
A Work Project, presented as part of the requirements for the Award of a Master’s degree in

Finance from the Nova School of Business and Economics.

ONLINE ADVERTISING REVENUE FORECASTING:

AN INTERPRETABLE DEEP LEARNING APPROACH

Max Würfel

Work project carried out under the supervision of:

Qiwei Han

04-01-2021

Abstract

This paper investigates whether publishers’ Google AdSense online advertising revenues can

be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a

Berlin (Germany) based data science company, which primarily provides eRetailers with sales

and shopper intelligence. I find that using a single deep learning model, AdSense revenues

can be predicted across publishers. Additionally, using unsupervised clustering, publishers

were grouped and related time series were fed as covariates when making predictions. No

performance improvement was found in relation with this technique. Finally, I find that in the

short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic.

Keywords: Deep Learning, Time Series Forecasting, Interpretability, Online Marketing.

Acknowledgments: I gratefully acknowledge the help I received from my supervisor Qiwei

Han. I also wish to thank Maximilian Kaiser and Daniel Schmeh from peekd for providing me

with the data to be used in my work project as well as their continued support.

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia

(UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209),

POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209)

and POR Norte (Social Sciences DataLab, Project 22209).

1

https://peekd.ai

1 Introduction
This study was conducted in collaboration with peekd, a Berlin (Germany) based data science

company. Peekd offers eRetailers the opportunity to receive benchmark analytics based on its

proprietary database. Customers in turn will connect their Google Analytics account to peekd’s

infrastructure. For some clients, the accessible data encompasses Google AdSense revenues, a

service that provides publishers with the opportunity to monetize their website traffic by hosting

ads on their website and advertisers to serve their ads to a targeted audience. This study intends

to first, showcase how peekd can take advantage of its proprietary data in generating accurate

AdSense revenue forecasts. Second, reinforce the applicability of interpretable deep learning

techniques to business settings. And finally, provide insight into the drivers of AdSense revenues

for publishers.

Peekd’s businessmodel relies on the supply of analytics and visualization tools to their customers.

Thus, a model that can provide AdSense revenue forecasts for peekd’s clients, constitutes a new

product, which could be deployed as part of the firm’s service offering. Generally, peekd might

offer distinctive value to its customers in three ways.

First, peekd is an experienced data science player who has successfully implemented machine

learningmodels across a set of applications. Formost publishers, it would unquestionably be less

expensive to outsource the development of any deep learning model to a specialized company,

while achieving more accurate results in a shorter time (Edlich et al. 2019). Meanwhile, by

deploying any model for multiple firms, peekd could benefit from scale economics.

Second, evidence suggests that peekd’s access to cross-sectional data might allow for superior

model performance. Amazon recently released DeepAR, a time series forecasting model, which

illustrates how deep learning models, trained on cross-sectional units, can outperform models

like ARIMA trained on a single unit’s time series. Besides, the authors showcased that the model

performance is increasing in the number of cross-sectional units and that the effect is reinforced

when the individual time series are correlated (Flunkert, Salinas, and Gasthaus 2017). For

instance, web-traffic between two newspapers might be positively correlated in the short-term,

due to breaking news, and negatively correlated in the long-term, due to competing sources of

similar information, causing correlated AdSense revenues. Hence, there might be a significant

2

https://peekd.ai

performance boost from training the model on peekd’s panel data.

Finally, I aim to take a step further in levering access to the database. Given multiple related

online advertisement revenue time series, like those of competitors, the correlated time series

might act as additional features in the prediction problem. Whether this technique can further

improve model performance, needs to be confirmed by the end of this study.

Next to its business relevance, the prediction of AdSense revenues for publishers constitutes a

novel problem, which has not been investigated before. I deploy an interpretable deep learning

approach to provide insight into the drivers of AdSense revenues.

The remainder of this paper is organized as follows. First, Sec. 1 will continue by defining the

prediction problem, explaining the functioning of theGoogle AdSense network, and highlighting

the advantages of deep learning compared to statistical methods. Sec. 2 is concernedwith related

work on Google AdSense and Deep Learning for time-series forecasting. The methodology is

discussed in Sec. 3, while results are analyzed in Sec. 4. Sec. 5 concludes.

1.1 Problem Definition

Given the historical sequence of a publisher’s AdSense revenues, accompanying time-series data

and categorical information, the goal is to forecast the AdSense revenues over multiple days.

More formally, the multi-horizon prediction problem is defined as:

H8,C+g = 5 (H8,C−::C , D8,C−::C+g, G8,C−::C , B8) (1)

Where g<0G = 30 and :<0G = 89, such that the intention is to output daily revenue predictions

over roughly the next month based on the time series from the last quarter. Inputs can be

divided into four distinct groups, where 8 always represents an individual publisher. The

first group is composed of the target variable H8,C−::C = {H8,C−: , . . . , H8,C} , which denotes the

historical AdSense revenue. The second group are covariates with known future observations

D8,C−::C+g = {D8,C−: , . . . , D8,C+g}, like the day of a week an observation will occur. The next group

is made up by inputs G8,C−::C = {G8,C−: , . . . , G8,C}, which are covariates, that are unknown over the

prediction time horizon, like page views. Finally, B8 describes static features such as the home

country of the publisher.

3

1.2 Google AdSense

Google AdSense is an advertisement network, through which publishers can monetize their

website traffic by serving ads on their website. Hereby, the publisher‘s revenue is usually

generated on a cost-per-click (CPC) basis. CPC is the amount an advertiser will pay for a click

on its ad, whereby about 70% of the revenues will be distributed to the publisher (Google 2020).

Advertisers, on the other hand, have the opportunity to reach a specific target audience. The

ads, which may be rendered on a publisher’s website are automatically selected by Google based

on three criteria. First, contextual targeting, which refers to the matching between a website’s

contents and potential ads. Second, placement targeting concerns the preferred consideration of

advertisers who registered their intention to advertise on specific websites. Third, personalized

targeting involves the analysis of the audiences’ demographic data. This includes geographical

location and device, but also specific user characteristics, like "sports enthusiast" (Google 2020).

To participate in the Google AdSense network, any publisher only needs to reserve space on

their website and inject a code snippet in their website’s frontend. When a user visits the page,

the publisher will send audience information, like the origin and device of the user to AdSense.

Subsequently, suiting ads and the corresponding advertisers are selected by Google following

the criteria discussed above. Next, the selected advertisers can participate in an auction to show

their ad. In the auction, the ad’s rank is not only determined by the CPC bid but also the ad

quality score, which tries to capture the expected user experience and the likelihood that the

customer will click the ad (Google 2020). Usually, advertisers do not submit bids for single

websites but for keywords, where a keyword is associated with multiple websites. Any keyword

represents the contents of the website and therefore also the characteristics of the target audience

(Wang and Chen 2012). The winning bidder finally sends a script to the publisher’s website,

where the contents are rendered. Thus, the ads displayed on any publisher’s website, the number

of users clicking the ad, and eventually, the revenues earned will vary over time.

1.3 Deep Learning for Time Series Forecasting

Deep Learning, while gaining its original popularity from Computer Vision and Natural Lan-

guage Processing (NLP) tasks, has been frequently applied to make time-series forecasts. Driven

4

by the increasing data availability and computing power, deep learning allows to learn temporal

patterns without the need for extensive preprocessing, assumptions about the underlying distri-

bution, and exhaustive feature engineering (Lim and Zohren 2020).

Nevertheless, statistical models like ARIMA continue to perform distinctively better on univari-

ate problems, especially for short time series. In the case at hand, the problem is multivariate and

over a thousand daily observations per time series are available. With this length of time series

data, it has been shown that deep learning methodologies will outperform statistical models

reliably (Cerqueira, Torgo, and Soares 2019). A more practical reason in favor of deep learning

methodologies is the fact that only a single model needs to be fit, which can make predictions

across all publishers 8 in the dataset. Generally, most statistical models show diminishing perfor-

mance in high-dimensional multivariate problems, where deep learning models start to benefit

from their ability to fit non-linear, complex functions. Further, to make multi-step predictions,

models like ARIMA can solely be used recursively, making one-step-ahead predictions, while

machine learning models allow for more advanced output strategies.

Finally, when compared to statistical methodologies, there is no need to select from parametric

and non-parametric models. For many statistical models, in turn, the data needs to be parametric,

in particular stationery, such that mean and variance are constant over time. Contrarily, deep

learning models usually learn to deal with seasonalities and trends independently.

Historically, a caveat to deep learning methodologies has been the lack of interpretability. But

as new deep learning methodologies emerge, efforts have been made to combat this issue (Lim

and Zohren 2020). In business applications like the one at hand, interpretability is of utmost

importance. This study aims to solely apply deep learning methodologies to produce forecasts,

with special attention on the interpretability of the results.

2 Related work

2.1 Google AdSense Revenues

To the best of my knowledge, no research exists, solely concerned with the AdSense revenue

prediction for publishers. On the web, there are several AdSense revenue calculators available

and even Google offers a tool, which intends to give a rough estimate of expected online

5

https://www.google.com/adsense/start/

advertisement revenues. Usually, any tool will ask the publisher to impute their website category,

region, and expected website traffic. Notably, the selection of inputs made already gives a first

indication of the underlying dynamics of AdSense revenues, which will be discussed below.

