
 I

A Work Project, presented as part of the requirements for the Award of a Master's degree in
Finance from the dNova School of Business and Economics

Using image recognition for trading

Berkay Günes
(40804)

Work project carried out under the supervision of:

Patricia Xufre

04-01-2021

 II

Abstract

This research aims to gain a deeper understanding of how image recognition can be applied in

trading.

In recent years, artificial intelligence has influenced various industries, including the financial

sector. It can be observed that there are new ways of predicting stock trends. This paper aims

to address the question to what extend convolutional neural networks can be used in trading.

On the empirical side several convolutional neural networks have been analyzed and were

compared with a zero-predictive model. This study’s results do not show reliable results that

convolutional neural networks should be used for this sort of task.

Keywords:
Convolutional Neural Networks, Image Recognition, Finance, Trading

This work used infrastructure and resources funded by Fundação para a Ciência e a
Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab,
Project 22209), POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences
DataLab, Project 22209) and POR Norte (Social Sciences DataLab, Project 22209).

 III

Table of Contents

1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1
1.2 PROBLEM STATEMENT .. 1

2 LITERATURE / BACKGROUND ... 2

2.1 TRADING IN FINANCE .. 2
 Technical Indicators ... 3
 Behavioral Finance .. 4

2.2 NEURAL NETWORKS .. 4
 Activation function .. 5
 Convolutional Neural Network .. 6
 Convolutional neural networks in Finance ... 8

3 METHODOLOGY ... 9

3.1 DATA COLLECTION .. 9
3.2 TRIPLE-BARRIER METHOD ... 10
3.3 FEATURE SELECTION .. 11
3.4 FRACTIONAL CALCULUS ... 12
3.5 GRAMIAN ANGULAR FIELDS ... 15
3.6 EVALUATION ... 16
3.7 HYPERPARAMETERS .. 17
3.8 CNN SPECIFICATIONS .. 18

4 RESULTS .. 20

4.1 DATA PREPROCESSING .. 20
4.1 FINAL CNN MODELS ... 22

5 DISCUSSION ... 22

5.1 CONCLUSION ... 23
5.2 IMPLICATIONS ... 23
5.3 FUTURE WORK ... 24

6 APPENDIX .. 25

 1

1 Introduction
The first chapter describes the importance of computer vision. Furthermore, the use of neural

networks in finance will be discussed, and lastly, the study's research question is clarified.

1.1 Background
Computer vision systems have long been able to rival the human eye and continue to improve.

Autonomous driving, virtual reality, and augmented reality are just some of the application

areas for computer vision. With increasing computational capabilities, the deployment of

artificial intelligence got more popular. For computer vision, a convolutional neural network

(CNN), called LeNet-5, proposed by Yann LeCun, was the breakthrough in 1998. This model

was steadily expanded and won the ImageNet Object detection challenge for the first time in

2012 (Schmelzer, 2019). In the challenge, algorithms compete to recognize and describe

pictures, whose accuracy increased from 71.3% to over 97.3 % since the contest's launch in

2010 (Bernard, 2018). Since then, all winning entries are based on CNNs and deep learning

models are off to the races.

1.2 Problem Statement
The technical revolution through convolutional neural networks is sweeping through many

industries and opening up new possibilities. Can these astonishing results also be transferred to

trading? In the past years, artificial intelligence already changed the financial sector massively.

Machine learning models took over the assessment and processing of credit inquiries.

Companies evaluate massive databases with the help of deep learning. This helps prevent fraud

and handle resource-intensive, repetitive processes and customer services automatically

without any quality loss (Columbus, 2020). Besides these successes in the financial sector, big

hedge funds, such as Renaissance Technologies or Two Sigma, work under high pressure to

generate high returns using computers, math and big data. They are competing with firms such

as AQR Capital Management and BlackRock (Vardi, 2017).

 2

As shown, CNNs are good at detecting objects in images. The author expects that this can be

useful to detect trends in stock charts, as up until today, many traders decide by using perception

and experience. Furthermore, it might spot relationships that human cannot find easily.

Accurately predicting the trend of stocks can help to avoid risk and secure higher returns.

This study aims to examine the effects of CNNs on technical analysis through literature and

quantitative research. The following question is based on the recent successes of neural

networks: "To what extend can convolutional neural networks be used for image recognition

in trading?"

2 Literature / Background
The literature review presents the theory starting from the financial point, followed by defining

CNNs, how they are built and their usage in the financial environment.

2.1 Trading in Finance
Within securities analysis, a distinction is made between the two approaches. One of them is

the fundamental analysis, which is based on the thesis that a company has a fair value to which

the stock market price also adjusts in the long term. If the calculated intrinsic value corresponds

to the value at which the company is traded on the market at that time, it is said to be a fairly

valued company. However, if the intrinsic value of the company is higher than the market value,

the fundamental analysts see this as a buy signal because, in his opinion, the company is

undervalued. Complementary to this is the technical analysis, which is to study and predict

price movements in the financial market based on an asset's chart history. It is based on the

assumption that there are recurring, observable events with similar, probable future

developments. Assuming that the random walk theory, which suggests that changes in stock

prices are independent of each other, is not accurate, value can be generated by technical

analysis (Cochrane & Maskowitz, 2017). The fundamental of technical analysis is that all

decision-relevant information about the past and future is already in the price. Technical

analysts do not attempt to measure the intrinsic value but instead try to identify trends in the

 3

early stages of their development for trading in the direction of those trends. This presupposes

that capital markets are not efficient. Otherwise, it would not be possible to forecast and

arbitrate the trend itself by analysing it. Therefore, information diffusion in the market must

exist (Murphy, 1999).

