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Abstract

Background: Renal neoplasms encompass a variety of malignant and benign tumors, including many with shared
characteristics. The diagnosis of these renal neoplasms remains challenging with currently available tools. In this
work, we demonstrate the total protein approach (TPA) based on high-resolution mass spectrometry (MS) as a tool
to improve the accuracy of renal neoplasm diagnosis.

Methods: Frozen tissue biopsies of human renal tissues [clear cell renal cell carcinoma (n = 7), papillary renal cell
carcinoma (n = 5), chromophobe renal cell carcinoma (n = 5), and renal oncocytoma (n = 5)] were collected for
proteome analysis. Normal adjacent renal tissue (NAT, n = 5) was used as a control. Proteins were extracted and
digested using trypsin, and the digested proteomes were analyzed by label-free high-resolution MS (nanoLC-ESI-
HR-MS/MS). Quantitative analysis was performed by comparison between protein abundances of tumors and NAT
specimens, and the label-free and standard-free TPA was used to obtain absolute protein concentrations.

Results: A total of 205 differentially expressed proteins with the potential to distinguish the renal neoplasms were
found. Of these proteins, a TPA-based panel of 24, including known and new biomarkers, was selected as the best
candidates to differentiate the neoplasms. As proof of concept, the diagnostic potential of PLIN2, TUBB3, LAMP1,
and HK1 was validated using semi-quantitative immunohistochemistry with a total of 128 samples assessed on
tissue micro-arrays.

Conclusions: We demonstrate the utility of combining high-resolution MS and the TPA as potential new diagnostic
tool in the pathology of renal neoplasms. A similar TPA approach may be implemented in any cancer study with
solid biopsies.
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Background
The diagnosis of oncocytic renal neoplasms is a challen-
ging task with currently available immunohistochemical
(IHC) markers. Differential diagnosis includes an eosino-
philic variant of clear cell renal cell carcinoma (ccRCC)
with the worst prognosis at one extreme and benign
renal oncocytoma (RO) at the other extreme [1].
Although some morphological clues help to subclassify
these tumors, many oncocytic neoplasms fall under the
umbrella of unclassified renal cell carcinomas [2]. The
advent of high-resolution mass spectrometry (MS) and
advanced software has led to the discovery of novel pro-
tein biomarkers for different cancer types including renal
carcinomas. However, progress in the discovery of novel
biomarkers has been slow with the recent 2016 WHO
classification introducing few new entities [3].
MS-based proteomics has become a valuable approach

to identify, quantify, and characterize large numbers of
proteins in solid and liquid biopsies. The application of
MS techniques in determining the presence of amyloid
fibril protein in amyloidotic tissues was demonstrated by
Gilbertson et al. [4] in a blinded comparison with IHC.
Overall, there was significant concordance between the
two techniques, but the MS-based approach achieved
94% accuracy, while the diagnostic accuracy of the IHC-
based approach was lower at 76%. In MS-based proteo-
mics, label-free approaches are proving advantageous be-
cause when labels are not used, there is (i) no limitation
to the number of experiments that can be compared, (ii)
higher dynamic range of quantification, and (iii) fewer
time-consuming steps are needed [5]. Indeed, significant
changes can be rapidly measured across an entire prote-
ome and compared in a large cohort of samples. The
total protein approach (TPA) is a label-free method that
does not require the inclusion of standards either, which
measures the absolute amounts of proteins in the sample
to deliver large-scale proteomic datasets [6]. TPA has
been applied previously to study human colorectal can-
cer, hepatocyte proteome, and the effects of high-fat diet
in mice small intestine mucosa, demonstrating the ac-
curacy and utility of the method [7–9].
In deciphering the molecular landscape of renal cell