Clearly, none of the tools leverage historical information as intended in this study.

Adapted from Wang and Chen (2012), every publisher will try to maximize its profit % =

�%�×2;82:B = �%�× 8<?A4BB8>=B×�)' where�)' is the click-through-rate. Even though

page views and impressions are technically not the same, they are strongly related. While the

page views measure the number of times a user visits a webpage, the impressions measure the

frequency a specific ad is viewed. Naturally, this relationship is less variable than the other

determinants in the profit-maximizing objective, such that page views and ad impressions will

be treated interchangeably. Thus, the generated AdSense revenue for publishers will mainly

depend on three factors.

First, website traffic, as the volume of visitors on a website changes, the number of possible

ad impressions and clicks will adapt accordingly. Multiple studies concern themselves with

the prediction of website traffic, mostly deploying statistical methods. According to Li and

Moore (2008), web traffic time series often embed strong weekly correlation, while milder

yearly dependencies prevail. Further website traffic is often assumed to be stationary in the

short-term but tends to exhibit trends in the long-term (Li and Moore 2008). Such patterns

might consequently also be reflected in the AdSense revenue development.

Second, the CTR will determine the number of website visitors, which actually click the ad

and consequently generate revenues. A complete stream of literature is concerned with CTR

probability prediction (McMahan et al. 2013). Indeed, almost any advertisement network will

use the expectedCTR in the bidding process. InGoogleAdSense, the expectedCTR is embedded

in the quality score from Sec. 1.2. Unfortunately, most studies are concerned with the quick

binary prediction of whether a given visitor will click an ad or not, which only yields limited

insight into the dynamic of a publisher’s online advertisement revenues (Zhou et al. 2018).

Finally, the CPC will determine the compensation for a publisher. Evidently, the determinants

of the CPC are the maximum bids submitted in the relevant auction. Usually, the competition in

the auction will depend on the relevant keyword and in turn the expected CTR, while ultimately

6

also on the individual advertiser’s conversion rate and average item value (Google 2020).

Rather than a single visitor’s CTR or a single CPC, decisive key ratios in predicting a publisher’s

AdSense revenue are the average CTR and CPC of its website, across all ads shown over a

specific timeframe. In an effort to determine the expected value of the dollar spent on online

advertisements, research exists aiming to predict CTR and CPC on keyword-level (Wang and

Chen 2012). Given, that the contents of any publisher’s website will be the main determinants of

the keywords assigned by Google towards that page, keywords are unlikely to change frequently.

Similarly, the target audience of a website can be expected to hardly change while relying on

the continued supply of tailored content. The target audience, in turn, is strongly correlated to

buying power and as such also the CPC. Hence, the contents of a website and the corresponding

audience, through the associated keywords, might yield insight into the average CTR and CPC

of a publisher. Even more, websites grouped by their contents can be expected to share keywords

and thus also CTR and CPC rates.

It also follows that publishers seem to have little tools at their disposal to impact their online

advertisement revenues. Quick and abrupt changes might be caused by the positioning of the

ads, the number of the ads, and the media type of the ads on the website, but not by changes to

content or audience. Significantly more power in the development of AdSense revenues might

be with the advertisers, which set the CPC based on their individual objectives. Advertisers

might decide to suddenly increase their advertising budget and thereby drive up demand in an

attempt to promote a certain product (Google 2020). Subsequently, AdSense revenues might

embed patterns over which publishers have little control, but which notably influence their ad

income, while also reducing predictability.

When trying to predict CTR and CPC, Wang and Chen (2012) make an important distinction

concerning the feature space. On the one hand, there are contextual features, which represent

information on the context an ad is shown in, e.g the number of words used in the ad title or

demographic information associated with a specific user. On the other hand, there are historical

features, which encompass time series like CTR, CPC, and page views. In the study at hand,

only historical features will be levered to make predictions, as contextual features are naturally

unavailable over a multi-step horizon.

7

Finally, a question remains as to why there is so little research concerned with the forecasting of

AdSense revenues for publishers. First, as described above, for publishers facing deteriorating

AdSense revenues, there is the lack of corrective action in the short-term, as content and audience

are fixed. Second, the access to AdSense revenue data is proprietary. Typically, no publisher

will share its AdSense revenue data with its competitors, thus, peekd’s database might yield a

unique opportunity to investigate the topic.

To conclude, there are three main determinants of AdSense revenues, which are page views,

CTR, and CPC. Further, there is evidence indicating that for any publisher, CTR and CPC,

through the associated keywords, depend on its website’s audience and content. As neither of

these can be expected to change frequently, also CTR and CPC are expected to stay fixed in

the short-term. Hence, web traffic might account for most short-term movement in AdSense

revenues. Additionally, a great portion of the variability in ad revenues, and specifically CPC,

might be driven by advertisers’ actions and thus, lie outside of the control of publishers.

2.2 Deep Learning for Time Series Forecasting

2.2.1 Model Architectures

There are two main types of deep learning architectures frequently applied to generate time-

series forecasts. First, there are Convolutional Neural Networks (CNNs) from Computer Vision

and second, Recurrent Neural Networks (RNNs) from Natural Language Processing (NLP).

To apply CNNs to time-series prediction problems, multiple convolutional layers are usually

stacked on top of each other like in Borovykh, Bohte, and Oosterlee (2017). In addition,

regular convolutions are swapped for causal convolutions, which ensure that any prediction

?(HC+1 |HC−: , ..., HC) can only depend on historical time steps up until HC (Oord et al. 2016). As

in Computer Vision, CNNs extract temporal features by shifting a single kernel, with the same

weights, along the time series. Hereby, the lookback window (receptive field) is the number

of historic time steps a single kernel attends when generating outputs. Historically, the biggest

challenge in time series forecasting used to be the consideration of long time series intervals

and lookback windows, causing computational challenges (Lim and Zohren 2020). Dilated

convolutions constitute a possible solution to this problem, allowing for increased lookback

8

window width while holding the number of parameters constant (Yu and Koltun 2015). This

is achieved by the dilated convolution simply skipping certain input time steps according to

the dilation rate. Notably, the input layer usually does not incorporate any dilation, while

convolutional layers further up in the structure use increasing dilation rates.

A widely used adoption of a dilated CNN is WaveNet, a neural network architecture originally

intended to generate audio signals by Oord et al. (2016), and frequently adopted to produce time-

series forecasts (Borovykh, Bohte, and Oosterlee 2017). On top of the dilated convolutions,

there are two other especially interesting features of the WaveNet architecture, which have both

been adapted for time series prediction. First, the usage of gated activations, and second, the

usage of skip and residual connections. In gated activations, the output from a convolutional

layer is split into two branches and later recombined by element-wise multiplication. Thereby,

one branch can be interpreted as a learned filter, while the other branch, which is sigmoid

activated, can be thought of as the gate. Gated activations have been seen to outperform more

standard activation such as the rectified linear unit (ReLU), not only in speech generation but

also in time-series tasks. In particular, a gated linear unit (GLU) can be used as gated activation

in time-series prediction (Dauphin et al. 2017):

�!* (G) = B86<>83 (,1G + 11) � (,2G + 12) (2)

where the gating mechanism allows for the selection of important signals and suppression of

noise (Lim et al. 2020).

Second, WaveNet features skip and residual connections, where I will focus on the residual

connections. Introduced by He et al. (2016), a residual block is only learning the residual

function and allows a network block’s input G to skip the non-linear transformation by being

subsequently recombined with the residual block’s output. Given a true distribution � (G) to be

learned, a residual block with input G is given as:

� (G) = '(G) + G (3)

where '(G) is the residual learned by the network block, which is added to the unaltered input

to learn the desired mapping. In some situations, it might be easier to learn the residual function

9

instead of the true underlying mapping. Also, this architecture makes it significantly easier to

learn an identity mapping by solely setting the residual to zero (He et al. 2016). Both gated

activations and residual skip connections are very relevant to time series prediction problems.

Since time series are usually made up of different components, like autoregressive relations,

trends, seasonalities, and hard-to-spot trajectories, some easy-to-spot, autoregressive relations

might not require as much non-linear processing as other, more complex feature representations.

The second class of model architectures successfully utilized in time series forecasting are

RNNs. Any RNN positions multiple cells on a directed graph, where the weights are shared

across all cells. Further, each cell contains an internal memory state, which is continuously

updated based upon new observations (Rumelhart, Hinton, and Williams 1986). To combat the

historically prevailing issue of fading transmission power, the Long Term Short Term Memory

cell (LSTM) has been introduced, which updates an internal cell state in addition to the hidden

state (Hochreiter and Schmidhuber 1997). This is relevant in time series forecasting, as historical

information can influence predictions far in the future.

In its original form, LSTMs perform well when the target is to produce a single output, but not

when the output is a sequence itself, like in multi-horizon time series forecasting. Eventually,

Sutskever, Vinyals, and Le (2014) introduced a Sequence to Sequence (Seq2Seq) network archi-

tecture, which levers two distinct LSTMs and can be thought of as a conditional autoregressive

model. The first network encodes the input sequence into a fixed-length vector, while the second

one decodes the encoded state to generate predictions, one step at a time. Thereby, the predic-

tions are recursively fed into the next decoder cell to produce the next prediction.

