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Abstract

The Semantic Learning Machine (SLM), an algorithm that evolves the topology of feed-forward
neural networks (NN), has shown remarkable results in generalization and computing time. It
has the benefits of searching the space of different NN architectures under a unimodal fitness
landscape in any supervised learning problem. Recent research used the SLM at the end of a
Convolutional Neural Network (CNN) instead of fully connected layers outperforming state-
of-the-art CNNs. It was proposed to extend the SLM to explore the possibility of optimizing
the convolution layers - evolving the full CNN topology. This thesis introduces an operator to
optimize the convolution layers, extending the SLM to the Deep Semantic Learning Machine.
Initial results, computed using the mnist dataset, show that the algorithm does work but are of
limited interpretability. Real-life practicability remains to be improved due to high memory and
computational requirements.

Keywords: Deep Semantic Learning Machine, Semantic Learning Machine, Geometric Se-
mantic Genetic Programming, Machine Learning, Convolutional Neural Networks
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Resumo

Semantic Learning Machine (SLM), um algoritmo que evolui a topologia de redes neurais
feed-forward (NN), tem mostrado resultados notáveis em generalização e tempo de computação.
Tem benefícios de pesquisar o espaço de diferentes arquiteturas NN sob um cenário de aptidão
unimodal em qualquer problema de aprendizagem supervisionada. Investigação recente recorre
ao uso de SLMno final de uma redes neurais convolucional (CNN) em vez de camadas totalmente
conectadas, superando CNNs de última geração. Foi proposto estender o SLM para explorar a
possibilidade de otimizar as camadas de convolução - evoluindo a totalmente a topologia CNN. A
presente tese apresenta um operador para otimizar as camadas de convolução, estendendo o SLM
para a Deep Semantic Learning Machine. Os resultados iniciais, calculados usando o conjunto
de dados mnist, mostram que o algoritmo funciona,mas revelam uma interpretabilidade limitada.
A aplicabilidade em cenários reais precisa ainda de melhorias devido aos altos requisitos de
memória e computação.

Palavras-chave: Deep Semantic Learning Machine, Semantic Learning Machine, Aprendiza-
gem Automática, Redes Neurais Convolucional, Programação Genética Geométrica Semântica
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Chapter 1

Introduction

Artificial Intelligence (AI) is a term used in the center of discussions about the future in today’s
world. The research field of AI is vast and highly interrelated among other domains than
computer science. It already impacts many people’s everyday lives through various touchpoints:
weather forecast in meteorology, online advertising, health, transportation, or finance. More and
more companies are getting ready to change their businesses to rely on data-driven decisions,
and as a result, whole business models deteriorate, and new ones appear.

For many people finding meaning in images, and art was thought to be proprietary to hu-
mankind and has been an exciting field of research in recent years and years to come. The
main challenges are object segmentation and classification in, e.g., self-driving cars or magnetic
resonance imaging, image colorization, super-resolution, and image synthesis. While the current
approach of training Convolutional Neural Networks (CNNs) by finding optimal weights has
shown great successes, the search for an adequate architecture still lies in the researcher’s hands.
This thesis examines Geometric Semantic Genetic Programming (GSGP) as a methodology to
efficiently evolve CNNs, potentially laying ground work for better solutions to the challenges
described above.

In previous works, GSGP has been extended to a neuroevolution algorithm, the so-called
Semantic Learning Machine (SLM), to evolve multi-layer feed-forward neural networks. This
approach has shown outstanding performance in various tests. Recently, the question if the
approach can be extended to optimize the architecture of convolutional layers in CNNs has
been raised. This would allow extending the SLM to optimize the whole topology of a CNN.
This thesis proposes an operator that optimizes the architecture convolution layers (and pooling
layers) based on GSGP and SLM principles. An extended variant of the SLM, the Deep Seman-
tic Learning Machine (DSLM), is proposed using that operator. To evaluate the optimization
of convolution layers with the proposed operator, the DSLM is confronted with recognizing
handwritten digits and compared with the SLM and traditional CNNs.

This thesis’s remainder is structured in the following way: The next chapter gives broad
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CHAPTER 1. INTRODUCTION

theoretical background in optimization (section 2.1) and Machine Learning (section 2.2). Sub-
sequently, the concept of both Artificial Neural Networks (NN) (in section 2.3) and CNNs
(in section 2.4) are explained in more detail. Further, Genetic Programming (GP) and GSGP
are derived in section 2.6 from Genetic Algorithms (GA) which are explained in section 2.5.
Afterward, a detailed review of the Semantic Learning Machine (SLM) is given in section 3, and
the Deep Semantic Learning Machine (DSLM) is proposed in section (4). Experimental results
on the proposed algorithm are shown in section 5 and limitations of this thesis and possible
future work are set out in section 6. In the end, a conclusion is drawn.
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Chapter 2

Theoretical Background

This section gives the reader theoretical background to understand the idea and challenges of
the DSLM algorithm. Readers who come from machine learning, primarily the computer vision
domain, or feel familiar with a topic may skip the first subsections as the basic concepts are
introduced here. However, it is vital to understand the concepts of GSGP laid out in subsection
2.6 to understand how the SLM and DSLM work.

2.1 Optimization

Optimization deals with finding the best solution from a set of all feasible solutions according to
specific criteria. The concept of optimization can be found in many everyday situations: A su-
permarket wants to have the optimal stock of products to offer every customer what he/she might
buy, have low inventor cost, and make sure that no product goes off. When driving a car, a person
wants to take to optimal route to the destination. What is considered optimal can depend on more
factors than travel time. Other vital factors could be if a toll route is used or not, or the average
fuel consumed during the journey. It is essential to consider all criteria to find an optimal solution
and that an optimal solution can be a minimum (e.g., time spend) or maximum (e.g., money
earned). An optimization problem models a problem in general terms (i.e., routing), and only
the problem instance is solved by an optimization algorithm (i.e., the route from A to B at time t).

An optimization problem can be represented in the following way:

Given a function 5 : - → ℝ, sought is an element G∗ ∈ - such that 5 (G∗) ≤ 5 (G)∀G ∈ - (for
minimization problems) or such that 5 (G∗) ≥ 5 (G)∀G ∈ - (for maximization problems).

The domain - of 5 is called the search space, containing all possible solutions, while each
element of - is called candidate solution or feasible solution. Solutions that are similar to
one another are called neighbors. The neighborhood is a vital concept in optimization and
essentially is a mapping that assigns a set of (neighboring) solutions H ∈ - for each G ∈ -:
# (G) : - → 2- , where 2- constitutes all possible subsets of - .

3



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Fitness landscape with locally optimal solutions A and B and the global optimum C

The function 5 is called the objective, fitness, or loss function. It assigns a value to each
candidate solution. A plot of (-, 5 , 3) of an optimization problem instance, a so called fitness
landscape [50], can help to visualize the difference of locally and globally optimal solutions
as shown in figure 2.1. Here, 3 is a distance measure (e.g., Manhattan distance or Euclidean
distance) of two solutions. It is only wise to consult a fitness landscape if the distance between
solutions has a meaning, i.e., a metric search space is in place.

A solution is a locally optimal solution (minimization) concerning its neighborhood # if:
5 (G ′) ≤ 5 (G)∀G ∈ # (G ′). A solution is a globally optimal solution (minimization) if:
5 (G∗) ≤ 5 (G)∀G ∈ - . If a solution’s fitness is directly proportionate to the distance to a
globally optimal solution, no locally optimal solutions exist, an essential concept for this thesis’s
remainder. Such a fitness landscape is called a uni-modal fitness landscape.

Members of the search space - are often restricted to have specific criteria to represent
essential constraints in the optimization problem. For example, each solution must be a positive
integer number in inventory planning as half an egg is impossible to store, and a negative egg
does not exist. These constraints are usually modeled as qualities such as ℎ(G) = 0, inequalities
6(G) ≤ 0 or variable bounds G<8= ≤ G ≤ G<0G .