carcinomas (RCCs), many gel-based MS proteomic
studies using label-free quantification (LFQ) have
already been reported [10]. One of the early studies
that outlined differences in protein levels among dif-
ferent RCC subtypes was carried out by Valera et al.
[11] using two-dimensional gel electrophoresis with
MS. With advances in MS technology, the conven-
tional gel-based proteomic approaches have been re-
placed by gel-free strategies, including label-based
quantitative studies to evaluate differential expression
among proteins [12–14]. High-resolution MS has
since been used with LFQ to interrogate the

proteome of RCC subtypes [15–17]. The most fre-
quent tumor subtype ccRCC is also the most investi-
gated histological subtype [10]. Despite similarities in
the histological features of RCC subtypes, there is ex-
tensive molecular heterogeneity among renal neo-
plasms, and additional biomarkers are needed for
comprehensive subtyping.
Advanced-stage renal carcinomas carry a dismal prog-

nosis. Novel methodologies and biomarkers to diagnose
these neoplasms in a timely fashion are urgently needed.
In this work, we used the TPA to determine the charac-
teristic concentration ranges of a panel of specifically
expressed proteins to diagnose different renal neoplasms
effectively. A few representative novel biomarkers were
validated using IHC on tissue samples.

Methods
Study design and sampling
The present work utilized the TPA approach via high-
resolution mass spectrometry to analyze the proteomes
of 27 flash-frozen, OCT-embedded, human renal tissue
biopsies from ccRCC (n = 7), papillary renal cell carcin-
oma (pRCC, n = 5), chromophobe renal cell carcinoma
(chRCC, n = 5), and renal oncocytoma (RO, n = 5) and
“treatment naïve” normal adjacent tissue (NAT, n = 5).
To validate the results, IHC analysis was assessed with
128 tissue samples using tissue micro-arrays (TMAs).
The samples were collected at the University of Pitts-
burgh Biospecimen Core and the study was approved by
the Institutional Review Board at the University of Pitts-
burgh (IRB # 02-077). All neoplasms contained a mini-
mum of 85% tumor cells. Data of patients enrolled in
this study are summarized in additional file 1: Table S1.

Proteomic analysis
Biopsies were handled as described in Jorge et al. [18].
Briefly, tissues were first cleaned of optimal cutting
temperature (OCT) compound and then proteins were
extracted with the aid of an ultrasonic bath (model TI-
H-5 from Elma, Singen, Germany) and an ultrasonic
probe (UP50H from Hielscher Ultrasonics, Teltow,
Germany), respectively. Next, protein digestion was car-
ried out over 4 min using an ultrasonic microplate horn
assembly device (QSonica, Newtown, CT, USA). The ex-
tracts containing the digested proteomes were subse-
quently analyzed by a label-free nanoLC-ESI-HR-MS/
MS approach (UHR-QqTOF IMPACT HD from Bruker
Daltonics, Bremen, Germany).
The mass spectrometry proteomics data have been de-

posited to the ProteomeXchange Consortium via the
PRIDE [19] partner repository with the dataset identifier
PXD023296.
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Immunohistochemistry assay using tissue micro-arrays
TMAs were constructed as an orthogonal validation for
TPA results using 4 classifications of ccRCC (n = 40),
pRCC (n = 26), chRCC (n = 12), RO (n = 30), and
treatment-naïve normal renal tissue (NAT: n = 20). The
most differentially expressed proteins for each subtype
detected via TPA were selected for validation using
TMAs, e.g., perilipin-2 (PLIN2), beta-tubulin III,
lysosomal-associated membrane protein-1 (LAMP1), and
hexokinase-1 (HK1).
The standard histology deparaffinization protocol was

