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Abstract 

While Covid-19 impact on tourism and the sharing economy has proven to be significant by 

plenty of previous research, data and tools to recursively measure financial impact are missing 

in the current state of knowledge. This paper aims at quantifying the disease’s financial impact 

on Airbnb prices, bookings and hosting revenues with machine learning. The bottom-up ap-

proach used predicts a city’s losses at listing level over time and therefore grants leeway to 

analyzing impact across various dimensions. The city of Lisbon is used to showcase the model’s 

performance and versatility of results. 

 
Keywords:  

Covid-19, Airbnb, Sharing Economy, Data Science, Machine Learning 

 

 

 

 

 

 

 

 

 

 

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia 

(UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209), 

POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) 

and POR Norte (Social Sciences DataLab, Project 22209).  



 

2 
 

1. Table of Contents 

2. LITERATURE REVIEW ............................................................................................................................. 3 

2.1. IMPACT OF COVID-19 ON TOURISM AND THE SHARING ECONOMY .......................................................... 3 

2.2. LACK OF INSTRUMENTS TO QUANTIFY FINANCIAL LOSSES IN SHORT-TERM RENTALS ............................ 4 

2.3. RESEARCH OBJECTIVE ............................................................................................................................ 5 

2.4. LISBON: APPLYING THE RESEARCH OBJECTIVE TO A CASE STUDY .......................................................... 5 

3. METHODOLOGY ........................................................................................................................................ 7 

3.1. DEVELOPING A THEORETICAL BOTTOM-UP MODEL FOR REVENUE LOSS ................................................. 7 

3.2. APPLYING THE MODEL FOR HOSTING LOSSES TO REAL AIRBNB DATA .................................................... 8 

4. RESULTS ..................................................................................................................................................... 15 

4.1. FINDINGS IN MODEL DEVELOPMENT ..................................................................................................... 15 

4.2. FINDINGS IN MODEL DEPLOYMENT ....................................................................................................... 16 

4.2.1. Impact by time ................................................................................................................................. 17 

4.2.2. Impact by forces .............................................................................................................................. 18 

4.2.3. Impact by location .......................................................................................................................... 19 

4.2.4. Impact by size ................................................................................................................................. 20 

5. DISCUSSION .............................................................................................................................................. 21 

5.1. THEORETICAL AND PRACTICAL CONTRIBUTIONS .................................................................................. 21 

5.2. LIMITATIONS AND FURTHER RESEARCH ............................................................................................... 23 

6. BIBLIOGRAPHY ....................................................................................................................................... 25 

 

  



 

3 
 

2. Literature Review 

2.1. Impact of Covid-19 on tourism and the sharing economy 

The global outbreak (WHO 2020) of respiratory disease Covid-19 (C19) has catalyzed dedi-

cated scientific research like no other event in recent history (Callaway 2020).  

Flattening infection curves by curbing mobility and social activities has proved to be crucial in 

keeping global health care infrastructure intact (WHO 2020), but as research shows, it also 

comes at great cost to the tourism sector. Yang et al. have measured that throughout prior health 

disasters, labor and productivity declines have caused significant consumption losses in the 

industry (Yang, et al. 2020). Since its products and services rely heavily on consumer mobility 

and social activity (Rocca 2015), the sector is currently in a financial deadlock that is unlikely 

to loosen up before the end of the pandemic. Planned travel behavior has drastically declined, 

and planned trips have decreased in duration (Junxiong Li 2020). Karabulut et al. measure neg-

ative impact of international pandemics on tourist arrivals in lower-income economies 

(Karabulut, et al. 2020). The hotel industry has experienced substantial valuation losses 

(Abhinav Sharma 2020) and the sharing economy in particular has been identified as one of the 

industries most subdued by C19 (Hossain 2020). Airbnb, one of the world’s largest corporate 

players in tourism and the sharing economy, had to lay off 1,900 employees (i.e., roughly one 

quarter of its workforce) in early May (Airbnb 2020). Hu et al. state that Airbnb booking activ-

ities have declined by roughly 60% and that every doubling in infections implies 4% in booking 

decreases (Hu und Lee 2020). According to Chen et al., who analyzed short-term (January to 

March 2020) C19 impact in Sydney, Airbnb hosts’ income losses were eight times as large as 

the company’s own losses (Chen, et al. 2020). Evidence for local residents’ significant willing-

ness to pay for risk-reduction in tourism has been supplied by Qiu et al. (Qiu, et al. 2020).  