A simple example of an optimization problem is the binary knapsack problem. Here, The
problem is to maximize the sum of the values of the items in a knapsack so that the sum of the
weights is less than or equal to the capacity of the backpack. It it can be expressed as:

maximize
=∑
8=1

E8G8

subject to
=∑
8=1

F8G8 ≤ , and G8 ∈ {0, 1}

A set of = items, each with a weight of F8 and a value E8 is given with the maximal capacity of
, . The value of G8 indicating if the item 8 is in the knapsack or not.

4



2.1. OPTIMIZATION

For real-life problems, the search space is too exhaustive to plot a fitness landscape and
then choose a globally optimal solution. Every possible solution must be evaluated using the
fitness function (exhaustive search) to draw a fitness landscape. Many different approaches
on how to retrieve the optimal or close to the optimal solution have developed. It should be
mentioned that Wolpert and Macready showed that there does not exist a superior algorithm
for all different kinds of optimization problems. An over-performance of one algorithm for
some problems will result in under-performance for the remaining problems, known as the no
free lunch theorem [49]. For the remainder of this chapter and this thesis, only heuristics and
meta-heuristics are further examined as they are the basis for the following chapters. Further, the
field of problem complexity is omitted as it is not essential to the following chapters. Interested
readers are encouraged to read about this topic in textbooks.

Heuristic methods determine solutions to an optimization problem practically but are not
guaranteed to reach an optimal solution. However, they are usually less computationally inten-
sive than exact methods and are often applied to complex problems to which no exact method
is known. While heuristics are usually designed problem-specific, meta-heuristics are strategic
problem-solving frameworks that can be applied to various problems [10]. Most of them rely
on the concept of neighborhood search.

The most straightforward approach iteratively explores the search space: If a solution in
the neighborhood is better than the current best solution, update the current best solution until
no better solution is in the neighborhood. For a maximization problem, this method reaches
the next local optimum in the fitness landscape. It is thus called hill-climbing. However, it
is not guaranteed to reach a globally optimal solution. For the sake of completeness, some
other meta-heuristics are briefly mentioned here, but a complete explanation would go beyond
establishing a theoretical background and is not necessary for understanding the next chapters.

Simulated Annealing [26], inspired from thermodynamic processes of cooling materials slowly
to reach more stable crystals, is similar to hill-climbing but also accepts less optimal solutions
with decreasing probability over time:

%(�, G, G ′) =


1, if 5 (G ′) ≥ 5 (G)

exp( 5 (G) − 5 (G ′)/2), otherwise

Where � is the control parameter, which should decrease towards zero but never reaching it.
Simulated Annealing is proofed, under certain conditions, to converges to a globally optimal
solution [19].

Particle Swarm Optimization is a biologically inspired meta-heuristic that mimics observa-
tions of swarming animals such as birds of fish [25]. Many particles explore the search space
simultaneously. Each particle tends towards the best-known solution but is also influenced by

5



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: Over-fitting and under-fitting: Error on training and test data

random movement.

Another biologically inspired meta-heuristic are Genetic Algorithms (GAs), which are in-
spired by Charles Darwin’s theory of evolution [13]. Here, many individuals explore the search
space and undergo selection and variation to form better individuals and hence better solutions.
Section 2.5 deals with GAs in depth.

2.2 Machine Learning

The termmachine learning is generally described by algorithms that improve themselves through
experience. Machine learning can be sub-grouped into supervised learning and unsupervised
learning. In unsupervised learning, an algorithm tries to find hidden relationships within the
data. In supervised learning, an algorithm sees a set of labeled training data with the goal to
learn a function that maps the data to the labels. As an additional requirement, the function must
also have the same property when tested on data of the same kind other than the training data,
known as unseen data, test data, or validation data. Supervised machine learning problems can
be further divided into regression problems, estimating a quantity, and classification problems
to create a mapping to a discrete variable, i.e., discriminate among different classes.

If the learned function or model of the training data performs well on unseen data, it is
generalizing. However, experiments show that this is not always the case. The algorithm might
not have learned enough from the training data and is then said to be under-fitting the data, or it
might have memorized the data exactly, and thus the learned function does not hold a general
truth. Figure 2.2 shows the typical relationship between the error on training data and the error
on the test data of an iterative supervised machine learning algorithm over different iterations.
The more iterations, the better the training data is modeled. However, this is only true for a
certain degree regarding the error on the unseen data and thus the generalization. From a certain
point onward, the model will start to model the random noise contained in the training data and
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2.3. NEURAL NETWORKS

Figure 2.3: Simple Percepton with two inputs

is over-fitting. The error in the unseen data increases and the model develops a high variance.
The theoretical optimal generalization is highly influenced by the available training data [17].
Only by pure chance, an algorithm could come up with a model that exceeds the knowledge
hidden in the training data. A desirable algorithm will produce a model that minimizes the
training error while not sacrificing performance on unseen data.

All learning algorithms have means by which they evolve the model over time, e.g., how
a possible function is created and thus representing the only way the algorithm can improve
the model’s performance. These concepts are known as the inductive bias of a model [21].
The problem of finding the best optimal learning algorithm is also known as the bias-variance
trade-off. Different algorithms with different inductive biases have evolved. The next chapter
gives an overview of NNs and CNNs. Later, the concept of GSGP is derived from GP and
GA. While there are many more algorithms that are possible to study in the context of machine
learning, these lay the foundations for the proposed DSLM in section 4.

2.3 Neural Networks

NN are biologically inspired machine learning algorithms that try to mimic the function of the
human brain. A brain is composed of many neurons that send out signals after receiving certain
stimuli. The same structures can be found in NN. The simplest form of a NN was invented as
early as 1958 by F. Rosenblatt and is called Perceptron [40].

Only a single neuron composes the Perceptron NN shown in figure 2.3. It exhibits a feed-forward
property as information from the training data only flows in one direction, from the input to
the output. Here, inputs denoted as G=, weighted connections F=, a bias \, and an activation
function 5 calculate an output H as following:

H = 5
( =∑
8=1

G8F8 + \)

7



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Feed Forward Neural Network with 2 input neurons, 2 hidden layers and 1 output
neuron

A possible activation function 5 could be the threshold function:

5 (B) =


1, if B ≥ 0

−1, otherwise

The goal is to learn the weights such that for each input X, a correct y is calculated and can be
achieved with the perceptron learning rule, which can further be investigated in [40]. Another
way of looking at the Perceptron is that each input and weight are pairs of regressors and
parameters of a linear regression equation H = V=G= + \. A single neuron perceptron can only
solve linearly separable problems as the decision boundary is only formed by straight lines.

The figure 2.4 shows a multi-layer feed-forward neural network with biases omitted for read-
ability, which is referred to as NN for the remainder of this thesis. A layer refers to a set of
neurons that are not connected to each other. Layers in feed-forward networks receive incoming
connections from layers closer to the input layer and have outgoing connections to layers closer
to the output layer. Layers between the input and output layer are called hidden layers. With
the Adaline [48] learning rule first used the error obtained on the training data set to update
the weights, and in 1985 the modern form of the well-known gradient descent back-propagation
algorithm was introduced [30]. As its name suggests, the algorithm propagates errors from the
output neuron back to the hidden neurons to calculate a gradient. For a detailed explanation of
the back-propagation algorithm and other weight optimizes, please see [18].