followed for the 4 μm section of paraffin embedded tis-
sue micro-array slides that were used for staining. Differ-
ent controls included on the TMA slide sections include
lung, colon, brain, liver, prostate tissue, and kidney (add-
itional file 2: Fig. S1). Primary antibodies used for IHC
include mouse monoclonal antibodies (clone 2C5A3,
Abcam) for PLIN2 protein and (clone 2G10, Abcam) for
beta-tubulin III and rabbit mono-clonal antibodies
(clone EPR10134(B), Abcam) for HK1 protein and (clone
EPR4204, Abcam) for LAMP1. Further clone details can
be found in additional file 3: Table S2. Antigen retrieval
was done using a Decloaking chamber (Biocare Medical,
Pacheco, CA) at 120 °C for 2 min with citrate buffer at
pH 6.0 (Cell Signaling, Danvers MA). The Envision Dual
Link + (DAKO, Carpinteria, CA) was used for detection
and visualization was done using 3,3 Diaminobenzidine
(DAB) (DAKO). Sections were counterstained with
hematoxylin (Cell Signaling) for 5 min, followed by de-
hydration in ascending alcohol concentrations and xy-
lene followed by glass coverslipping. For PLIN2,
membranous or droplet-like staining of any intensity
was considered as positive. Percent positivity of tumor
cells was scored as (0 = negative; 1:1–10%; 2: > 10–50%;
3: > 50%). Cytoplasmic or membranous staining for
beta-tubulin III was considered as positive and scored as
(0 = negative; 1:1–10%; 2: > 10–50%; 3: > 50% cells
showing positive staining). For HK1 and LAMP1, granu-
lar cytoplasmic staining of any intensity was considered
as positive. For HK1, granules were scored as (0 = nega-
tive, 1 = focal/few, 2 = moderate, 3 = abundant) and for
LAMP1 as (0 = negative; D = diffuse, A = apical, F =
focal). All TMA cores were scored by one pathologist,
and average was taken to give a final score.
The sensitivity, specificity, positive predictive values,

and negative predictive values were calculated for IHC
biomarkers using a contingency table model (additional
file 4: Table S3).

Data analysis and statistics
Relative label-free quantification was carried out using
MaxQuant software V1.6.0.16. All raw files were proc-
essed in a single run using defaults settings [20, 21].
Database searches were performed using Andromeda

search engine with the UniProt-SwissProt Human data-
base as a reference and a database of common contami-
nants. Data processing was performed using Perseus
V1.6.5.0 with default settings [22, 23]. In brief, reverse
hits, and proteins only identified by site were removed
from the protein list and normalized spectral protein
(label-free quantification/LFQ) intensities were log2-
transformed to reduce the effect of outliers. Protein
groups were filtered based on a minimum presence of
70% in at least one group. Pearson correlation was per-
formed on filtered LFQ values. Missing LFQ values were
imputed through generation of random numbers that
were drawn from a normal distribution (width = 0.5 and
down shift = 1.8). PCA was performed on the filtered
and imputed LFQ intensity data. Log ratios were calcu-
lated as the difference in average log2 LFQ intensity
values between the two conditions tested in volcano
plots (two-tailed Student’s t test, FDR = 0.01 and S0 =
0.1). Differential expression analysis was performed on
z-scored log2 LFQ intensities through a multiple-sample
test (ANOVA test with a 1% of permutation-based FDR
filter and preserving randomization for technical repli-
cates). Unsupervised hierarchical clustering was per-
formed based on Euclidean distance.
Absolute protein quantification was calculated using

the total protein approach (TPA) using raw spectral in-
tensities from MaxQuant output [24]. Briefly, protein
concentration was calculated as follows:

c ið Þ ¼ MS signal ið Þ
total MS signal xMW ið Þ

mol
g total protein

� �

Results
Renal samples
Solid tumor biopsies were obtained from 22 patients di-
agnosed respectively with clear cell renal cell carcinoma
(ccRCC, n = 7), papillary renal cell carcinoma (pRCC, n
= 5), chromophobe renal cell carcinoma (chRCC, n = 5),
and renal oncocytoma (RO, n = 5) as summarized in
additional file 1: Table S1. The proteomes of a total of
27 human tissue specimens, 22 from the diagnosed renal
neoplasms described above and 5 from normal adjacent
renal tissue (NAT), were interrogated by high-resolution
MS. The NAT samples (n = 5) were used as controls to
determine the extent and profile of protein expression
deregulation in each tumor subtype.

