
Log. Univers.
c© 2021 The Author(s)

https://doi.org/10.1007/s11787-021-00278-1 Logica Universalis

k-Provability in PA

Paulo Guilherme Santos and Reinhard Kahle

Abstract. We study the decidability of k-provability in PA—the relation
‘being provable in PA with at most k steps’—and the decidability of the
proof-skeleton problem—the problem of deciding if a given formula has
a proof that has a given skeleton (the list of axioms and rules that were
used). The decidability of k-provability for the usual Hilbert-style for-
malisation of PA is still an open problem, but it is known that the proof-
skeleton problem is undecidable for that theory. Using new methods, we
present a characterisation of some numbers k for which k-provability is
decidable, and we present a characterisation of some proof-skeletons for
which one can decide whether a formula has a proof whose skeleton is the
considered one. These characterisations are natural and parameterised by
unification algorithms.

Mathematics Subject Classification. Primary 03B10; Secondary 03B25.

Keywords. k-provability, Peano arithmetic, Proof-skeleton problem,
Decidability.

1. Introduction

k-provability is the notion of provability ‘�ksteps’, i.e. the notion of being prov-
able, in a certain theory, with at most k steps. This notion has been studied for
different theories and with different purposes. In [6,11], and [8] the decidabil-
ity of this relation was studied for several formalisations of Peano arithmetic
(PA). Kreisel’s conjecture—an open problem in k-provability [4]—was studied
in [3,7–9,11,12], and [1]. We recommend [10] for a detailed account of this and
other notions of provability.

In [2], it was proved that k-provability is undecidable for the sequent cal-
culus of arithmetic with an infinite number of relation-symbols. Furthermore,

This work was funded by the following FCT-projects: Centro de Matemática e Aplicações
(UIDB/00297/2020), and Bolsa de Doutoramento (SFRH/BD/143756/2019). The research
was also supported by the Udo Keller Foundation. This work was awarded the Prèmio de
Lõgica Amı̀lcar Sernadas 2020, the Portuguese logical prize of UNILOG.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11787-021-00278-1&domain=pdf

P. G. Santos, R. Kahle Log. Univers.

in [6], this relation was proved to be decidable for several formulations of PA
where the universal instantiation schema is replaced by other schemata. The
usual universal instantiation schema is:
Uni. Inst (∀x.ϕ) → ϕx

t , where t is substitutable for x in ϕ.
It is an open problem whether k-provability for PA with the usual in-

stantiation schema is decidable [6]. From [6,8], and [10, p. 103] we know that
the proof-skeleton problem is undecidable for PA with the usual instantiation
schema; by proof-skeleton problem we mean the problem of deciding if a given
formula has a proof whose skeleton (the list of axioms and rules that were
used) is the considered one.

In this paper, we will address the proof-skeleton problem and k-provability;
we will:

1. Characterise some proof-skeletons for which it is decidable whether a
given formula has a proof with the considered skeleton;

2. Characterise some values of k for which it is decidable whether a formula
can be proven in k steps.

These characterisations are natural—in the sense that they emerge from simple
generalisation of concepts—and parameterised by unification algorithms (for a
type of systems that we are going to develop). Our approach is valid for several
theories that extend PA. We will consider theories of arithmetic formulated in
Hilbert-style systems having the following logical axioms (see [5, p. 112] for
further details):
L1) (ϕ → (ψ → μ)) → ((ϕ → ψ) → (ϕ → μ));
L2) ϕ → (ψ → ϕ);
L3) (¬ϕ → ¬ψ) → (ψ → ϕ);
L4) (∀x.ϕ) → ϕx

t , where t is substitutable for x in ϕ;
L5) ∀x.(ϕ → ψ) → (∀x.ϕ → ∀x.ψ);
L6) ϕ → ∀x.ϕ, where x does not occur free in ϕ;
L7) ∀x.x = x;
L8) ∀x.∀y.∀z.(x = y ∧ y = z → x = z);
L9) ∀x.∀y.x = y → y = x;

L10) ∀x0.∀x1.∀x2.∀x3.(x0 = x1 ∧ x2 = x3 → x0 + x2 = x1 + x3);
L11) ∀x.∀y.(x = y → S(x) = S(y)).
We do not allow the occurrence of any other predicates besides ‘=’ (for in-
stance, we assume that one is not given a predicate ‘<’ for the usual relation
< in N). Furthermore, we consider the following two rules:

ϕϕ → ψ

ψ
MP

ϕ

∀x.ϕ
Gen

It is important to observe that these axioms are schemata in the sense
that they can be substituted by any formula and any variable which satisfy
certain conditions. The non-logical axioms of Robinson arithmetic (Q) are:
Q1) ∀x.∀y.(S(x) = S(y) → x = y);
Q2) ∀x.¬0 = S(x);
Q3) ∀x.x + 0 = x;

k-Provability in PA

Q4) ∀x.∀y.x + S(y) = S(x + y);
Q5) ∀x.x × 0 = 0;
Q6) ∀x.∀y.x × S(y) = (x × y) + x;
Q7) ∀x.(¬x = 0 → ∃y.x = S(y)).

PA is obtained from Q by adding the induction schema:

PA1) ϕy
0 ∧ ∀x.(ϕy

x → ϕy
S(x)) → ∀x.ϕy

x, where y is free in ϕ and x is substi-
tutable for y in ϕ.

Observe that we are considering the signature of the logic as only having
the universal quantifier, implication sign, and negation sign: whenever another
connective appears, it should be written using only implication and negation
signs; for instance ϕ ∧ ψ := ¬(ϕ → ¬ψ). Other options could have been made
here.

2. The Theory PA′

In this section we develop a version of PA, namely PA′. For that, we will
present some useful results.

Theorem 2.1. The schema

Inst. 1 (∀x.ϕ) → ϕx
t , where t is substitutable for x in ϕ

has the same instances as the two following schemata considered together:

Inst. 2 (∀x.ϕ) → ϕx
t , where t is substitutable for x in ϕ and x does not occur

in t;
Inst. 3 (∀x.ϕy

x) → ϕy
t , where t is substitutable for y in ϕ, x does not occur

free in ϕ, the variable y does not occur free under the scope of a ∀x
quantifier in ϕ, the variable y is not the variable x, and y does not
occur in t.

Proof. Let us analyse the following cases:

Inst. 2 =⇒ Inst. 1 This is immediate, since all instances of Inst. 2 are directly
instances of Inst. 1.

Inst. 3 =⇒ Inst. 1 Suppose that one is given μ := (∀x.ϕy
x) → ϕy

t , where t is
substitutable for y in ϕ, x does not occur free in ϕ, the
variable y does not occur free under the scope of a ∀x
quantifier in ϕ, the variable y is not the variable x, and
y does not occur in t. Take ξ := ϕy

x. Consider the two
following situations:

y does not occur free in ϕ For this case, ξ = ϕy
x = ϕ = ϕy

t . As x does not
occur free in ϕ, we conclude that ξx

t = ξ and t is
substitutable for x in ϕ, thus t is substitutable for
x in ξ. Consequently,

μ = ((∀x.ϕy
x) → ϕy

t) = ((∀x.ξ) → ξ) = ((∀x.ξ) → ξx
t),

so μ is an instance of Inst. 1.

P. G. Santos, R. Kahle Log. Univers.

y occurs free in ϕ Suppose, aiming a contradiction, that t is not sub-
stitutable for x in ξ = ϕy

x. Then, x occurs free in ξ
and there is a variable z in t which is captured by a
quantifier ∀z in ξx

t . As x do not occur free in ϕ by
hypothesis, this means that there is a variable z in
t which is captured by a quantifier ∀z in ϕy

t ; which
contradicts the fact that t is substitutable for y in
ϕ. So, t is substitutable for x in ξ. As the variable y
does not occur free under the scope of a ∀x quantifi-
er and x does not occur free in ϕ, we conclude that
ξx
t = (ϕy

x)x
t = ϕy

t . Hence,

μ = ((∀x.ϕy
x) → ϕy

t) = ((∀x.ξ) → ξx
t),

and so μ is an instance of Inst. 1.
Inst. 1 =⇒ Inst. 2,Inst. 3 Consider μ′ := (∀x.ϕ) → ϕx

t , where t is substi-
tutable for x in ϕ. Consider the following cases:

x does not occur in t In this case, μ′ is an immediate instance of Inst. 2.
x occurs in t Take χ := ϕx

y , where y is a fresh variable not occur-
ring in ϕ (not even in the quantifiers of ϕ) and in t.
Clearly, the variable y does not occur free under the
scope of a ∀x quantifier in χ. As t is substitutable
for x in ϕ and y does not occur in ϕ, it follows that
t is substitutable for y in χ. Furthermore, x does not
occur free in χ. It is clear that χy

x = ϕ. As y does
not appear in ϕ (not even in quantifiers of ϕ) and all
free occurrences of x in ϕ are being replaced by y in
χ, we have that χy

t =
(
ϕx

y

)y

t
= ϕx

t . Thus,

((∀x.χy
x) → χy

t) = ((∀x.ϕ) → ϕx
t) = μ′,

and so μ′ is an instance of Inst. 3.
The result follows by the previous case analysis. �

Theorem 2.2. The following schemata have the same instances:
Ind. 1 ϕy

0 ∧∀x.(ϕy
x → ϕy

S(x)) → ∀x.ϕy
x, where y is free in ϕ and

x is substitutable for y in ϕ;
Ind. 2 ϕy

0 ∧∀x.(ϕy
x → ϕx

S(x)) → ∀x.ϕy
x, where y is free in ϕ, the

variable x is not the variable y, and x is substitutable
for y in ϕ.

Proof. We have the following cases to study:
Ind. 2 =⇒ Ind. 1 It is immediate, since the instances of Ind. 2 are di-

rectly instances of Ind. 1.
Ind. 1 =⇒ Ind. 2 Suppose that μ := (ϕy

0 ∧ ∀x.(ϕy
x → ϕy

S(x)) → ∀x.ϕy
x)

is an instance of Ind. 1. If x is not y, then it is im-
mediately an instance of Ind. 2. So, suppose that x
is y in μ. Thus, μ = (ϕx

0 ∧ ∀x.(ϕ → ϕx
S(x)) → ∀x.ϕ).

k-Provability in PA

Take y a fresh variable not occurring in ϕ (not even
in quantifiers) and ψ := ϕx

y . As x is free in ϕ and y
does not appear at all in ϕ, it follows that y is free
in ψ. As x is free in ϕ, we conclude that x is substi-
tutable for y in ψ. Furthermore, as y does not occur
at all in ϕ, ψy

x =
(
ϕx

y

)y

x
= ϕ, ψy

0 =
(
ϕx

y

)y

0
= ϕx

0 , and
ψy

S(x) =
(
ϕx

y

)y

S(x)
= ϕx

S(x). Therefore, we have

μ = (ϕx
0 ∧ ∀x.(ϕ → ϕx

S(x)) → ∀x.ϕ) = (ψy
0 ∧ ∀x.(ψy

x → ψy
S(x)) → ∀x.ψy

x)

All the cases were considered. �

Now we define PA′.

Definition 2.3. Let PA′ be PA from before where the universal instantiation
axiom is replaced by the schemata Inst. 2 and Inst. 3, and where the induction
axiom is replaced by Ind. 2.

Theorem 2.4. The two following statements are equivalent:
1. PA �ksteps ϕ;
2. PA′ �ksteps ϕ.

Proof. From theorems 2.1 and 2.2, we know that the axioms in PA′ that are
a replacement of the axioms of PA have exactly the same instances. So, in
a proof of PA an occurrence of Inst. 1 can be replaced by an occurrence of
Inst. 2 or Inst. 3 to obtain a proof in PA′ exactly with the same formulas, in
particular with the same length. The same idea applies to substitutions of Ind.
1 in proofs of PA by Ind. 2 to obtain proofs in PA′. Furthermore, Inst. 2 and
Inst. 3 can be replaced by Inst. 1 in the same fashion, and Ind. 2 by Ind. 1.

�

By the previous result, we know that the decidability of PA �ksteps re-
duces to the decidability of PA′ �ksteps. We will consider the axioms Inst. 2
and Inst. 3, and Ind. 2—they have the nice syntactical feature that in the
replacements one cannot have a variable being substituted by a term where
that very variable occurs. We are considering the number of steps as being
the number of rules that are being applied—here one could also consider the
number of proof lines, the results that we are going to present can be adapted
for that situation.

3. Main Results

We were inspired by Parikh systems (see, for instance, [6]) for the systems that
we have developed, but we use very similar terminology to the one used in [6]
with very different meanings (the reader should always have this in mind).
The biggest difference between our approach and the approach followed in
[6] is that we have developed a general way to obtain the provable formulas
via schemata and in the latter the authors’ focus in schemata occurs mainly
in the axioms (they do not extend that notion to the provable formulas as

P. G. Santos, R. Kahle Log. Univers.

we do). In that paper, it was developed a technique to study the decidability
of k-provability for some theories using unification. We will develop a new
technique that depends on a different way to unify—we create a technique to
unify some of the schemata that generate the provable formulas.