 Technical Indicators
Thus, depending on which discipline a chart analyst follows, specific geometric patterns or

purely statistical quantitative indicators can be used (Pring, 2014). In the following, some

popular technical indicators will be described.

Moving averages

One of them is moving averages, which is a method for smoothing time series. The smoothing

is done by removing higher frequency components. As a result, a new data point set consists of

the mean values of equally sized subsets of the original data point set. Using the arithmetic

mean values of the specified window results in the simple moving average (SMA) (Pring,

2014).

𝑆𝑀𝐴! =
1
𝑛 ' 𝑝𝑟𝑖𝑐𝑒"

!

"#!$%&'

	 (1)

While all prices are given the same weight when calculating the SMA, the idea behind the

exponential moving average (EMA) is to provide recent prices higher weights. For this purpose,

a decay factor 𝜆()* is introduced, which results from the time window 𝑛. Using this constant,

the current EMA is calculated from the previous EMA and the current closing price (Pring,

2014).

𝐸𝑀𝐴! = 𝜆()* ∗ 𝑝𝑟𝑖𝑐𝑒! + (1 − 𝜆()*)𝐸𝑀𝐴!$'	𝑤𝑖𝑡ℎ	𝜆()* =
2

(𝑛 + 1)
	 (2)

Moving Average Convergence Divergence

The moving average convergence divergence (MACD) is calculated from the difference

between two exponential moving averages. It is a trend-following momentum indicator.

Usually, the MACD is calculated by subtracting the 26-day EMA from the 12-day. The analysis

 4

is mostly used in connection with a signal line, which is usually a nine-day EMA of the MACD

(Pring, 2014).

𝑀𝐴𝐶𝐷! = 𝐸𝑀𝐴'+ − 𝐸𝑀𝐴+,	𝑎𝑛𝑑	𝑆𝑖𝑔𝑛𝑎𝑙! = 𝐸𝑀𝐴-	𝑜𝑓	𝑀𝐴𝐶𝐷	 (3)

A positive MACD indicates an upward, a negative MACD a downward trend. The distance of

the MACD from its zero lines indicates the strength of the trend. If the distance between the

signal line and the MACD increases, the trend increases, and vice versa (Pring, 2014).

 Behavioral Finance
Another essential factor for technical analysis is psychological elements that affect market

participants behavior. The psychological factors, in particular, can cause market participants to

behave similarly in comparable market cycles so that similar price patterns arise over time. This

imposes that history can repeat itself in financial markets and be put to profitable use (Murphy,

1999). In other words, it can be seen as a self-fulfilling prophecy. If more and more investors

follow the chart analysis, more and more investors act on the chart analysis signals.

Another argument that supports capital markets are not efficient is the prospect theory. With

their prospect theory, Kahneman and Tversky already showed in the late 1970s that a loss hurts

investors twice as much as a profit of the same amount would trigger positive emotions. This

different perception of pain means that losses are realized too late but gains too early

(Kahneman & Tversky, 1979).

2.2 Neural networks
The concept of neural networks is usually traced back to the functionality of the human brain.

However, these models are not designed as realistic models of biological neurons but can help

make the concept more visible. Instead, they are a mathematical framework for learning

representations from data (Chollet, 2018). The neural networks core idea is that many simple

computing units can work together to imitate intelligent behavior. A single one of these units is

called a neuron. A simple neuron has several inputs 𝑥, which are multiplied by weights 𝑤, and

 5

a bias 𝑏 is added, which is considered a constant correction value (Goodfellow, Bengio, &

Courville, 2016). The activation of a neuron can be calculated as follows:

𝑦 = 𝑏 +	'𝑥.

%

.#'

𝑤. = 𝑥/𝑤 + 𝑏 (4)

The activation represents the stimulation of the neuron. Only when it exceeds a threshold, the

neuron becomes activated. Although a single neuron can map simple relationships, more

complex learning tasks cannot be solved. For this purpose, neurons are arranged in fully

connected layers, creating artificial neural networks.

 Activation function
It is a node added to the output of neurons, also known as the transfer function, to determine

the outcome. Furthermore, without activation functions, there would be many different linear

combinations of the inputs. Adding an activation function to the neurons leaves linearity behind

and complex models can be created with non-linear relationships.

ReLu and leaky ReLu

In modern neural networks, it is recommended to use the rectified linear unit (ReLu) defined

by the activation function 𝑅𝑒𝐿𝑢(𝑥) = max	(0, 𝑥). If this function is applied to the output of a

neuron, it yields it as non-linear. However, rectified linear units are very close to being linear,

helping to preserve linear model properties. The problem is that any negative values instantly

go to zero, reducing the model's ability to fit or train the data correctlyInvalid source specified..

Leaky ReLu seeks to fix the ReLu problem. Instead of the function being zero when 𝑥 < 0, a

leaky ReLu will have a small negative slope, as 𝛼 in the following formula:

𝑙𝑒𝑎𝑘𝑦	𝑅𝑒𝐿𝑢(𝑥) = Q 𝑥	𝑖𝑓	𝑥 ≥ 0
𝛼𝑥	𝑖𝑓	𝑥 < 0	 (5)

Logistic Sigmoid and Hyperbolic Tangent (linear?)

Preceding the rectified linear units, most neural networks used either the logistic activation

function 𝜎(𝑥) = '
'&0!"

 or the hyperbolic tangent activation function 𝑡𝑎𝑛ℎ(𝑥) = +
'&0!#"

− 1.

 6

These activation functions are closely related as the logistic sigmoid function is a rescaled

version of the hyperbolic tangent functions because tanh(𝑥) = 2𝜎(2𝑥) − 1.

Figure 1: Visualizing different activation functions.