It should be mentioned that apart from the threshold activation function, which is rarely used
nowadays, many other activation functions can be found in NNs. Sigmoidal functions such as
the logistic function f(G) = 1

1+4−G or the hyperbolic tangent (Tahn) 5 (G) = 4G−4−G
4G+4−G have been

one of the most common in the earlier days while recently the Rectified Linear Units function
5 (G) = <0G(0, G) (ReLU) is used widely. Moreover, it is common to use the softmax function
f(G)8 = 4G8∑ 

9=1 4
G 9

at the output layers of a NN for classification tasks as the output is easily
interpreted as a class probability by humans. The swich function 5 (G) = G · f(G) with f(G)

8



2.4. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.5: People imagined by a Generative Adversarial Network

as the logistic function, proposed by Google Brain [38], has interesting properties that allow
for changing more weights than if using ReLU, which resulted in better performance for many
tasks. Many other activation functions exist.

2.4 Convolutional Neural Networks

Convolutional Neural Networks are multi-layer feed-forward neural networks with specialized
layers that are used to capture spatial relationships within the input data they receive. In 1988
the back-propagation algorithm was first introduced for one-dimensional CNNs [46] and later
extended to two-dimensional CNNs [31]. The two-dimensional CNNs are widely used for
imaginary analysis as features in an image highly depend on spatial arrangement. They are used
in various domains and influence many people’s everyday life. Many modern smartphones rely
on face identification for authorization (such as Face ID [23]) using CNNs. Moreover, advances
in medical applications such as magnetic resonance, computed tomography, and microscopy
imaging have been made [12] and this field of research is still growing. Also, CNNs are used for
detecting patterns in various time series domains, e.g., myocardial infarctions can be detected
using a person’s electrocardiogram signals with a CNN [2]. Perhaps one of the fascinating uses
of CNNs is the generation of fake images as shown in figure 2.5 [47] and the editing capabilities
they bring to photo and video editing software [3]. The remainder of the section introduces the
convolution operation and other concepts that come with it, and later a shot discussion about
the development of different architectures is held.

In its most general form, the convolution operation can be described as combining two functions
on a real value input. E.g., to get a smooth version of noisy measurements of some time
dependent data G(C) a weighting function F(0), where 0 is the age of the measurement, can be
applied for all data points:

B(C) =
∫

G(0)F(C − 0)30

which is called convolution and expressed as:

B(C) = (G ∗ F) (C)

Where the input function G is known as the input, the weighting function F as the kernel or filter
and the resulting smooth version B is also known as the feature map. In machine learning, the

9



CHAPTER 2. THEORETICAL BACKGROUND

input data usually is discretized such that data is provided only in certain time intervals. Thus, C
can be assumed to take only integer values, and the above can be rewritten as:

B(C) =
∞∑

0=−∞
G(0)F(C − 0)

Given that data in machine learning is usually represented as a multi-dimensional array or tensor.
Further, it is usually assumed that the input and the kernel have a value of zero. Except for the set
of points, a value is stored, making it a summation over a finite number of the respective array
entries. When talking about image data, the convolution usually happens over the horizontal and
vertical dimensions of an image � with a two-dimensional kernel  to get a smoother estimate
of that respective image:

((8, 9) = (� ∗  ) (8, 9) =
∑
<

∑
=

� (<, =) (8 − <, 9 − =)

Convolution is commutative, and can be rewritten as:

((8, 9) = ( ∗ �) (8, 9) =
∑
<

∑
=

� (8 − <, 9 − =) (<, =)

with the kernel being flipped relative to the input. Many libraries implement cross-correlation
instead of convolution (e.g., Tensorflow [1]).It is the same operation, without flipping the kernel
 . The only reason to flip the kernel is to gain the commutative property which is not needed
for CNNs. For this thesis convolution and cross-correlation are treated equally as the operation
without flipping the kernel. An example of the convolution operation of input and kernel and
the resulting feature map is shown in figure 2.6.

Taking this concept to a layer of a neural network (in this example to a CNN for image process-
ing), each neuron of a convolution layer is no longer connected to all previous inputs but only a
particular region of the input tensor, the receptive field. This is the case because the kernels are
usually much smaller than the input tensor to detect small features of the input.

Moreover, all neurons applying the same kernel share the same weights connecting them to
different regions of the input. This has beneficial effects to machine learning as the sparse
connections require less memory to store values and calculating the output of one neuron takes
less steps. Given < inputs and = outputs the matrix multiplication usually requires $ (< × =)
run time. If each neuron can only have : inputs it reduces the run time to only $ (: × =), while
in practise : is several numbers of orders of magnitude smaller than <. While the parameter
sharing of weights does not reduce the forward propagation through the network, much fewer
parameters have to be learned compared to fully connected layers.

Another important aspect when talking about convolution layers is how the kernel behaves
at the input edges. Applying a 2x2 kernel to a 4x4 input results in a 3x3 output and shrinks
the input for any subsequent layers (see figure 2.7. The concept of padding prevents this. The

10
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Figure 2.6: Convolution operation [18]

Figure 2.7: Convolution layer
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input is treated as if enclosed by zeros to ensure the output size does not decrease. The previous
example, using only the original inputs to calculate the output, is called valid padding. A
scenario where enough zeros are added to ensure that the output size stays the same is known as
same padding. In the example shown in figure 2.7 the input would grow to the size of 6x6with
zeros at the edges. Thus the output after applying the 2x2 kernel would still be of size 4x4.
Same padding allows creating CNNs of arbitrary depth.

How, i.e., with what pace, the kernel shifts over the data also affects the output dimensions. In
the previous example, the kernel moves from each input directly to the next one, known as a
stride of one. However, it is possible to leave out steps such that the kernel moves more than
one step at a time resulting in a smaller output feature map and less computational effort, as
only half as many values are computed. The stride can be specified for every dimension of the
input tensor. For example, that only every second step in the horizontal axis and every step in
the vertical axis is considered.

Pooling, also called sub-sampling or down-sampling, is a strategy applied to make the out-
put of convolution operation invariant to small input changes. It replaces the output of a neuron
with a summary statistic of its neighborhood. The neighborhood is a react-angular space around
the neuron. Applying a pooling layer to an output feature map reports statistics such as the max-
imum, minimum, average, or !2 norm instead of the actual output. Because summary statistics
are reported over a whole neighborhood, they can be reported forneurons apart, reducing the
input of the subsequent layer : neurons apart, reducing the input of the subsequent layer : times,
thus improving the CNN’s computational efficiency.

Having established the essential peculiarities of the convolution and pooling operations in
CNNs, the general architecture of CNNs incorporates more. Just as for neurons in the NN, the
entire feature map resulting from a convolution operation can be, and usually is, subject to an
activation function. Moreover, a convolution layer is often composed of more than one kernel
or filter. The kernels in the same convolution layer have the same size to produce feature maps
of the same dimensions. Before the output layer with their task-specific activation functions,
CNNs usually have some fully connected layers as in NN. The part of the convolution and
pooling layers could be seen as a feature detector, whereas the fully-connected layers serve as a
discriminator among the detected features in the data. Some textbooks refer to the combination
of the convolution operation, the activation, and the pooling as one convolution layer (complex
layer terminology). For this thesis, each is regarded separately, and a convolution layer only
refers to the convolution operation (simple layer terminology). An exculpatory architecture of a
CNN is shown in figure 2.8.

As mentioned before, CNNs are mostly used for computer vision tasks. The data found
here is multi-dimensional. A color image has two dimensions of height and with but also comes
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Figure 2.8: LeNet-5 [32]

with three different channels for each pixel to encode the color. Colored video has a third
dimension of time. For this thesis, and in many libraries, the convolution over two-dimensional
image data is defined as 2� - Convolution, which could sound counter-intuitive as the kernel
actually has three dimensions, including the one for the channels. The convolution over video
or volumetric data is defined as 3� - Convolution.