3.1. Provable Schemata

The general idea of our approach is to attach a meaning to the combinatorial
nature of general proof structures, namely to the different ways to combine, in
a given number of steps, the axioms of the considered theory. Let us see, as an
example, the general structure that corresponds to the following arrangement
of the axioms: MP([L)],MP([L)], [L)])). This means that one firstly applies MP
to an L1) implication using an L2) axiom, and to the result of that, which must
be an implication, one applies an axiom of the form L2). Starting from the first
application, to apply to the left side of (ϕ → (ψ → μ)) → ((ϕ → ψ) → (ϕ →
μ)) something of the form of ϕ → (ψ → ϕ), one must have μ = ϕ. Hence, the
application of the first MP yields something of the form (ϕ → ψ) → (ϕ → ϕ).
Now, to apply L2) to (ϕ → ψ) → (ϕ → ϕ), one needs ψ = ξ → ϕ. In
this conditions, the general shape/structure of MP([L)],MP([L)], [|rmL)])) is
ϕ → ϕ.

Clearly, any other way to arrange the axioms in the considered shape is
a particular case of ϕ → ϕ. Moreover, ϕ → ϕ codifies, in a unique schema, all
the ways to combine the axioms in MP([L)],MP([L)], [L)])). A similar analysis
could be carried out for (some of) the other combinations of axioms, resulting
in a finite list of schemata that generate, via substitutions, all instances of the
other schemata that are obtainable in a given number of steps, k (this only
works for some values of k due to undecidability issues). Hence, for some values
of k, there are finitely many provable schemata that give rise to the formulas
that are provable in k steps. It is important to observe that the previous idea
does not work for all proof-skeletons (see theorem 5.1 from [8], and theorem
14.1 from [10, p.103]).

Now we move to formalise the previous ideas. Having in mind what was
previously observed, the general shape of a schema is nothing but
F [ϕ0, . . . , ϕn0 , t0, . . . , tn1 , v0, . . . , vn2]&C, where ϕ0, . . . , ϕn0 stand for formula-
variables, where t0, . . . , tn1 stand for term-variables, and where v0, . . . , vn2 s-
tand for variable-variables; F stands for the arrangement of the logical sym-
bols; and C stands for a condition on the variables, on the formulas, and on
the terms. All the variables in the previous schema are exactly that, variables,
they do not stand for actual entities; for instance, the formula-variables do not
stand for actual formulas. Let us see two examples:

• ‘ϕ → (ψ → ϕ)’ is a schema, where F [ϕ0, ϕ1] := ϕ0 → (ϕ1 → ϕ0) only
has formula-variables, and where there are no conditions;

• ‘ϕx
0 ∧ ∀y.(ϕx

y → ϕx
S(y)) → ∀y.ϕx

y , where y is free in ϕ, the variable x is
not the variable y, and x is substitutable for y in ϕ’ is a schema where
F [ϕ, x] := ϕx

0 ∧ ∀y.(ϕx
y → ϕx

S(y)) → ∀y.ϕx
y , and C :=‘y is free in ϕ, the

variable x is not the variable y, and x is substitutable for y in ϕ’.

k-Provability in PA

Let us fix throughout the rest of the paper: C0(ϕ, x) :=‘x is free in ϕ’,
C1(ϕ, x) :=‘x is not free in ϕ’, C2(ϕ, t, x) :=‘t is substitutable for x in ϕ’,
C3(t, x) :=‘x does not occur in t’, and C4(x, y) :=‘the variable x is different
from the variable y’, C5(ϕ, x, y) := ‘the variable y does not occur free under
the scope of a ∀x quantifier in ϕ’, C6(ϕ, x) := ‘x occurs in ϕ’, C7(ϕ, x) :=‘x
does not occur free in ϕ’, and C8(ϕ, x, y) :=‘there is a a free occurrence of
the variable y in ϕ that does not occur under the scope of a ∀x quantifier’.
Observe that all the previous conditions are decidable. We will assume that
T is a (fixed) theory of arithmetic that extends the presented version of PA′

by adding schemata that depend on formulas, terms, and variables, without
having any conditions on the schemata. We now move to define formally what
a proof-skeleton is.

Definition 3.1. We define inductively the notion of proof–skeleton:
Basis case Ai is a proof–skeleton if Ai is the number of an axiom of

T ;
Induction step If S0 and S1 are proof–skeleton, then MP(S0,S1) and

Gen(S0) are proof–skeleton.
We say that a proof–skeleton S has k steps if it has k applications of rules (k
might be 0).

Now we define the notion of a schema.

Definition 3.2. We define inductively the notion of term-structure:
Basis case Every variable-variable, every term–variable, and 0 are

a term–structure.
Induction step If r and s are term-structures, then S(r), r + s, r × s,

and s�x
�t , where �x are variable-variables and �t are term–

structures, are also term-structures.
We define inductively the notion of formula-structure:

Basis case Every formula-variable is a formula-structure. Further-
more, r = s is a formula-structure, with r and s term-
structures.

Induction step If F and G are formula-structure, then the following
are formula-structures:

• F → G,
• ¬F ,
• ∀v.F , where v is a variable–variable,
• (F)�v

�t , where �v are variable-variables, and �t are a term-structure.
We say that F is a sub-formula-structure of G if F is a formula-structure
that occurs in G. We say that A is an atom if A is a formula-variable, or if
A = ϕx0...x�

t0...t�
, where ϕ is either a formula-variable or a formula-structure of the

form r = s, with r and s term-structures. We say that an expression of the
form

F [ϕ0, . . . , ϕn0 , t0, . . . , tn1 , v0, . . . , vn2]&
∨

i∈I
&j∈Ji

∼k0
j Ck1

j
(Ai, tk2

j
, vk3

j
)

P. G. Santos, R. Kahle Log. Univers.

or of the form

F [ϕ0, . . . , ϕn0 , t0, . . . , tn1 , v0, . . . , vn2]& ⊥
is a schema, where I and Ji are sets of indices (possibly empty, in which case
we omit the conditions), F [ϕ0, . . . , ϕn0 , t0, . . . , tn1 , v0, . . . , vn2] is a formula-
structure, and Ai are atoms. Here Ck1

j
stand for a (syntactical) representation

of the condition in the theory T previously mentioned (we also allow formula-
structures to occur inside the conditions, but this will be avoided using several
conventions). We allow term-structures to occur inside the conditions.

Every axiom of PA′ is a schema. Furthermore, every axiom of T is a
schema.

Convention 3.3. In every occurrence of ϕ�x
�s or t�x

�s in schemata, we do not allow
the variables that are being changed to occur in the replacing term. Further-
more, we do not allow a variable to occur in a replacement being mapped to
different terms and we do not allow repeated occurrences of the same change
in the replacement (for instance tx x

s s).

It is important to stress that schemata are syntactical objects, even the
conditions in them are syntactical (that have a semantical interpretation). The
symbols ∼,

∨
, and & are syntactical representations of the connectives in the

meta-language (negation, disjunction, and conjunction, respectively).

Convention 3.4. As (ϕ → ψ)x
t = ϕx

t → ψx
t , (¬ϕ)x

t = ¬ϕx
t , and

(∀y.ϕ)x
t =

{
∀y.ϕ, x = y

∀y.ϕx
t , x
= y,

hold for all formulas, we will assume these identities for schemata. This means
that in a schema one can move all occurrences of (·)x

t inside the formula–
structure.

With the conventions that we are going to present, we will extend the
syntactical equality (and we will continue to denote it simply by ‘=’). Some-
times to emphasise that E0 = E1 syntactically we will say that ‘E0 is E1’ (we
will also use it to express that E0 and E1 are syntactically the same after some
suitable substitution).

Convention 3.5. We assume the following identities:
• ϕx0···xn

t0···tn
= ϕ

xf(0)···xf(n)
tf(0)···tf(n)

, where f : {0, . . . , n} → {0, . . . , n} is a bijection
(this feature is not troublesome because we are interpreting the replace-
ments as simultaneous replacements that satisfy convention 3.3).

• The usual properties of replacements, for example:

(x + S(s))x
t = (t + S(sx

t)).

• The usual identities for propositional (meta-)logic, for example:
– ∼2n C = C, ∼2n+1 C =∼ C,
– C

∨
C = C,

k-Provability in PA

– ∼ (C &C ′) = (∼ C)
∨

(∼ C ′) (where C and C ′ are conditions),
and so on.

• For C0:
– C0(¬F, x) = C0(F, x),
– C0(F → G, x) = C0(F, x)&C0(G, x),
– C0(∀y.F, x) = C0(F, x)&C4(x, y).

• C1(F, x) =∼ C0(F, x).
• For C2:

– C2(¬F, t, x) = C2(F, t, x),
– C2(F → G, t, x) = C2(F, t, x)&C2(G, t, x),
– C2(∀y.F, t, x) = C7(∀y.F, x)

∨
(C3(t, y)&C2(F, t, x)).

• For C5:
– C5(¬F, x, y) = C5(F, x, y),
– C5(F → G, x) = C5(F, x, y)&C5(G, x, y),
– C5(∀z.F, x, y) = (C4(x, z)&C5(F, x, y))

∨
(∼ C4(x, z)&C7(F, y)).

• For C8:
– C8(¬F, x, y) = C8(F, x, y),
– C8(F → G, x) = C8(F, x, y)

∨
C8(G, x, y),

– C8(∀z.F, x, y) = (C4(x, z)&C8(F, x, y)).
• Similarly for the other conditions.

It is important to observe that in all the conditions one can arrange
the formula-structures in such a way that inside the conditions one has only
atoms (this will follow from the conventions that we are going to make, when
considered together).

Convention 3.6. Whenever we are considering, at the same time, different
schemata, we will implicitly assume that they do not have common variables
(this is just a useful technical feature that does not have any conceptual rea-
son).

Definition 3.7. A substitution σ is a function that assigns: formula-variables
to formula-structures, term-variables to term-structures, and variable-variables
to variable-variables.

It is important to observe that if one applies a substitution σ to a schema
one might be increasing the number of term-variables and variable-variables.

Definition 3.8. We define inductively the provable schemata by:

Basis case Every schema that is an axiom is a provable schema;
Induction step If

• F [ϕ0
0, . . . , ϕ

0
n0

, t00, . . . , t
0
n1

, v0
0 , . . . , v0

n2
]&

∨
i∈I0 &j∈J0

i
∼k0,0

j Ck0,1
j

(A0
i , tk0,2

j
,

vk0,3
j

), and

• G[ϕ1
0, . . . , ϕ

1
n3

, t10, . . . , t
1
n4

, v1
0 , . . . , v1

n5
] → H[ϕ2

0, . . . , ϕ
2
n6

, t20, . . . , t
2
n7

, v2
0 ,

. . . , v2
n8

]&
∨

i∈I1 &j∈J1
i

∼k1,0
j Ck1,1

j
(A1

i , tk1,2
j

, vk1,3
j

)

P. G. Santos, R. Kahle Log. Univers.

are provable schemata and there is σ such that

F [σ(ϕ0
0), . . . ,σ(ϕ0

n0
), σ(t00), . . . , σ(t0n1

), σ(v0
0), . . . , σ(v0

n2
)] =

G[σ(ϕ1
0), . . . , σ(ϕ1

n3
), σ(t10), . . . , (t

1
n4

), σ(v1
0), . . . , σ(v1

n5
)],

one says that

H[σ(ϕ2
0), . . . , σ(ϕ2

n4
), σ(t20), . . . , σ(t2n5

), σ(v2
0), . . . , σ(v2

n8
)]&

∨

i∈I0
&j∈J0

i

∼k0,0
j Ck0,1

j
(σ(A0

i), σ(tk0,2
j

), σ(vk0,3
j

))&

∨

i∈I1
&j∈J1

i

∼k1,0
j Ck1,1

j
(σ(A1

i), σ(tk1,2
j

), σ(vk1,3
j

))
(

&C
)

is a provable schema; furthermore,

∀v.F [ϕ0
0, . . . , ϕ

0
n0

, t00, . . . , t
0
n1

, v0
0 , . . . , v0

n2
]&

∨

i∈I0
&j∈J0

i

∼k0,0
j Ck0,1

j
(A0

i , tk0,2
j

, vk0,3
j

)

(

&C
)

is also a provable schema. C is a possibly added condition that arises from
conventions, for instance from convention 3.4 by adding C4 conditions.

A provable schema S is provable in k steps if in the construction of S as a
provable schema were used, at most, k steps (we do not count the application
of conventions as steps nor the axiom case as a step). A provable schema that is
an axiom has skeleton equal to the number of the axiom; if a provable schema
S has skeleton S, then the corresponding provable schema obtained using the
universal rule, ∀v.S, has skeleton Gen(S); if S0 and S1 are provable schemata
that have skeletons S0 and S1, respectively, and S is a schemata obtained using
the MP construction from S0 and S1, then S has skeleton MP(S0,S1).

Convention 3.9. The equality in the previous definition should be read as fol-
lows: there is a substitution σ such that, after applying the conventions to both
formula-structures considered in the definition, one gets syntactical equality.
For each way of applying the conventions and for a fixed substitution one might
get new provable schemata (for each way one gets a new provable schema).
Thus, a schema is provable if there are a substitution and several applications
of the conventions that make the conditions of the definition (in particular the
equality) hold. In practice, convention 3.4 will be applied in the following way:
in a schema, either one has the same variable occurring in a quantifier and in a
replacement, and then one eliminates the replacement; or one proceeds as the
convention suggests and one adds a condition C4 to differentiate the variables.
This is assumed, for instance, in the provable schemata by considering both
situations after the application of σ (this information then goes to the condi-
tion C). We will make the same assumption for the other conventions that we
are going to establish. Whenever we consider a schema in the previous condi-
tions, we are, in fact, considering all the schemata that are obtained using the
previous procedure. In practice, we also allow that in the previous definition

k-Provability in PA

more conditions are added. Furthermore, we will use the notion of the previ-
ous definition where σ represents the application of several substitutions and
conventions.