 Convolutional Neural Network
Convolutional neural networks are particular neural networks for time-series, speech and image

data. The two most essential components of the CNN are the convolutional layer, the namesake

for these networks, and the pooling layer. Figure 2 illustrates the structure of the LeNet-5. In

contrast to traditional neural networks in which each neuron is wholly connected to all neurons

of the layer in front and behind it, neurons in the convolutional layer are only connected to their

receptive field's pixels. This is also called sparse interactions. In other words, traditional neural

networks learn global patterns, while CNNs learn local patterns (Chollet, 2018).

Figure 2: Convolutional neural network with the structure of LeNet-5, which is also used in this study from the original paper
(Lecun, Bottou, Bengio, & Haffner, 1998).

Kernel

Sparse interactions are mastered by making the kernel smaller than the input. It ensures that the

same patterns are recognized throughout the image and that fewer parameters have to be

optimized, which speeds up processing. It works as a filter with a constant step size that scans

 7

over the input pixel matrix to extract features, convolving the image. The kernel moves from

left to right and jumps to the next lower line after each pass until the entire image is traversed.

The output is referred to as the feature map. Feature map values for two-dimensional images,

are calculated according to the following formula (6). The input is denoted by 𝐼, the kernel by

𝐾 and the indexes of the output's rows and columns by 𝑚 and

𝑛		(Goodfellow, Bengio, &	Courville, 2016).

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ''𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)
%1

	 (6)

Instead of a single kernel, several kernels can be applied in parallel, each of which generates a

feature map. These result in a feature map matrix.

Pooling Layer

A classical layer of a convolutional neural network consists of three parts. In the first part,

several convolutions are performed to produce the feature map. Afterward, the feature map is

run through a non-linear activation function, such as ReLu. In the last part, pooling layers are

used to modify the output further. The pooling layer aims to pass on only the most relevant

signals to the next layer by downsampling the incoming layer's size. This also reduces the

number of parameters, the computation time and storage space.

However, there are several pooling functions. One of them is the max pooling operation, which

simply reports the maximum output within a rectangular neighborhood and discards the others.

Another one is the average pooling operation, which reports the average of the rectangular

neighborhood (Goodfellow, Bengio, & Courville, 2016).

Densely Connected Networks

One or more fully connected layers follow the last pooling layer. These layers have a typical

neural network structure in which all neurons are connected to all inputs and all outputs. This

must first be flattened into a vector to feed the convolutional and pooling layers matrix output

into the dense layers. The filters output signals are independent of an object's position, so there

 8

are no longer any position features but location-independent information. The problem of

overfitting often arises here. One possibility of regularization is dropout layers, which ensure

that a randomly determined percentage of neurons is switched off and is not considered in the

next calculation step. This prevents the neurons from adapting too much to the training data and

thus no longer generalizes. However, batch normalization can optimize the convolutional

layers, making dropout unnecessary at this layer as it reduces internal covariate shift (Li, Chen,

Hu, & Yang, 2018).

 Convolutional neural networks in Finance
From conventional methods to deep learning models, there are various approaches to

forecasting financial time series. In the past artificial neural networks, support vector machines,

decision trees and ensembles of classifiers were among the most preferred machine learning

algorithms for price predictions in trading. With the introduction of deep learning, models such

as CNNs started becoming more notable. However, since this is a new research field, the

number of publications in this area is limited. Sim et al. (2019) used a convolutional neural

network in their paper to predict the S&P 500. They build four models, including different

feature sets, which learn the moving patterns of various indicators for 30 minutes and forecast

the increase or decrease in the stock price after one minute (Sim, Kim, & Ahn, 2019). Another

research very close to this is from Arratia and Sepulveda (2019). They use a 1D-array and

convert the financial data into images through recurrence plots and feed them into a

convolutional neural network. Arratia and Sepulveda use 12 months of data to predict the

increase or decrease in the next month. With 10-fold cross-validation, they achieve an accuracy

score of 61.1% with the 1D-array and 63.22% with the images. They also have shown that

better results can be obtained by preprocessing the input to images (Arratia & Sepulveda, 2019).

Other publications similar to this one, but with different problem statements exist as well. One

of them is from Chen et al. (2019), where they encode time series as different types of images

and predict several different candlestick patterns. Their model archived an accuracy of 90.7%,

 9

proving that convolutional neural networks work very well for this task (Chen, Tsai, & Wang,

2019). Besides, there is some research using hybrid models. Kim and Kim (2019) use a hybrid

model build of a CNN and LSTM to predict the stock price after 5 minutes using 30 minutes of

data. Their research outperformed the single models and showed that prediction error could be

drastically reduced (Kim & Kim, 2019). Also, Hao and Gao (2020) used a hybrid model

consisting of CNN and LSTM. They predicted whether the stock would go up after one week

or one month. For the former, they archived an accuracy of about 66.59%. They have even

achieved 74.55% accuracy for the latter, although it is further in the future.

3 Methodology
In this chapter, research methods are presented and explained, including data processing and

data analysis methods.

3.1 Data collection
For the stock market prediction, the data for four stocks have been retrieved from Eikon

Reuters. Access to the platform is made available by the university. All stocks are from different

industries and in the DAX, a stock market index consisting of Germany's 30 major companies.

Bayer was chosen as a pharmaceutical company, Daimler for the automotive industry, Deutsche

Bank for the financial sector and SAP as a software company. All data ranges from November

2000 to November 2020 and is sampled daily. The Open, High, Low, Close (OHLC) price and

the volume have been retrieved for the stocks. After acquiring data, the following step was to

create technical indicators. These include different moving averages, bollinger bands and the

MACD, which will be used as explanatory variables for the CNN. Additional features that have

been created are the upper and lower shadow. The former is calculated by subtracting the close

from the day's high price, and the latter subtracts the open from the lower price.