 

4 
 

2.2. Lack of instruments to quantify financial losses in short-term rentals 

While the severe impact of C19 on tourism and the sharing economy is deducible from each 

aforementioned piece of C19 research, practical and financial implications on hosts, business 

and economics remain limited. Due to the ongoing nature of the pandemic, some of 2020’s 

earlier research findings might already be obsolete. Almost all above research emphasizes that 

quantifiable information is either limited, unavailable or outdated. Therefore, decision makers 

who need up-to-date intelligence on the financial impact of C19 are left in the dark. This holds 

for governments trying to allocate bailout resources, managers trying to measure their portfo-

lios’ losses, as well as individual hosts benchmarking their prices. According to Kock et al., 

previous research has also missed to emphasize long-term structural and paradigmatic changes 

induced by C19 (Kock, et al. 2020). This development indicates that less weight should be 

allocated to point estimates and highlights that models for recursively quantifiable results are 

required.  

A practical example of research in need of bottom-up quantifiable results is Dolnicar and Zare’s 

conceptual paper on regulation. They argue that C19 might be taking over the regulation of 

excessive Airbnb-caused gentrification because return-driven investors are losing out on idle 

rooms and shift from short-term into long-term renting (Dolnicar und Zare 2020). Long-term 

renting is preferred by local city governments because it does not drive rent prices up as much 

as short-term renting, which has been proven specifically for the case of Airbnb by research 

from Barron, Kung and Proserpio (Harvard Business Review 2019). According to Dolnicar and 

Zare, this shift implies that losses from delisted items (those that have been made unavailable 

to short-term renting during C19) could potentially be viewed as progressive socio-economic 

development. While their aforementioned paper is crowded with reasonable assumptions, it 

does not quantify the extent to which losses actually come from cancellations and booking 

aversion (both of which are harmful to local disposable income) and how much comes from 
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delisted items (which are assumably absorbed by long-term renting). A model that is able to 

map losses to these three forces is required. 

2.3. Research objective 

In order to build upon previous research and shed light on a city’s financial C19 impact on 

short-term rentals, the research goal of this paper is to develop a bottom-up model that takes 

individual listings into account and is therefore able to recursively map C19 impact to individ-

ual listings and their features. Ideally, the model will be able to answer the following research 

questions deducible from the above literature review given any city: 

• Q1. C19 impact on supply & demand dynamics since the first lockdown: How many 

bookings are missing and how are the pricing benchmarks affected? 

• Q2. What is the magnitude of hosting revenue losses in the city over time? 

• Q3. How can this loss be deconstructed? How much loss is caused by cancellations, 

delisted items and aversion? 

• Q4. What differences in features distinguish a listing’s financial impact? 

• Q5. What areas should city governments allocate most financial aid to? How are the 

hosting losses geographically distributed? 

2.4. Lisbon: Applying the research objective to a case study 

In order to demonstrate the model’s development and results, the city of Lisbon is used as a 

case study. Portugal’s capital with roughly half a million inhabitants (ANMP 2020) has one of 

Europe’s highest rates of short-term rentals per thousand inhabitants (AirDNA 2020). Accord-

ing to an article published by Spiegel (Ginzel 2019), district mayor Miguel Coelho indicated 

that between 2013 and 2019, the number of short-term rentals offered radically increased from 

63 to 5,000 in the area of Alfama, Castelo and Mouraria. According to Financial Times, Al-

fama’s local population has decreased from 20,000 to only 1,000 over the past 40 years 
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(Wisniewska 2019). These statistics imply that short-term rental hosting revenues have become 

an increasingly important source of disposable income in Lisbon. Since the city is also in an 

ongoing gentrification clash with investors who drive prices up and thus locals away from the 

central areas (Warren 2020), diving into the structural changes identified in the literature review 

(e.g., the share of loss from delisted items that flows into long-term renting) is specifically 

relevant to the city of Lisbon. Therefore, choosing the city as a case study reveals large scale 

impact and offers immediate results where they are lacked. While there are other players in the 

market for short-term rentals (e.g., HomeToGo), Airbnb is by far the most relevant - the com-

pany has a 75% market share in Lisbon (AirDNA 2020). The models developed in this paper 

are therefore exclusively fed with data from Airbnb.  