We now pause to give some examples. Clearly, (ϕ → (ψ → μ)) → ((ϕ →
ψ) → (ϕ → μ)) is a provable schema, since it is an axiom. We also have that
(ϕ → ψ) → (ϕ → ϕ) is a provable schema, since it can be obtained from the
schemata (ϕ → (ψ → μ)) → ((ϕ → ψ) → (ϕ → μ)) and ϕ → (ψ → ϕ) (by
considering the substitution such that σ(ϕ) := ϕ, σ(ψ) := ψ, and σ(μ) := ϕ).
Moreover, for the same reason, (ϕ → ϕ) → (ϕ → ϕ) (by considering the
substitution such that σ(ϕ) := ϕ, σ(ψ) := ϕ, and σ(μ) := ϕ) is a provable
schema. It is a good exercise to check that ϕ → ϕ is a provable schema.

Definition 3.10. We say that Σ is a concrete-substitution for the schema

F [ϕ0, . . . , ϕn0 , t0, . . . , tn1 , v0, . . . , vn2]&
∨

i∈I
&j∈Ji

∼k0
j Ck1

j
(Ai, tk2

j
, vk3

j
)

if Σ assigns formula-variables to actual formulas, term-variables to actual
terms, and variable-variables to actual variables, in such a way that

∨

i∈I
&j∈Ji

∼k0
j Ck1

j
(Σ(Ai),Σ(tk2

j
),Σ(vk3

j
))

is a true condition and such that, in any occurrence of Gy0···yn
s0···sn in F (with G a

term-structure or a formula-structure), no Σ(yi) occurs in any Σ(sj), and there
are no Σ(yi) with different attributions. It also needs to be the case that in
every occurrence of Gy0···yn

s0···sn in the schema, each Σ(si) is substitutable for Σ(yi)
in Σ(G) and that no Σ(yi) is Σ(yj) with i
= j (there are no repetitions of the
same change). For a schema S, we use the notation Σ(S) to denote the result
of performing the substitution Σ in the schema S whenever the substitution
satisfies the definition.

To respect the previous definition, when one applies convention 3.4, one
should add the condition C7(∀y.ϕ, x)

∨
C3(t, y) in the context of provable

schemata.

Convention 3.11. We assume that
(
t�x
�s
)y

r
= t�x y

�s r , and the analogue identity for
formula-structures, if there are no other occurrences of the basis of the replace-
ment, t, in the schema that is being considered (here we are assuming that no �x
is a y, the suitable changes should be applied for the other case and the respec-
tive conditions should be added in the presence of provable schemata). This
offers no problem with the concrete-substitution interpretation because if one
has a concrete-substitution that satisfies the left-hand-side of the equation,
one can construct a concrete-substitution that satisfies the right-hand-side
and vice-versa. For example, if we had (txs)y

r with Σ(x) := x0, Σ(s) := S(x1),
Σ(y) := x1, Σ(r) := x2, then by considering a concrete-substitution Σ′ such
that Σ′(t) := Σ(t), Σ′(x) := x0, Σ′(y) := x1, Σ′(s) := S(x2), and Σ′(r) := x2,

P. G. Santos, R. Kahle Log. Univers.

we would get

Σ ((txs)y
r) =

(
Σ(t)Σ(x)

Σ(s)

)Σ(y)

Σ(r)
=

(
Σ(t)x0

S(x1)

)x1

x2

= Σ(t)x0x1
S(x2) x2

= Σ′(t)x0x1
S(x2) x2

= Σ′(t)Σ
′(x) Σ′(y)

Σ′(s) Σ′(r) = Σ′(tx y
s r).

This means that if there is a concrete-substitution of one member of the equal-
ity, then there is a concrete-substitution for the other member. This identity
will hold only if none of the �x occurs in r (one should add the suitable condition
to express this fact).

Observe that one could also have in a schema, besides the considered
term-structure, the term-structures (txz)z

s and tyr . In that type of situations, we
take x′ a totally fresh variable (i.e. not occurring at all) and the first term-
structure is replaced by tx

′ z
ss and the second is replaced by ty x′

r x (the same for
formula-structures), assuming that z is not x (one should add add the suitable
conditions for that).

More generally,
(
t�x
�r
) �y

�s is replaced by (t′)
�x′ �y
�r �y

�s �s, with �x′ all fresh and t′, and

in the other occurrences of t where �x are not being changed (one should do
a case analysis for this using conditions C4 and one should add the fact that,
for the new t, x does not occur in t), one places (t′)

�x′
�x and one proceeds in a

similar fashion for the other cases; in the previous situation we need to assume
that none �x occurs in �y, one should also consider the case where some of the
�x are �y and add the suitable conditions in the presence of provable schemata,
which simplifies the analysis.

We assume this convention also for formula-structures. More precisely,
(
ϕ�x

�r
) �y

�s is replaced by (ϕ′)
�x′ �y
�r �y

�s �s, with �x′ all fresh and ϕ′ fresh, and in the other

occurrences of ϕ where �x are not being changed, one places (ϕ′)
�x′
�x ; for the pre-

vious replacement to work we need, in the context of provable schemata, to add
to the conditions: �x′ is free in ϕ, �x is substitutable for �x′ in ϕ, �r is substitutable
for �x′ in ϕ, and �x is not free in ϕ (the justification for all this procedure is that
one needs these conditions for the previous reasoning for terms to be applied
for formulas, namely to be able, in the presence of a concrete-substitutions, to
go back from the image of the replaced formula-structure to the image of the
initial one). This means that, without loss of generality, we will assume that
in the schemata all these reductions were already applied—in practice, this
means that several case analyses ought to be done. As our interpretation of
the schemata is obtained via concrete-substitutions, we do not have a problem,
since everything fits the definition.

Convention 3.12. In every occurrence of xy
t in a provable schemata, one should

consider the cases where x is the same as y, that entails xy
t = t, and the case

opposite case, that entails xy
t = x. These situations will give rise to several

provable schemata that are originated from a single syntactical expression.
For each situation, we should add accordingly the conditions C4 or ∼ C4 (c.f.
convention 3.9).

k-Provability in PA

Lemma 3.13. Consider formulas ϕ and ψ, and schemata

• S0 := F [ϕ0
0, . . . , ϕ

0
n0

, t00, . . . , t
0
n1

, v0
0 , . . . , v0

n2
]&

∨
i∈I0 &j∈J0

i
∼k0,0

j Ck0,1
j

(A0
i , tk0,2

j
, vk0,3

j
),

• S1 := G[ϕ1
0, . . . , ϕ

1
n3

, t10, . . . , t
1
n4

, v1
0 , . . . , v1

n5
] → H[ϕ2

0, . . . , ϕ
2
n6

, t20, . . . ,

t2n7
, v2

0 , . . . , v2
n8

]&
∨

i∈I1 &j∈J1
i

∼k1,0
j Ck1,1

j
(A1

i , tk1,2
j

, vk1,3
j

).

If there are concrete-substitutions Σ0 and Σ1 such that Σ0(S0) = ϕ and
Σ1(S1) = ϕ → ψ, then there are a substitution σ such that

F [σ(ϕ0
0), . . . , σ(ϕ0

n0
), σ(t00), . . . , σ(t0n1

), σ(v0
0), . . . , σ(v0

n2
)] =

G[σ(ϕ1
0), . . . , σ(ϕ1

n3
), σ(t10), . . . , σ(t1n4

), σ(v1
0), . . . , σ(v1

n5
)]

and a concrete-substitution Σ such that Σ(S2) = ψ, where

S2 = H[σ(ϕ2
0), . . . , σ(ϕ2

n6
), σ(t20), . . . , σ(t2n7

), σ(v2
0), . . . , σ(v2

n8
)]&

∨

i∈I0
&j∈J0

i

∼k0,0
j Ck0,1

j
(σ(A0

i), σ(tk0,2
j

), σ(vk0,3
j

))&

∨

i∈I1
&j∈J1

i

∼k1,0
j Ck1,1

j
(σ(A1

i), σ(tk1,2
j

), σ(vk1,3
j

))
(

&C
)

.

Proof. By hypothesis, Σ0(S0) = ϕ and Σ1(S1) = ϕ → ψ. This means that
there are concrete (and not variable) formulas ϕ0

0, . . . , ϕ
0
n0

, ϕ1
0, . . . , ϕ

1
n2

, con-
crete terms t00, . . . , t

0
n1

, t10, . . . , t
1
n3

, and concrete variables v0
0 , . . . , v0

n2
, v1

0 , . . . , v1
n5

obeying the semantical translation of the syntactical conditions such that

ϕ =F [ϕ0
0, . . . , ϕ

0
n0

, t00, . . . , t
0
n1

, v0
0 , . . . , v0

n2
]

=G[ϕ1
0, . . . , ϕ

1
n2

, t10, . . . , t
1
n3

, v1
0 , . . . , v1

n5
].

Hence, the outer layout of implication signs, negation signs, universal quantifier
signs, and parenthesis in S0 and in S1 can be made the same. For instance,
the formula-structures ϕ → (ψ → ϕ) and ϕ → ((ϕ → ϕ) → ϕ) can have
the same outer layout of signs, but ϕ → ϕ and (ϕ → ϕ) → ϕ cannot—
we use this expression to say that they have a common outer structure of
parenthesis, implication signs, negation signs, and universal quantifier sings
(we will mention it as simply the layout). A layout is nothing but a sequence of
symbols: parenthesis, implication signs, negation sings, and universal quantifier
signs. For example, (∀()) → (¬() → ()) is a layout. We will say that a layout L
is a sub-layout of L′ if L is a subsequence of L′. We call entry to the content of
a layout inside implications such that they do not contain further implications.

It is not hard to see that there are substitution σ0 and σ1, and concrete-
substitutions Σ′

0 and Σ′
1, such that the layout of σ0(F) and σ1(G) is the same

as the layout of ϕ and Σ′
0(σ0(S0)) = ϕ and Σ′

1(σ0(S1)) = ϕ → ψ. It is
enough for the procedure that we are going to describe that the layout is
the same with possible exception of the entries in it because the entries are
going to be accounted in the procedure per se. For example, consider the
layouts (¬∀(¬())) → (() → (¬())) and () → (() → (¬())); although they
are not the same, for the purposes of the procedure that we are going to

P. G. Santos, R. Kahle Log. Univers.

develop the differences do not matter because they occur only at the level of
the entries (this will be accounted for in the procedure); furthermore, when we
are considering entries we always consider the biggest one, for instance, in the
first layout, although (), ¬(), ∀(¬()), and ¬∀(¬()) are all entries of the layout
that correspond to the same position, we will consider the biggest one, i.e.
¬∀(¬()). In all, without loss of generality, we may assume that F and G have
the same layout. We assume that the changes of convention 3.11 were already
made in such a way that one does not have compositions of replacements
(from the information of the concrete-substitutions one can find the correct
way to apply the convention). Using the concrete-substitutions, one can find
the correct way to apply the convention 3.4 and add that information to a
condition C, composed of several C4 conditions. After this, one can still find
concrete-substitutions such that Σ′

0(σ0(S0)) = ϕ and Σ′
1(σ0(S1)) = ϕ → ψ.

We do the following to construct a substitution σ and a concrete-substitution
Σ (we are implicitly considering convention 3.6 and all the other conventions):

1. If x is a variable-variable that is mapped to Σi(x), then x is assigned to a
new fresh-variable, σ(x), and Σ(σ(x)) := Σi(x). At this stage, one should
also identify the variables that are mapped to the same concrete variables
and distinguish the variables that are mapped to different variables using
conditions C4 and ∼ C4.

2. One proceeds in a similar way with the term-variables.
3. Starting from the first entry of the (common) layout, if the content of

any of the entries is a formula–variable, then one assigns that formula-
variable to the content of the other entry and moves to the next entry
(in the end we might need to make some adjustments to this step).

4. Suppose now that the contents of both entries are not formula-variables.
4.1. Suppose that the contents are X0

0 · · · X0
�0

(ϕi)
v0
0 ···v0

n

t00···t0n , in S0, and

X1
0 · · · X1

�1
(ϕk)v1

0 ···v1
m

t10···t1m , in S1, where ϕi and ϕj are formula-variables
(here Xi

0 · · · Xi
�i

are arrays of quantifiers and negation symbols).
4.1.1. It might be needed to make a substitution in order to �0 = �1

(for the case where one has all the layout equal with possible
exception of the entries in it). If �0 < �1, this is achieved by
σ(ϕi) := X1

�0+1 · · · X1
�1

ϕ′, with ϕ′ fresh (it is possible that it
is necessary to make adjustments to the variables occurring in
the quantifiers so that none of them is v0

0 · · · v0
n and to add the

suitable conditions). Using σ, one unifies the variables occur-
ring in the same place in the quantifiers (their value is already
fixed by stage 1).