Furthermore, economic data has been added as features. Here, the gold price, as well as the

foreign exchange of EUR/USD, have been added, which are as well daily sampled. The purpose

 10

of adding economic data is to see whether it is useful to include additional information in the

technical analysis.

3.2 Triple-Barrier Method
After creating the features, a labeling method is required. A simple approach for a machine

learning model is trying to predict an asset's price at some fixed time in the future. It can also

be approached by predicting discretized returns. As previously shown, this labeling method is

generally used in academia and can be described as follows,

𝑦! = l
−1	𝑖𝑓	𝑟!,!&3 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0	𝑖𝑓	𝑟!,!&3 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
1	𝑖𝑓	𝑟!,!&3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

	𝑤𝑖𝑡ℎ	𝑟!,!&3 =	
𝑃!,!&3
𝑃!

− 1	 (7)

where y denotes the label, 𝑟 the return, 𝑝 the price, 𝑡 the time and ℎ the time horizon in the

future. However, this method has two addressable problems. Firstly, the same threshold is

applied regardless of the observed volatility. This can lead to the problem that thresholds are

too far apart or too close together. Secondly, it is path-independent, meaning that only the return

at the end matters. This is problematic as with this approach reality is not reflected. In the real-

world, profit and loss thresholds will be set before the investment. If an intermediate return hits

the profit thresholds, it will be realized as a profit, even if it would be a loss at the end of the

fixed-time horizon, and vice versa. The triple-barrier method, named after the strategy's two

horizontal and vertical barriers, will be used to label the data to address the previously

mentioned problems. The vertical barrier is pre-defined as the expiration limit of the position.

The two horizontal barriers are defined by the profit and loss limits, resulting from the multiple

of the dynamic volatility. The dynamic volatility is calculated as follows,

𝜎!+ = 𝜆𝜎!$'+ + (1 − 𝜆)𝑟!$'+ 	𝑤𝑖𝑡ℎ	𝜆 = +
(567%&')

	 (8)

where 𝑟! is the return and the smooting parameter 𝜆 controls for the decay. If the upper barrier

is first to hit, the value is set to 1 and if the lower barrier is reached first, the value is set to -1.

 11

If the purchase times out before either limit is broken and the vertical barrier is touched, the

value is set to the return (López de Prado, 2018).

Figure 3: Labeling based on the tripe-barrier method

For this analysis, the time horizon taken into consideration is ten days. The upper and lower

multiple is set to two. Furthermore, the approach of the labeling has been adjusted to make it a

binary classification task. Therefore, if the vertical barrier is hit, the data was labeled according

to the return as the time was up. If the return was slightly positive, the data was labeled as a 1

for buy and 0 if the return was negative. This was done because the classes would be highly

unbalanced with a multi-classification approach due to data limitations.

3.3 Feature selection
Feature selection is a machine learning approach in which only a subset of the available features

is used for the model. It is necessary because it is sometimes technically impossible to include

all features as differentiation problems arise when a large number of features but only a small

number of data points are available. Besides that, the model not only works faster with a reduced

number of features but usually is also much more efficient.

Firstly, it was checked whether some variables show multicollinearity. If linear

interdependencies correlate, there is the problem of multicollinearity. The analysis of the

correlation coefficients, for example, serves to reveal multicollinearity. A very high positive or

negative correlation indicates a strong relationship by the regression and thus multicollinearity.

 12

Furthermore, this also shows that one variable can be expressed as a linear combination of other

columns. This does affect not only linear models but also non-linear models (Bruce & Bruce,

2017). This is because the ambiguity does not lie in the interpretation but in the data and the

model that can learn from it. The formula for calculating the correlation coefficient can thus be

summarized as follows and is done on the raw dataset:

𝑟 =
∑ (𝑥. − �̿�)(𝑦. − 𝑦t)%
.#'

u∑ (𝑥. − �̅�)+%
.#'

=
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎9𝜎:

	 (9)

After removing the multicollinear variables, the next process was to find the most useful

features from the original features. The set 𝑆 of 𝑘-combinations is calculated by the following

formula, where 𝑛 is the number of elements.

{
𝑛
𝑘|

=
𝑛!

𝑘! (𝑛 − 𝑘)!
	 (10)

Doing this iteratively until all combinations have been tested and calculating the associated

performance score, the best feature combination can be found. This provides the best

performing set, which does not necessarily have to include all features. Due to computational

resource limits, not all combinations could be calculated. Therefore, the set of combinations

was limited for k from 4 to 6. This number was chosen because of the hierarchical cluster

analysis, which is an algorithm that groups similar objects into one. The features within each

cluster are broadly identical to each other. Furthermore, with this approach, combinations will

be tested with only technical indicators and others containing the economic data as well.

3.4 Fractional Calculus
After having the final features, the next step is to verify that the time series is stationary. In

finance, it is common to find non-stationary time series. However, it is a necessary property for

inferential analysis. If data is not stationary, all assumptions made based on that the data is

independent and identically distributed (IID) would be wrong. For time series modeling weak

 13

stationary is satisfactory. A stochastic process (𝑥!)!;𝕋 is stationary if the following conditions

hold:

1. 𝑡ℎ𝑒	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	Ε	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑖. 𝑒. 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡 ∈ 𝕋	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	Ε	(𝑥!) = 𝜇

2. 𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑉𝑎𝑟	𝑖𝑠	𝑓𝑖𝑛𝑖𝑡𝑒, 𝑖. 𝑒. 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡 ∈ 𝕋	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑉𝑎𝑟(𝑥!) < ∞

3. 𝑡ℎ𝑒	𝑎𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑑𝑒𝑝𝑒𝑛𝑑	𝑜𝑛	𝑡ℎ𝑒	𝑠ℎ𝑖𝑓𝑡	𝑠, 𝑖. 𝑒. 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑠, 𝑡", 𝑡#	𝕋

𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑐𝑜𝑣?𝑥!! , 𝑥!"@ = 𝑐𝑜𝑣(𝑥$%!! , 𝑥$%!")