Proteomics analysis
Liquid chromatography coupled to tandem mass spec-
trometry (nanoLC-ESI-HR-MS/MS) was used to analyze
the tissue biopsies in duplicate resulting in 54 LC-MS/
MS runs. The correlation between readouts from tech-
nical and biological replicates in each sample group was
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tabulated, an indication of the level of reproducibility
(Fig. 1A). The Pearson correlation coefficients ranged
from 0.65 to 0.97. It is noteworthy that the correlation
coefficients of technical replicates (for the LC-ESI-HR-
MS/MS step) are higher than 0.94 for all the tumor sub-
types studied. In terms of biological variability (between
samples of the same subtype), the pRCC samples were
the least homogeneous, which is consistent with the
well-known characteristics of this cancer subtype [25]. A
total of 2547 proteins were identified across all tissue bi-
opsies and the statistics summarizing the number of
proteins identified in each tumor subtype are shown in
Fig. 1B. To ensure the robustness of the quantification
method, only the identified proteins with a reproducibil-
ity higher than 70% in at least one tumor subtype were

considered for further analysis. A set of 1234 proteins
fulfilled this criterion, and they were used in the follow-
ing quantification step.

Protein quantification
Relative quantification of the selected set of 1234 pro-
teins was done by LFQ using MaxQuant software [21].
The LFQ values of the dataset of proteins are summa-
rized in additional file 5: Table S6. Principal component
analysis (PCA) of the data from all samples was done to
find possible correlation (Fig. 1C). According to the
principal components underlying the variation in the
data, all tumor proteomes are clearly differentiated from
the NAT proteome and from other RCC subtypes.

Fig. 1 Statistical analysis of renal tissue proteome data. A Pearson correlation coefficients between biological and technical replicates for each
tumor subtype and the normal adjacent tissue (NAT) control. For example, 1.1 and 1.2 correspond to sample 1 replicate 1 and replicate 2,
respectively. B Numbers of proteins identified for each tumor subtype and NAT. C Principal component analysis using the set of 1234 proteins
selected for quantification (see text for details). D Distribution of TPA-based protein concentrations (pmol of protein per mg of total protein)
highlighting proteins described in the literature as potential ccRCC markers (red dots, proteins are listed in additional file 6: Table S5). Subtypes:
ccRCC, clear cell renal cell carcinoma; pRCC, papillary renal cell carcinoma; chRCC, chromophobe renal cell carcinoma; RO, renal oncocytoma
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Absolute amounts of proteins were calculated based
on raw intensities in the mass spectra using the TPA
method [24]. The dynamic range of protein abundances
measured in this study span approximately seven orders
of magnitude (Fig. 1D). This is consistent with previous
studies using the TPA approach to interrogate solid
biopsies [7].

Label-free MS-based protein profiles
To assess which of the selected set of 1234 proteins are
significantly upregulated or downregulated in each
tumor type, a multi-sample test (ANOVA with a filter
for permutation-based false detection rate < 1%) was ap-
plied. Expression levels of 850 proteins were found to be
statistically different between sample groups. As shown
in Fig. 2A, the unsupervised clustering analysis per-
formed on differentially expressed proteins clearly di-
vided the samples into two groups, one comprising
ccRCC and pRCC and the other comprising chRCC, RO
and NAT.
Among the 850 proteins defined as being differentially

expressed, biomarkers were sought that could potentially
be used to differentiate between each tumor type. A
schematic representation of the workflow for candidate
biomarker selection is shown in Fig. 2B. The comparison
of protein abundances between sample groups revealed
a set of 205 proteins that distinguished each tumor sub-
type (ANOVA, p < 0.01). These proteins form potential
biomarker panels comprising 81 proteins for ccRCC, 60
for pRCC, 25 for chRCC, and 39 for RO (additional file
5: Table S4).