4.1.2. One then assigns for each component in the entry the cor-
responding image through the concrete-substitution, with the
difference that the occurrences of actual variables in the for-
mulas are replaced by occurrences of variable-variables. One
does the same for the variables and term-structures in the re-
placements.

4.1.3. Define the concrete-substitution accordingly.

k-Provability in PA

4.1.4. Move to the next entry.
4.2. Suppose that the contents are X0

0 · · · X0
�0

(r0 = s0)
v0
0 ···v0

n

t00···t0n , in S0, and

X1
0 · · · X1

�1
(r1 = s1)

v1
0 ···v1

m

t10···t1m , in S1, where r0, r1, s0, s1 are term-structures.
4.2.1. One proceeds as in 4.1 for the quantifier variables.
4.2.2. We can perform substitutions to both entries in such a way that

they become exactly equal to the content of the actual formula,
but with the difference that actual variables in the formula
are represented by variable-variables (the same idea that was
applied before). For example, if the contents are x + t = y
and t′ = t′′, and they are both mapped using the concrete-
substitutions to x + (z + S(0)) = 0, then one considers σ(t) :=
z + S(0), with z a variable-variable, σ(t′) := x + (z + S(0)),
and σ(t′′) := 0.

4.2.3. One does the suitable adaptions for the replacements. For
instance, if the content of an entry is txs = S(x) + 0 and
the concrete-substitution is defined for the entry by Σi(t) :=
Σ(x) × (0 + x0) and Σi(s) := x3 × S(0); then one defines for
this entry σ(t) := σ(x)×(0+y), and σ(s) := z×S(0), entailing
that

σ(txs = S(x) + 0) =
(
σ(t)σ(x)

σ(s) = S(σ(x)) + 0
)

= ((z × S(0)) × (0 + y) = S(σ(x)) + 0) .

Observe that one might need to add several C4 conditions.
4.2.4. Define accordingly the concrete-substitution for this situation

by assigning the variable-variables to the corresponding con-
crete variables.

4.2.5. One can perform substitutions in such a way that the term-
structures that appear are equal to their image through the
concrete substitution where the occurrence of variables in the
actual formula is replaced by an occurrence of variable-variables
in the term-structures, as described before (all this can be done
because we have the guarantee of the existence of the concrete-
substitutions).

4.2.6. Define the concrete-substitution for this case by assigning the
variable-variables to the actual variables that they represent
accordingly.

4.2.7. With the previous construction, in particular we have

σ((r0 = s0)
v0
0 ···v0

n

t00···t0n) = σ((r1 = s1)
v1
0 ···v1

m

t10···t1m).

4.2.8. If any variable-variable or term-variable is already assigned,
make the suitable adaptations (this is always possible and re-
duces to a case analysis).

4.2.9. Move to the next entry.

P. G. Santos, R. Kahle Log. Univers.

4.3. If the content of one entry is X0
0 · · · X0

�0
(r0 = s0)

v0
0 ···v0

n

t00···t0n and the con-

tent of the other entry is X1
0 · · · X1

�1
(ϕk)v1

0 ···v1
m

t10···t1m , one proceeds in a
similar way by attributing, via σ, the formula-variable ϕk in such
a way that in the end of the substitution one is left with a ver-
sion of the actual formula where variables are replaced by variable-
variables.

4.4. Move to the next entry.
5. Make the suitable changes in all the variables in order to have

Σ(H[σ(ϕ2
0), . . . , σ(ϕ2

n6
), σ(t20), . . . , σ(t2n7

), σ(v2
0), . . . , σ(v2

n8
)]) = ψ.

It is not hard to see that the constructed concrete-substitution obeys the con-
ditions of the considered schemata and the added ones (while applying the
conventions in a suitable way). �

We could have presented a shorter proof of the previous results, but
we decided to exhibit this one because it contains important ideas that are
going to be used in several contexts. We can now prove that, using concrete-
substitutions, k-provability of formulas is, in a sense, the same as k-provability
of schemata.

Theorem 3.14. The two following statements are equivalent:
C1 T �ksteps ϕ;
C2 There are S a provable schema in k steps and a concrete-substitution Σ

such that Σ(S) = ϕ.

Proof. By definition of provable schema in k steps, we have that C2 implies
C1 (this can be more formally proven by induction on k).

Let us prove that C1 implies C2 by induction on k, the number of steps.
Clearly, if ϕ is an axiom, then there are an axiom schema S and a concrete-
substitution Σ such that Σ(S) = ϕ. Suppose, by induction hypothesis, that
the result holds for k. Furthermore, assume that T �k+1steps ϕ. In the last
steps of a proof of ϕ we either apply the rule MP or the rule Gen:
MP In this case, there is a formula ψ such that T �k0 steps ψ → ϕ and

T �k1steps ψ, with k = k0+k1. By induction hypothesis, there are schema-
ta satisfying the conditions of lemma 3.13. By the lemma, it follows that
there is a provable schema H and a concrete-substitution Σ such that
Σ(H) = ϕ. As each of the schemata used in the lemma is, by induction
hypothesis, provable in k0 and k1 steps (respectively), it follows that H
is a schema provable in k + 1 steps.

Gen In this case, ϕ is of the form ∀x.ψ. By hypothesis, T �ksteps ψ. So, by
induction hypothesis, there are a provable schema in k steps, H, and
a concrete-substitution Σ such that Σ(H) = ψ. Consider the provable
schema in k + 1 steps obtained from H via the universal schema from
definition 3.8, let us call it H ′. Clearly, one can make the suitable changes
in such a way that Σ(H ′) = ∀x.ψ = ϕ.

The result follows by induction. �

k-Provability in PA

Lemma 3.15. Consider a formula ϕ, and schemata S0 and S1. Suppose that
there are a concrete-substitution Σ and a substitution σ (that might include the
application of several substitutions and conventions) such that Σ(S0) = ϕ and
σ(S1) = S0. Then, there is a concrete-substitution Σ′ such that Σ′(S1) = ϕ.

Proof. It is not hard to see that this follows from the considered definitions
and from the fact that all the conventions are compatible with the concrete-
substitution interpretation. �

3.2. Decidability of Schemata

The next result has a similar content to proposition 2.2 from [6].

Lemma 3.16. Given a condition of the form &i∈I ∼kiCk1
j
(Ai, ti, vi), one can

computationally decide if there is a concrete substitution Σ such that

Σ
(

&i∈I
∼kiCk1

j
(Ai, ti, vi)

)
= &i∈I

∼kiCk1
j
(Σ(Ai),Σ(ti),Σ(vi))

is true; furthermore, witnesses can be found in affirmative case. The result
still holds if the image of certain meta-variables are a priori fixed under a
concrete-substitution.

Proof. The following idea is a procedure for the case where all the atoms that
are not fixed are formula-variables and where the term-variables that are not
fixed occur without replacements:

1. Start by considering enough variables to satisfy the occurrences of the
conditions C4 and ∼ C4.

2. Then, consider every formula as being equal to 0 = 0 and every term as
being equal to 0.

3. After that, focus on C0 conditions. For every occurrence of C0(ϕ, x), make
the attribution ϕ := (ϕ ∧ x = x) (if x is not yet free in ϕ). Proceed in a
similar way to ∼ C7 (for this condition we just need one free occurrence).
For the occurrences of C1(ϕ, x) make ϕ := (ϕ ∧ ∀x.x = x), in particular
if ∼ C7(ϕ, x) and also C1(ϕ, x), then attribute instead ϕ := (ϕ ∧ x =
x) ∧ (∀x.x = x).

4. Similarly for ∼ C3, for every occurrence of ∼ C3(t, x), consider t := (t+x).
5. Each time ∼ C2(ϕ, t, x) occurs, (one should always compare what one is

doing here with the C5 and C2 conditions for the same formula-variables
and variable-variables) consider y a fresh variable, and attribute t :=
(t + y) and ϕ := (ϕ ∧ ∀y.x = 0).

6. For each occurrence of ∼ C5(ϕ, x, y), take ϕ := (ϕ ∧ ∀x.y = 0). For
C8(ϕ, x, y) we might need to consider ϕ := (ϕ ∧ y = 0), in particular
if ∼ C5(ϕ, x, y) and C8(ϕ, x, y) occur, then attribute ϕ := ((ϕ ∧ ∀x.y =
0) ∧ y = 0). If ∼ C8(ϕ, x, y) occurs, one should consider two cases:
6.1. y does not occur free in ϕ, i.e. C7(ϕ, y);
6.2. Or ∼ C7(ϕ, y) and in all free occurrences of y in ϕ they occur under

the scope of a ∀x quantifier. For this situation one acts in a similar
way to the one described for ∼ C5(ϕ, x, y) in all free occurrences of
y (one places ∀x in all free occurrences of y in ϕ).

P. G. Santos, R. Kahle Log. Univers.

7. Now test, for the considered attributions, if the occurrences of C0, C1,
C2, C3, C5, ∼ C6, C7, C8, and ∼ C8 are satisfied. In negative case (one
should consider all possible situations), reject.

8. If C6(ϕ, x) is in the expression, test if the condition is already satisfied
for the considered attributions. If not, then take ϕ := (ϕ∧∀x.x = 0) and
test the conditions again.
If any variable, term, or formula is already fixed, the previous analyses

remain valid (some adaptations are needed, for instance in the beginning of the
algorithm)—this simplifies the algorithm to a case analysis. Furthermore, it is
not hard to adapt it for replacements and for more complex term-structures
(see the identities below). Suppose now that we have atoms of the form (r =
s)�x

�t . Then, we do the following:
1. We start by listing all the possible ways to apply the �x to r = s, i.e.

all the ways to apply the replacements (including the way in which the
variables �x do not occur in r = s). Each possibility will give rise to a
separate analysis.

2. We proceed as in step 1 until no further replacements are applicable to
term-structures.

3. In the previous step, one is left with several occurrences of t �y
�t′ .

4. One proceeds in a way similar to the previous algorithm (if possible,
i.e. if no contradiction was reached). Observe that such an analysis is
simplified, since, for instance, being free in the considered formula reduces
to occurring in the formula (because there are no quantifiers).

One can also adapt accordingly the idea of the initial procedure. One should
also have in mind the following identities concerning txs :

• For C2, with z a totally fresh variable,

C2(ϕ, tys , x) =
(
C3(t, y)&C2(ϕ, t, x)

) ∨(
∼ C3(t, y)&C2(ϕ, s, x)&

C2(ϕ, tyz , x)
)
.

• For ∼ C3,

∼ C3(tys , x) =
(
C3(t, y)& ∼ C3(t, x)

) ∨ (
∼ C3(t, y)&C4(x, y)&(

∼ C3(t, x)
∨

∼ C3(s, x)
))

.

The case where we have atoms of the form ϕ�x
�t is a particular case of the

previous analysis when one has in mind the following identities (that can be
extended for more complex replacements):

• For C0,

C0(ϕ
y
t , x) =

(
C7(ϕ, y)&C0(ϕ, x)

) ∨(
∼ C7(ϕ, y)&C2(ϕ, t, y)&((

C4(x, y)&C0(ϕ, x)&C3(t, x)
) ∨

(
C4(x, y)&C0(ϕ, x)& ∼ C3(t, x)&C5(ϕ, x, y)

)))
.

k-Provability in PA

• For C2,

C2(ϕy
s , t, x) =

(
C7(ϕ, y)&C2(ϕ, t, x)

) ∨(
∼ C7(ϕ, y)&C2(ϕ, s, y)

&
(

∼ C4(x, y)
∨ (

C4(x, y)&C3(s, x)&C2(ϕ, t, x)
)

∨ (
C4(x, y)& ∼ C3(s, x)&C2(ϕ, t, x)&C2(ϕ, t, y)

)))
.

• For C5,

C5(ϕx
s , z, y) =

(
C7(ϕ, x)&C5(ϕ, z, y)

) ∨(
∼ C7(ϕ, x)&C2(ϕ, s, x)

&
(

∼ C4(x, y)
∨ (

C4(x, y)&C3(s, y)&C5(ϕ, z, y)
)

∨(
C4(x, y)& ∼ C3(s, y)&C5(ϕ, z, y)&C5(ϕ, z, x)

)))
.

• For ∼ C7,

∼ C7(ϕ
y
t , x) =

(
C7(ϕ, y)& ∼ C7(ϕ, x)

) ∨(
∼ C7(ϕ, y)&C2(ϕ, t, y)

&
(
C4(x, y)&

(
∼ C7(ϕ, x)

∨ (
∼ C3(t, x)&C8(ϕ, x, y)

))))
.

• For C8,

C8(ϕx
s , z, y) =

(
C7(ϕ, x)&C8(ϕ, z, y)

) ∨(
∼ C7(ϕ, x)&C2(ϕ, s, x)

&
(
C4(x, y)&C3(s, y)&C8(ϕ, z, y)

)

∨(
C4(x, y)& ∼ C3(s, y)&

(
C8(ϕ, z, y)

∨
C8(ϕ, z, x)

)))
.

The result follows by this observation and the previous analysis (and by
a version of disjunctive normal form for meta-connectives). �

Theorem 3.17. Given a schema S and a formula ϕ, it is decidable whether
there is a concrete-substitution Σ such that Σ(S) = ϕ.