Most finance papers attempt to recover stationary time series by computing its return or by

integer differencing which comes at the expense of unnecessarily removing too much memory

from the original time series. One way to counteract this problem is to apply fractional

differentiation. This method aims to find the minimum amount of differentiation d to make the

time series stationary while preserving as much memory as possible. So, a fractionally

differenced time series 𝑋~! retains with the real non-integer differencing 𝑑 memory of the

original series but also is stationary.

𝑋~! ='𝑤"𝑋!$"

=

"#>

	 (11)

𝑋 = {𝑋! , 	𝑋!$', 𝑋!$+, … , 	𝑋!$"}	 (12)

with weights 𝜔

𝜔 = �1,−𝑑,
𝑑(𝑑 − 1)

2! , −
𝑑(𝑑 − 1)(𝑑 − 2)

3! , …	, (−1)"�
𝑑− 𝑖
𝑘!

"$'

.#>

, … �	 (13)

𝜔" = −𝜔"$'
𝑑 − 𝑘 + 1

𝑘
	𝑓𝑜𝑟	𝑘 ≥ 1	𝑎𝑛𝑑	𝜔> = 1	 (14)

However, as the weights converge asymptotically to zero with this method, the fixed-width

window fractional differentiation with control for weight loss will be used instead of the

expanding window fractional differentiation. This approach drops weights and the according to

datapoint, if it falls below a given threshold 𝜏.

 14

𝜔�" = Q𝜔" 	𝑖𝑓	𝜔" ≥ 𝜏
0	𝑖𝑓	𝜔" < 𝜏 	 (15)

The fixed window approach's with control for weight loss benefits are (i) it overcomes the

negative drift caused by the expanding window, (ii) it creates a stationary time series, but it is

not gaussian and (iii) it also remains excess skewness and kurtosis (López de Prado, 2018).

Figure 4: The left plot shows the close price of Daimler. The right plot shows the same plot fractional differentiated. Here, we
also see that the time series starts later in time as we dropped weights below the threshold 0.001.

With the help of the ADF-test, variables can be tested for stationarity and the differentiation

factor d can be found, which leads to a stationary time series with maximum memory

preservation (López de Prado, 2018). The ADF Test expands the DF test equation to include

high order regressive process in the model.

𝑦! = 𝑐 + 𝛽! + 𝜙'∆𝑌!$' + 𝜙'∆𝑌!$+ +⋯+ 𝜙6∆𝑌!$6 + 𝜀!	 (16)

The null hypothesis of the ADF-test states that the time series is stationary. In contrast, the

alternative hypothesis states that you reject the null hypothesis and infer that the time series is

not stationary. Figure 5 below shows that it is possible to achieve stationarity without giving up

all memory.

In this research, the ADF-test is used to check whether the time series is stationary or not. If the

null hypothesis is not rejected, the time series will be fractionally differentiated. Therefore, the

coefficient 𝑑 starting at 0, is increased by 0.05 and the ADF-test is applied on the differentiated

time series. If the null hypothesis still is not rejected, this process is iteratively applied until,

 15

with 95 % confidence, the null hypothesis can be rejected. The critical value for the ADF-test

at 5% is about -2.86. Afterward, the input data for the model has to be created.

Figure 5: The horizontal dashed line in black marks the 5% interval for the ADF-test(right y-axis). The x-axis shows the
differentiation factor. The left axis shows the correlation between the original and differentiated time series.

3.5 Gramian Angular Fields
It is essential to find an appropriate representation for the input data (Chollet, 2018). As the

convolutional neural networks sees an input as array of pixels, the time series can be

transformed. One of these methodologies is called Gramian Angular Field (GAF). It is a 2D

representation of a time series, proposed by Wang and Oates (2015). GAF represent the time

series data in a polar coordinate system and use different operations to convert these angles into

symmetry matrices. It was proven that this approach performs better in time series problems

than a 1D representation of the data.

The first step of creating a GAF matrix is to normalize the time series X into the range of [-1;

1] or [0; 1]. The following equation from Wang and Oates (2015) shows how to normalize data:

𝑥�.	[$';'] =	
(𝑥. − 𝑋17C) + (𝑥. − 𝑋1.%)

𝑋17C − 𝑋1.%
		𝑜𝑟		𝑥�.	[>;'] =

𝑥. − 𝑥1.%
𝑥17C − 𝑥1.%

	 (17)

where 𝑥� denotes the normalized data. The scaled time series is then transformed into polar

coordinated. The value is interpreted as an angular cosine and the time stamp 𝑡. as a radius r,

where N is a constant factor to regularize the polar coordinate system's length.

 16

l
𝜙 = 𝑎𝑟𝑐𝑜𝑠(𝑥�.), −1 ≤ 𝑥�. ≤ 1, 𝑥�. ∈ 𝑋~

𝑟 =
𝑡.
𝑁
, 𝑡. ∈ ℕ

	 (18)

Afterward, two possible GAFs can be created, the Gramian Angular Summation Field (GASF)

and the Gramian Angular Difference Field, where I is the unit vector (Wang & Oates, 2015).