After the LeNet [31], many different CNN architectures constantly improved on what is pos-
sible and the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) emerged as the
main challenge for researchers. One of the architectures to mention when dealing with CNNs
are the AlexNet [28] (winner of the ILSVRC challenge in 2012) which popularized CNNs in
computer vision, the ZF Net [51], the GoogLeNet [42], the VGGNet [41], and the ResNet [22].
The development of the CNNs shows two interesting things: Over the years, the CNNs got
deeper (as particular research suggested as well [42]), with more stacked layers preceding the
feed-forward layers. While the LeNet-5 picture only has two convolution layers the VGGNet
already has 19, and the ResNet increased to 152 convolution layers. The researchers of the
ResNet introduced skip-connections to deal with the problem of vanishing gradients, which
occur during back-propagation of errors for deep neural networks (for a detailed explanation
please see [22], the peculiarities of the back-propagation algorithm are not part of this thesis),
which allowed them to stack that many convolution layers. In most studies, the kernel usually
had a size of 3x3 or 5x5.

2.5 Genetic Algorithms

Genetic Algorithms (GAs) are evolutionary optimization algorithms inspired by the theory
of evolution of species by Charles Darwin [13]. They rely on the principles of reproduction,
adaption, inheritance, variation, and competition. GAs start with a set (population) of random
initial solutions called individuals. They are represented as fixed-length strings. Through a
selection process, some individuals are selected to undergo a variation phase where the effects
of crossover (two solutions exchanging parts of their string representation) and mutation (parts
of the string representation is modified) change the individuals. Solutions resulting from the
variation phase are called off-springs. All off-springs form a new generation of the population,
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who serve as parents for the next generation. This evolutionary process continues until an
optimal solution is found or the maximum number of iterations is reached. Many different
variants from the basic one described above exist.

For a more in-depth understanding, the next paragraph gives a short review of different se-
lection methods, followed by a short overview of variation operators. At last, some examples of
real-world applications are given.

Individuals with higher fitness must be more likely to be selected in the selection process.
For all individuals, the probability of being selected must be bigger than zero, and selection
can be made with repetition. Many different selection algorithms exist, and only three common
examples are presented here. The fitness proportionate selection schemes select individuals
with proportionate probability to their fitness. The selection pressure is highly influenced by
the diversity of fitness values of the population, which can result in a problem of premature
convergence [14, 20]. Ranking selections [4] rank the individuals according to their fitness,
and the selection probability is set (inversely, for minimization problems) according to their
rank in a linear or exponential relation. In Tournament selections, = individuals are randomly
selected, and the best individual of that tournament is chosen for the variation phase. The
selection pressure is dependent on the tournament size = where less fit individuals have a higher
probability of being selected when = is small [14]. Tournament selection has the advantage
that not all individuals’ fitnesses have to be evaluated. This is of great advantage, as fitness
evaluation is computationally expensive [11, 14, 20]. In general terms, high selection pressure
allows for exploitation of the search space of solutions with the risk of getting stuck at local
optima. On the other hand, low selection pressure allows for a high exploration of the search
space but might be inefficient as fitness plays a less important role. Finding an appropriate
balance in exploration and exploitation is crucial for evolutionary computation methods such
as GAs. Selection can be further extended by the concept of elitism, which always keeps the
best individual, without applying variation operators, for the next generation, thus not losing the
current best solution. However, this implies knowing the fitness value of each individual.

While the selection of individuals depends on an individual’s fitness, its phenotype, crossover,
and mutation change the individual’s string representation, i.e., its genotype. The most simple
form of crossover is the one-point crossover. Here two individuals swap their string information
from a certain point onward. The most simple mutation is the point mutation, where, with
some probability, each character of the string representation can be replaced with a random
one. Crossover is usually referred to as the conservation operator as no new information is
added to the population’s gene pool (genes are only swapped). In contrast, mutation is known
as the innovation operator introducing potentially new information into the gene pool. In
metric search spaces, geometric variation operators can be defined. The geometric crossover
is defined as an operator that can produce only off-springs that are part of the same line
segment between the two parents [37]. A line segment of a metric space ((, 3) is the set
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[G; H] = {I ∈ ( |3 (G, I) + 3 (I, H) = 3 (G, H)} where G, H ∈ ( are called the extremes of the seg-
ment. A geometric mutation operator is defined as an operator that produces mutated individuals
who are a member of a set of points surrounding the parent within a distance threshold 3 [36],
which is why it is also referred to as ball or box mutation. If a uni-modal fitness landscape (see
section 2.1) is given, specific properties arise from these operators, which are essential for the
remainder of the thesis. The geometric crossover can not produce off-springs that have worse
fitness than the worst of its two parents. Moreover, the geometric semantic mutation can only
produce off-springs whose fitness derives as much as [−3, +3] compared to the parent.

In the past decades, various optimization problems were solved by means of genetic algo-
rithms. For instance in loan decision [35], portfolio optimisation [8], allocation of goods in
shop shelves [7] as well as machine learning hyper-parameter optimisation [9, 34, 39]. They
also represent the basis for Genetic Programming, which is presented in the next section.

2.6 Genetic Programming

Genetic Programming (GP) describes a set of machine learning techniques that belong to Evo-
lutionary algorithms as GA and are introduced by Koza and Poli in 1992 [27]. GP relies on the
same principles of evolution as GA and can be seen as an extension to them, with the difference
that not fixed-length strings are evolved, but computer programs. This section first introduces
general concepts of GP and later gives an overview of recent developments, especially regarding
GSGP.

The computer programs in GP are usually expressed as syntax trees with nodes indicating
the instruction to execute, and links which indicate the arguments to take as an input for the in-
structions. Internal nodes are functions, while terminal nodes are usually variables or constants.
An exemplary program could be:

<0G(G ∗ G, G + 3 ∗ H)

which translates into a tree as seen in figure 2.9. It is also common to express programs in prefix
notation such as Lisp S-expressions, where the function always precedes its arguments as here
the correspondence between the tree is easy to see. The example above becomes:

(<0G(∗GG) (+G(∗3H)))
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Figure 2.9: GP individual

The GP algorithm can be described as:

1. Generate an initial random population.
2. Repeat until the stopping criterion is reached:

2.1 Select individuals who should act as parents
2.2 Apply variation operators to generate off-springs
2.3 Off-springs become the next generation’s population.

3. Return the best individual.

While beforehand the set of functions and terminals, the stopping criteria have to be set.
The selection, mutation, and crossover methods must be defined, and the initialization method
and the fitness function. The latter usually is the error of the individuals executed over the whole
training data set. Common error measures for Regression tasks are the Mean Squared Error or
Mean Absolute Error. The most well-known measure for classification tasks is Accuracy, while
the Cross-Entropy (CE) Loss is often more desirable to optimize as it gives more thorough
information considering class imbalances and false positives as well. Selection works the same
way as for GA; please see 2.5.

The set of functions and terminals should be combined as freely as possible. Thus it is important
that all combinations of them are valid, which can be done using only one type or taking care of
type checking though the cause of evolution. Moreover, evaluation safety must also be assured,
e.g., introduce a safe division operator that hinders a division by zero. The set of functions and
terminals is very problem-specific and thus needs fine-tuning for each task at hand. In the next
paragraphs, different ways of building a GP individual, different criteria on how to stop the evo-
lutionary process, as well as variation operators, and the latest achievements in GSPG are laid out.

The two basic ways of building a GP individual are the grow and the full method, which
build the tree until a certain depth. As the name suggests, the grow method randomly samples
terminals and functions until the maximum depth is reached or all nodes are terminals, resulting
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in trees of heterogeneous depth. The full method implies that all trees have the same depth,
the maximum depth, as only functions as sampled until it reaches adding terminal only at the
very end. While these two could initialize the whole population, one could also initialize,
with varying maximal depth, half the population with the full and the other one with the grow
method called ramped half and half. Yet another initialization method, Evolutionary Demes
Despeciation Algorithm, used subpopulations - or demes - which are initialized using the ramped
half and half method [43].