In order to understand and interpret the case study results yielded by the models developed in 

this paper, broad knowledge about Lisbon’s C19 timeline is required. According to Reuters, 

Portugal recorded its first case of the disease on March 2, 2020 (Reuters 2020). By March 10, 

merely a week later, partially state-owned airline TAP had already cancelled over 3,500 flights, 

travel from Italy was suspended. The source also mentions that Portuguese hotel association 

AHETA had registered a 60% percent cancellation rate by that day (Reuters 2020). In line with 

research question Q3, identifying actual losses induced by cancellations will shed light on how 

early money has been lost from bookings being cancelled. By March 12, all schools and night-

clubs were closed and on March 15, tourism between Spain and Portugal got officially sus-

pended (Reuters 2020). On March 18, the country officially declared the state of emergency 

(Portuguese American Journal 2020) and locked the country down entirely. While in April daily 

infections counted almost a thousand per day, they have plummeted over the summer. In Au-

gust, daily infections counted only 100 cases in the entire country. Until November, cases have 

surged again in a second wave and currently count several thousand new cases per day (John 

Hopkins University 2020). The date of the final analysis is December 19, 2020. 
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3. Methodology 

3.1. Developing a theoretical bottom-up model for revenue loss 

As emphasized in the research objective in section 2.3, answering the research questions and 

identifying relevant dimensions require a bottom-up modeling approach that calculates impact 

from individual Airbnb listings and nights. While the city itself does not require a variable in 

this kind of analysis, its sets of Airbnb listings (L) and nights (N) do. The quintessence in an-

swering Q1-Q5 with regards both to Lisbon as a case study and to developing a generalizable 

model lies in computing any city’s monetary loss per night over time. This loss is denoted as 

the given city’s nightly discrepancy (𝐷!,#) between the revenues observed under C19 

(𝑅_𝑐𝑜𝑣𝑖𝑑!,#) and the hypothetical revenues as they would have occurred in absence of the dis-

ease (𝑅_ℎ𝑦𝑝!,#). Since hosting revenues can simply be modeled as the product of a listings 

price per night (P) and its binary booking status (B), the hosting revenue discrepancy 𝐷!,# can 

be defined as in Eq.I (Figure 1).  

Figure 1: Equations to compute estimates hosting revenue loss 

    Equation I: 𝐷!,# =-.(𝑃$%&'(),# ∗ 𝐵$%&'(),#) − (𝑃*+,),# ∗ 𝐵*+,),#)	6
!

)-.

 

    Equation II: 𝑃7*+,),# =		 𝜃.[𝑋1),#],								𝐵
7*+,),# =		 𝜃/[𝑋2),#] 

    Equation III: 𝐷?!,# =	-	.(𝑃$%&'(),# ∗ 𝐵$%&'(),#) − (𝜃.[𝑋1),#] 	∗ 𝜃/[𝑋2),#])	6
!

)-.

 

Source: Author 

Due to the hypothetical nature of all variables with _hyp suffix, their state is predicted rather 

than observed. Again, observed values are those measured in the real-life C19 scenario, hypo-

thetical values are those that would have been likely to be overserved in 2020 if C19 had not 

spread. Using the estimators defined in Eq.II, the estimation for the hosting revenue losses can 

be reformulated as in Eq.III. Note how revenues are not predicted directly but calculated from 
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estimates for prices and bookings. This approach is chosen deliberately as it is advantageous 

over a direct revenue model: The latter requires an additional degree of freedom for developing 

a revenue formula itself and is inaccessible for any exclusive analysis on prices and bookings. 

As per Eq.II, a listing’s hypothetical price is estimated using 𝜃. (pricing_model) given feature 

set X1, its hypothetical bookings using 𝜃/ (booking_model) given X2. While the former takes 

a qualitatively selected subset (based on value counts, distributions, missing values etc.) of the 

applied dataset’s features, X2 is simply the combination of X1 and 𝑃7*+,),#, which implies that 

booking predictions depend on predicted prices. The fact that bookings might reversely influ-

ence price remains neglected. Inherent with this setup, the focus of applying the model to real 

data will lie with first developing a model to detect a listings hypothetical price (for all nights 

and listings). Afterwards, the booking model can be developed using previous features together 

with predicted prices.  