Proof. Consider ϕ a formula and S a schema to which all the conventions were
already applied. If the condition in S is a priori false, i.e. if using the rules
of convention 3.5 one can obtain ⊥, then there is no concrete-substitution.
Suppose now that S is of the form

F [ϕ0, . . . , ϕn0 , t0, . . . , tn1 , v0, . . . , vn2]&
∨

i∈I
&j∈Ji

∼k0
j Ck1

j
(Ai, tk2

j
, vk3

j
),

where the condition is not a priori false. It is not hard to see that one can
computationally decide whether there is a substitution σ such that σ(F) and ϕ
have the same layout (the structure of parenthesis, implication signs, negation
signs, and universal quantifier signs described before). The idea is the following:

1. If F and ϕ have different types, then reject (by different types we mean
that, for instance, one is a negation and the other is an implication).

2. If they have the same type, then one goes to the layout to the left of both
outermost implication signs.

P. G. Santos, R. Kahle Log. Univers.

3. If the layout is the same, then one goes to the right and does the same
move throughout the process.

4. If one reaches an incompatibility—for example one implication sign versus
one negation sign or universal quantification sign—one rejects.

5. One does the same for negations and universal quantifications.
6. Using attributions to the formula-variables, one locally matches the lay-

out of ϕ.
7. One proceeds by going to the inside the respective layouts until one reach-

es either a rejection or an equal layout (this procedure must eventually
stop because the layout of the formula, just like the layout of a formula-
structure, is finite).

In this briefly described way, one is not creating unnecessary changes in F , it
is minimal in that sense. If F cannot be changed to have the same layout as
ϕ, then there is no concrete-substitution (all this is decidable). Suppose that
there is such a substitution σ that makes the layout the same. Consider σ
in the mentioned minimal conditions, F ′ := σ(F), and S′ := σ(S). Assume
that convention 3.11 was already applied to the schema, as well as convention
3.4 (this will yield a finite number of schemata to which one should do the
analysis that follows). Having in mind that F ′ and ϕ have the same layout, it
is decidable whether there is Σ such that Σ(F ′) = ϕ. The idea is the following:

1. Just like what was done in 4 of the proof of lemma 3.13, let us consider
all the entries in the layout of ϕ (that is the same layout of F ′).

2. Now, consider the finite list of variables occurring in ϕ under the scope
of universal quantifiers and the finite list of terms occurring in ϕ.

3. One checks if there is any incompatibility between the array of quantifiers
and negation signs of each entry of F ′ and of ϕ.

4. If there is, one rejects.
5. Otherwise, one defines Σ for the variable-variables occurring in the quan-

tifiers accordingly.
6. Starting from the first entry and vanishing all entries, one takes for

each entry (where the corresponding entry in the formula-structure has
a replacement) the respective formula where the occurrences of some
terms are replaced by fresh variables—ones should analyse all possibil-
ities. Then, one checks if it is possible to assign formulas, terms, and
variables to the entries of F ′ in such a way that one obtains ϕ and they
satisfy the (decidable) condition of the schema F ′. One does this for al-
l entries. For single occurrences of term-variables without replacements,
one simply assigns the corresponding term that occurs in the actual term.

7. More precisely, one tests all possible substitutions by considering the for-
mulas and the terms where the occurrences of some terms are replaced
by fresh variables (one should vanish over all possibilities), one sees what
the substituting term should look like, and one tests all the (finite num-
ber of) possibilities by making the fresh variables equal to some of the
variables of the considered replacement. For each test one sees if the con-
ditions of the schema are satisfied. For example, if one has the formula

k-Provability in PA

(x + 0) + z = y in the actual formula and the corresponding formula-
structure (t0)

x0
s0

= x1 in the schema, then one should assign x1 to the
variable y and, as in t0 we are considering one replacement, one should
consider the following possibilities for t0:

• t0 as being x0, with s0 being (x + 0) + z;
• t0 as being (x + 0) + x0, where s0 is z;
• t0 as being x0 + z, where s0 is x + 0;
• t0 as being (x0 + 0) + z, with s0 being x;
• t0 as being (x + x0) + z, with s0 being 0;
• t0 as being (x + 0) + z with x0 not occurring in t0, where x0 and

s0 are “arbitrary” in what t0 is concerned; in practise this means
that either they are assigned in the next entries, or they are to be
considered as not assigned, which means that one has just to further
study them if they appear in the conditions—see the proof of lemma
3.16 for a more detailed account.
More generally, consider the case where a term-structure in the

schema needs to be equal, under a concrete-substitution, to a certain
term. Then, one needs to satisfy an equality similar to

Σ
((

(t0)
�x0
�s0

+ S(t1)
) × t2

)

= ((S(x + y) + S(S(0))) + S(S(0) + (x × z))) × ((x × y) + 0),

i.e.
(
Σ(t0)

Σ(�x0)
Σ(�s0)

+S(Σ(t1))
)

× Σ(t2)

= ((S(x + y) + S(S(0))) + S(S(0) + (x × z))) × ((x × y) + 0).

This entails that
⎧
⎪⎨

⎪⎩

Σ(t0)
Σ(�x0)
Σ(�s0)

= (S(x + y) + S(S(0)))

S(Σ(t1)) = S(S(0) + (x × z))
Σ(t2) = ((x × y) + 0)

Thus, the image of t2 under the concrete-substitution that one wants to
construct is fixed, as well as the image of t1 (if they were already fixed
one should test if a contradiction is obtained). This means that, for the
desired equality, it only remains to be analysed the equality Σ(t0)

Σ(�x0)
Σ(�s0)

=
(S(x+y)+S(S(0))). For this equality, one makes a (finite) case analysis as
before by means of fresh variables (this will yield a similar analysis for the
term-structures �s0). If Σ(t0) is already assigned to, for instance, Σ(t0) =
S(Σ(x0) + y) + S(Σ(xi)), then one substitutes the already attributed t0
in the desired equality, namely

(S(Σ(x0) + y) + S(Σ(xi)))
Σ(�x0)
Σ(�s0)

= S(x + y) + S(S(0)),

which entails that

S
(
Σ(x0)

Σ(�x0)
Σ(�s0)

+ y
Σ(�x0)
Σ(�s0)

)
+ S

(
Σ(xi)

Σ(�x0)
Σ(�s0)

)
= S(x + y) + S(S(0)),

P. G. Santos, R. Kahle Log. Univers.

and so
⎧
⎪⎪⎨

⎪⎪⎩

Σ(x0)
Σ(�x0)
Σ(�s0)

= x

y
Σ(�x0)
Σ(�s0)

= y

Σ(xi)
Σ(�x0)
Σ(�s0)

= S(0);

something that can, once again, be easily solved through a case analy-
sis. Throughout the process one should add the suitable conditions on
the variables. After that, one substitutes the new information about the
variables and one sees if any contradiction is reached.

8. We do the previous procedure for each entry of the layout and also for
atoms—in fact, for formula-variables with replacements the fresh vari-
ables analysis remains valid: if one has ϕ�x

�s , then one considers fresh term-
variables t0 and t1, one considers ϕ as being (t0 = t1), and one proceeds
the analysis as before. For each case in the analysis of a given entry, one
should consider all the sub-cases in the other entries for the choices that
were made—this gives rise to a tree of possible cases; moving from one
entry to another, either a new case analysis is created, or one reaches
a contradiction, which, by its turn, forces the considered case in the al-
ready established case analysis to change (in particular this yields that
the algorithm as a whole halts). One can computationally check if there
are any incompatibilities at any stage; if any incompatibility is detected,
one should consider another case in the analysis, if one reaches an incom-
patibility with all cases, it means that there is no concrete-substitution
in the desired conditions. Observe that, for each entry, there is a finite
number of ways to do the considered procedure, which entails that in the
whole schema there is also a finite number of ways to consider all the
possible cases.

9. In the end of a case analysis, one should test to see whether the conditions
of the schema are satisfied. This is achieved using lemma 3.16. One should
also test if Σ can be made in such a way that satisfies the definition 3.10.

10. If the previous steps are not possible, one should reject.

From lemma 3.15, if there is a concrete-substitution Σ′ such that Σ′(S′) = ϕ,
then there is a concrete substitution such that Σ(S) = ϕ. All the mentioned
construction yields that one can decide whether there is a concrete-substitution
Σ such that Σ(S) = ϕ. �

It is important to observe that in the former algorithm it is not fun-
damental that the convention 3.11 is applied: if one has, for instance, the
term–structure (txr)y

s and one wants it to be equal to a certain term, then one
proceeds by forcing T y

s to be equal to that term using the considered analysis,
and then one imposes Σ(txr) = Σ(T) and makes a similar analysis for that fact;
this means that if convention 3.11 was not applied, then one has to do several
times the creation of the case analysis of stage 7 from the previous algorithm.
We opted to firstly apply the convention because it simplifies the analysis and
avoids having chained replacements.

k-Provability in PA

3.3. Decidable of Some Proof-skeletons and k-Provability

As mentioned in the introduction, the decidability of k-provability for PA
with the usual instantiation schema is an open problem and the proof-skeleton
problem is in general undecidable for that version of PA. Nevertheless, we
will characterise some values of k for which k-provability is decidable and
some proof-skeletons for which the corresponding proof-skeleton problem is
decidable.

Definition 3.18. We say that a proof-skeleton S is stable (for T) if there is a
finite list of provable-schemata LS such that:

Stability A formula ϕ has a proof whose skeleton is S if, and only if, there are a
schema S in LS and a concrete-substitution Σ that satisfy Σ(S) = ϕ.

We say that a number k is stable (for T) if all proof-skeletons with length at
most k are stable.

For stable proof-skeleton, the corresponding proof-skeleton problem is
decidable, as the next result confirms.

Theorem 3.19. If a proof-skeleton S is stable, then, for any formula ϕ, it is
decidable whether ϕ has a proof whose skeleton is S.

Proof. By definition, ϕ has a proof whose skeleton is S if, and only if, there
are a schema S in LS and a concrete-substitution Σ that satisfy Σ(S) = ϕ.
The decidability follows from the fact that LS is finite and from theorem 3.17
(one tests computationally for each element of the finite list LS). �

If k is stable, then the respective k-provability is decidable, as the next
result confirms.

Theorem 3.20. If k is a stable number, then it is decidable whether T �ksteps ϕ
or not.

Proof. The result follows from the fact that for each k there is a finite number
of proof-skeletons with length k and from theorem 3.19. �
Theorem 3.21. There is a maximum k stable number for PA′.

Proof. Suppose that there is no maximum k stable number for PA′. As the fact
that k is a stable number implies that, for all s ≤ k, s is a stable number; it
follows that all numbers are stable for PA′. Thus, all proof-skeletons are stable.
In particular, the proof-skeletons from the proof of theorem 6.1 from [6]—which
is similar to the proof of 5.1 from [8]—are stable; from the previous theorem,
it follows that it is decidable whether a formula has a proof whose skeleton is
the skeletons from the proof of theorem 6.1 from [6], which contradicts that
very theorem (when one adapts the proof to the theory PA′). �

Although theorem 3.20 presents a characterisation of some proof-skeletons
that have the respective proof-skeleton problem decidable, we have no informa-
tion on how the lists were created; furthermore, so far we have no general way
to generate (some of the) stable proof-skeletons. We now proceed to develop a
general way to generate stable proof-skeletons.

P. G. Santos, R. Kahle Log. Univers.

From [8], we know that second-order unification is in general undecidable.
In the proof presented in that paper, the main idea was to represent, inside
the context of second-order unification, numerals, addition, and multiplication;
something that is delivered by, c.f. [8], equations that include:

s(τ) = τ(a/s(a)),

τ(a/σ1, b/s(b), c/a ◦ (b ◦ c)) = σ2 ◦ (σ3 ◦ τ).

In the previous equations, we followed the notation of the considered paper,
where s denotes a unary function-symbol, ◦ denotes a binary one, and σ2, σ3, τ
term-variables. It is important to observe that, in the previous equations, one
has in the two members of the equality sign occurrences of the same term-
variable and occurrences of variables being replaced by something where that
very variables occur. While this last feature can be avoided, using convention
3.11, the first feature will be something that we will not allow in the algorithms
that we are going to develop; for example, S(tx0

x1
) = tx0

S(x1)
has an infinity of

solutions, namely t = Sn(x0), that cannot be written in a closed form like
t = E , where in E we do not have occurrences of natural numbers variables like
Sn(x0). We will create an algorithm that will be able to solve some systems
of the form

⎧
⎪⎪⎨

⎪⎪⎩

r0 = s0

...
rn = sn,

where r0, . . . , rn, s0, . . . , sn are term-structures (we will assume that the equa-
tions in the left do not have common variables with the equations on the right):
by a solution we mean a common substitution to the left and the right side
such that one achieves the equality between them maybe after the application
of several of the conventions (in fact, we might achieve the equality after the
application of several substitutions and several conventions)—for each substi-
tution there might be several ways to apply the conventions that yield several
solutions. The main move that we are going to make is to avoid the mentioned
occurrences of equal term-variables while the algorithm is running, this offers
no problem since we will not develop a general algorithm and since the reason-
ing of [8] cannot be applied—we force the algorithm not to have the needed
conditions for the proof, and thus avoid the undecidability; we do this with
the cost that the algorithm will reject or not halt systems that indeed have a
solution.