In most cases, the evolutionary process stops if the maximum generation (iterations) is reached.
For the specialty forms of GP, the GSGP and SLM (which will be introduced shortly), two
stopping criteria that involve the development of the error, have been proposed and show
competitive generalization results [16]. The Error Deviation Variation (EDV) measures the
percentage of models, which perform better than the current model and have a lower sample
standard deviation of absolute error than the current best model. This allows measuring if the
training error reduction happens less uniformly, which might indicate a start of over-fitting. The
search is terminated only when a significant majority of models improve training performance
at the expense of larger error deviations. Another proposed criterion proposed is the Training
Improvement Effectiveness (TIE), which measures the effectiveness of a semantic variation
operator as a percentage of which it produces a superior neighbor. As the TIE drops below a
certain threshold, it is hypothesized that as training error improvements are harder to find, they
possibly come with a bigger trade-off to generalization.

Variation operators follow the same ideas as in GA but work on different representations.
The simplest crossover in GP, the standard crossover, exchanges parts of two parents’ sub-trees
and creates two off-springs. Random nodes from the two parents are chosen as mutation points.
The sub-trees of these mutation points are exchanged, and two off-springs are created as shown
in figure 2.10. On the other hand, the standard mutation creates only one off-spring from one
parent. Here, a mutation point is randomly selected from a parent, and the sub-tree is replaced
by a random tree 2.11.

Whilst more mutation and crossover methods could be referenced, this thesis will have a partic-
ular look at the Geometric Semantic Mutation and the Geometric Semantic Crossover proposed
by Moraglio et al., which introduced the era of Geometric Semantic Genetic Programming
(GSGP) [36]. To understand GSGP, it is essential tp first introduce the concept of the semantics
of a computer program. GSGP is seen as a supervised learning technique with inputs and cor-
responding outputs and the goal to learn the underlying function. The semantics of a program
are the outputs of an individual over the data set, and each individual can be represented as
a point in that space. The semantic distance is then defined as the distance, using the fitness
metric, between the corresponding output vectors. This semantic distance serves as an indirect
genotypic distance as it measures the distance of the error resulting from the genotype-phenotype
mapping of the function over the data set. The semantic distance is only a pseudo metric of the
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Figure 2.10: Standard Crossover GP

Figure 2.11: Standard Mutation GP
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distance between two functions. Two different functions may lead to the same error resulting
in a semantic distance of zero, violating the identity of indiscernibles principle of metrics. The
semantic fitness of an individual is the distance to the optimum, which is known in supervised
learning and is represented by the target vector H of the training set. Thus, the fitness of an
individual is i to the distance of the global optimum resulting in a uni-modal semantic fitness
landscape (see section2.1). This uni-modal fitness landscape is favorable in terms of search
efficiency as no local optima exist. Further, Moraglio et al. [36] proposed semantic aware
variation operators that make it possible to reach the semantic neighbors of an individual. The
geometric semantic crossover and the geometric semantic mutation follow the same idea as
described in section 2.5, such that for the crossover, the off-springs belong to the set of the line
segment between the to parents in the semantic space and the geometric semantic mutation
creates off-springs which lie within a certain radius of the parent in the semantic space.

Geometric Semantic Crossover: Given two parent functions )1, )2 : ℝ= → ℝ, the geomet-
ric semantic crossover returns the real function )-$ = ()1 ∗ )') + ((1)') ∗ )2), where )' is a
random real function whose output values range in the interval [0, 1].

Geometric Semantic Mutation: Given a parent function ) : ℝ= → ℝ, the geometric se-
mantic mutation with mutation step <B returns the real function )" = ) + <B ∗ ()'1 − )'2),
where )'1 and )'2 are random real functions.

The main drawback of these operators is that the off-springs grow in size as the generations
increase. The Geometric Semantic Crossover is causing exponential growth, while the mutation
causes individuals’ linear growth, making them hard to evaluate after some generations. Van-
neschi et al. [44] proposed a new implementation of these operators, whichworkwithout actually
building the new tree as a whole and then evaluate the data set. They propose to store semantics
of the created trees in memory as they do not change, which allows them only to evaluate parts of
the new trees. This allowed them to test GSGP for the first time on real-world multi-dimensional
data sets and showed competitive results for training and unseen data [44]. For the sake of
completeness, it should be noted that their implementation of the mutation operator always
had a logistic function as a root node of the random trees, which implies that the perturbation
effect of the mutation ranges in [−<B, <B], albeit not explicitly mentioned it is shown in their
GSGP library [6]. In extensive experiments, Gonçalves shows [17] that the bounding of the
random trees dramatically impacts the generalization ability using various mutation steps and
different bounding functions. Moreover, it is shown that the mutation operator is vital to drive
the evolutionary process [17, 44]. In various tests, the Semantic Stochastic Hill Climber (SSHC)
[36], which uses only the geometric semantic mutation operator to produce a neighborhood
equal to the population size of other GSGP variations, is the fastest to adapt to training data.
Vanneschi et al. [44] argue that it is the geometric properties of the variation operators which are
responsible that GSGP shows such good results on unseen data. They propose that the properties
hold independently of the data and thus also hold on unseen data. Moreover, Gonçalves argues
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[17] that the bounding of the random trees is the reason why GSGP generalizes that well.
When the generalization plateau is reached, and no further improvements can be made using
the data at hand, the bounding accomplishes that the adversarial and beneficial mutations bal-
ance each other out as no arbitrarily large jumps in semantics could result from a single mutation.

As the bounded geometric semantic mutation showed to be the driving force for good gen-
eralization, Gonçalves also explored how an adaptive or better optimal mutation step would
benefit the generalization ability of SSHC. Rewriting the mutation to the linear system

'� ∗ <B = (C − %)

where '� is the vector resulting from subtracting the two random trees, C is the target vector
of known values, and % the vector of the semantics of the parent, the mutation step <B can be
computed using the Moore-Penrose pseudoinverse for each mutation. He also proposes another
version with an extra variable weighting the parent. In experiments, it is shown [17] that the
adaptive mutation operators fit the training data very fast and without over-fitting in the first
generations but tend to overfit after some generations.

Recently, Vanneschi et al. [45] proposed another semantic mutation operator called random
vectormutation which enables GP tomemorize training data and generate predictions in a similar
fashion as the K nearest neighbor algorithm. This approach overcomes the issues of individual
growth, but relies on the training data to generate predictions by means of memorization instead
of learning.
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Chapter 3

Semantic Learning Machine

The Semantic Learning Machine [15, 17] (SLM) is an algorithm to evolve NNs (see 2.3) and
relies on the principles of GSGP (see 2.6) and is effectively a geometric semantic hill climber
in the search space of NNs. In this chapter, the theoretical basics of the SLM are explained, and
subsequently, the latest research achievements are presented.

Generalizing the Geometric Semantic Mutation as a linearly independent combination of
two computational elements, it can be applied to NNs and is now abbreviated as GSM-NN. In
the context of NNs an already existing NN is combined with a randomly generated NN. The
first proposal [15] only considers a single hidden layer per network, no bias, and the identity
activation function at the output layer such that the similarities to GSGP are easy to follow and
shown in figure 3.1. Using only a single neuron for the randomly generated NN, the single
weight to the output neuron called learning step (;B) is equivalent to the mutation step <B in
GSGP.

Using this GSM-NN mutation operator, the algorithm searches of the space of NNs in a uni-
modal fitness landscape without the use of back-propagation. The algorithm starts with a
set of random networks of which the best is selected. Then neighbors are created using the
GSM-NN operator, and the best one is chosen (just like in hill-climbing). This process continues
until the stopping criterion is reached. The SLM algorithm can be summarized in the following
steps:

1 Generate # random NNs.
2 Select the best performing NN (B) with regard to the chosen loss function.
3 Repeat until a stopping criterion is reached:

3.1 Apply the GSM-NN operator to B # times to generate # neighboring NNs.
3.2 Choose the best among the # neighbors with regard to the loss function as the next B,
provided it is better than the current B.