Another important addition to Seq2Seq architectures but also the main building block of Trans-

former architectures, has been the introduction of attention layers (Bahdanau, Cho, and Bengio

2014). Thereby, the attention mechanism can effectively transfer information from relevant past

time steps to the corresponding output step. In a Seq2Seq architecture, for instance, this means

allowing the hidden states of a very early encoder cell to directly impact a decoder cell many

steps ahead. In a time series context, this could be interpreted as the ability to attend to certain

special events like Christmas for sales forecasting. Adopted from Vaswani et al. (2017) any

10

attention layer computes a context vector ℎC at time step C as:

ℎC =
∑:

g=0
U(@C , :g)Eg (4)

where :g is the key and Eg is the value, which in Bahdanau, Cho, and Bengio (2014) would both

be represented by the hidden encoder states. And where @C is the query, which in Bahdanau,

Cho, and Bengio (2014) would be the past decoder cell’s hidden state. Finally, U(@C , :g) are the

attention weights generated for time step g at time step C (Lim and Zohren 2020).

More recently, transformer architectures have also been deployed in time series forecasting

problems (Lim et al. 2020). Hereby, an adaption of the original attention mechanism namely

self-attention is used, where query, key, and value are all computed from the same initial vector

and the dot scalar product is used to generate attention weights. In transformers, multi-head-

self-attention (MSA) layers deploy multiple attention mechanisms called heads, all operating

on the same values, hence attending the same input sequence. This architecture has recently

been shown to also improve time-series forecasts (Li et al. 2019). In particular, each head of the

MSA layer has been found to capture different temporal structures, like autoregressive relations

or seasonalities.

2.2.2 Multi-Step Forecasting strategies

In many applications, it is worthwhile to generate a sequence of forecasts over a specified time

horizon. Multiple strategies exist to make multi-step predictions.

First, a distinct model can be developed for each timestep, each generating its own one-step-

ahead prediction. As the number of models is linearly increasing in the forecasting horizon,

this method is infeasible for longer time frames. Second, it is possible to deploy a recursive

(autoregressive) strategy to make multi-step predictions. Thereby, a one-step-ahead model is

trained and at runtime, the one-step-ahead predictions are appended to the input vector. The

caveat of this prediction strategy is that when using multi-variate inputs, a prediction needs to

be made for each input series independently to be able to generate one-step-ahead predictions.

Additionally, errors made in early predictions can accumulate over the prediction horizon (Lim

and Zohren 2020). Finally, it is possible to utilize a multi-output strategy, where a single

11

model outputs multiple predictions at the same time. While only a single model needs to

be trained, this strategy usually requires the usage of more complex model architectures to

successfully make predictions. To directly generate output vectors, either basic models like

RNNs can be manipulated to output a fixed-length vector instead of a single prediction. Or, a

more sophisticated approach levers encoder-decoder architectures, like Seq2Seq (Sec. 2.2.1).

3 Methodology

3.1 Data and Preprocessing

The data for this study was provided by peekd and is part of their proprietary database. From

hereafter, the terms publishers and domains are used interchangeably, as, within the dataset, a

domain will uniquely identify a publisher. For all publishers in the database, daily AdSense

revenues from the 01.01.2018 until the 30.10.2020 are available. Additionally, time series for

ad impressions, ad clicks, page views, and bounces are available (data dictionary in Appx. B).

All daily observations are available for three device categories, namely desktop, mobile, and

tablet. For the purpose of this study, only the desktop data is considered as it captures the

biggest fraction of the total revenue generated. Combining all the device categories as a total is

not a viable option, as ad clicks and impressions from different device categories convert into

AdSense revenues at significantly different rates.

The dataset encompasses data on over 400 domains, from whom only a notably smaller subset is

deployed in this study. First, a geographical subset of the domains is taken. In line with Sec. 2.1,

the potential customer value differs across regions, such that the AdSense revenue transmitters

CTR and CPC might behave similarly within a region. Notably, the origin of a publisher will

not entirely match the origin of its users, but it provides a reasonable proxy. In particular, the

dataset has been reduced to incorporate only domains from fifteen developed countries (Appx.

A). Another reason for deploying a regional subset of the data might be that culturally close

countries are likely to experience similar trends and patterns in their website traffic.

Equivalently, a subset of the data could have been selected based upon the websites’ category.

In particular, categorically grouped domains might offer similar contents and be associated with

similar keywords. In an attempt to keep a reasonable dataset size while also allowing for rigorous

12

data cleaning, no such reduction has been performed.

The central concern with the provided dataset is the high frequency of zero AdSense revenue

observations as well as frequent and abrupt shifts to the overall level of generated revenues. A

root cause of this issue might be the low barriers of entry, as signing up to Google AdSense does

not require any technical efforts, while also being free of charge (Google 2020). Consequently,

even publishers with little website traffic are encouraged to sign up for the service. This results

in a high number of domains, for whom the AdSense revenues stay at zero for a considerable

timeframe. Different from missing observations, imputation is not a viable option for zero

observations. This is due to the fact, that it is not possible to distinguish between actual zero

observations, as there simply have not been any ad clicks and more technical causes like the

discontinued usage of the AdSense network. Further, the main issue is not zero observations per

se, but rather the missing variability over this time horizon, such that no trends or seasonalities

can be observed, whichmakes it harder for any deep learningmodel to learn. Finally, it should be

pointed out, that many small publishers also tend to inherit significantly more volatile revenue

patterns than more established ones, which might hamper the transferability of the model’s

learnings across differently sized publishers. To combat the prevailing issues, two measures

have been taken. First, similar to Rebortera and Fajardo (2019), all publishers with more than

ten consecutive zero revenue observations have been removed and second, only publishers with

more than five USD average daily revenues are retained. During preprocessing, the size of the

dataset has been reduced tremendously, resulting in 42 domains remaining in the final dataset.

Even though no extensive exploratory data analysis will be discussed, one important finding

needs to be highlighted. Based upon the autocorrelation plots in Appx. D, I find evidence for the

hypothesis from Sec. 2.1, that web traffic is likely to have the most effect on short-term AdSense

revenue patterns. In particular, the AdSense revenues showcase similar autocorrelation patterns

like ad impressions (proxy for web traffic), only with less amplitude. CPC and CTR on the other

hand do not inherit any noteworthy short-term autocorrelation patterns. It should be noted that

the time series were aggregated across all publishers to produce insightful plots.

Similar to what Flunkert, Salinas, and Gasthaus (2017) find, another property of the data

is that the distribution of the revenue time series across the different domains is strongly

13

skewed. Generally, this will make standardization techniques like normalization less effective.

To conquer this problem, two measures have been taken. First, all daily AdSense revenues are

log-transformed. Second, standard scaling is applied for each domain separately. Thus, all

time-series are aggregated by domain and then each time series is individually normalized to

zero mean and unit variance.

All deep learning models deployed in this study take as input a sequence of daily observations,

following the sliding window technique, e.g. deployed by Vafaeipour et al. (2014) (illustration in

Appx. C). Therefore, the inputs are two-dimensional matrices with the multivariate features on

one axis and the input time steps on the other axis (:<0G = 89). Hereby, :<0G was chosen after

inspection of the AdSense revenue autocorrelation plot (Appx. D). Similarly, with g<0G = 30,

the target is given by a vector of thirty univariate observations. To generate the next sample,

both the input and output windows are shifted one day forward. In time series forecasting, train,

validation, and test splits need to be generated carefully, to avoid any data leakage. Specifically,

forecasts will usually become less accurate as predictions aremade further in the future compared

to the training time period. Thus, it is important to ensure that all training data stems from dates

occurring before any date which is part of the validation and test sets. In this study, only

observations before the 08.04.2020 are used for training, while data until the 19.06.2020 is used

for validation and all remaining dates are used for testing.

It is important to notice, that the data lacks any information on the publishers’ personal AdSense

settings. This implies, that the positioning and the number of AdSense banners for any publisher

are unknown. Consequently, even for companies in the dataset which are geographically and

categorically close, the revenue transmitters can behave differently. Further, a publisher’s

settings might only allow for ads associated with certain keywords or ban specific keywords

from their website. Analogously, the ban and the selection of keywords might result in domains

with similar characteristics but different CTR and CPC ratios.

3.2 K-Means Clustering with Dynamic Time Warping

As elaborated in Sec. 1, one goal of this study is to test whether covariate time series, retrieved

from peekd’s database, can be fed as an input to the model and increase performance. In case

14

this claim holds true, it would yield an additional edge for the usage of peekd’s proprietary

database in the prediction of AdSense revenues.

To find covariate time series, at best, for every domain the competitors and/or substitutes could

be identified and used as an input. Clearly, this would involve significant industry insight and

manual work. Therefore, in line with Sec. 2.1, the most natural fit would be to feed the average

time series of a domain’s category or country as covariates to the model. Unfortunately, due

to the rigorous data cleaning, the overlap between the domains, countries, and categories is

limited. Hence, feeding time series from a domain’s category or country does not provide a

viable option, as often there would only be a single domain associated with a category/country.