TPA-based concentration range of diagnostic proteins
Next, the TPA method was used to transform the raw
spectral intensity values of the four protein panels (Fig.
2B), converting them into absolute concentration values
(additional file 6: Table S5). For each tumor subtype, we
selected the 6 proteins with the largest differences in
concentration levels (Fig. 2C).

Evaluating the TPA-based results against published data
As proof of concept, unique proteins identified in ccRCC
using the TPA-based method were compared with pro-
teins already described in the literature as characterizing
ccRCC. Approximately 90 proteins have been described
as putative diagnostic markers of the ccRCC subtypes in
the current literature, and 46 of them were detected in
our analysis (Table 1). Other proteins described as puta-
tive biomarkers in the literature were also found in our
intermediate datasets, but the differential expression of
those proteins was not considered to be statistically
significant according to our threshold.
Statistical analysis on 12 of the 46 proteins is pre-

sented here (Fig. 3), but all 46 were analyzed in the

same way (additional file 8 Fig. S3 and additional file
9: Fig S4). The 12 proteins are presented in three
groups to demonstrate their discriminatory potential.
First, TYMP, PLIN2, CORO1A, and NNMT are bio-
markers that can differentiate ccRCC from all other
subtypes and NAT (Fig. 3A). Second, candidate pro-
teins to distinguish ccRCC from NAT but not neces-
sarily from other subtypes are CALB1, ENO1, HSPB1,
and S100A11 (Fig. 3B). The reported concentrations
of the most widely used IHC markers to diagnose
and distinguish between ccRCC and pRCC, namely
CA9, AMACR, VIM, and KRT7, are also presented
for comparison (Fig. 3C).

IHC validation of four TPA-derived markers for renal
neoplasm subtypes
Both the TPA and datamining results indicated that
perilipin-2 (PLIN2) was a potential biomarker to distin-
guish ccRCC from pRCC, chRCC, and RO (Fig. 2C and
Fig. 3A). When an IHC method was used to test for the
presence of PLIN2 on renal TMAs, the majority of the
ccRCC samples tested were positive for PLIN2 whereas
pRCC, chRCC, and RO samples were negative (Fig. 4).
Benign kidney tissue was also negative for PLIN2 (data
not shown). When PLIN2 stained more than 10% of cells
in a sample (scored as 2 or 3), 90% of ccRCC cases were
detected with a 100% specificity distinguishing ccRCC
from other renal neoplasms. By comparison, beta-
tubulin III (TUBB3), a potential biomarker for pRCC
(Fig. 2C), showed variable IHC staining in pRCC with
half of cases being more than 10% positive, but staining
was negative in all ccRCC and less than 10% positive in
all chRCC and RO. Benign kidney tissue showed focal
staining of TUBB3 in tubules (data not shown). By set-
ting a staining score cutoff > 2 (equivalent to > 10% of
cells staining positive) for TUBB3, this biomarker has a
sensitivity of 53.8% and a specificity of 100% in distin-
guishing pRCC from other renal neoplasms (Fig. 4).
Staining for lysosomal associated membrane protein 1
(LAMP1), a candidate in the chRCC biomarker panel,
was diffuse in chRCCs, apical or focal in ROs, and nega-
tive in other subtypes. Diffuse LAMP1 staining thus has
a sensitivity of 91.7% and specificity of 100% to distin-
guish chRCC from other renal neoplasms. IHC staining
for hexokinase 1 (HK1) was positive and diffuse in most
ROs (Fig. 2C and Fig. 4). By setting a cutoff score above
2 and > 90% cell positivity, HK1 has a sensitivity of
96.7% as a biomarker with a specificity of 98.7% in
distinguishing ROs from other renal neoplasms (Fig.
4). Both HK1 and LAMP1 markers showed variable
positivity in normal kidney tubules (data not shown)
and were negative in most ccRCCs and pRCCs
(Fig. 4).
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Fig. 2 (See legend on next page.)