3.2. Applying the model for hosting losses to real Airbnb data 

In order to apply the theoretical model for hosting revenue losses to real data, the practical 

framework from Figure 2 is utilized. In step I, data from publicly available dataset Inside 

Airbnb (Cox 2020) is collected, curated and fed into the pipeline for modeling prices and book-

ing states. The dataset’s relevant share for the case study includes over 35,000 listings (L) across 

678 nights (N), is updated monthly and contains anonymized details on listings’ properties, 

locations, reviews and calendars for one year in advance. The data is iteratively scraped from 

Inside Airbnb using a modified version of a web-crawler code supplied by the supervisor (just 

like the crawler, the entire analysis is written in Python3). An overview of the directory struc-

ture used can be found in Appendix 1.1, all packages deployed are listed in Appendix 10. Once 

the web-crawler has downloaded the files, they are stored in a directory named after the scrap-

ing date (the date on which Inside Airbnb made the files available). Due to the data’s redun-

dancy inherent with the monthly updates and one-year scope, only the latest available 
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information per night is stored in the final data. While reading the .csv files into memory, com-

putational speed can therefore be increased by storing data that looks no further than 100 days 

into the future. As long as the data is continuously updated by Inside Airbnb each month, all 

data that looks further than 30 days ahead is updated within the next scrape and can therefore 

be neglected at the current scraping index. Choosing 100 days (i.e., three months) is a safety 

net for missing months, which do occur across the data.   

Figure 2: A practical framework for the development of a bottom-up loss model 

 
Source: Author 
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The exact subset of variables extracted from Inside Airbnb and used for this paper’s analyses is 

displayed in Figure 3. A more elaborate data dictionary containing all extracted variables, their 

data types, shares of missing values, length of value counts and most common values can be 

found in Appendix 1.5. For simplicity, it is assumed that the presence of C19 does not have an 

impact on the variables used as features. While for some this assumption does not necessarily 

hold (e.g., review scores from quarantined guests forced to prolong their stay), most variables 

should be robust to this context (e.g., latitude, number of bathrooms etc.).  

Figure 3: Names of all features used in applying the hosting loss model 

calendar.csv.gz listing_id, date, available, price, minimum_nights, maximum_nights 

listings.csv.gz 

id, host_response_time, host_response_rate, host_acceptance_rate, 
host_is_superhost, latitude, longitude, property_type, room_type, 
accommodates, bathrooms, bedrooms, beds, bed_type, security_de-
posit, cleaning_fee, guests_included, extra_people, number_of_re-
views, review_scores_rating, review_scores_accuracy, re-
view_scores_cleanliness, review_scores_checkin, re-
view_scores_communication, review_scores_location, re-
view_scores_value, instant_bookable, is_business_travel_ready, 
cancellation_policy, require_guest_profile_picture, re-
quire_guest_phone_verification, neighbourhood_cleansed 

Source: Inside Airbnb 

In order to feed the data into predictive models, plenty of data curation, transformation, encod-

ing and imputation is required. Many columns include object-type percentages or currencies 

read in as strings (e.g., “45,1$” or “50 %”). They are transformed into float-type columns so 

that all model types can handle them. Columns with binary or ordinary categorical variables are 

label-encoded in order to limit the number of features created. Categorical variables with no 

order and longer value counts are recoded using a simple and commonly used one-hot-encoder 

(Brownlee 2020). The length of excessive value counts is decreased for some columns by au-

tomatically mapping contents to contextually similar clusters (e.g., “entire townhouse” and “en-

tire condominium” in the feature property_type are both simply stored as “house”).  
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The data is split on the first night of the first lockdown into Prec (pre-covid) and Post. Prec 

now contains c. 9m instances used to train and validate, Post has c. 8m instances used to predict 

the impact (a visualization can be found in Appendix 1.2). For the booking model development, 

only the data of the latest 400 nights is used for training because only that share of the data has 

sufficient bookings (Appendix 1.3). 

Cancellation and delisted items required for the loss deconstruction from research question Q3 

are also identified in step I of the framework (Figure 2). The cancellations in night n are defined 

as available listings that were unavailable for the same night n in the previous update. Therefore, 

cancellations are accounted for at the night n of the actual loss, not at the point in time the 

cancellation was made. This approach to modeling cancellations is different to the approach 

used by Hu & Lee, who use the contents of review messages to identify cancelled listings (Hu 

und Lee 2020). 