Alternatively, K-Means clusteringwith dynamic timewarping (DTW)was deployed to aggregate

meaningful groups of similar domains. This unsupervised algorithm aims to identify companies,

which embed similar temporal patterns without providing more obvious categorical signals

concerning their similarity. While the K-means clustering algorithm is well-known, the DTW

offers a unique advantage for time series data. Compared to the Euclidian distance, which can

only compare observations occurring at the same point in time, DTW can pick up similarities

across shifted time series. DTWworks by constructing =G<matrices for each pair of time series,

where each element 8, 9 in the matrix represents the Euclidean distance between two points in

the pair of time series (Tavenard et al. 2020). Given the AdSense revenue time series from two

domains H1,C−::C and H2,C−::C , the objective is to find the shortest path through the matrix, which

is the same as minimizing the cumulative distance. The objective can be denoted as:

�), (H1,C−::C , H2,C−::C) = min
c

√ ∑
(8, 9)∈c

3 (H1,8, H2, 9) (5)

where c = [c0, ..., c] and each element c: = (8: , 9:) denotes an index pair within the distance

matrix, condition to c0 = (0, 0), c: = (=−1, <−1). c: is related to c:−1 by 8:−1 ≤ 8: ≤ 8:−1+1

and 9:−1 ≤ 9: ≤ 9:−1 + 1 (Tavenard et al. 2020). In the case at hand, the K-Means algorithm

with DTW is deployed to find clusters using the AdSense revenue time series over the entire

train period. Additionally, using DTW barycenter averaging, the algorithm produces centroids,

which are time series in themselves (Petitjean, Ketterlin, and Gançarski 2011). Unfortunately,

these centroids cannot be fed as covariates, as this would result in a significant data leakage

15

problem. In particular, at each time step, the value of the centroid time series is computed as

the average of all its associated revenue time series, but in DTW space. As explained above,

this might include shifted data points, and therefore also future values. Consequently, I use the

clusters produced from K-Means with DTW as a static input. To produce covariate time series, I

group all time-series based upon its cluster and compute the Euclidean barycenters at each time

step, preventing any data leakage.

3.3 Quantile Loss

The objective function of any deep learning model translates a qualitative problem into a

function to be minimized. In the case at hand, the Quantile Loss is used as the objective, such

that AdSense revenue prediction is framed as a quantile regression problem. In the context of

uncertainty and business planning, it is always desirable to not only generate a point prediction

but also a corresponding measure of certainty. Quantile predictions over multi-step-horizons

are two-dimensional, with predictions for every quantile at every time step in the prediction

window. An individual quantile prediction always aims to overfit the actual value q% of the

time. It should be noted that if @ = 0.5, the quantile loss function reduces to the mean absolute

error function, such that the median outcome is predicted, which will be treated as the point

prediction. The quantile loss is given by:

! (Ω,,) =
∑

H∈Ω

∑
@∈&

∑g=<0G

g=1

&! (Hg, Ĥg, @)
"g<0G

&! (H, Ĥ, @) = <0G(@(H − Ĥ), (1 − @) (Ĥ − H))
(6)

where Ω is the training data with " samples (Lim et al. 2020) and the quantiles are set to

& = {0.25, 0.5, 0.75}. Thus, @0.75 − @0.25 can be interpreted as 50% confidence interval.

3.4 Model selection

The model selection has been driven by the different forecasting strategies, reviewed in Sec.

2.2.2, and the search for a model that adequately handles the different input features available.

Given the output-time horizon of g<0G = 30, and the limited access to computational resources,

no single-step models have been considered.

When recalling Eq. 1, it is important to note that all G8,C denote covariate time series, which are

16

known over the input horizon, but unknown over the output sequence (see also Appx. B). Most

recent state of the art autoregressive models like Amazon’s DeepAR (Flunkert, Salinas, and

Gasthaus 2017) and transformer models, like the one by Li et al. (2019), ConvTrans hereafter,

aim to model
∏C=g
C=C0+1 ?(H8,C | H8,C−1, D8,C ;Φ), where Φ denotes the learnable parameters and the

complete problem is reduced to a one-step-ahead recursive problem. Importantly, D8,C continues

to denote associated time-based covariates, which are known over the entire time period as in

Eq. 1. In line with Sec. 2.2.2, neither of the two models mentioned above, but also no other

recursive model can directly handle unknown covariates. Therefore, if one wants to lever these

models for the problem at hand, either unknown covariates need to be dropped or forecasted

separately.

For that reason, only models are deployed, that directly output multi-step predictions. Next

to two baseline models, the recently released Temporal Fusion Transformer (TFT) by Lim et

al. (2020) is implemented, which neatly aligns with the requirements of the prediction problem

at hand. In particular, the authors intend to predict outputs for multiple entities 8 over a multi-step

time-horizon, where an entity is a publisher in this study. Further, the model treats known and

unknown time series features, as well as static variables separately (Lim et al. 2020). Another

advantage stems from the option to interpret the predictions made by the TFT. The introduction

of interpretable MSA layers and variable selection networks (VSN), allows for the analysis

of temporal attention as well as feature importance (Lim et al. 2020). Ultimately, for multi-

step time-horizon problems, the model was also shown to outperform autoregressive models like

DeepAR and ConvTrans. The TFT architecture is explained in Sec. 3.5. For direct comparison a

Seq2Seq LSTM (Sutskever, Vinyals, and Le 2014) with a Bahdanau attention layer (Bahdanau,

Cho, and Bengio 2014) is implemented, sharing a lot of the underlying ideas with the TFT

model, details are given in Sec. 3.6. As final baseline, a regular LSTM RNN directly outputting

a multi-time-step vector is deployed (Hochreiter and Schmidhuber 1997).

3.5 Temporal Fusion Transformer

The TFT by Lim et al. (2020) is built from multiple processing layers stacked on top of each

other (illustration in Appx. F). Before sequentially building up the TFT, I review the gating

17

mechanism used throughout the model.

Instead of regular activations, the TFT utilizes gates, which build on the two ideas of gated

activations and residual connections, from Sec. 2.2.1. The intention is to provide the model

with the freedom to decide on the amount of required non-linear processing for every input

separately. When no further complexity is required, no non-linear transformation at all can be

applied. Besides, a second optional input, the context vector can be supplied to the gate, e.g.

allowing static inputs to influence the processing of time series features. With primary input 0

and optional context vector 2, the GRN is computed as:

�'#F (0, 2) = !0H4A#>A<(0 + �!*F ([))

[= ,1,F�!* (,2,F0 +,3,F2 + 12,F) + 11,F

(7)

where all ,(.) ∈ R3<>34;×3<>34; and [(.) ∈ R3<>34; is an intermediate output, �!* is the

exponential linear unit and 3<>34; is the internal hidden size of the TFT and can be tuned. Layer

Normalization is applied as in Ba, Kiros, and Hinton (2016). The addition of 0 in the first line

reassembles Eq. 3, while the �!* is the same as in Eq. 2.

3.5.1 Variable Selection Layer

Before entering the actual model, encoder, decoder, and static inputs are preprocessed separately

by a dedicated VSN. Importantly, variable selection takes place at each time step C separately.

This processing step aims to increase interpretability through feature selection and filter out fea-

tures that fail to contribute to model performance. Prior to the VSN application, all categorical

and temporal features are embedded into 3<>34; dimensional vectors using linear transformations

and entity embeddings respectively. As an example the VSN for the decoder works as follows:

Let b (9)C ∈ R3<>34; denote the embedding for decoder variable 9 at time step C and ΞC =

[b (1)
)

C , ..., b
(<G))
C]) the flattened concatenation of all decoder variable embeddings. The vari-

able selection is performed by computing weights for each variable and applying them to the

corresponding feature by simple multiplication, finally, all features are combined by summation.

Thereby, weights are computed using a �'#Ej from Eq. 7. Static enrichment takes place by

passing the static variable embeddings as context vector 2B through the �'#Ej (for the static

18

variable selection, there is no context vector). The VSN follows as:

EjC = (> 5 C<0G(�'#Ej (ΞC , 2B))

b̃
(9)
C = �'#b̃ (9) (b

(9)
C)

b̃C =
∑<G

9=1
E
j
(9)
C

b̃
(9)
C

(8)

where EjC ∈ R<G holds a weight for each variable. From Eq. 8, it can be seen that before

the variable embeddings are scaled by the selection weights the embeddings are transformed

through a dedicated �'#b̃ (9) themselves, with weights shared across all time steps.

3.5.2 Locality Enhancement Layer

Locality enhancement is performed through a Seq2SeqLSTM.This is important, as the relevance

of individual observations often only becomes visible within their context. A typical example is

a change point, which can only be identified in context. The outputs of the local enhancement

layer are denoted as q(C, =) where = ∈ [−:, C + g<0G] is a positional index. The inputs for the

encoder are b̃C−::C and b̃C:g<0G for the decoder. The processing from b̃C−::C and b̃C:g<0G to q(C, =)

is achieved by the application of the corresponding encoder/decoder LSTM cell. The LSTM’s

cell and hidden states are initialized using the outputs from two separate static input VSNs, once

again allowing static inputs to influence the time series processing. Finally, another residual

skip connection over the layer and another �!*q̃ are applied:

q̃(C, =) = !0H4A#>A<(b̃C+= + �!*q̃ (q(C, =))) (9)

3.5.3 Static Enrichment Layer

The adjacent layer is committed to static enrichment through the application of a �'#Θ as in

Eq. 7. Where q̃(C, =) is transformed toΘ(C, =) by enrichment with 24, the static context obtained

through a VSN. The weights of the �'#Θ are shared across all time steps.