Algorithm 3.22. We will describe an algorithm that, for certain cases, sees
whether there is a substitution σ such that

⎧
⎪⎪⎨

⎪⎪⎩

σ(r0) = σ(s0)
...

σ(rn) = σ(sn),

k-Provability in PA

where r0, . . . , rn, s0, . . . , sn are term-structures. Furthermore, such a σ can be
found (for some cases) without the introduction of unnecessary complexity.
Following convention 3.6, we assume that the ri’s and sj ’s do not have com-
mon meta-variables. Furthermore, we assume that convention 3.11 was already
applied. The algorithm is as follows:

1. Starting from i = 0, do the following to construct a list of equations:
1.1. If ri and si are term-structures without term-variables, then see if

it is possible to identify the variable-variables in such a way that
σ(ri) = σ(si) and add this fact to the list; if it is not possible, then
reject.

1.2. If ri or si is of the form t�x
�s , then add to the list of equations t�x

�s = si,
when ri = t�x

�s , and ri = t�x
�s , for the other case.

1.3. If ri and si are both term-structures with an outermost occurrence
of a function-symbol, then test whether the function-symbol is the
same.

1.4. If it is not, then reject.
1.5. If ri = S(t0) and r1 = S(t1), with t0 and t1 term-structures, then

apply the previous procedure to t0 and t1 and add t0 = t1 to the
list. Do the same for + and ×. This means that for each pair of
terms ri and si, one should see if ri = t0 + t1 and si = t2 × t3, or
ri = t2 × t3 and si = t0 + t1. If it occurs, then reject; and for each
pair of terms ri and si with ri = t0 ◦ t1 and si = t2 ◦ t3, do the
previous procedure for t0 with t2, and t1 with t3, where ◦ is + or
×, and add t0 = t2 and t1 = t3 to the list.

1.6. Do the previous procedure until no further reductions are possible
(this must stop after a finite number of steps). Thus, one should ap-
ply the procedure until one reaches either a rejection or has analysed
all possible cases.

1.7. Increment i until all the values for i were considered.
2. Let us now assume that a list was build without reaching a rejecting

state.
3. As mentioned in 1.1, one has to make the suitable variable identification

(for example using fresh variable-variables). For instance, if one has in
the list an equation of the form

(· · · + x) × · · · = (· · · + y) × · · · ,

where x and y occur in the same place of the layout of the function-
symbols, then one has to assign x and y to a new fresh common variable-
variable. With this we get, we get the true equality

(· · · + σ(x)) × · · · = (· · · + σ(y)) × · · · .

If any of them was already assigned, assign all the variables previously
assigned to this new common fresh variable.

4. Proceed in a similar way with the occurrence of term-variables that do
not occur under the scope of a replacement. This means that if one has

P. G. Santos, R. Kahle Log. Univers.

an equation of the form

((t0 × t1) + S(0)) × · · · = ((t2 × y) + t3) × · · · ,

then σ(t0) = σ(t2) = t, with t fresh, σ(t1) = σ(y), and σ(t3) = S(0).
5. Let us now briefly describe the most complex case.
6. Suppose we have in the list equations of the following form (observe that

the analysis of the list can be reduced to the analysis of the next system),
where we are implicitly considering in the left-side the r-part, and in the
right-side the s-part:

n equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(t0) �x0
�s0

= (· · · + (x + 0)) × (· · · (y + x) × 0)
(t0) �x2

�s2
= ((· · · × (x × 0))) × t2

(· · · × (x + S(0))) + 0 = (t4) �x5
�s5

...
(t5) �x6

�s6
= (· · · + (y × 0)) × S(S(0)).

Do the following (the next procedure is a kind of co-recursion because
one should apply the whole procedure to smaller parts of the very same
procedure):
6.1. Firstly, substitute the already changed variable-variables and term-

variables in the equations (one should do this step at every stage of
the algorithm).

6.2. If at any stage one obtains an equality where in both members one
has an occurrence of t�x

�s , one should output problem.
6.3. If at any stage one obtains a non-trivial equality (i.e. not yet syn-

tactically satisfied) where in both members one has an occurrence
of the same term-variable one should output problem.

6.4. Starting from i = 1 (up to n), solve, if possible, the first equation
in the following way:
6.4.1 Consider the term-structure that corresponds to the right-side

(respectively left-side) of the equation where some occurrences
of term-structures in the considered equation were replaced by
fresh variables (analyse all the finitely many possibilities for
this).

6.4.2 Analyse all the possibilities to identify the fresh variables with
the variables-variables σ(�x0) and see what the term-structures
σ(�s0) ought to be—keep in mind that all the conventions ought
to be satisfied (this fact can be verified in a decidable way).
This idea was also used at stage 7 in the second procedure of
the proof of theorem 3.17. If one has one of the variables σ(�x0)
occurring in the opposite side, one should reject, since that is
an impossibility. In the context of (provable) schemata, one
should add condition C4 for the variables that are being con-
sidered as being different throughout the procedure (the anal-
ogous situation for the other conventions). One should always
substitute the already found solutions in the new equations.

k-Provability in PA

6.4.3 In σ(�s0) there might occur complex term-structure that would
require an analysis similar to the one that we are considering
(for example, s0 could be txt0+t1) and would yield a new sys-
tem to be solved (to create the system we replicate the previous
steps for the creation of the list and the fresh variables analy-
sis). Without loss of generality, we might proceed our analysis
because the algorithm will account for all the cases due to its
co-recursive nature. We allow the occurrence of equations of
the form

(t0)
�x0
�s0

= ((x + y) × 0) + (S(t1) + S(0)).

6.4.4. For instance, in the case analysis of the previous stage, one
might have tx0

r
x1
s

= (x+y)×z. One should consider the cases as
in 7 in the second procedure of the proof of lemma 3.17 and as
mentioned before. One of the cases is σ(t) = σ(x0)×σ(z) with
σ(rx1

s) = σ(x + y). Then, for the previous equality, one should
also carry a similar analysis. For example, σ(r) = σ(x1)+σ(y),
with σ(s) = σ(x). In all, for the considered case, we get

σ(tx0

r
x1
s

) = σ(t)σ(x0)

σ(r)
σ(x1)
σ(s)

=(σ(x0)×σ(z))σ(x0)

σ(r)
σ(x1)
σ(s)

=σ(r)σ(x1)
σ(s) ×σ(z)

= (σ(x1) + σ(y))σ(x1)
σ(s) × σ(z) = (σ(x) + σ(y)) × σ(z)

= σ((x + y) × z).

Observe that, in the previous analysis, we considered the vari-
ables as being different when the replacements are applied be-
cause they are fresh, they do not occur at all. Furthermore,
observe that, for the considered case, σ(z) cannot be identi-
fied with σ(x0) just like σ(x1) cannot be identified with σ(y)
(otherwise we would get a contradiction, in particular if we ap-
ply concrete-substitutions)—one should add the suitable con-
ditions to express this fact. This means that the replacements
that we are considering here act only on the fresh variables,
without the possibility of overlapping the left with the right
side, as mentioned.

6.4.5. If a term-variable occurs in the other side of the equation, one
should also consider, together with the fresh variables con-
struction, the case where for that entry one places a fresh
term-variable in the term-structure that one is creating. For
example, if one has

(t0)
x
s = (S(0) + y) + t1,

one of the cases that one should analyse is the case where
σ(t0) = (σ(x) + σ(y)) + t, with t fresh, which entails that
σ(t1) = t

σ(x)
σ(s) . This serves to cover the possibility, under the in-

terpretation of the equality via concrete-substitutions, that the

P. G. Santos, R. Kahle Log. Univers.

concrete term that results from t1 was placed using the con-
sidered replacement to some other term in that very position
in the function-symbols layout.

6.4.6. Take note of the possible ones—the admissible possibilities for-
m a tree, in the sense that for one case one might have to
analyse a great variety of sub-cases. Unlike the proof of theo-
rem 3.17 where the second algorithm only asks for a successful
path in the tree, in this algorithm we want to study all admis-
sible possibilities, since we want to find all the solutions to the
system.

6.4.7. If one reaches an impossibility in the case analysis one should
reject that case and consider the other remaining cases.

6.5. If, at any stage, there are no solutions, one should reject.
6.6. Suppose that the system was solved, if possible, for i < n. Then, do

the following:
6.6.1. Consider the (i + 1)th equation, say (t5) �x6

�s6
= (· · · + (y × 0)) ×

S(S(0)).
6.6.2. Substitute the already found term-structures and, if necessary,

create new systems for the equalities that emerge.
6.6.3. In particular, if t5 was already found, then substitute it for the

found solution, make a case analysis for the applications of the
replacements, and solve the considered equation. If t5 was not
yet assigned, then solve the equation using the fresh variables
analysis and with 6.2.5.

6.6.4. Substitute in the previously obtained solutions the new ones
and if necessary solve the new equations that emerge.

7. Output all the found solutions.
We say that a system is successful if it halts and is not rejected as a whole

(nevertheless we allow that in the case analysis some cases are rejected), and
if in the case analysis no problem situation appeared. What we described is
not a complete description of the algorithm, but it has the main ideas that are
necessary to develop the much more complex and involved complete description
of the algorithm. We considered particular cases in the algorithm to emphasise
the main ideas. For instance, in the hard case that we presented—the one with
a new system—, a more general approach is needed to write the complete
algorithm.

Let us give an example of the some steps of the previous procedure.
Suppose that one is given the system

{
(t0)

x0 x1
s0 s1

= (x × y) + t1

(t0)
x3
s3

= (x × x) + S(0).

As the algorithm suggests, one should start by considering the first equation
(the other cases should also be studied). One should consider all the sub-term-
structures of (x × y) + t1 and replace some occurrences by fresh variables,
and then unify them, using substitutions, with x0 or x1; furthermore, one
should proceed with the term-variables as described in 6.4.5. For example, for

k-Provability in PA

(x × y) + t1, one could consider, after the suitable unifications, t0 as being
(x0 ×x1)+ t, t1 as being tx0 x1

s0 s1
, where t is fresh, s0 as being x, and s1 as being

y. This constitutes a solution to the first equation.
Following the algorithm, then one should substitute the obtained solution

in the second equation, giving ((x0 × x1) + t)x3
s3

= (x × x) + S(0), i.e.

((x0)
x3
s3

× (x1)
x3
s3

) + tx3
s3

= (x × x) + S(0).

This entails that
{

(x0)
x3
s3

× (x1)
x3
s3

= x × x

tx3
s3

= S(0).

So, after another case analysis, one of the cases is
{

(x0)
x3
s3

= (x1)
x3
s3

= x

tx3
s3

= S(0).

Hence, for this case, x0 = x and x3 is not x3, or x0 = x3 and s3 = x; similarly
for x1. Let us now focus in the second equation from the previous system. We
proceed as before with a case analysis, one of the cases yields that t as being
S(0); after that, one substitutes t in t0, yielding (x0 × x1) + S(0), and in t1,
yielding S(0). Observe that in the considered cases no problem was identified
(it is not hard to see that the previous system is successful).

In the end we get, if not all the cases are rejections and no problem was
obtained, substitutions σ in the desired conditions. Furthermore, such substi-
tutions are most general ones, in the sense that they do not introduce un-
necessary complexity and unnecessary identifications (just like a most general
unifier).

Convention 3.23. We assume that A is a generic algorithm that solves some
unification (of term-structures) problems (for example by a case analysis) and
without the introduction of unnecessary complexity—i.e. has as output a finite
number of most general unifiers in the sense that we used previously—, with
some situations where it might output problem. We assume that A works in a
very similar way to algorithm 3.22 (for instance, it might use a case analysis,
it might use substitution of found solutions, it might use the creation of the
systems, by considering all possible situation for the system, for some of them
might output problem, etc). We will say that A is successful for a given system
if it halts and no problem situations were identified during the computations,
just like what was considered for the previous algorithm. We assume that A
gives informations about the conditions needed for each step in the context of
provable schemata (just like algorithm 3.22) and that has the following feature:

Sub. property If A is successful for the system
⎧
⎪⎪⎨

⎪⎪⎩

r0 = s0

...
rn = sn,

P. G. Santos, R. Kahle Log. Univers.

and there are concrete-substitutions Σ0 and Σ1 such that
⎧
⎪⎪⎨

⎪⎪⎩

Σ0(r0) = Σ1(s0)
...

Σ0(rn) = Σ1(sn),

then there are a solution σ of the system that is constructed by
the algorithm A and a concrete-substitution Σ such that

⎧
⎪⎪⎨

⎪⎪⎩

Σ0(r0) = Σ(σ(r0)) = Σ(σ(s0)) = Σ1(s0)
...

Σ0(rn) = Σ(σ(rn)) = Σ(σ(sn)) = Σ1(sn).

We also assume that the previous property is compatible with
the conventions that the algorithm gives as additional informa-
tion and that if t is a term-structure, then Σ(σ(t)) = Σi(t),
for i = 0, 1, depending on the concrete-substitution for which
the value of t defined (this last condition is useful when one is
dealing with provable schemata).