While cancellations can simply be identified from the booking states of the listings in the data, 

delisted items (those taken out of the system by the hosts) are more complex, since their data is 

entirely unavailable in the set. A two-step process enables estimating delisting loss: First, in a 

separate data-frame called Delistings, all theoretically possible but missing Post (all data after 

the first lockdown) combinations of listings l and nights n are synthesized using the latest avail-

able data for each l. Therefore, synthesizing in this case describes the process of using a listing’s 

data from available nights to recreate the listing’s missing nights. Together with Post, Delistings 

now contains 𝐿0%12 ∗ 𝑁0%12 combinations (i.e., instances for all listings across all nights after 

the first lockdown). Delisting items is not exclusively caused by C19 and is observed frequently 

in Prec (c. 25,000 listings are in the system per day in Prec, while c. 35,000 listing ids are in 

the system). Keeping all synthesized instances would imply that in absence of C19 no items 

would have been delisted, which significantly overstates the hypothetical Post supply market. 

Therefore, in the second step, per n in Post, the missing listings are randomly added from 
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Delistings to Post only to the point where the latter’s count of l at night n matches the median 

count per n in Prec, which perpetuates the implicit delisting rate observed from Prec. For the 

calculation of the median listing count in Prec, only data from the most recent six months is 

used to capture the year’s market growth. A visualization of the synthesizing process can be 

found in Appendix 1.4, the respective items are denoted as Taken_Offline in the code. The final 

data set as fed into the prediction pipeline now contains 16.7m instances, of which synthesized 

items make up 6.3%.  

In step II of the framework, several base models are trained on randomly sampled and differ-

ently sized sets of training instances (10k, 50k, 100k, 500k, 1m, 1.5m) to observe how the 

different algorithms perform at scale (computational power is limited, the entire analysis is run 

on CPU with 16GB RAM). The base models tested include regressors and classifiers from Py-

thon libraries LGBM, sklearn’s LassoCV, DecisionTrees, RandomForests, AdaBoost and 

XGBoost (Appendix 10). Since prices are continuous and the booking dummy is discrete ({1, 

0}), price estimation is a regression exercise and booking prediction a classification task. Dif-

ferent metrics for performance evaluation are therefore required. The regression model is opti-

mized towards commonly used mean absolute error (MAE), which is defined in Eq.IV (Figure 

4). Throughout the supplementary analysis, most pricing results are presented as median values. 

Since the final model is applied to data that contains previously seen instances at different points 

in time, the expectation prevails that unregularized models which fit closely to the training data 

yield higher validation performance. Although the cost of misclassification is the same for false 

positives (𝐹,) and false negatives (𝐹#), choosing model accuracy as the core classification met-

ric while evaluating a closely fitting model on an imbalanced dataset might lead to misguiding 

results. If, for instance, the base rate of bookings would be 5%, a worthless model predicting 

100% vacancy still achieved 95% accuracy. F1-score (Eq.V.), a metric that considers true 
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positives with respect to both predicted and observed positives, is therefore used as the key 

classification metric (Figure 4). All metrics used are common practice in machine learning.  

Figure 4: Selected metrics to measure model performance 

Source: Author 

Base models whose performance justifies computational scaling are qualitatively selected for 

hyperparameter (HP) tuning in step III of the framework. HP tuning identifies the set of param-

eters applied to the algorithm itself, e.g., learning rates, depths and regularization.  

Model and HP performance is most commonly validated using an approach called k-fold Cross 

Validation (Anguita 2012). This approach randomly samples a set of k folds, iteratively trains 

on k-1 folds and validates on the residual fold, until all folds have inherited the role of validating 

once. In time-series modeling, however, projections are made for values yet to be observed, 

hence there prevails a clear chronology in training and predicting. Using random sampling in 

time-series implies that theoretically still unobserved values would be used to train the models, 

which causes the training set to contain values and information that the models do not have 

access to during deployment (Brownlee 2020). Therefore, in step III of the framework, a for-

ward-chaining validation technique called Nested Cross-Validation (Cochrane 2018) is applied 

to make sure chronological data leakage is avoided. Although the data is still split into folds 

like with the commonly used k-fold Cross Validation, the nested approach makes sure that val-

idation data does not appear before the training data and that the model makes projections ex-

clusively for the future and not for the past: For each k, the model is trained on all folds up to 

k-1 and validated on fold k. While solving the data leakage problem, this approach also causes 

the training data to grow with each fold. Since some models might scale well with increasing 

    Equation IV. 𝑀𝐴𝐸 = .
#
∑ |	𝑦' − 𝑦H'#
'-. |  

    Equation V. 𝑅𝑒𝑐𝑎𝑙𝑙 = 3!
3!4	3"

,     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 3!
3!4	6!