3.5.4 Interpretable Multihead Attention Layer

Next, the interpretable MSA layer allows the model to pick up long-term trends, by ac-

cessing information from the far past. Specifically, all Θ(C, =) are concatenated as Θ(C) =

19

[Θ(C,−:), ...,Θ(C, g)]) . Notably, the attention layer will apply forward masking, such that

causal information flow is retained. Then, at each forecast step interpretable MSA is applied:

�(C) = �=C4A ?A4C01;4"D;C8�403 (Θ(C),Θ(C),Θ(C))

�=C4A ?A4C01;4"D;C8�403 (&, ,+) = �̃,�

�̃ = (1/�
∑<�

ℎ=1
�(&, (ℎ)@ , ,

(ℎ)
:
))+,E

�(&,) = (> 5 C<0G(&)/
√
30CC=)

(10)

where �(C) = [V(C,−:), ..., V(C, g)], 3+ = 30CC= = 3<>34;/<� and the number of heads <� , is

a hyperparameter to tune. Each individual head reassembles Eq. 4, only that self-attention,

as in any transformer architecture, uses & = = + = Θ(C), with , (ℎ)@ ∈ R3<>34;×30CC4=C8>=

and , (@)
:
∈ R3<>34;×30CC4=C8>= being learnable and specific to each head. And in the last line

with ∈ R#×30CC4=C8>= , & ∈ R#×30CC4=C8>= , and + ∈ R#×3E . Different from the original MSA

used in transformers (Vaswani et al. 2017), the TFT allows for interpretability. To do so,

simply ,E ∈ R3<>34;×3E needs to be shared across all heads. This allows for the computation

of overall attention via summation over the heads, where each head can still learn different

temporal patterns while attending the same set of inputs. ,� ∈ R30CC4=C8>=×3<>34; is a simple

linear transformation. Finally, V(C, =) is transformed to X(C, =) through application of another

residual skip and �!*X unit as in Eq. 9, so that Θ(C, =) can skip the attention layer if necessary.

3.5.5 Positionwise Feed-Forward Layer

Lastly, X(C, =) is transformed to k(C, =) using a �'#g as in Eq. 7, with weights shared across

all time steps. Finally, another residual skip and �!*k̃ as in Eq. 9, transform k(C, =) to k̃(C, =),

allowing the outputs from locality enhancement q(C, =) to skip the entire transformer.

3.6 Seq2Seq LSTM RNN with Attention

The most natural choice for a benchmark to the TFT is a Seq2Seq model with a regular attention

layer (illustration in Appx. G). Next to the VSN, the main contribution of the TFT is the

transformer structure stacked on top of the locality enrichment layer (Sec. 3.5.2). Thus, the

TFT should prove to outperform a regular attention layer stacked on top of a Seq2Seq LSTM

model. In the encoder, the hidden states ℎ(C, =) with positional index = ∈ [−:, C] are computed

20

by application of the respective LSTM cell, which takes in ℎ(C, =−1), as well as the concatenated

inputs G(C, =), D(C, =), H(C, =) (see Eq. 1). The hidden state of the last encoder cell is passed on

to the decoder. Following Bahdanau, Cho, and Bengio (2014), an attention layer is deployed,

where the context vectors are computed as 2(C, =) with positional index = ∈ [C, C + g<0G]:

2(C, =) =
∑)=C

8=C−:
U(C, =)8ℎ(C)8

U(C, =)8 =
4G?(4(C, =)8)∑)=C

9=C−: 4G?(4(C, =) 9)

4(C, =)8 = +) C0=ℎ(, [6(C, = − 1), ℎ(C)8])

(11)

where + ∈ R3ℎ8334= 4=2×1 and , ∈ R3ℎ8334= 4=2×(3ℎ8334= 342+3ℎ8334= 4=2) are learnable, 6(C, = − 1) is

the hidden state of the previous decoder cell, ℎ(C)8 is the hidden encoder state at encoder step 8

and U(C, =)8 is the attention weight used at forecasting step = for encoder step 8. Eq. 11, can be

mapped to the to the general form of attention (Eq. 4), as explained in Sec. 2.2.1. Different from

the TFT, the decoder of the Seq2Seq LSTM works recursively. To make a prediction Ĥ(C, =), the

prediction from the previous time step Ĥ(C, = − 1) is concatenated to the decoder inputs, which

are the context vector 2(C, =), known future inputs D(C, =) and the static inputs B, which are

repeated for each decoder cell. Finally, the decoder hidden states A (C, =) with positional index

= ∈ [C, C + g<0G] are computed by application of the respective LSTM cell.

4 Results & Interpretation

4.1 Hyperparameter Tuning

Hyperparameter tuning was conducted using the Bayesian optimization framework Optuna,

where due to resource constraints, each model was given 20 trials with five epochs each (Akiba

et al. 2019). Even though the number of epochs might appear small, each epoch works on all

samples generated using a one-step forward sliding window. As such, there will be significant

overlap of the daily observations visited across samples. Therefore, the models will converge

already after a very low number of epochs. For the TFT, hidden size, dropout, and number of

heads were tuned. In the Seq2Seq architecture, hidden sizes in encoder and decoder, respective

dropout rates, and the number of layers in the encoder were tuned. Finally, in the LSTM, hidden

21

layer size, number of layers, and dropout were optimized. The batch size was set to 32 and the

Adam optimizer was used for all models. The learning rate was only tuned from a subset of

0.001 and 0.0001, all in an effort to reduce hyperparameter space (results in Appx. H).

4.2 Results

As expected, the TFT outperforms the other models across all metrics and experiment settings.

Nevertheless, the performance improvements are moderate. In particular, considering the

case without peekd insight, the TFT offers a 8.9%/11.6% improvement over the LSTM and

a 6.9%/8.8% improvement over Seq2Seq, with respect to the quantile and symmetric mean

absolute percentage error loss (SMAPE, see Appx. E). In table 1, the two columns without and

with peekd insight, distinguish the case where the Euclidean barycenter time series was fed as

an additional covariate and the cluster (see Sec. 3.2) as an additional static variable from the

case where only the remaining features were used (Appx. B). I find that the peekd insight has

not helped to improve the model.

For the unsupervised K-Means clustering with DTW, the number of clusters was set to three

based on an elbow analysis (see Appx. I). Cluster zero is assigned 13 domains, cluster one 24

domains, and cluster two only five domains. The Euclidean barycenters can be found in Appx.

I. Further, also value counts for domains per category, country, and cluster can be found in

Appx. I. In line with Sec. 3.2, it does not appear that the DTW clusters can be reconstructed

using simple geographical or categorical groupings, thus they might indeed embed temporal

similarities. Nevertheless, already the unbalanced assignment provides a possible explanation

for the unaltered model performance. Clusters, which are too large might not provide insights

by smoothing out temporal patterns, while very small clusters might embed too much noise

of individual publishers. Notably, if the cluster assignment would group e.g. competitors, a

small cluster size would be beneficial. As explained earlier, the dataset does not allow for

such grouping (see Sec. 3.2). Second, it seems like even though DTW was deployed, the

main difference between the Euclidean barycenters stems from the different levels of AdSense

revenues, not similar temporal patterns. This becomes especially clear when comparing the

barycenters of clusters one and two (Appx. I). To some extent, both seem to embed similar

22

Figure 1: TFT without peekd insight - Top 1 prediction

Figure 2: TFT without peekd insight - Worst 1 prediction

patterns but only at different levels. Certainly, both these observations hint at why the clustering

failed to improve predictive power.

Model w/o peekd insight w/ peekd insight

Quantile Loss SMAPE Quantile Loss SMAPE

TFT 0.832 0.831 0.833 0.826

Seq2Seq 0.894 0.911 0.936 0.979

LSTM 0.913 0.940 0.917 0.945

Table 1: Study Results

It is worth taking a look at the generated predictions. The best and worst TFT predictions without

access to additional peekd features are presented in Fig. 1 and Fig. 2. On inspection of the best

observation, it becomes clear that the TFT model picks up the weekly patterns very well. At

forecast step C + 2, the first turning point occurs, which is afterwards repeated every seven days.

Nevertheless, there also seems to be an upward trend present from C − 60 onwards. Predictions

are getting worse as time passes and the level of the predictions remains constant. Looking at the

worst prediction provides an indication of the reason, even sufficiently complex models like the

TFT seem to occasionally struggle to compute sensible predictions. While revenues remain flat

until C−6, there is a significant revenue peak right before the prediction period starts. The model

subsequently picks a wrong revenue level throughout the forecasting period. As elaborated in

section 2.1, an explanation for the unexpected peaks might be the untracked advertisers’ actions.

23

4.3 Interpretation

In this section, the results from the TFT without additional peekd features will be levered to

generate insights into the underlying dynamics of the AdSense revenue predictions.

