
todos os widgets customizáveis e alterar uma propriedade num dado widget de
um dado web block.

Para que as representações visuais das partes customizadas sejam atualiza-
das, foi necessário que as novas estruturas introduzidas no modelo incrementas-
sem o contador respetivo no presenter. O passo seguinte foi alterar o HtmlGenera-
tor, responsável por gerar o código HTML mostrado na tela, para o programador
obter uma representação visual fiel às suas alterações. Ao verificar cada widget
que compõe um web block, são procuradas possíveis customizações nas novas
estruturas. Se houver, a propriedade correspondente recebe a customização em
vez do valor default.

Figura 6: Linha do tempo quando o programador altera um widget.

93

Composição e customização num modelo de componentes 11

5 Compilação

Tendo em conta que nenhum dos widgets foi alterado, só em run time é que é
possível associar os valores do novo modelo às representações visuais de cada
componente. Assim, após criar as novas estruturas, o compilador foi adaptado
para ser compatível com o novo modelo, pelo que é necessário verificar se exis-
tem customizações pendentes e gerar um modelo semelhante ao apresentado na
Secção 1, para que em run time se possa escolher qual dos valores é usado: o
valor novo ou o default.

As alterações consistiram em criar interfaces que unissem as estruturas usa-
das no Service Studio às do compilador, de forma a que fosse possível aceder às
novas coleções criadas. De seguida, o gerador de código JavaScript foi alterado
para procurar por propriedades customizáveis - caso o sejam, é gerado código
semelhante ao apresentado na Listagem 1.2, que verifica se de facto existem cus-
tomizações a serem transmitidas ao web block - e por customizações pendentes,
onde é gerado código semelhante à Listagem 1.4.

6 Trabalho relacionado

O trabalho aqui realizado consiste em uniformizar uma linguagem visual para
que esta não seja apenas mais fácil de usar, mas também atinja os níveis mais
altos de qualidade. O suporte para a variabilidade no desenvolvimento de inter-
faces de utilizador é importante, porque permite criar produtos mais específicos
às necessidades do utilizador. A customização de interfaces de utilizador ajuda,
neste aspeto, a criar produtos com mais valor. Tendo em conta que a customi-
zação de widgets é manualmente inserida pelo programador, a customização de
composições deve seguir a mesma regra, para que todos os casos de uso con-
tinuem a ser possíveis. Para isto, usámos o paradigma da parametrização para
transmitir os novos valores às propriedades dos widgets a customizar.

Usar parametrização como base para resolver o problema aqui apresentado
não é novo. Lizcano et al [6] introduziram um modelo de composição para com-
ponentes de interface de utilizador seguindo um paradigma de parametrização.
As vistas dos componentes são black-box, pelo que futuras modificações apenas
poderão ser feitas através de parâmetros. Assim, é aconselhado criar componen-
tes já preparados para eventuais customizações.

De igual forma, Pleuss et al [7] introduzem um novo conceito, Família UI,
que consiste em ecrãs completos para responder aos requisitos dos utilizado-
res, que tendem a usar ecrãs semelhantes nas suas aplicações. Mas, utilizadores
podem requisitar casos de uso imprevistos pela implementação da interface de
utilizador. Neste caso, é necessário que o utilizador introduza a customização
manualmente. Para isto, Pleuss et al usam modelos associados à interface de
utilizador para a customizar. Apesar da motivação ser diferente – customização
de ecrãs em vez de conjuntos de widgets –, os conceitos são os mesmos com
os que são apresentados neste trabalho: são adicionados novos modelos onde se
pode guardar a customização que o programador pretende fazer ao objeto, quer
seja um ecrã ou um bloco.

94

12 J. Gonçalves et al.

7 Conclusões e trabalho futuro

Este trabalho apresenta um novo modelo de composição inspirado no modelo
presente da plataforma OutSystems. O novo modelo permitirá um desenvolvi-
mento de aplicações ainda mais rápido do que o atual, graças a uma interação
mais uniforme que oferece ao programador o poder de customizar as suas pró-
prias composições de widgets. O protótipo resultante prova que é possível cus-
tomizar componentes dentro de uma composição através de um paradigma de
parametrização, sem comprometer a pré-visualização das alterações e sem perder
a unicidade da definição de um bloco.

Como trabalho futuro, é esperado construir uma interação mais compreen-
siva, atendendo às necessidades dos criadores e utilizadores de composições, para
que seja possível determinar que propriedades são customizáveis e customizar
apenas as propriedades que o são, havendo um controle assegurado não só pelos
criadores mas como pela plataforma. Para além disto, customizações com run-
TimeProperties permitiriam situações interessantes a explorar, como discutido
na Secção 2.

Referências

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

2. Oscar Nierstrasz and Dennis Tsichritzis (Eds.). 1995. Object-Oriented Software
Composition. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK.

3. React – A JavaScript library for building user interfaces, URL: https://reactjs.
org/ (visitado em 2019-07-11).

4. John R. Rymer, The Forrester WaveTM: Low-Code Development Platforms For
AD&D Pros, Q4 2017, URL: https://www.outsystems.com/low-code-platforms
(visitado em 2019-07-11).

5. OutSystems tools and components - OutSystems, URL: https://success.
outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_
and_components (visitado em 2019-07-11).

6. David Lizcano, Fernando Alonso, Javier Soriano, and Genoveva López. 2011. A new
end-user composition model to empower knowledge workers to develop rich internet
applications. J. Web Eng. 10, 3 (September 2011), 197-233.

7. Andreas Pleuss, Stefan Wollny, and Goetz Botterweck. 2013. Model-driven deve-
lopment and evolution of customized user interfaces. In Proc. 5th ACM SIGCHI
symposium on Engineering interactive computing systems (EICS ’13). ACM, New
York, NY, USA, 13-22.

95

	Contents
	List of Figures
	List of Tables
	Listings
	Glossary
	Acronyms
	Introduction
	Context
	Motivation
	Objectives
	Contributions
	Structure

	Background
	Component-Oriented Programming
	Motivation
	Component Characteristics
	Comparison with OOP

	Composition
	Views
	Categories

	Compositions in OutSystems
	OutSystems Platform
	Service Studio
	Platform Server

	Workspace
	Actions
	Screens
	Widgets
	Web Blocks

	Web Block Customization
	Input Parameters
	CSS Styling
	Duplication
	Comparison between Workarounds

	Related work
	Composition Models
	UI Families
	Customization by input

	Composition in Visual Languages

	New Composition model
	Current model
	Widgets
	Web Blocks
	Web Block Instances

	Enabling customization
	Requirements
	New Model

	Model comparison
	Summary

	Implementation
	Architecture
	Model
	View
	Presenter

	Compiler

	Evaluation
	Usability Testing
	Solution comparison
	Analysis methodology
	OutSystemsUI
	Examples
	Comparison

	Conclusions
	Bibliography
	Proof of concept
	Usability Testing: Script
	Usability Testing: Results
	Solution Comparison: Results
	Short article