𝐺𝐴𝑆𝐹 = �cos�∅. + ∅D�� = 𝑋~ E × 𝑋~ − u𝐼 − 𝑋~+
E
×u𝐼 − 𝑋~+	 (19)

𝐺𝐴𝐷𝐹 = �sin�∅. + ∅D�� = u𝐼 − 𝑋~+
E
× 𝑋~ − 𝑋~ E × u𝐼 − 𝑋~+	 (20)

In this research, both methods, summation as well as difference, have been tested. To create the

images, 30 consecutive trading days have been included, which corresponds to 1 ½ month. This

number was chosen because this period should be sufficient to form chart patterns. Each GAF

results in a 30 x 30 array (width and height of each image). In this study, there are approximately

about 4775 observations for each stock.

3.6 Evaluation
When developing neural networks, it is crucial to check their validity. A particular method for

evaluating the performance of the model is cross-validation. The most commonly used version

of cross-validation is where the model data is divided into two mutually exclusive sets, a larger

one, the training set, and a smaller one, the test set. The larger amount of data is used to build

a model, while the smaller amount of data is used to validate the model by applying the model

to the smaller amount of data and comparing the results with the actual value. This process is

repeated with different subsets until each object of the dataset has been used once for testing

(Müller & Guido, 2017).

However, for cross-validating time-series, a different approach has to be introduced. A naïve

approach would lead to the problem that the past is predicted with future data. Thus, it would

allow the model to learn from the future so that it would overfit easily ((Brownlee, 2020). One

approach is the walk-forward validation. The idea behind the approach is to use continuous

cross-validation and avoid the linking between observations. The data for this has been divided

 17

into ten walks. The model is trained for 800 days and tested over the following 400 days in each

walk.

Figure 6: Visualizing the k-fold cross-validation and walking-forward method.

This stock trend prediction has a binary target variable and quantitative measures can be derived

from the output. The output of neural networks can be divided into four categories:

• True Positive (TP): The rising price was determined correctly.

• False Positive (FP): A rising price was predicted, but it fell.

• True Negative (TN): The falling price was determined correctly.

• False Negative (FN): The falling price was predicted, but it rose.

As the labels are fairly balanced, accuracy will be used as the evaluation metric. Accuracy

represents the fraction of samples the model gets right and is calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁	
(21)

This simple evaluation method will be used because both classes can be equally weighted since

profits and losses can be made in both cases. Especially in the case of high accuracy, the results

should be checked. It happens that a model also always predicts the same class. Therefore, we

will use a zero predictive power model as the baseline classifier. A zero predictive model only

predicts the more frequently represented class in the dataset.

3.7 Hyperparameters
During the training process, weights within the model are automatically changed so that it is

increasingly able to establish the desired relationship between features and prediction. What

 18

remains unchanged during the training process is the basic architecture of the model. The parts,

which remain the same throughout the training process, are called hyperparameters. Since the

hyperparameters significantly influence model performance, their optimization is an essential

step in model development and can substantially improve prediction accuracy. There are

different approaches for optimizing hyperparameters, but only two of the most used techniques

will be covered in this work.

One of them is the grid search, which means trying all possible combinations of the

hyperparameters and the set of parameters with the best performance wins (Müller & Guido,

2017). The drawback of grid search that the run time increases exponentially with an increase

in hyperparameters. If there are 𝑚 hyperparameters, each taking the most 𝑛 values, the growth

is given by 𝑂(𝑛1).

Another approach, the one used in this work, is the random search. It is a technique where a

random combination of hyperparameters is chosen and helps find the near-optimal set. As in

grid search, the best set in all iterations will be the output (Bergstra & Bengio, 2012). However,

this approach's benefit is that with about 60 iterations, 95 % of the time, the best 5 % sets of

parameters can be found, regardless of the grid size. If 𝑛 is the number of iterations, it can be

proven by the following equation, where 𝑝 denotes the probability (Zheng, 2015).

1 − (1 − 𝑝)% = 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 → 1 − (1 − 5%)% = 95%, 𝑛 ≈ 59	 (22)

3.8 CNN specifications
The constructed CNN consists of two convolutional layers, followed each by an activation

function and a pooling layer, two fully connected layers and an output layer. Rather the

convolutional layer is followed by a batch normalization layer or the fully connected layer by

a dropout layer, which will depend on the hyperparameter tuning. Also, the dropout, as well as

neuron values, are tuned. For the kernel, different sizes can be adapted: 3x3, 5x5 and 7x7.

Decreasing the kernel size results in catching more details of the image. The proposed model

will have a kernel size of 3x3 due to the small image size (30x30). The structure is very similar

 19

to the LeNet structure because adding more layers would increase the model's complexity. Due

to the low number of training data, a more complex structure could cause the model to overfit

and reduce the accuracy on the test data.

Compiling the model, binary cross-entropy is used as the cost function (Brownlee, 2019).

Cross-entropy is a cost function often used for classification tasks. The cost function indicates

the deviation between the network's output and the desired result. The aim is to minimize this

function,

𝐻6(𝑞) = −
1
𝑁'𝑦. log�𝑝(𝑦.)� + (1 − 𝑦.) log�1 − 𝑝(𝑦.)�

F

.#'

	 (23)

where 𝑦 denotes the label and 𝑝(𝑦) the predicted probability of being that class for all point 𝑁.

As an optimizer adaptive moment (Adam) is used (Kingma & Ba, 2015). It is a method to

calculate the learning rates for each parameter adaptively. The method stores the mean of the

previous gradients 𝑣! and the average of the previously squared gradients 𝑠!. These are

estimates of the first and second momentum. At 𝑡> the vectors 𝑣> and 𝑠> are initialized as 0 and

𝑤> is the initial parameter vector. The momentum is the sum of the two previous gradients,

which are stored in a vector. This vector speeds up the gradient process when the gradient

changes little, and vice versa. The variables 𝛽', 𝛽+ indicate by how much the parameters should

decay.