4 Return B.
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Figure 3.1: Application of GSM-NN

The initial random NNs can be generated very freely with any number of hidden layers and
neurons using any activation function and connection weights. Gonçalves shows multiple ways
the initial GSM-NN operator could be extended to work for several hidden layers [17]. The
work of Jagusch et al. [24] adds one neuron to each hidden layer and connects to a random
subset of neurons from the previous layer. While Lapa et al. [29] add multiple new neurons
to each hidden layer. Each neuron can select freely from which neuron of the previous layer
connects are received. The mutated network is no longer fully-connected and its sparseness can
be controlled by defining how many input connections a new neuron will receive. It should be
noted that this formulation can imply more than linear growth of individuals if the number of
connections grows arbitrarily large. Further, outgoing connections must only connect to new
neurons which are the result of the mutation, and only connect to the output neuron(s) to ensure
that the mutation actually is a linearly independent combination of two computational elements.

The weights to the output neuron(s) can be computed optimally for the initial random and
the mutation. In the case of a linear activation function and a linear loss function the weights
can be computed using the Moore-Penrose pseudoinverse as described at the end of section 2.6
and by [15, 17].
The stopping criterion can be the set as the maximum number of iterations or using the TIE or
EDV criteria (see section 2.6) or any combination of them.

In experiments, it is shown that the SLM exhibits the same characteristic with good performance
and only slight over-fitting after generations as standard SSHC with a bounded mutation. More-
over, using an optimal computed learning step, the SLM outperforms the SSHC with statistical
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significance on all experiments [17]. The concept of sparseness, setting a random subset of
weights of the randomly generated network to zero, is explored and showed a positive impact
on the training error [17]. Moreover, it is shown that the EDV stopping criterion is very helpful
for generalization if the optimal learning step is computed [17]. In further comparisons with
other supervised machine learning algorithms, the SLM showed highly competitive results in
terms of generalization error and computational time required [17, 24]. Lapa et al. [29] use
the SLM as a classifier instead of traditional fully connected layers in a CNN and outperform a
state-of-the-art CNN architecture. Further, they propose to use the technique of the geometric
semantic mutation to evolve the convolution layers of the CNN, and not only the fully connected
layers at the end. This suggestion is taken up in the next section, and the Deep Semantic Learning
Machine to evolve Convolutional Neural Network typologies is presented.
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Chapter 4

Deep Semantic Learning Machine

The Deep Semantic Learning Machine (DSLM) is designed to evolve CNN topology with
the geometric semantic properties as GSGP or the SLM. This chapter first sets a high-level
overview of how the algorithm is intended to work and sets out new notations for different parts
of the CNN, making it easier to extend the SLM to the DSLM. In the next step, the challenges
of random initialization of CNNs are addressed, and an initialization technique is proposed.
Subsequently, possible mutation operators are discussed, and at last, a method to compute the
optimal weights if non-linear loss functions (or activation functions at the output layers) are
used is presented in brief.

Generally speaking, the DSLM algorithm follows the same general logic as the SLM as a
Hill Climber for CNNs in a uni-modal fitness landscape:

1 Create # random CNNs as individuals.
2 Choose the best CNN (B) with regard to a loss function
3 Repeat until stopping criteria is reached:

3.1 Generate # neighbors of B by applying geometric semantic mutation operator.
3.2 Replace B with the best neighbor, provided it is better than the current B.

4 Return the best individual

The part of a CNN without convolution or pooling layers is now referred to as the Non-
Convolution Part (NCP), the part with convolution and pooling layers (CP-layers), which serves
as a feature detector, now referred to as the Convolution Part (CP). The initialization and
mutation of the NCP is essentially covered by the SLM. The initialization of the CP brings
challenges that are not present in the SLM or traditional GSGP and the geometric semantic
mutation of the CP has to be defined.

In GP and GSGP it is the goal to create random individuals; however, it is impossible to
freely combine different CP-layers. The output feature map of a CP-layer must be compatible
with the subsequent CP-layers settings (i.e., kernel size, padding, etc.). Ensuring that only valid
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combinations are made during the construction of the random CP is thus essential. This can be
achieved by setting a limit on the dimensions of the output feature map. If that limit is reached,
no further CP-layers shall connect to it.

The second aspect to consider is the trend that CNNs got deeper and deeper with many stacked
layers, which is not particularly useful as the algorithm is designed to store intermediary outputs
in memory as proposed for GSGP [44]. CNNs typically work with image data, which already
has high memory requirements; thus, storing all intermediary outputs can become challenging
depending on the size of the data set and the depth of the network (typically, hard tasks will
require much data and many stacked layers). This issue will not be dealt with in this thesis, but
the general concept of the DSLM is set out and tested initially.

There are many possible ways on how to create a random CP. It should consist of data-
specific CP-layers, which means that for image data, 2�-Convolution layers that are channel
aware and 2�-Pooling layers should be used. They should be combined as freely as possible
until a certain depth is reached and the NCP begins. To ensure that only valid connections of
CP-layers are made the dimensions of the output feature map of each CP-layer must be tracked.
Further, extending the idea of skip connections, the CP should be allowed to have a certain width,
meaning that one output feature map can be connected to multiple pooling and/or convolution
layers such that two or more simultaneous streams of operations exist and interact with each
other if dimensions allow for it. The proposed DSLM uses the Tensorflow Keras Functional API
[1] for the CP as many pre-build high-performance layers can be used. For a detailed description
of each component, the reader is referred to the library documentation.

While there are many other possible ways to create a random CP using the method visualized in
the figure 4.1 allows to create simple CPs without skip connections, CPs with skip connections
as the ResNet [22] and also simultaneous streams of operations as described above. In the
pseudo code, a random Conv2D layer refers to a Conv2D layer with a random kernel size,
random padding, and stride setting, random amount of filters, a random kernel initialization
method, and a random activation function, which are all subject to a user defined range of values.
A random Pooling2D layer can be of AveragePooling2D or MaxPooling2D with varying strides,
pool size, and padding. Also, each layer has its own depth parameter which is one more than the
previous layer’s depth, but Concatenation layers have the same depth as they only concatenate
tensors and no pooling or convolution operation is performed.

Building the NCP follows the same logic as building the random NN as proposed for the
SLM (see section 3), with multiple hidden layers containing multiple neurons and using the
CP’s output as input values.

Further, a geometric semantic mutation operator must be defined for CNNs and shall be called
GSM-CNN. While there are also many possible ways of defining such a variation operator, the
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Figure 4.1: Pseudo code: Building a random CP

most simple approach is to create a new random CNN and combine it linearly independently at
the output neuron(s). The new random CP can be created the same way as described by figure
4.1, starting at the second if statement using the Inputlayer as the initial I and and resetting
the current depth of the CP. Previously computed feature maps can also serve as additional
inputs through a Concatenation layer, the same way a new neuron can connect to all neurons of
the previous layer in the GSM-NN mutation. However, for the CP, the horizontal and vertical
dimensions of all output feature maps, which should serve as a combined input for a CP-layer,
must match (indicated by the dotted line).

Another approach to mutating the cp could be to start the growth of the new CP not from
the input layer but from a randomly selected CP-layer. This could be useful as it would allow
the CP to grow in depth, which might generate more detailed features. However, this approach
is not tested here.
Subsequent to mutating the CP, the NCP is mutated the same way as if using the GSM-NN
operator used by Lapla et al. [29] with the difference that the number of inputs to choose from
is extended by the last neurons of the new random CP. Otherwise, the NCP could not benefit
from any newly created features of the CP. The concept of the GSM-CNN operator is visualized
in figure 4.2, for simplicity leaving out the concatenation layer. All researches have shown
significant benefits of computing the optimal learning step. Thus the GSM-CNN should always
compute the optimal learning step.

Summarizing the GSM-CNN operator:
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Figure 4.2: GSM-CNN example

1. Grow an additional random CP from the input layer.
2. Include the outputs of the additional CP as input neurons to any new NCP.
3. Create a new NCP using the GSM-NN operator.
4. Compute the optimal learning step.