Jorge et al. BMC Medicine          (2021) 19:196 Page 6 of 13



Discussion
Timely diagnosis is needed for early intervention in
treating patients with advanced-stage renal carcinomas.
TNM stage, tumor subtype, and grade are among the
most important prognostic factors. The absence of com-
prehensive prognostic biomarkers limits current diag-
nostic and prognostic models emphasizing the need to
validate novel diagnostic, prognostic, and therapeutic
biomarkers for renal neoplasms [45]. There is increasing
evidence that renal neoplasms represent a group of his-
tologically and molecularly heterogeneous diseases, even
within the same histological subtype [46]. Many molecu-
lar markers identified in different renal neoplasms cur-
rently lack validation studies to allow their use in
routine diagnostic use. Here, we interrogated 27 renal
proteomes comprising four common histological neo-
plasm subtypes using the TPA method.
Our study showed that MS data obtained with LFQ

in biological and technical replicates was of excellent
quality, with the similarity of technical replicates ex-
ceeding 97%. Our data indicated that pRCC pro-
teomes presented the highest biological variability
between biopsies, while NAT proteomes were the
most homogeneous as expected. It is indeed recog-
nized that pRCC displays a morphological pattern
shared by several different types of renal cell carcin-
omas [47]. The PCA and cluster analysis indicated
that the proteomes of the ccRCC and pRCC subtypes
are more similar to each other than to either the
chRCC or RO proteomes (Fig. 1C and Fig. 2A). These
results likely reflect the different cellular origins of
ccRCC and pRCC which originate from proximal tu-
bule cells, while chRCC and RO originate from inter-
calated cells of the distal nephron and collecting
ducts [48]. Interestingly, the benign subtype, RO,
more closely resembled NAT than any other subtype,
consistent with its clinical outcome (Fig. 2A).
The use of LFQ-based values from MS results allowed

us to identify a total of 850 proteins that are differen-
tially expressed between groups. Further analyses of
these 850 proteins, using the TPA-based concentrations
and statistics, narrowed down a number of proteins that
specifically identify each renal neoplasm subtype versus
all other subtypes and NAT. Large sets of protein panels
present in all tumor subtypes discriminate each tumor
subtype because the range of concentrations of these

proteins are unique, and this information can be used to
classify biopsies.
As a proof of concept, we have compared the 81 pro-

teins found as unique for ccRCC with those reported in
the literature. Remarkably, 46 of our suggested bio-
markers have been described previously. For instance,
thymidine phosphorylase (TYMP), PLIN2 and coronin-
1A (CORO1A) proteins have been proposed as putative
markers for ccRCC. TYMP protein is associated with
pro-angiogenic and anti-apoptotic effects in cancer cells
[49, 50], and higher levels of TYMP in RCC tissue versus
non-neoplastic kidney tissues have also been described
[51]. Our results showed TYMP to be one of the most
up-regulated proteins in ccRCC. The same was true for
PLIN2, which is known to be highly expressed in the
clear cells of ccRCC [12, 15, 39]. PLIN2 regulates lipid
metabolism and storage and positively correlates with
HIF-2α which drives cell proliferation and survival [52,
53]. The levels of COROA1 protein were also found ex-
clusively upregulated in ccRCC. COROA1 is crucial for
cytoskeleton modulation [54]. High levels of this protein
have been reported in a variety of renal neoplasms
within tumor-infiltrating lymphocytes [15].
IHC markers routinely used for the diagnosis of renal