It is important to observe that algorithm 3.22 has the Sub. property: if the
algorithm 3.22 is successful for a considered system and one is given concrete-
substitutions as before, then, guided by the concrete-substitutions Σ0 and
Σ1, one can use the algorithm 3.22 to obtain a desired solution σ—here the
concrete-substitutions can be used to identify the choices that one has to make
while running the algorithm; moreover, the algorithm will be successful (by
hypothesis); the existence of a concrete-substitution Σ with the mentioned
properties follows from the fact that all the choices that were made for the
construction of σ were guided by the concrete-substitutions Σ0 and Σ1.

Observe that one can conceive several algorithm that satisfy the Sub.
Property; for instance, one can extend algorithm 3.22 to account for oth-
er possibilities without outputting problem so often. For example, one could
extend algorithm 3.22 by allowing situations where one has occurrences of
replacements in the two sides of the equality, like

(t0)
x0
s0

= (S(S(0)) + x1) × (t1)
x1
s1

,

under the proviso that no variable-variable in the replacement in the oppo-
site side can be identified with a variable-variable that occurs in the consid-
ered replacement. Observe that x1 is a variable-variable in the replacement
that occurs in the opposite side of the considered replacement, but, under
the concrete-substitution interpretation, it cannot be x0, since it occurs a-
gain in the right side, namely in (S(S(0)) + x1). Then, one makes the usual
fresh variable analysis, but, similarly to stage 6.4.5, one also accounts for the
possibility of internal application of the replacement; in the considered exam-
ple, this means that one of the cases to be considered is the one where t0 is
(x0 + x1) × tx1

s1
, with t fresh, s0 is S(S(0)), and t1 is tx0

s0
. Let us briefly justify

k-Provability in PA

what was described. Let us suppose now that t0, t1, s0, and s1 are concrete
terms, and x0, x1 concrete variables. Assume that x0 is not x1 and that

(t0)
x0
s0

= (t1)
x1
s1

,

where both variables are being replaced, i.e. x0 occurs in t0 and x1 in t1.
It is not hard to conclude that x0 cannot occur in s1, just like x1 cannot
occur in s0. Consider t as being the term obtained from (t0)

x0
s0

(that is the
same as (t1)

x1
s1

) by replacing the occurrences of s0 that were placed using the
replacement by x0, and the same for s1 and x1. Then, t has x0 and x1 as
variables. Furthermore, it follows that

{
tx0
s0

= t1

tx1
s1

= t0,

as desired. This justifies the described procedure that one can add to algorithm
3.22. Observe that in the justification it was used the fact that x0 is not x1,
otherwise the construction of t could fail; for example, for t0 = S(S(x0)),
s0 = x, t1 = S(x1), and s1 = S(x) one has that (t0)

x0
s0

= (t1)
x1
s1

, but one
cannot construct t as before, since s0 is being placed in the same place as
s1. It is worth mentioning that the described impossibility is in the heart of
the undecidability of second-order unification: keep in mind that, for example,
S(tx0

x1
) = tx0

S(x1)
has an infinity of solutions, namely t = Sn(x0), that cannot be

written in a closed form without using natural numbers, in fact a variation of
this is used to represent the natural numbers inside the context of second-order
unification in [8] (the idea of the proof of the undecidability is to represent
natural numbers, addition, and multiplication inside second-order unification
and apply Matijasevič’s theorem).

We believe that algorithm 3.22 halts for every input, but we do not have
a proof of that fact or a counter-example to it; the reason for this is that we
believe that if a loop situation is reached using substitutions and replacements,
then one must have an occurrence of the same term-variable in both sides of
a given equation, something that is accounted for by the algorithm by just
outputting problem. All this concern about the halting nature of algorithm
3.22 is not necessary for what we are going to develop because we want to
account for other algorithms that might not halt on every input (that is why
we assumed that the previous convention), thus the halting nature of algorithm
3.22 is a side discussion to our goal.

We move to create the desired lists that give a more concrete inside of
theorem 3.19.

List 3.24. We now proceed to create lists, for each k and each each algorithm
A, of provable schemata, LA,k, and proof-skeletons, LA,k.

Basis case The list LA,0, for the case k = 0, is simply the (finite) list of
axioms. The list LA,0 is the list of the numbers of the schemata
that are axioms.

P. G. Santos, R. Kahle Log. Univers.

Inductive step Suppose that the lists LA,s and LA,s, with s ≤ k, where already
created. Add all elements of LA,k to LA,k+1, and all elements
of LA,k to LA,k+1. Consider the following cases:

Gen If S is a schema in LA,k, then pick x a variable-variable not occurring in
S and add ∀x.S to LA,k+1—the respective schema obtained by placing a
universal quantifier, just like in definition 3.8. If S is a proof-skeleton in
LA,k, then add Gen(S) to LA,k+1.

MP Take k = k0 + k1. Do the following:

1. Consider S0 a schema in LA,k0 and S1 a schema in LA,k1 .
2. If S1 is a universal quantification or a negation, then reject and consider

another pair.
3. Suppose that

• S0 := F [ϕ0
0, . . . , ϕ

0
n0

, t00, . . . , t
0
n1

, v0
0 , . . . , v0

n2
]&

∨
i∈I0 &j∈J0

i
∼k0,0

j

Ck0,1
j

(A0
i , tk0,2

j
, vk0,3

j
), and

• S1 := G[ϕ1
0, . . . , ϕ

1
n3

, t10, . . . , t
1
n4

, v1
0 , . . . , v1

n5
] → H[ϕ2

0, . . . , ϕ
2
n6

, t20,

. . . , t2n7
, v2

0 , . . . , v2
n8

]&
∨

i∈I1 &j∈J1
i

∼k1,0
j Ck1,1

j
(A1

i , tk1,2
j

, vk1,3
j

).
4. We now proceed to see whether F and G can be unified by means of

a substitution σ using the algorithm A and the previously developed
methods. We assume that the conventions were already applied to these
schemata.

5. Using the ideas of the previous proofs (with the suitable adaptations), it
is not hard to see that one can test whether F and G have a common
layout.

6. If they do not have, then reject and consider another pair of schemata.
7. If they have, find the common layout in such a way that unnecessary

complexity is avoided (follow the ideas of the previous proofs).
8. Starting from the first entry of the common layout, do the following:

8.1. Proceed with the quantifiers and negation signs as before (for in-
stance, like in the proof of lemma 3.13).

8.2. One should create a system for the cases where in both entries one
has something of the form X0 · · · Xnr = s, with r and s term-
structures. Act accordingly with the quantifiers and the negation
signs. If it is not possible, then reject and consider another pair of
proof-skeletons.

8.3. One should run algorithm A (for example algorithm 3.22) for the
needed equalities of term-structures that emerge.

8.4. If A is not successful, then reject and consider another pair of
schemata.

8.5. Assume for the rest of the procedure that the algorithm A is suc-
cessful. Take note of all solutions.

8.6. Consider the case where one has in one entry X0
0 · · · X0

�0
(ϕ0)

�x0
�s0

and
in the other one has X1

0 · · · X1
�1

r = s. Firstly, act accordingly with
the quantifiers and negation signs (see, for example, 4.1.1 of the

k-Provability in PA

proof of lemma 3.13). If it is not possible, then reject and consider
another pair of schemata.

8.7. If any of the �x0 appears in r = s, then then reject and consider
another pair of schemata. If ϕ0 was already assigned to something
of the form X2

0 · · · X2
�2

r′ = s′, then apply the considered replacement
(this yields a case analysis). Apply the conventions and force it to be
X1

0 · · · X1
�1

r = s; this will give rise to another system that one should
solve using algorithm A. If the system is not successful, then reject
and consider another pair of schemata. If it is, save the solutions.
If ϕ0 was not yet assigned to such a structure, then consider ϕ0 as
being t = t′, with t and t′ fresh term-variables. Run the algorithm A
to solve the systems that emerge and proceed only in the case where
the algorithm is successful (all the case analyses should include the
suitable information about the conditions that are needed at each
stage).

8.8. One now considers all entries were ones has something of the form
X0 · · · Xn(ϕ0)

�x0
�s0

in both entries.
8.9. We assume, due to our conventions, that in the considered case we

do not have the same formula-variable occurring. Act accordingly
with the quantifiers and the negation signs. If it is not possible, then
reject and consider another pair of schemata.

8.10. If both formula-variables were already assigned to something of the
form X0 · · · X�0r = s, then apply the replacements, apply the con-
ventions, and, for each case of the conventions, solve the obtained
system in the previously mentioned ways. If any of the systems is
not successful, reject and consider another pair of schemata.

8.11. If only one of them was mapped to the mentioned structure, adapt
step 8.6.

8.12. Suppose now that non of the formula-variables was assigned. Then,
one should unify them like what was done for the case of algorithm
3.22 for term-variables. If one needs to satisfy an equality where in
both members of the equality one has something of the form ϕ�x

�s , then
reject and consider another pair of schemata; otherwise proceed as
before by substituting the already attributed values. For example, if
one has the equations ϕ0 = ϕ1, ϕ1 = ϕ2, then one assigns all those
formula-variables to a common fresh formula-variable, say ϕ; if one
has ϕ0 = ϕx

s and ϕ2 = ϕ0, then one assigns ϕ2 to ϕx
s .

8.13. Apply the previous steps to all entries.
9. If we do not get a rejection for the considered schemata in the previous

procedure, then apply to each of the final results the conventions and

P. G. Santos, R. Kahle Log. Univers.

then add the all resulting provable schemata to the list LA,k+1:

H[σ(ϕ2
0), . . . , σ(ϕ2

n6
), σ(t20), . . . , σ(t2n7

), σ(v2
0), . . . , σ(v2

n8
)]&

∨

i∈I0
&j∈J0

i

∼k0,0
j Ck0,1

j
(σ(A0

i), σ(tk0,2
j

), σ(vk0,3
j

))&

∨

i∈I1
&j∈J1

i

∼k1,0
j Ck1,1

j
(σ(A1

i), σ(tk1,2
j

), σ(vk1,3
j

))
(

&C
)

,

where C are, possibly, the conditions that appear from the conventions
and the solutions of the considered systems.

10. Consider S0 a proof-skeleton in LA,k0 and S1 a proof-skeleton in LA,k1 .
11. If for all schemata S0 in LA,k0 with skeleton S0 and S1 in LA,k1 with

skeleton S1, the previous procedure does not yield a rejection, then one
should add MP(S0,S1) to LA,k+1; if for any of them one rejects, then one
should consider another pair of proof-skeletons and do the same move.

It is important to observe that the previous constructions does not contra-
dict the undecidability of second-order unification problem (see, for instance,
[8]): we are considering different types of terms, namely term-structures; we
are considering a different type of substitutions σ; and in algorithm 3.22 we
do not allow the occurrence of a term-variable in both sides of an equation,
something that is indispensable in the proof of the undecidability of second-
order unification in [8]. One should keep in mind that the algorithms that we
are considering are all necessarily partial—they cannot solve successfully all
systems.

Observe that for each k and A, the lists Lk,A and Lk,A are finite—this
follows by construction, in particular from the fact that for each convention
there is a finite number of ways to apply it, and from the fact that the systems
that are successful have a finite number of (most general) solutions for the
considered algorithm. Although we presented an inductive construction of the
lists, they are not necessarily computable uniformly in k; nevertheless, for each
fixed k, LA,k and LA,k are computable due to the fact that they are finite (and
all finite lists are computable). The computable uniformity of the lists would
entail that, for small values of k, one could, for the considered algorithm A,
computationally decide if a given system is successful for A (a feature that
fails for most algorithms).

Definition 3.25. We say that a proof-skeleton S is grounded for A if S is in
LA,k, where k is the number of steps of S. We say that k is a grounded number
for A if all proof-skeleton whose number of steps is at most k are grounded
for A. We will consider LA := ∪kLA,k and LA := ∪kLA,k.

If one makes some assumptions about the way the lists were generated—if
one assumes that there is a general way to create them, if one assumes that in
the construction one does not include unnecessary complexity, etc—, for most
cases, the stable proof-skeletons are also grounded for some algorithm A.

The intuition behind grounded proof-skeletons is that, to such skeletons,
one can apply the intuitive reasoning made in the beginning of section 3.1

k-Provability in PA

for the analysis of the proofs whose general structure is given by the skeleton
MP([L)],MP([L)], [|rmL)])). Furthermore, a grounded number is a number
such that all proof-skeletons of proofs that have that very same number as the
maximum number of steps are grounded.

Theorem 3.26. Given S a grounded proof-skeleton for A in LA,k, if ϕ has a
proof whose skeleton is S, then there are a schema S in LA,k with skeleton S,
generated by the algorithms, and a concrete-substitution Σ such that Σ(S) = ϕ.

Proof. Let us prove the result by induction on k. If S is in LA,0, then S is
the number of an axiom; thus, if ϕ has a proof whose skeleton is S, then there
are a schema S in LA,0 with skeleton S, generated by the algorithms, and a
concrete-substitution Σ such that Σ(S) = ϕ. Suppose, by induction hypothesis,
that the result holds for s ≤ k. Suppose that S is in LA,k+1 and that ϕ has a
proof whose skeleton is S. Consider the following cases:

S = Gen(S0) In this case, one must have ϕ = ∀x.ψ and ψ should have a
proof whose skeleton is S0. By construction, S0 must be in
LA,k. By induction hypothesis, there are a schema S0 in LA,k

with skeleton S0, generated by the algorithms, and a concrete-
substitution Σ such that Σ(S0) = ψ. It is clear that the
schema ∀v.S0, obtained by S0 using the generalisation rule,
is in LA,k+1; furthermore, ∀v.S0 has skeleton S. Moreover,
one can extend Σ in such a way that Σ(∀v.S0) = ∀x.Σ(S0) =
∀x.ψ = ϕ.