Feature importance is analyzed by interpreting the variable selection weights used by the TFT.

As described in Sec. 3.5.1, the TFT has been producing sparse weights for static, encoder, and

decoder inputs at the corresponding time steps. With the aim to interpret the weight matrices

across all time steps, mean reduction across time has been deployed. Unsurprisingly, the encoder

puts most of its weight on the AdSense revenue (Fig. 3). Additionally, ad impressions, the day

of the week, and page views dominate the encoder variable selection. This observation can be

interpreted as the first piece of evidence for what has been proposed on the basis of existing

literature (Sec. 2.1) and the analysis of the autocorrelation plots (Appx. D), that within a

short-term prediction horizon, the web traffic might yield the most significant determinant of

AdSense revenues. As explained earlier, ad impressions are a suitable dummy for web traffic,

while the day of the week, is a temporal variable, which has previously been found to impact

web traffic (Li and Moore 2008). Nevertheless, these findings do not oppose the results from

previous literature (Sec. 2.1), indicating that there are three main transmitters of AdSense

revenues, namely web traffic, CTR, and CPC. Indeed, it should be noted that given the past ad

impressions, ad clicks, and AdSense revenues, the model can easily compute CTR and CPC

as linear combinations. But given the assumption that both CTR and CPC stay rather constant

over the forecast period, they do not add a lot of information to the revenue development as the

model also has direct access to past AdSense revenues. Similarly, the decoder puts the most

weight on the day of the week (Fig. 4), supporting the findings from the encoder VSNs. Finally,

the static variable importance is dominated by the category (Fig. 5). As explained in Sec. 3.1,

the dataset was already filtered by country, which might explain its low feature importance.

The category, on the other hand, might provide a tangible grouping of publishers with similar

transmitters and temporal patterns. Further, the lowest importance is attributed to the categorical

id, which uniquely identifies a single publisher. This is a crucial observation as it indicates, that

the model indeed has not tried to mimic single models learned for each cross-sectional instance

independently. Rather, in line with Flunkert, Salinas, and Gasthaus (2017), the model learns

24

Figure 3: Encoder feature importance

Figure 4: Decoder feature importance Figure 5: Static feature importance

transferable feature representations and thus benefits from the access to cross-sectional data.

In addition, also the temporal attention of the TFT can be interpreted. As explained in Sec.

3.5.4, all attention heads attend the same values and overall attention is computed by additive

aggregation of the individual heads (Lim et al. 2020). The MSA layer will accordingly generate

a time to attend by time step map. The focus in this analysis has been put on the attention of the

decoder steps over the encoder steps. In particular, the attention weights from the first decoder

step are used for the purpose of interpretation. Due to masking, it is not possible to perform

any reduction operation across the decoder steps as each decoder step has access to an input

sequence of different length. In line with the individual predictions presented in Sec. 1, the TFT

is mainly concerned with the weekly recurring patterns inherent in the data, which once again,

can be treated as evidence for the weekly web traffic dominating AdSense revenue development

in the short-term (Fig. 4).

Figure 6: Attention over input sequence

25

5 Conclusion & Limitations
It was successfully shown, that AdSense revenues are predictable and embed temporal patterns.

The results from this study shall act as a case study, pointing towards the predictability of

AdSense revenues from peekd’s database. As peekd acquires more customers and consequently

access to more AdSense revenue data, the model performance is expected to further improve.

Even though based on the sample levered in this study, feeding additional covariates created from

the database has not improvedmodel performance, the argument in favor of suchmethodology in

a larger scale study remains, as more sensible groupings could be built. Nonetheless, the model

developed in this study confidently offers a competitive edge for peekd. First, no competing

products exist. Second, the importance of the categorical id in generating predictions indicates

that also in the case at hand, sufficiently complex deep learningmodels trained on cross-sectional

time-series outperform models learned from a single instance dataset (Flunkert, Salinas, and

Gasthaus 2017).

With respect to the existing body of research on Google AdSense, I find indications that for

publishers’ past AdSense revenues, the time series itself, ad impressions, the day of the week,

and page views are most important when making predictions. I find that the TFT mainly

learns weekly temporal attention patterns, which are usually embedded in web traffic data. This

might act as an indication, that while CTR and CPC seem to be less variable in the short-

term, website traffic patterns directly transfer into short-term movements of AdSense revenues.

Finally, evidence is collected, that publishers from similar categories tend to embed similar

temporal patterns, possibly as they remain associated with similar keywords.

Concerning deep learning applications in a business setting, this study adds to the body of

successful time series applications. The TFT, given its VSNs and interpretable MSA, offers a

promising example of deep learning not only improving performance but also interpretability.

A final concern stems from the fact that peekd’s most sought-after product is a keyword search

algorithm, providing customers with information on its non-sponsored search queries. This

product mainly attracts e-commerce shops, but far less so traditional news and media publishers.

Thus, e-commerce shops might be over-represented in this study, for whom advertising is a

secondary source of income.

26

References

Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.

"Optuna: A Next-generation Hyperparameter Optimization Framework". In Proceedings

of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. "Layer normalization". arXiv

preprint arXiv:1607.06450.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. "Neural machine translation

by jointly learning to align and translate". arXiv preprint arXiv:1409.0473.

Borovykh, Anastasia, Sander Bohte, and Cornelis W Oosterlee. 2017. "Conditional time series

forecasting with convolutional neural networks". arXiv preprint arXiv:1703.04691.

Cerqueira, Vitor, Luis Torgo, and Carlos Soares. 2019. "Machine learning vs statistical methods

for time series forecasting: Size matters". arXiv preprint arXiv:1909.13316.

Dauphin, Yann N, Angela Fan, Michael Auli, and David Grangier. 2017. "Language modeling

with gated convolutional networks". In International conference on machine learning, 933–

941. PMLR.

Edlich, Alex, Greg Phalin, Rahil Jogani, and Sanjay Kaniyar. 2019. Driving impact at scale

from automation and AI, February. https : / /www.mckinsey .com/~/media /McKinsey /

Business%20Functions /McKinsey%20Digital /Our%20Insights /Driving%20impact%

20at%20scale%20from%20automation%20and%20AI/Driving- impact-at-scale- from-

automation-and-AI.ashx.

Flunkert, Valentin, David Salinas, and Jan Gasthaus. 2017. "DeepAR: Probabilistic Forecasting

with Autoregressive Recurrent Networks". CoRR abs/1704.04110. arXiv: 1704 . 04110.

http://arxiv.org/abs/1704.04110.

Google. 2020. How AdSense works. https://support.google.com/adsense/answer/6242051?hl=

en.

27

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Driving%20impact%20at%20scale%20from%20automation%20and%20AI/Driving-impact-at-scale-from-automation-and-AI.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Driving%20impact%20at%20scale%20from%20automation%20and%20AI/Driving-impact-at-scale-from-automation-and-AI.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Driving%20impact%20at%20scale%20from%20automation%20and%20AI/Driving-impact-at-scale-from-automation-and-AI.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Driving%20impact%20at%20scale%20from%20automation%20and%20AI/Driving-impact-at-scale-from-automation-and-AI.ashx
https://arxiv.org/abs/1704.04110
http://arxiv.org/abs/1704.04110
https://support.google.com/adsense/answer/6242051?hl=en
https://support.google.com/adsense/answer/6242051?hl=en

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. "Deep residual learning for

image recognition". In Proceedings of the IEEE conference on computer vision and pattern

recognition, 770–778.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. "Long short-term memory". Neural compu-

tation 9 (8): 1735–1780.

Li, Jia, and Andrew WMoore. 2008. "Forecasting web page views: methods and observations".

Journal of Machine Learning Research 9 (Oct): 2217–2250.

Li, Shiyang, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng

Yan. 2019. "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer

on Time Series Forecasting". CoRR abs/1907.00235. arXiv: 1907.00235. http://arxiv.org/

abs/1907.00235.

Liang, Jingxi. 2017. Luong attention and Bahdanau attention, August. http://cnyah.com/2017/

08/01/attention-variants/.

Lim, Bryan, Sercan OArik, Nicolas Loeff, and Tomas Pfister. 2020. "Temporal fusion transform-

ers for interpretablemulti-horizon time series forecasting". arXiv preprint arXiv:1912.09363.

Lim, Bryan, and Stefan Zohren. 2020. "Time Series ForecastingWithDeep Learning: A Survey".

arXiv preprint arXiv:2004.13408.

McMahan, H. Brendan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian Grady,

Lan Nie, et al. 2013. "Ad Click Prediction: a View from the Trenches". In Proceedings

of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD).

Mozaffari, Ladan, Ahmad Mozaffari, and Nasser Azad. 2014. "Vehicle speed prediction via a

sliding-window time series analysis and an evolutionary least learning machine: A case

study on San Francisco urban roads".Engineering Science and Technology, an International

Journal 6 (December). https://doi.org/10.1016/j.jestch.2014.11.002.