Using this GSM-CNN mutation operator to evolve CNNs, the DSLM resembles a search of
various CNN architectures under the same uni-modal fitness landscape as for the SLM or GSGP.
There is no need to optimize weights or kernels using the traditional back-propagation algorithm.

Considering the experimental classification task in section 5 with 10 different class labels,
the setup of using only one neuron without activation function as the output should be changed.
Instead, 10 output neurons using the softmax function as activation should be used. This allows
calculating the CE loss, a well-suited metric for classification tasks. This, however, also changes
the way an optimal learning step can be computed; due to the non-linearity, the Moore-Penrose
pseudoinverse method can not be applied. Figure 4.3 shows the weights from the new hidden
neurons to the output neurons with softmax activation function, which are subject to optimiza-
tion, leaving out the bias weights for simplification. The goal here is to find the weights from the
new NCP to the output neurons, which minimize the CE loss of the whole data set, computed
using the softmax activation function while keeping the inputs of the old NCP fixed. A possible
approach to solve such large-scale non-linear optimization problems is using the L-BFGS-B
algorithm [5] which is not further explained in this thesis. Using the L-BFGS-B optimization
technique allows to always generate better off-springs as in the worst-case scenario, the mutation
will have no impact on the individual’s semantics as the new weights can have a value of zero.
Using the gradient descent algorithm could be another possible solution to finding these optimal
weights (not training all weights).
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Figure 4.3: Multi-class classification output connection
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Chapter 5

Experiments

To obtain first indications if the proposed DSLM algorithm does work, it will be tested on a
bench-mark data set and compared to the SLM algorithm and a traditional CNN architecture in
terms of training fitness and generalization ability.

5.1 Dataset

As this research paper represents initial work, no real-world data sets will be tested, especially
considering the problems which might occur due to individual growth. The algorithms will
be tested on the mnist data set [33] (examples in figure 5.1) which contains 60,000 train and
10,000 test grayscale images of handwritten digits [0; 9] of size 28x28. The data set is balanced,
meaning each class is represented equally. This data set, albeit only of scientific relevance
with no use case for the real world, is the biggest data set on which the SLM and DSLM have
been tested on (to the best knowledge of the author) and represent a challenge by itself. The
GSM-CNN and GSM-NN operators imply (at least) linear growth of the individuals, which
makes evaluation quite challenging after a few generations due to memory and computational
constraints.

5.2 Experimental Settings

For the experiments, the following parameters are used to build the CP and the NCP for the
DSLM and the SLM. In the CP:

activation functions: ReLU, Tahn and Linear
strides: 1,1 and 2,2
padding: valid and same
number of filters: [1,5]
kernel size: 3,3 and 5,5
pooling size: 3,3 and 5,5
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Figure 5.1: MNIST handwritten digits examples

The threshold of the dimensions of the output feature map from which only Flatten layers
can be added is set to 5x5.
For the NCP, ReLU is always used as an activation function, and each neuron and bias weight is
constrained by 0.1. Sparseness is set to a value within 0.75 and 1, and the optimized learning
step is always computed, and, if not stated otherwise, 100 neurons per hidden layer are used.

For the DSLM the effect of different parameters of the maximal depth of the CP, the max-
imal width of the CP, different values for the number of hidden layers in the NCP is tested
simultaneously to a different number of new neurons permutation per hidden layer. Two different
values for the number of neurons in the last hidden layer, two different neighborhood sizes,
and allowing to apply only the GSM-NN mutation, i.e., only mutation the NCP, are tested and
presented in the next section. If not otherwise stated, the base values for the DSLM and SLM
tests are:

max depth CP: 3 (only DSLM)
max width CP: 1 (only DSLM)
hidden layers: 2
new neurons per hidden layer: 10
neurons in last hidden layer: 25
NCP mutation as standalone allowed: yes (True) (only DSLM)
neighborhood size: 2

These initial values are chosen to use as little memory and computational resources as possible.
For the classification task, the CE is used as a loss for training and validation (only every second
generation) over ten generations using five different seeds. Please note that not all generations
contain values for all five seeds, as in some runs, memory issues occurred, or the individual
evaluation took too long. Such cases are marked with asterisks (*).
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Figure 5.2: DSLM neighborhood size

The CNN architecture used for a benchmark is derived from the LeNet-5 presented in sec-
tion 2.4. However, the input dimensions are changed to 28x28x1 to fit the mnist data set
dimensions. Adam is used as a weight optimizer. For comparison reasons, the batch size is set
to equal the data set size such that each epoch only contains one batch. Evolving the SLM or
DSLM for ten generations with a neighborhood size of five implies that 55 evaluations of the
training data happen. Thus the number of epochs of training is limited to 55 for the CNN as
well. In another test, a batch size of 265 images is chosen, which allows updating the network’s
weights more frequently on a subset of the whole data set while keeping the number of epochs
fixed.

5.3 Experimental Results

At first, the results of testing various DLSM parameters are presented. Subsequently, the SLM
with different parameters is presented, and a comparison is made. At last, they are compared to
the two CNNs trained with Adam as described above. The dark line represents the mean value
computed using the five different seeds, and the shaded area marks the and 95% confidence
interval.

A bigger neighborhood means that the chance of finding a better neighbor increases as more
neighbors are explored and should allow a faster convergence. The results of figure 5.2 indicate
the same without any noticeable over-fitting on validation data. However, the subsequent test
will still be carried out using a neighborhood of size two as it is less computationally expensive
and does not limit the evolution of a single CNN by any means.

Allowing to evolve only the NCP of the CNN by only applying the GSM-NN operator by
chance is tested. During the cause of network evaluation, the new features generated by the
mutated CP might improve the discriminability among different classes at a decreasing rate.
However, further evolving the NCP, which discriminates given the CP’s features, could be of

33



CHAPTER 5. EXPERIMENTS

Figure 5.3: DSLM ncp standalone *

Figure 5.4: DSLM max depth cp values

higher importance in the later generations. The results shown in figure 5.3 show almost an equal
reduction in mean CE loss on both training and validation data. However, the 95% confidence
area is substantially smaller for the later generations if the GSM-NN operator can be applied by
chance instead of always applying the GSM-CNN operator. On the other hand, they are always
applying the GSM-CNN operator results in some lost data points for the later generations. Thus,
concluding that the higher confidence results from applying the GSM-NN operator could be
misleading. To create more reliable results in the subsequent tests, with fewer missing data
points, the GSM-NN operator is used by chance to evolve the CNN in the subsequent tests.

The values of 3, 5, and 7 as max depth parameters for the CP tests if more stacked CP-layers
allow generating more detailed features, resulting in better performance of the DSLM. The
results as shown in figure 5.4 indicate that, for the mnist data set, the maximal depth of 3 for
the CP yields the best performance in terms of CE loss after ten generations without noticeable
over-fitting. This could indicate that for this data set, the detail level of features is less critical,
and thus, the value of 3 is chosen to be continued in the subsequent tests.

Likewise, the max width parameter is tested with values of 1, 2, and 3, whilst one represents a
simple CNN architecture (with possible skip connections). The others allow creating separate
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Figure 5.5: DSLM max with cp values *

Figure 5.6: DSLM number of hidden layers and number of new neurons

streams of operations in the CP, allowing to create more diverse features. The results of figure
5.5 show that a higher width yields better results for the mnist data set on both training and
validation loss. However, the later generations do not represent five different runs for the reasons
described above. The value of 1 as the max width parameter is kept to generate more reliable
results for the subsequent experiments. However, the idea of separate streams of computation
to generate more diverse features is not proven to be wrong.