neoplasms are summarized in additional file 10: Table
S6 [55–57]. For example, carbonic anhydrase 9 (CA9) is
one of the most sensitive and specific IHC markers for
ccRCC while racemase/AMACR is used routinely to de-
tect pRCC. Similarly, our proteomic data showed high
levels of CA9 protein in ccRCC and high AMACR levels
in pRCC. We also identified cytokeratin 7 (KRT7) to be
prominently expressed in pRCC. Vimentin (VIM) immu-
nostaining is generally positive in ccRCC (+) and pRCC
(+/−) and negative in chRCC and RO. Our approach
confirmed these findings with VIM protein levels ele-
vated in ccRCC and pRCC versus NAT while in chRCC
they were slightly lower than in NAT.
Semi-quantitative IHC validation of the biomarkers

using TMAs corroborated our proteomic data. One of
the novel biomarkers was PLIN2 which was positive in a
majority of the ccRCC tested. We found TUBB3 to be a
specific marker for pRCC, albeit with a low sensitivity.
TUBB3 is a component of microtubules and is involved
in mitosis, cell motility and intra-cellular transport. It is
expressed in normal testis and neural crest derived tissue
and is considered a prognostic biomarker as it is

(See figure on previous page.)
Fig. 2 Statistically significant differential expression of proteins in renal neoplasms. A Hierarchical clustering analysis of 850 differentially expressed
proteins (ANOVA, FDR < 1%) according to the tissue source. B Statistical proteomic workflow to select panels of proteins to discriminate between
the four renal neoplasm subtypes and normal adjacent tissue (NAT). C TPA-based concentrations of the proteins with the highest differential
expression between tissue biopsies (fold change) for each subtype. Clear cell renal cell carcinoma (ccRCC, FC ≥ 5); papillary renal cell carcinoma
(pRCC, FC ≥ 9); chromophobe renal cell carcinoma (chRCC, FC ≥ 4); renal oncocytoma (RO, FC ≥ 3), additional file 7: Fig. S2. Absolute protein
concentration expressed in pmol/mg of total protein was calculated with the TPA method [24]
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Table 1 Protein list of common deregulated proteins achieved in literature and our data

Protein name Gene name ccRCC/NAT expression Ref.

Acetyl-CoA acetyltransferase, mitochondrial ACAT1 Down [16]

Alcohol dehydrogenase [NADP(+)] AKR1A1 Down [26]

Retinal dehydrogenase 1 ALDH1A1 Up [26]

Fructose-bisphosphate aldolase ALDOA Up [17]

Aminopeptidase N ANPEP Down [27]

Annexin A4 ANXA4 Up [28]

Annexin A5 ANXA5 Up [26]

Aquaporin-1 AQP1 Down [29]

Carbonic anhydrase 9 CA9 Up [30]

Calbindin CALB1 Down [26, 31]

Macrophage-capping protein CAPG Up [32]

Cofilin-1 CFL1 Up [17]

Coronin-1A CORO1A Up [15]

Dipeptidase 1 DPEP1 Down [29]

Alpha-enolase ENO1 Up [11, 14, 33]

Gamma-enolase ENO2 Up [26, 32]

Fatty acid-binding protein, brain FABP7 Up [34, 35]

Gelsolin GSN Up [31]

Glutathione S-transferase P GSTP1 Up [26]

Heat shock protein beta-1 HSPB1 Up [11, 14, 32]

Plastin-2 LCP1 Up [32]

L-lactate dehydrogenase A chain LDHA Up [12, 14]

Galectin-1 LGALS1 Up [13, 34]

Major vault protein MVP Up [12]

Nucleoside diphosphate kinase A NME1 Up [32]

Nicotinamide N-methyltransferase NNMT Up [12, 17, 32, 36]

Profilin-1 PFN1 Up [13, 17]

Pyruvate kinase PKM PKM Up [37, 38]

Perilipin-2 PLIN2 Up [12, 15, 39]

Peptidyl-prolyl cis-trans isomerase A PPIA Up [34]

Peroxiredoxin-4 PRDX4 Up [32]

UV excision repair protein RAD23 homolog B RAD23B Up [11]