𝑣! = 𝛽'𝑣!$' + (1 − 𝛽')𝑔!	 (24)

𝑠! = 𝛽+𝑠!$' + (1 − 𝛽+)𝑔!+	 (25)

To overcome that 𝑣! and 𝑠! tend towards zero, the first and second momentum will be estimated

as follows:

𝑣£! =
𝑣!

1 − 𝛽'!
	 (26)

�̂�! =
𝑠!

1 − 𝛽+!
	 (27)

 20

The weight update 𝑤! is performed as follows:

Δ𝑤! =
−𝜂𝑣£!

�u�̂�! + 𝜖�
	 (28)

𝑤!&' = 𝑤! + ∆𝑤!	 (29)

To output the results the softmax function is used, which is defined as follows:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥). =
𝑒C$

∑ 𝑒C%%
D#'

	 (30)

As with sigmoid, the output lies in the interval of [0, 1]. The sum of all probabilities is always

1. The output layer with the softmax activation function contains as many neurons as classes

are to be determined – in this case two. The output value indicates with which probability it lies

in the specified class. Training the model, the number of epochs run, and the batch size will be

tuned as well. Increasing the number of epochs will boost the model until a turning point after

which the performance gets worse again. When all batches have passed through the neural

network once, an epoch is complete.

4 Results
In this chapter, the results of the data analysis are presented. All analyses in this research were

performed using TensorFlow in Python 3.8.5.

4.1 Data Preprocessing
After downloading the data, the features have been created. A list of all 22 features can be found

in table 1.

Table 1: List of features for all stocks

All features

1 Close 7 SMA 50-days 13 EMA 12-days 19 Close Gold

2 Open 8 EMA 10-days 14 EMA 26-days 20 High Foreign Exchange (EUR/USD)

3 Low 9 EMA 50-days 15 MACD 21 Low Foreign Exchange (EUR/USD)

4 High 10 SMA 20-days 16 Signal line 22 Open Foreign Exchange (EUR/USD)

5 Volume 11 Upper band 17 f01 (upper shadow)
6 SMA 10-days 12 Lower band 18 f02 (lower shadow)

 21

The next step was calculating the correlation coefficients for the exploratory variables. To

visualize the correlation matrices, a heatmap has been used (see appendix, attachment 1). As

we can see, there exists multicollinearity between features, which belong to the same group.

The hierarchical clustering of features has been visualized as a dendrogram to show the features,

which belong to the same group (see appendix, attachment 3). To overcome multicollinearity,

features with a correlation coefficient of higher than 98% have been dropped. This reduced the

number of features for Daimler from 22 to 9 and for the other stocks from 22 to 8. Afterward,

the ADF-test was applied to find the minimum differentiation factor for a fractional

differentiated time series that is dropping weights below 0.001 (see table 2).

Table 2: Shows the differentiation factor after removing multicollinear features. "x" denotes that the feature was not in the
feature list of the associated stock.

 Close Close_gold High_fx MACD SMA_50 Signal_Line Volume f01 f02

Daimler 0,05 0,30 0,10 0,00 0,75 0,00 0,00 0,00 0,00

Bayer 0,20 0,30 0,10 0,00 x 0,00 0,00 0,00 0,00

SAP 0,20 0,30 0,10 0,00 x 0,00 0,00 0,00 0,00

Deutsche Bank 0,20 0,30 0,10 0,00 x 0,00 0,00 0,00 0,00
Having all features stationary, the data is normalized in the interval [-1;1] before creating the

input images (see appendix, attachment 4). To find the best set of combinations for the features

left, the score for all possible combinations with 4, 5, and 6 features were calculated. These

numbers have been chosen due to the clusters in the previous mentioned dendrogram. In the

following table 3 the score including all features from table 1 as well as the best scores achieved

with a reduced number of features is shown. All models performed better with a reduced

number of features

Table 3: Comparing model performance for all features and the best set of features in accuracy.

Stock Method Features Accuracy (%)

Bayer Summation All features included 0.502

Bayer Difference All features included 0.509

Bayer Difference Close, Volume, MACD, Signal Line, f01, f02 0.526

Daimler Summation All features included 0.495

Daimler Difference All features included 0.494

Daimler Summation Volume, Signal Line, f01, Close Gold, 0.529

 22

Deutsche Bank Summation All features included 0.492

Deutsche Bank Difference All features included 0.504

Deutsche Bank Summation Close, MACD, Close Gold, High FX 0.529

SAP Summation All features included 0.491

SAP Difference All features included 0.507

SAP Summation Close, MACD, f01, Close Gold, High FX 0.522

4.1 Final CNN models

After having the best set of features shown above, these features have been used to find the

optimal hyperparameters within the grid (see table 4) with the randomized search. The results

obtained from the randomized search are shown in table 5.

Table 4: Grid for the randomized search

Hyperparameters of the grid

Pooling: max, average Dropout 0, 0.1, 0.2, 0.3, 0.4, 0.5

Activation func.: relu, sigmoid, tanh Batch size 1, 16, 32, 64

Learning rate: 0.001, 0.0001 Neurons 32, 64, 128, 256

Batch norm. True, False Epochs 10, 20, 30, 50
Table 5: Best set of parameters through random search

Stock Pooling Activation Learning r. Batch norm. Dropout Batch Neurons Epochs

Bayer average sigmoid 0.0001 False 0.3 32 32 50

Daimler max tanh 0.0001 False 0 16 256 10

Deutsche Bank max relu 0.001 False 0.5 32 128 10

SAP average sigmoid 0.001 False 0.1 16 64 50
With the hyperparameters from table 5, the accuracies shown in table 6 have been achieved.