In figure 5.6 the results of using different parameters regarding the complexity of the NCP are
shown. As mentioned above, the NCP is mostly responsible for discriminating the features
computed by the CP. Here the value pairs of (2,10), (3,25), and (4,50) are tested for the number
of hidden layers and the number of new neurons added per layer by the mutation operator. More
layers and more new neurons per layer yield better performance in CE loss on training and on
validation data and do not show any over-fitting in the first ten generations. Thus for the next
test, the values of (4,50) are kept.

The impact of the layer size of the last hidden layer for creating the initial random NCP is
evaluated, using a neighborhood size of 5 and (4,50) for the number of hidden layers and the
number of new neurons per hidden layer. The weights from the neurons in the last hidden
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Figure 5.7: DSLM neurons last hidden layer *

layer of the mutated part of the networks to the ten output neurons are computed using the
L-BFGS-B algorithm described in section 4. The more neurons are present in the last hidden
layer, the more degrees of freedom are present to compute the optimal step and thus, should
lead to a lower CE loss in the first generations. The results indicate that the loss is indeed much
lower in the first generations and also stays lower in the subsequent generations. In total, 8
data points from generation 4 onward are missing for the run, with only 25 hidden neurons in
the last layer. However, the confidence interval of 95% does not seem to change much during
generations. One can notice a slight increase in the confidence interval from generation 8 to
10 for 50 hidden neurons in the last layer and less reduction of validation loss compared to 25
hidden neurons in the last layer. This phenomenon could be of interest for future studies but is be-
yond this thesis. The validation loss is still continuously reduced, and no over-fitting is happening.

The SLM is tested with the same number of different hidden layers and new neurons per
layer and two and five as neighborhood sizes. The different number of neurons in the last
hidden layer of initially building the random NN. The SLM exhibits the same behaviors as
the DSLM for all tested parameters, but the number of hidden neurons in the last layer upon
initialization. The results can be found in appendix A. The best setup resulting from these tests
uses a neighborhood size of 5, 4 hidden layers with 50 neurons added to each layer per mutation
and 25 neurons in the last hidden layer.

The major difference between the SLM and the DSLM is that the DSLM has the chance
to create meaningful features of the input image through the random CP. On the other hand, the
number of features will grow linearly by applying the GSM-CNN, bearing the risk of the curse
of dimensionality for the NCP. This risk is met by allowing the GSM-NN operator to be applied
by chance instead of always applying the GSM-CNN operator. The interesting question now
is if the features produced by the CP contain enough information, even for the toy example of
handwritten digits, to allow the NCP to discriminate better among classes than the SLM on the
raw image data. The results in figure 5.8 compare the best-found parameters from the tests above.
The DSLM uses a max depth of CP of 3, max width of the CP of 1 and allowing the GSM-NN
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Figure 5.8: DSLM vs. SLM

Figure 5.9: DSLM vs. SLM vs. CNN

mutation to be applied by chance. Both algorithms use 4 hidden layers, adding 50 neurons per
layer in any mutation and having 50 neurons in the last hidden layer for the DSLM and 25 for
the SLM. A neighborhood size of 5 is used for both. The results indicate that both the SLM
and the DSLM are able to reduce the CE loss for training and validation data significantly and
without over-fitting within the tested ten generations. The DSLM is able to slightly outperform
the SLM for both training and validation loss. This contradicts the cause of dimensionality
resulting from too many features and encourages the idea that the random CP can indeed produce
features that are useful for discrimination. However, this test does not allow to conclude anything
with statistical significance and thus calls for more extensive research regarding the DSLM.
Also it should be noted that the SLM is not specifically designed to work on two dimensional data.

Comparing the results of the DSLM and SLM with the traditional way of training CNNs
is a difficult task and is arguably influenced by the unusual batch size. Also, no different values
for the various hyperparameters are tested. Figure 5.9 shows the training and validation losses of
the best found set up of the DSLM and SLM and the CNN as described in the section above. For
better comparison, only every fifth epoch is shown stating at epoch 5 to resemble the amount of
fitness evaluations at each generation. The line plot shows that, especially in the first generations,
the DSLM and SLM converge much faster than the CNN trained using the adam optimizer and
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one batch/epoch. However, in the later generations, the performance of the DSLM and SLM is
almost met. Using batches of 256 images the weights of the CNN are changed more than 200
times more often while the whole data set is evaluated the same number of times. Here the CNN
with Adam outperforms the SLM and the DSLM clearly, even considering the first epoch only.
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Limitations and Future Work

The results presented in the section before indicate that the random CP of the DSLM algorithm
could be able to produce features on which the NCP part can discriminate better than the SLM
on the original data. However, the tests obtained in the previous sections are not suitable for
statistical analysis to compare the performance in a scientific way. Further tests using more
datasets need to be carried out. Thus, this work can only be seen as a proof of concept of the
DSLM without clear benchmarks to other algorithms. This is because the image data set tested,
albeit being only a toy example, clearly shows the negative impact of (at least) linear growth
of the individuals making the current approach of evaluating individuals over the whole data
set and keeping each intermediary semantics in memory not efficient for larger real-world data
sets. Storing the intermediary semantics to the hard drive is not the solution to the problem;
this would slow down evolution even further. Making use of the semantic stopping criteria can
be beneficial to reduce the computational requirements and finding the best generalizing model.
Before exploring different strategies on other possible formulations of the GSM-CNN operator,
different hyperparameters, and even bigger data sets, the performance issues in bigger data sets
should be addressed.

The use of batching seems like a promising way of addressing computational and memory
issues that come with the growth of individuals and could potentially speed up the convergence.
Batching is especially promising, considering that the geometric properties of the variation
operator are argued to also hold on unseen data [44]. Further, the whole evolution process is
highly parallelizable as each created neighbor can be evaluated separately; thus, also the use
of big data technologies and distributed computing frameworks could be explored to address
the performance issues. Considering the size of individuals after the evolutionary process and
the resulting long evaluation time of even a single data instance, the DSLM algorithm’s models
will not be suitable for tasks where computing time is crucial such as real-time annotations or
similar. In domains where computing time is not that crucial, but the quality of the prediction is
of most importance, i.e., in radiomics, the DSLM models could excel, provided they are proven
to be superior to traditional CNNs.
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Chapter 7

Conclusion

This thesis had the objective to propose a way to optimize the CP-layers of a CNN with a
geometric semantic mutation operator to be able to extend the SLM to the DSLM. In the
beginning, the theoretical background on NNs and CNNs is established to understand how they
work and what problems are to be dealt with when proposing a geometric semantic mutation
operator for the CP of CNNs. Moreover, the motivation of using a geometric semantic mutation
operator is given: A supervised learning problem where the error is measured as a distance to
the known target vector the search space of functions resembles a unimodal fitness landscape.
Applying the geometric semantic mutation operator allows to effectively explore this search
space by means of creating semantic neighbors of the function. A way to modify the CP-layers
is shown, and extending the GSM-NN, the GSM-CNN is proposed. Using the same hill-
climbing strategy, the SLM is extended to the DSLM using the GSM-CNN operator to optimize
the whole topology of a CNN. The DSLM is tested with the goal to recognize handwritten
digits. Here the DSLM shows promising results, albeit of no statistical significance. Moreover,
the downsides of using the semantic operator as described by Vanneschi et al.[44] become
very clear with image data and CNNs as storing the semantics intermediary imposes high
memory requirements through the linear growth of individuals. Also, the gain in computational
complexity is prominently adverse, as, for some individuals, the evaluation time took extremely
long, making the algorithm, as of now, not useful in practice. In the end, future research
questions are raised, with the idea of using batching to make the algorithm more practical. The
future relevance of the DSLM still has to be established.
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Appendix A

SLM Test results

Figure A.1: Different number hidden layers and added neurons for the SLM. Here 10, 25 and
50 neurons are tested for the number of added neurons too.
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APPENDIX A. SLM TEST RESULTS

Figure A.2: SLM with 25 and 50 neurons in the last layer upon initialization.

Figure A.3: SLM with a neighborhood size of two and five.
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