28

https://arxiv.org/abs/1907.00235
http://arxiv.org/abs/1907.00235
http://arxiv.org/abs/1907.00235
http://cnyah.com/2017/08/01/attention-variants/
http://cnyah.com/2017/08/01/attention-variants/
https://doi.org/10.1016/j.jestch.2014.11.002

Oord, Aäron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex

Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. 2016. "WaveNet:

A Generative Model for Raw Audio". CoRR abs/1609.03499. arXiv: 1609.03499. http:

//arxiv.org/abs/1609.03499.

Petitjean, François, Alain Ketterlin, and Pierre Gançarski. 2011. "A global averaging method

for dynamic time warping, with applications to clustering". Pattern Recognition 44 (3):

678–693.

Rebortera, Mariannie A, and Arnel C Fajardo. 2019. "An enhanced deep learning approach in

forecasting banana harvest yields". Editorial Preface From the Desk of Managing Editor

10 (9).

Rumelhart, D., Geoffrey E. Hinton, and R. J. Williams. 1986. "Learning representations by

back-propagating errors". Nature 323:533–536.

Sutskever, Ilya, Oriol Vinyals, and Quoc VLe. 2014. "Sequence to sequence learning with neural

networks". Advances in neural information processing systems 27:3104–3112.

Tavenard, Romain, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester

Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, et al. 2020. "Tslearn,

a machine learning toolkit for time series data". Journal of Machine Learning Research 21

(118): 1–6.

Vafaeipour, Majid, Omid Rahbari, Marc A Rosen, Farivar Fazelpour, and Pooyandeh Ansarirad.

2014. "Application of slidingwindow technique for prediction ofwind velocity time series".

International Journal of Energy and Environmental Engineering 5 (2-3): 105.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. "Attention is all you need". In Advances in

neural information processing systems, 5998–6008.

Wang, Chieh-Jen, and Hsin-Hsi Chen. 2012. "Learning to predict the cost-per-click for your ad

words", 2291–2294. October. https://doi.org/10.1145/2396761.2398623.

29

https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://doi.org/10.1145/2396761.2398623

Yu, Fisher, andVladlenKoltun. 2015. "Multi-scale context aggregation by dilated convolutions".

arXiv preprint arXiv:1511.07122.

Zhou, Guorui, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi

Jin, Han Li, andKunGai. 2018. "Deep interest network for click-through rate prediction". In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, 1059–1068.

30

A Country Filter

number Country

0 Australia

1 Belgium

2 Canada

3 Denmark

4 Germany

5 Italy

6 Japan

7 Netherlands

8 Norway

9 Portugal

10 Spain

11 Sweden

11 Switzerland

12 United Kingdom of Great Britain and Northern Ireland

13 United States of America

14 category

Table 2: Country Filter

B Data Dictionary
number Feature Data Type peekd Insight Kown/Unknown Description

0 adsenseRevenue RealValue False Target Daily online advertisement revenues

1 dayOfYear RealValue False Known -

2 dayOfWeek RealValue False Known -

3 dayFromStart RealValue False Known Days difference from the first observation

4 adsenseAdsClicks RealValue False Unknown Daily ad clicks

5 adsensePageImpressions RealValue False Unknown Daily ad impressions

6 pageviews RealValue False Unknown Daily page views

7 sessions RealValue False Unknown Daily sessions, a session is a users interaction with a website (can encompass multiple page views)

8 bounces RealValue False Unknown Daily bounces, number of users who only visit a single page and immediately leave

9 sessionDuration RealValue False Unknown Daily session duration, time users actively interact with a website

10 clusterAdsenseRevenue RealValue True Unknown Euclidean barycenter AdSense revenue according to domain’s cluster assignment

11 categoricalId Categorical False Static Unique identifier for every domain

12 country Categorical False Static Origin of the domain

13 category Categorical False Static Category of the domain, assigned based on content

14 cluster Categorical True Static K-Means cluster assignment generated with DTW warping

Table 3: Data Dictionary

31

C Sliding Window Illustration

Figure 7: Sliding Window Illustration, from Mozaffari, Mozaffari, and Azad (2014).

32

D Autocorrelation Plots

Figure 8: AdSenseRevenue Autocorrelation Plot

Figure 9: Page Impressions Autocorrelation Plot

Figure 10: Click-Through-Rate Autocorrelation Plot

Figure 11: Cost-Per-Click Autocorrelation Plot

33

E Symmetric Mean Absolute Percentage Error

("�%� (Ω,,) =
∑

H∈Ω
1
g<0G

∑g<0G

g=1

|Hg − Ĥg |
(|Hg | + | Ĥg |)/2

(12)

where Ω is the training data with " samples.

F TFT Illustration

Figure 12: TFT model architecture, from Lim et al. (2020).

G Seq2Seq with Bahdanau Attention Illustration

Figure 13: Seq2Seq with Bahdanau Attention, from Liang (2017).

34

H Hyperparameter Tuning

H.1 TFT Hyperparameter Tuning - without peekd insight
number value params_dropout_rate params_hidden_layer_size params_lr params_num_heads state

0 0.896935 0.4 64 0.0001 4 COMPLETE

1 0.834544 0.4 32 0.0001 1 COMPLETE

2 1.349725 0.8 16 0.0001 4 COMPLETE

3 0.860030 0.8 64 0.0001 4 COMPLETE

4 0.881148 0.6 16 0.0001 1 COMPLETE

5 0.815677 0.6 32 0.0001 4 COMPLETE

6 0.865248 0.4 32 0.0001 1 COMPLETE

7 1.342736 0.8 16 0.0001 1 PRUNED

8 1.331752 0.8 32 0.0001 4 PRUNED

9 1.331095 0.8 16 0.0001 4 PRUNED

10 0.840454 0.6 32 0.0001 4 PRUNED

11 0.813602 0.4 32 0.0001 1 COMPLETE

12 0.837854 0.6 32 0.0001 1 PRUNED

13 0.844723 0.6 32 0.0001 1 PRUNED

14 0.873541 0.4 32 0.0001 4 PRUNED

15 0.836640 0.6 32 0.0001 1 PRUNED

16 0.874717 0.4 64 0.0001 4 PRUNED

17 1.181574 0.6 32 0.0001 1 PRUNED

18 0.861368 0.4 32 0.0001 4 PRUNED

19 1.186880 0.6 32 0.0001 1 PRUNED

Table 4: TFT Hyperparameter Tuning - without peekd insight, only showing trials with learning
rate 0.0001

H.2 TFT Hyperparameter Tuning - with peekd insight
number value params_dropout_rate params_hidden_layer_size params_lr params_num_heads state

0 0.847525 0.4 32 0.0001 4 COMPLETE

1 0.916774 0.6 16 0.0001 4 COMPLETE

2 0.953776 0.4 64 0.0001 1 COMPLETE

3 0.986895 0.4 16 0.0001 1 COMPLETE

4 0.840813 0.8 64 0.0001 4 COMPLETE

5 0.887442 0.4 32 0.0001 1 COMPLETE

6 1.336842 0.6 16 0.0001 1 PRUNED

7 1.357245 0.8 16 0.0001 1 PRUNED

8 0.906609 0.4 32 0.0001 1 PRUNED

9 0.884515 0.6 32 0.0001 4 PRUNED

10 1.290845 0.8 64 0.0001 4 PRUNED

11 1.373095 0.8 64 0.0001 4 PRUNED

12 1.356763 0.8 64 0.0001 4 PRUNED

13 0.847383 0.6 32 0.0001 4 COMPLETE

14 0.821525 0.6 32 0.0001 4 COMPLETE

15 1.325336 0.8 64 0.0001 4 PRUNED

16 1.257395 0.6 32 0.0001 4 PRUNED

17 1.363408 0.8 64 0.0001 4 PRUNED

18 1.086708 0.6 32 0.0001 4 PRUNED

19 1.383189 0.8 64 0.0001 4 PRUNED

Table 5: TFT Hyperparameter Tuning - with peekd insight, only showing trials with learning
rate 0.0001

35

H.3 Seq2Seq Hyperparameter Tuning - without peekd insight
number value params_dec_D_hidden params_dec_time_dropout params_enc_D_hidden params_enc_n_layers params_enc_rnn_dropout params_lr state

0 0.906107 64 0.8 64 2 0.4 0.0001 COMPLETE

1 0.993403 64 0.6 64 1 0.4 0.0001 COMPLETE

2 1.029127 32 0.4 128 1 0.8 0.0001 COMPLETE

3 1.007250 32 0.8 128 1 0.8 0.0001 COMPLETE

4 0.989132 32 0.4 64 1 0.8 0.0001 COMPLETE

5 1.103307 32 0.8 128 1 0.8 0.0001 PRUNED

6 0.952987 64 0.4 128 2 0.6 0.0001 COMPLETE

7 1.101234 64 0.4 64 1 0.4 0.0001 PRUNED

8 1.075791 64 0.8 64 2 0.4 0.0001 PRUNED

9 0.972416 64 0.4 64 2 0.8 0.0001 PRUNED

10 0.972254 64 0.6 64 2 0.6 0.0001 PRUNED

11 0.968675 64 0.6 128 2 0.6 0.0001 COMPLETE

12 1.011685 64 0.8 128 2 0.6 0.0001 COMPLETE

13 1.008139 64 0.6 128 2 0.6 0.0001 COMPLETE

14 0.956872 64 0.6 128 2 0.4 0.0001 PRUNED

15 1.056037 64 0.4 64 2 0.6 0.0001 PRUNED

16 1.066990 64 0.8 64 2 0.4 0.0001 PRUNED

17 0.939042 64 0.6 128 2 0.6 0.0001 PRUNED

18 1.095852 64 0.4 64 2 0.4 0.0001 PRUNED

19 0.936970 64 0.8 128 2 0.6 0.0001 COMPLETE

Table 6: Seq2Seq Hyperparameter Tuning - without peekd insight, only showing trials with
learning rate 0.0001