The final score is compared to the zero predictive power models. The results show that the

parametric optimization had little impact on improving model performance. Moreover, in three

out of four cases, the proposed model exceeds the zero predictive models.

Table 6: Final model performance compared to a zero predictive model

Stock Zero predictive power Accuracy

Bayer 0.554 0.569

Daimler 0.528 0.541

Deutsche Bank 0.501 0.543

SAP 0.546 0.544

5 Discussion
In this chapter, the previous work is summarized. It then describes the implications, limitations

and conclusions of this study. Suggestions for future research are also presented.

 23

5.1 Conclusion
Forecasting the direction of financial time series needs an outright different framework

compared to regular machine learning classification tasks such as loan prediction or classifying

images of dogs. To incorporate the existing heteroskedasticity in time series, the data was

labelled using this triple-barrier method. It was predicted whether the share price of a company

would fall or rise within ten days. Moreover, to make the data stationary, the concept of

fractional differentiation was applied. This helps that all assumptions made based on IID hold.

Despite the fact that all the upper preprocessing steps were incorporated, the research question

cannot be answered unambiguously. Upon closer inspection of the results, three out of four

models performed better than the baseline classifier, but with only a small difference in two

cases. To have more reliable results the same methodology has been applied to stocks of

different industries. This was based on the assumption that stock prices from different sectors

have performed differently over time and different results could be obtained, which was not the

case. Further the hyperparameter tuning had little impact on the results. This possibly happened

because the basic structure was based on successful literature. In real-life trading the risk of

losing money with this model would be too high. Furthermore, this model gives no insight about

how the bets should be sized, which could lead to the problem that sometimes we win a little

and lose a lot, and vice versa.

5.2 Implications
Hopefully, this research showed that literature in this area is very misleading. To the best of my

knowledge, almost all literature approaches use a fixed time horizon for labelling the data.

Furthermore, they do not attempt to make the time series stationary or violate the model by

predicting the past with future data. This study tried to overcome all these fallacies and build

as accurate a model as possible to the real world. Furthermore, the LSTM model, which has

proven to perform extraordinarily, has not been used as it learns to shift the time series and,

therefore, usually highly overfits. An example, which was found online, can be seen in the

 24

appendix, attachment 5 figure 1. In conclusion, in live trading, these models would perform

poorly as accuracy was only slightly above 50%. It should also be mentioned that there is a high

magnitude of uncertainty in stock markets, which makes it difficult to forecast stock trends.

All in all, in the author's opinion, technical indicators are no longer good predictors, as they are

twined together and have become unprofitable to use. The findings indicate that the DAX in

which the stocks are located is efficient, at least efficient enough that technical analysis does

not work on the stocks. They might have been useful in the past, but the trading environment

has changed drastically. Also, stock markets are affected by many factors such as economic

environment, political policy and natural factors, which have not been considered in this

analysis. The best feature sets include in three out of four cases economic data, showing that

adding additional information is relevant in predicting stock trends. So, using the foreign

exchange and gold price might have been a step in the right direction, nevertheless, are in a

strong interrelation with stock prices and not certainly independent. According to the author's

opinion, the focus should not be forecasting or classifying stock prices and instead finding out

what influences them.

5.3 Future work
This was one of the first research in image recognition for trading and according to this, it only

gives a broad idea of the topic. Further research could relate to this topic using intraday data.

Learning pattern from daily data is abstract and having intraday data, the model can learn more

details about the market. Additional, if more data is available, the data can be classified in

multiclass: rise, fall, hold. Also, the threshold can be adjusted to see the performance on

different levels. Furthermore, as we have seen, economic data has high feature importance.

Therefore, it might be interesting to include other economic data such as interest rates or even

use alternative data, such as satellite images of trucks. Other future research could be using the

same approach to markets, which are not highly quant traded or to cryptocurrencies.

 25

6 Appendix

Attachment 1

Figure 1: Corelation matrix including all features for Bayer.

 26

Figure 2: Correlation matrix including all features for Daimler.

 27

Figure 3: Correlation matrix including all features for Deutsche Bank.

 28

Figure 4: Correlation matrix including all features for SAP.

 29

Attachment 2

Figure 1: Correlation matrix after dropping multicollinear variables for Bayer.

 30

Figure 2: Correlation matrix after dropping multicollinear variables for Daimler.

 31

Figure 3: Correlation matrix after dropping multicollinear variables for Deutsche Bank.

 32

Figure 4: Correlation matrix after dropping multicollinear variables for SAP.

 33

Attachment 3 (insert caption)

Figure 1: The hierarchical cluster for Bayer's features, visualized as a dendrogram.

Figure 2: The hierarchical cluster for Daimler's features, visualized as a dendrogram.

Figure 3: The hierarchical cluster for Deutsche Bank's features, visualized as a dendrogram.

 34

Figure 4: The hierarchical cluster for SAP's features, visualized as a dendrogram.

 35

Attachment 4

Figure 1: Plots the GASFs for Daimler. The "diff_" before some feature names shows that this
feature has been fractional differentiated.

 36

Figure 2: Plots the GADFs for Daimler. The "diff_" before some feature names shows that
this feature has been fractional differentiated.

 37

Attachment 5

Figure 1: This plot shows the prediction of a LSTM model. It shows how the model learns to
shift the time series and make good predictions. The image is from the paper "Forecasting
stock prices with a feature fusion LSTM-CNN model using different representations of the
same data" from Kim and Kim (2019).