Histone-binding protein RBBP7 RBBP7 Up [32]

Reticulocalbin-1 RCN1 Up [40]

Protein S100-A10 S100A10 Up [41]

Protein S100-A11 S100A11 Up [41, 42]

Plasma protease C1 inhibitor SERPING1 Up [12]

Serpin H1 SERPINH1 Up [43]

ADP/ATP translocase 3 SLC25A6 Down [26]

Protein-glutamine gamma-glutamyltransferase 2 TGM2 Up [26]

Triosephosphate isomerase TPI1 Up [11]

Tubulin alpha-1B chain TUBA1B Up [32]

Thymidine phosphorylase TYMP Up [12, 32]

Vimentin VIM Up [26, 33, 44];
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associated with aggressive tumor behavior in ovarian
and other carcinomas [58, 59]. It should be noted that
most of the TUBB3 that were positive for pRCC in our
TMAs were scored independently as having a WHO
2016/ISUP nuclear grade of 2 or more. Diffuse LAMP1
positivity was very specific for chRCC in our validation
cohort, similar to the findings of Drendel et al. [60].
Interestingly, our results showed that HK1 was positive
in most oncocytomas, but negative in other renal neo-
plasms. HK1 is an enzyme involved in the glycolysis
pathway and it is located at the outer membrane of
mitochondria. Studies have shown that HK1 is involved
in regulating cell death, carcinogenesis, and cell prolifer-
ation [61, 62].

To summarize, the TMA results suggest that PLIN2
may serve as a sensitive and specific marker for ccRCC,
beta-tubulin III for pRCC, HK1 for RO, and diffuse
LAMP1 for chRCC. Although PLIN2 plays a role in lipid
and phospholipid storage and HK1 in the glycolysis
pathway, their specific roles in renal carcinogenesis re-
main to be elucidated. In addition to its diagnostic po-
tential, TUBB3 may emerge as a prognostic marker for
pRCC.

Conclusions
In conclusion, our study explores the utility of the novel
TPA method in the differential diagnosis of multiple

Table 1 Protein list of common deregulated proteins achieved in literature and our data (Continued)

Protein name Gene name ccRCC/NAT expression Ref.

14-3-3 protein zeta/delta YWHAZ Up [13]

Fig. 3 Renal tissue protein concentrations of putative diagnostic markers measured by TPA approach. A Candidate biomarkers to distinguish
subtype ccRCC from other subtypes and normal adjacent tissue (NAT). B Candidate biomarkers to distinguish ccRCC from NAT but not from
other subtypes. C Proteins widely used in immunohistochemical diagnosis of renal carcinomas. Statistical analysis was performed using the
pairwise Mann-Whitney test (*p ≤ 0.005; **p ≤ 0.001; ***p ≤ 0.0001; ****p ≤ 0.00001). Subtypes: ccRCC, clear cell renal cell carcinoma; pRCC,
papillary renal cell carcinoma; chRCC, chromophobe renal cell carcinoma; RO, renal oncocytoma
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renal neoplasm subtypes. TPA-based pathology may
provide a new approach to complement and extend the
conventional histological diagnosis paradigm. This high-
throughput technology can be used to quantify hundreds
of proteins at the same time, thus enabling rapid and re-
producible screening and subtyping of renal neoplasms.
As an indication, the assays for this study spanned just
two weeks. TPA-based technology represents a versatile
tool for quick identification of new biomarkers that may
impact diagnosis, prognosis, and therapeutic guidance
when applied to renal tumors. Although the number of
tissues used to obtain the proteins levels with which the
candidate proteins were found is 27, the number of
qualitative immunochemistry assays used to validate
them, 128, was statistically significant to confirm the val-
idity of this study. Future studies will be required to val-
idate TPA-based pathology on prospective cohorts to

assess its performance as a frontline diagnostic tool,
which is part of ongoing efforts.
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