H.4 Seq2Seq Hyperparameter Tuning - with peekd insight
number value params_dec_D_hidden params_dec_time_dropout params_enc_D_hidden params_enc_n_layers params_enc_rnn_dropout params_lr state

0 0.959140 32 0.4 64 1 0.6 0.0001 COMPLETE

1 0.963109 32 0.4 64 1 0.4 0.0001 COMPLETE

2 1.018803 32 0.6 64 2 0.4 0.0001 COMPLETE

3 0.979243 64 0.4 128 1 0.8 0.0001 COMPLETE

4 0.987392 64 0.6 64 1 0.4 0.0001 COMPLETE

5 0.990670 64 0.4 64 1 0.6 0.0001 PRUNED

6 1.184946 32 0.4 64 1 0.6 0.0001 PRUNED

7 0.986777 64 0.8 64 1 0.6 0.0001 COMPLETE

8 0.988331 64 0.8 128 1 0.6 0.0001 COMPLETE

9 0.927765 64 0.4 64 2 0.6 0.0001 COMPLETE

10 0.972695 64 0.6 128 2 0.8 0.0001 PRUNED

11 0.941205 32 0.4 64 2 0.8 0.0001 COMPLETE

12 1.123837 32 0.4 64 2 0.8 0.0001 PRUNED

13 1.182609 32 0.6 64 2 0.8 0.0001 PRUNED

14 0.922154 64 0.4 64 2 0.8 0.0001 COMPLETE

15 1.099955 64 0.6 64 2 0.8 0.0001 PRUNED

16 1.022369 64 0.4 128 2 0.4 0.0001 COMPLETE

17 1.045986 64 0.4 64 2 0.6 0.0001 PRUNED

18 1.068359 64 0.6 64 2 0.8 0.0001 PRUNED

19 0.930426 64 0.8 64 2 0.6 0.0001 COMPLETE

Table 7: Seq2SeqHyperparameter Tuning - with peekd insight, only showing trials with learning
rate 0.0001

36

H.5 LSTM Hyperparameter Tuning - without peekd insight
number value params_D_hidden params_dropout params_lr params_n_layers state

0 0.942215 64 0.4 0.0001 1 COMPLETE

1 0.945441 64 0.6 0.0001 1 COMPLETE

2 0.926925 64 0.6 0.0001 1 COMPLETE

3 1.032526 64 0.4 0.0001 2 COMPLETE

4 0.918174 64 0.6 0.0001 1 COMPLETE

5 0.954240 128 0.6 0.0001 1 COMPLETE

6 0.925316 64 0.6 0.0001 1 PRUNED

7 0.968838 64 0.8 0.0001 2 PRUNED

8 1.005391 128 0.4 0.0001 1 COMPLETE

9 0.939982 64 0.8 0.0001 1 COMPLETE

10 1.026076 128 0.8 0.0001 2 COMPLETE

11 0.950871 64 0.6 0.0001 1 PRUNED

12 0.962231 64 0.6 0.0001 1 PRUNED

13 0.934528 64 0.6 0.0001 1 COMPLETE

14 0.945280 64 0.8 0.0001 1 PRUNED

15 0.915276 64 0.4 0.0001 1 COMPLETE

16 0.954010 64 0.4 0.0001 1 PRUNED

17 0.963135 128 0.4 0.0001 2 COMPLETE

18 0.969474 64 0.4 0.0001 1 PRUNED

19 0.978058 64 0.4 0.0001 1 PRUNED

Table 8: LSTM Hyperparameter Tuning - without peekd insight, only showing trials with
learning rate 0.0001

H.6 LSTM Hyperparameter Tuning - with peekd insight
number value params_D_hidden params_dropout params_lr params_n_layers state

0 0.944035 64 0.4 0.0001 2 COMPLETE

1 0.908138 64 0.6 0.0001 1 COMPLETE

2 0.949033 128 0.6 0.0001 1 COMPLETE

3 0.887798 64 0.8 0.0001 1 COMPLETE

4 1.090801 128 0.4 0.0001 2 COMPLETE

5 0.994987 64 0.6 0.0001 1 PRUNED

6 0.959028 64 0.8 0.0001 2 PRUNED

7 0.952565 64 0.8 0.0001 2 PRUNED

8 0.917928 128 0.4 0.0001 1 PRUNED

9 0.933441 64 0.6 0.0001 2 PRUNED

10 0.992159 64 0.8 0.0001 1 PRUNED

11 0.989768 64 0.8 0.0001 1 PRUNED

12 0.959660 64 0.6 0.0001 1 PRUNED

13 0.958878 64 0.8 0.0001 1 PRUNED

14 0.963202 64 0.6 0.0001 1 PRUNED

15 0.999092 64 0.8 0.0001 1 PRUNED

16 0.964455 64 0.4 0.0001 1 PRUNED

17 0.903410 128 0.6 0.0001 1 PRUNED

18 0.939278 64 0.8 0.0001 1 PRUNED

19 0.983134 64 0.6 0.0001 1 PRUNED

Table 9: LSTM Hyperparameter Tuning - with peekd insight, only showing trials with learning
rate 0.0001

37

I K-Means Clustering with DTW

I.1 Elbow Analysis

Figure 14: K-Means clustering with DTW - Elbow analysis

I.2 Euclidean barycenters

Figure 15: K-Means clustering with DTW - Euclidean barycenter AdSense revenue time series

Figure 16: K-Means clustering with DTW - Euclidean barycenter AdSense revenue time series
- without Cluster 2

38

I.3 Cluster 1 - Category Count
category viewid

Science_and_Education 3

Vehicles 3

Home_and_Garden 2

Computers_Electronics_and_Technology 1

E-commerce_and_Shopping 1

Heavy_Industry_and_Engineering 1

Jobs_and_Career 1

Travel_and_Tourism 1

Table 10: Cluster 1 - Category Count

I.4 Cluster 1 - Country Count
country viewid

United States of America 11

Germany 1

Italy 1

Table 11: Cluster 1 - Country Count

I.5 Cluster 2 - Category Count
category viewid

Computers_Electronics_and_Technology 4

Health 4

Reference_Materials 3

E-commerce_and_Shopping 2

Sports 2

Business_and_Consumer_Services 1

Finance 1

Gambling 1

Games 1

Hobbies_and_Leisure 1

Home_and_Garden 1

Lifestyle 1

Science_and_Education 1

Vehicles 1

Table 12: Cluster 2 - Category Count

I.6 Cluster 2 - Country Count
country viewid

United States of America 17

Netherlands 3

Germany 2

United Kingdom of Great Britain and Northern I... 2

Table 13: Cluster 2 - Country Count

39

I.7 Cluster 3 - Category Count
category viewid

Food_and_Drink 1

Reference_Materials 1

Science_and_Education 1

Sports 1

Vehicles 1

Table 14: Cluster 3 - Category Count

I.8 Cluster 3 - Country Count
country viewid

United States of America 3

Belgium 1

United Kingdom of Great Britain and Northern I... 1

Table 15: Cluster 3 - Country Count

40

	Introduction
	Problem Definition
	Google AdSense
	Deep Learning for Time Series Forecasting

	Related work
	Google AdSense Revenues
	Deep Learning for Time Series Forecasting
	Model Architectures
	Multi-Step Forecasting strategies

	Methodology
	Data and Preprocessing
	K-Means Clustering with Dynamic Time Warping
	Quantile Loss
	Model selection
	Temporal Fusion Transformer
	Variable Selection Layer
	Locality Enhancement Layer
	Static Enrichment Layer
	Interpretable Multihead Attention Layer
	Positionwise Feed-Forward Layer

	Seq2Seq LSTM RNN with Attention

	Results & Interpretation
	Hyperparameter Tuning
	Results
	Interpretation

	Conclusion & Limitations
	Country Filter
	Data Dictionary
	Sliding Window Illustration
	Autocorrelation Plots
	Symmetric Mean Absolute Percentage Error
	TFT Illustration
	Seq2Seq with Bahdanau Attention Illustration
	Hyperparameter Tuning
	TFT Hyperparameter Tuning - without peekd insight
	TFT Hyperparameter Tuning - with peekd insight
	Seq2Seq Hyperparameter Tuning - without peekd insight
	Seq2Seq Hyperparameter Tuning - with peekd insight
	LSTM Hyperparameter Tuning - without peekd insight
	LSTM Hyperparameter Tuning - with peekd insight

	K-Means Clustering with DTW
	Elbow Analysis
	Euclidean barycenters
	Cluster 1 - Category Count
	Cluster 1 - Country Count
	Cluster 2 - Category Count
	Cluster 2 - Country Count
	Cluster 3 - Category Count
	Cluster 3 - Country Count