S = MP(S0,S1) In this case, there must be ψ such that ψ has a proof whose
skeleton is S0 and ψ → ϕ has a proof whose skeleton is S1.
So, one has S0 in LA,k0 and S1 in LA,k1 , with k = k0 + k1.
By induction hypothesis, there are schemata S0 in LA,k0 with
skeleton S0 and S1 in LA,k1 with skeleton S1, and concrete-
substitutions Σ0 and Σ1 such that Σ0(S0) = ψ and Σ1(S1) =
ψ → ϕ. Lemma 3.13 guarantees that there is a substitution
that unifies F and G; furthermore, guided by the concrete-
substitutions Σ0 and Σ1, one can use the previous algorithm-
s to obtain a minimal unifier σ for the algorithm A (the
concrete-substitutions can be used to see what choices should
be done while running the algorithm)—this follows from the
Sub. property of convention 3.23 (and from the fact that a ver-
sion of Sub. Property holds for formula-variables); moreover,
the algorithm will be successful because S is grounded. Thus,
using σ from the algorithm, σ(F) = σ(G). Clearly, the schema
σ(H)—this schema includes the suitable conventions—is in
LA,k+1. Moreover, using the reasoning of the proof of lemma
3.13 and the Sub. property, one can guarantee the existence
a concrete-substitution Σ such that Σ(σ(H)) = ϕ.

The result follows by induction. �
Corollary 3.27. Given S a grounded proof-skeleton for A, for each formula ϕ,
it is decidable whether there is a proof of ϕ whose skeleton is S.

P. G. Santos, R. Kahle Log. Univers.

Proof. Consider S a grounded proof-skeleton for A. Generate, using the pre-
vious procedures for the algorithm A, the schemata that have S as proof-
skeleton, let us call this finite list R. These obtained schemata are minimal in
the sense that there was added no unnecessary complexity to the substitutions.
Let us prove that ϕ has a proof whose skeleton is S if, and only if, there are a
concrete-substitution Σ and S in R such that Σ(S) = ϕ. It is clear that if there
are a concrete-substitution Σ and S in R such that Σ(R) = ϕ, then ϕ has a
proof whose skeleton is S (this can be proved by induction on the definition of
proof-skeleton). Let us prove the other direction. Suppose that ϕ has a proof
whose skeleton is S. Then, by the previous theorem, there are a schema S with
skeleton S, generated by the algorithms, and a concrete-substitution Σ such
that Σ(S) = ϕ. Clearly S is in R, so desired result holds.

The decidability follows from the fact the the list R is finite and from
theorem 3.17. �

From the proof of the previous result we can conclude that every grounded
skeleton is stable. Thus, every grounded number is stable.

Theorem 3.28. For k a grounded number for A, T �ksteps ϕ if, and only if,
there are a schema S in LA,k and a concrete-substitution Σ such that Σ(S) =
ϕ.

Proof. Clearly, if there is a schema S in LA,k and a concrete-substitution
Σ such that Σ(S) = ϕ, then T �ksteps ϕ(this follows by a simple induction
argument). Let us prove the other direction by induction on k. It is clear that
the result holds for k = 0, the axiom case. Suppose, by induction hypothesis,
that the result holds for all s ≤ k. Suppose that k + 1 is a grounded number
for A and consider ϕ such that T �k+1steps ϕ. We have two cases:

Last step uses Gen In this case, we have that ϕ = ∀x.ψ and T �ksteps ψ. It
follows from the definition that k is a grounded number
for A. By induction hypothesis, there are a schema S in
LA,k and a concrete-substitution Σ such that Σ(S) = ψ.
Consider ∀v.S the schema that is obtained from S by the
generalisation rule. Clearly, ∀v.S is in LA,k+1. Further-
more, we can extend Σ in such a way that Σ(∀v.S) =
∀x.ψ = ϕ.

Last step uses MP In this case, there is a formula ψ such that T �k0steps ψ
and T �k1steps ψ → ϕ, with k = k0 + k1. It follows that
k0 and k1 are grounded numbers for A. By induction hy-
pothesis, there are schemata F in LA,k0 and G → H in
LA,k1 , and concrete-substitutions Σ0 and Σ1 such that
Σ0(F) = ψ and Σ1(G → H) = ψ → ϕ. By the reason-
ing of the proof of theorem 3.26, we can guarantee the
existence of a suitable substitution σ delivered by the
algorithm such that σ(F) = σ(G). As k +1 is a ground-
ed number for A, the algorithm must be successful and
thus σ(H) is in LA,k+1. As σ is minimal in the sense of

k-Provability in PA

introduction of unnecessary complexity and by the rea-
soning of the proof of theorem 3.26 (the fact that σ was
chosen using the concrete-substitutions), there must be
a concrete-substitution Σ such that Σ(σ(H)) = ϕ.

The result follows by induction. One could also prove the result using the proof
of corollary 3.27. �
Corollary 3.29. Given k a grounded number for A, it is decidable whether
T �ksteps ϕ or not.

Proof. One considers the finite list LA,k. By the previous result, it is enough
to see whether there is a concrete-substitution Σ and S in LA,k such that
Σ(S) = ϕ, something that is decidable from the fact that LA,k is finite and
from theorem 3.17. This also follows from theorem 3.20. �
Corollary 3.30. Given k a grounded number for A in PA′, it is decidable
whether PA′ �ksteps ϕ or not.

Proof. Follows from the previous result when one has in mind that PA′ is one
of the considered theories. �
Corollary 3.31. Given k a grounded number for A in PA′, it is decidable
whether PA �ksteps ϕ or not.

Proof. Follows from the previous corollary and theorem 2.4. �
Theorem 3.32. Given A, there is an infinity of schemata in LA.

Proof. It is not hard to see that all schemata that are constructed using only
the propositional logic axioms, L1)–L3) in the initial list, are in LA. Further-
more, besides these propositional schemata, there are much more schemata in
LA: the only restriction that ones has is that they do not yield the problem
cases in their construction and the algorithm halts without rejecting. �
Theorem 3.33. Given an algorithm A, there is an algorithm HA such that, for
every grounded proof-skeleton S and every formula ϕ, the algorithm halts and
accepts for S and ϕ if, and only if, ϕ has a proof whose skeleton is S.

Proof. Fix an algorithm A. For a proof-skeleton S, the algorithm HA—using
the construction of the schemata in LA—tries to generate all the provable
schemata in LA whose skeleton is S. Observe that in the construction of the
lists LA,k one needed to make assumptions about the successfulness of the
algorithm A for certain systems, but in this algorithm we do not make those
(possibly non-computable) assumptions; the rest of the process remains the
same, but one only focus on the construction of the schemata that potentially
have skeleton S. This yields no problem because the construction of the lists is
computable with possible exception of the successfulness conditions. For non-
grounded proof-skeletons (not in LA) the algorithm might not halt. Suppose
that S is a grounded proof-skeleton. Then, the algorithm HA can successfully
construct the lists R from the proof of corollary 3.27. Thus, using theorem
3.17, the algorithm can decide whether ϕ has a proof whose skeleton is S. �

P. G. Santos, R. Kahle Log. Univers.

The algorithms HA have, in a sense, implemented the idea of the analysis
made to the skeleton MP([L)],MP([L)], [|rmL)])) in the beginning of section
3.1.

Theorem 3.34. If T is such that T �ksteps ϕ is uniformly decidable in k, then
there is a recursive function f(k, ϕ) such that

T �ksteps ϕ =⇒ T �f(k,ϕ) symbols ϕ.

Proof. Assume T �ksteps ϕ is uniformly decidable in k. Consider the partial-
recursive functions

(k, ϕ) := μn[n is the code of a proof of ϕ in T with at most k steps],

and

sym(s) :=

⎧
⎪⎨

⎪⎩

number of symbols in
the proof of code is s, s is the code of a proof in T

0, otherwise.

By hypothesis, we can decide uniformly in k if T �ksteps ϕ holds or not. Thus,
the function

f(k, ϕ) :=

{
sym(c(k, ϕ)), T �ksteps ϕ

0, otherwise.

is, by construction, a total recursive-function that satisfies the desired property.
�

Theorem 3.35. If T is such that there is a recursive function f(k, ϕ) such that

T �ksteps ϕ =⇒ T �k steps and f(k,ϕ) symbols ϕ,

then T �ksteps ϕ is uniformly decidable in k.

Proof. Assume there is a recursive-function f(k, ϕ) satisfying the considered
property. Let us consider the following algorithm.

1. Input: k and ϕ.
2. Compute f(k, ϕ). If there is a proof of ϕ in k steps, then there is a proof

of ϕ with at most f(k, ϕ) symbols; such a proof would use at most f(k, ϕ)
variables, furthermore it does not matter the choice of variables that one
makes in the sense that if one changes all the occurrences of a given
variable in the proof one continues to have a sound proof. Take a finite
list of at most f(k, ϕ) variables.

3. Consider a finite list I0 of symbols consisting of: the logical symbols (‘∀’,
‘¬’, and ‘→’), ‘=’, ‘(’, ‘)’, ‘+’, ‘×’, ‘0’ and the previously mentioned finite
list of variables. Consider also a blank symbol ‘B’ (just to separate the
candidate formulas in a proof to be) not in I0.

4. Using only symbols from I0 and ‘B’, generate a list I of all the (finitely
many) possible lists of symbols which contain at most f(k, ϕ) ones from
I0 that have ϕ as the last element of the list.

k-Provability in PA

5. Test if any element of I is a proof in T with k steps (clearly, this can be
done in a computational manner): output 1 in affirmative case, and 0 in
the negative case.

It is not hard to see that the previous algorithm decides uniformly in k the
relation T �ksteps ϕ. �

Consider PAa as being any formulation of PA considered in [6] and proved
to have a decidable k-provability. The next result is a solution to the problem
20 of [4] for these formulations, a problem proposed by Kraj́ıček.

Corollary 3.36. There is a recursive-function f(k, ϕ) such that

PAa �ksteps ϕ =⇒ PAa �f(k,ϕ) symbols ϕ.

Proof. Follows from theorem 3.34 and the fact that PAa �ksteps ϕ was proved
to be decidable uniformly in k (see [6]). �

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdiction-
al claims in published maps and institutional affiliations.

References

[1] Baaz, M., Pudlák, P.: Kreisel’s conjecture for L∃1. In: Clote, P., Krajićek, J. (ed-
s.) Arithmetic, Proof Theory and Computational Complexity, pp. 29–59. Oxford
University, Oxford (1993)

[2] Buss, S.R.: The undecidability of k-provability. Ann. Pure Appl. Logic 53(1),
75–102 (1991)

[3] Cavagnetto, S.: The lengths of proofs: Kreisel’s conjecture and Gödel’s speed-up
theorem. J. Math. Sci. 158(5), 689–707 (2009)

[4] Clote, P., Kraj́ıček, J.: Open problems. In: Clote, P., Kraj́ıček, J. (eds.) Arith-
metic, Proof Theory and Computational Complexity, pp. 1–19. Oxford Univer-
sity, Oxford (1993)

[5] Enderton, H.B.: A Mathematical Introduction to Logic. Elsevier, Amsterdam
(2001)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

P. G. Santos, R. Kahle Log. Univers.

[6] Farmer, W.M.: A unification-theoretic method for investigating the k-provability
problem. Ann. Pure Appl. Logic 51(3), 173–214 (1991)

[7] Farmer, W.M.: The Kreisel length-of-proof problem. Ann. Math. Artif. Intell.
6(1–3), 27–55 (1992)

[8] Kraj́ıček, J., Pavel, P.: The number of proof lines and the size of proofs in first
order logic. Arch. Math. Logic 27(1), 69–84 (1988)

[9] Miyatake, T.: On the length of proofs in a formal systems. Tsukuba J. Math.
4(1), 115–125 (1980)

[10] Orevkov, V.P.: Complexity of Proofs and Their Transformations in Axiomatic
Theories. Translations of Mathematical Monographs, vol. 128. American Math-
ematical Society, Providence (1993)

[11] Parikh, R.J.: Some results on the length of proofs. Trans. Am. Math. Soc. 177,
29–36 (1973)

[12] Pavel, H.: Theories very close to PA where Kreisel’s Conjecture is false. J. Symb.
Log. 72(1), 123–137 (2007)

Paulo Guilherme Santos and Reinhard Kahle
Centro de Matemática e Aplicações, NOVA School of Science and Technology
2829-516 Caparica
Portugal
e-mail: pgd.santos@campus.fct.unl.pt;

kahle@mat.uc.pt

Reinhard Kahle
Theorie und Geschichte der Wissenschaften, Universität Tübingen
Keplerstr. 2
72074 Tübingen
Germany

Received: September 20, 2020.

Accepted: May 1, 2021.

	k-Provability in PA
	Abstract
	1. Introduction
	2. The Theory PA'
	3. Main Results
	3.1. Provable Schemata
	3.2. Decidability of Schemata
	3.3. Decidable of Some Proof-skeletons and k-Provability

	References