,     𝐹1 = 2 ∗ ,78$'1'%#	∗	78$:))
,78$'1'%#4	78$:))
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amounts of data, the performance of the earlier folds needs to be interpreted with care: The goal 

of step III is to identify the best-performing algorithms and whether or not their performance is 

increased with adjusted hyperparameters. Depending on how quickly the models’ base algo-

rithms improve in performing at scale in step II, validation metrics are calculated only from the 

latest 3 folds because those are trained with significantly more data than the first folds. 

In addition to the obtained machine learning models, the daily aggregations of all listings (me-

dians for P, sums for B and R) are compared to the Prec monthly medians in the respective 

month. For example, the total revenues (across all l in L) on June 20th, 2020 are compared to 

the median total daily revenues in June 2019. While the combination of the previously discussed 

machine learning models (for prices and bookings) is referred to as ML_models, this alternative 

prediction method is denoted as Heuristic and yields a sanity check for the machine learning 

predictions. Note that as opposed to the machine learning approach, Heuristic does not identify 

discrepancies at listing level, but compares aggregations over time.  

Finally, the best-performing models for each task are used to add 𝑃7*+,),#and 𝐵7*+,),# to the data 

in step IV and to compute the estimated loss 𝐷?!,# in step V. Having fitted the models with 

feature sets X1 and X2, parameter weights (e.g., feature_importances_ (FI)) are analyzed in step 

VI to identify forces driving 𝐷?!,# and explore further considerations. In addition to the models’ 

feature weights, the identifiers created for cancellations and delisted items during the curation 

process are used as dimensions in step VI. The findings of the resulting dimensional analyses 

are descriptive to show the developed models’ capacity to dive into the dynamics of loss. 

In order to compute lost fee payments to the entity of the Lisbon city government as part of the 

case study, a nightly fee of 2€ (The Portugal News 2020) can be multiplied with all lost book-

ings (those whose hypothetical booking Boolean is 1 and its observed one is 0). In reality, this 

2€ fee applies only to stays shorter than 7 nights, yet this is neglected since there is no way to 

identify the visitor via Inside Airbnb data. 
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4. Results 

4.1. Findings in model development 

Base algorithm selection: All base model selection results can be found in Appendix 2. For 

the model selection in both pricing and bookings, LGBM, LassoCV and DecisionTree compute 

much faster than the remaining algorithms while still being able to increase their performance 

at scale (e.g., fitting the RandomForestRegressor from sklearn at 1.5m samples takes >25 

minutes, while LGBM’s LGBMRegressor trains for the same task in few seconds). The three 

algorithms are therefore selected for hyperparameter tuning.  

Hyperparameter tuning: All results from the forward-chaining HP validation can be found in 

Appendix 3. As explained in the methodology section, observing well-scaling models indicates 

that only the latest 3 folds are used for HP tuning, as those models’ performance only unlocks 

if the models are trained using many instances. The automated model selection process identi-

fies a DecisionTreeRegressor with validation MAE of 23.7$ as the pricing model (Appendix 

3.1) and also a DecisionTreeClassifier with a validation F1-score of 64.4% as the booking 

model (Appendix 3.2). All other models have higher MAEs (price) or lower F1-scores (book-

ings) across the folds. Both final models have empty hyperparameter dictionaries. As expected, 

the fact that most validation instances are represented in the training data (at different points in 

time) causes these strongly fitting models to still regularize well on validation data.  

It should also be mentioned that far more combinations of hyperparameters have been tested 

than indicated in the Appendix, although many of them would not converge on CPU for the 

implied computational expense inherent with their impact on the base algorithm’s workload. 

Identifying relevant dimensions: To the pricing- and booking model, the features [latitude, 

longitude, maximum_nights, accommodates, bathroom] and [DoY, latitude, longitude, num-

ber_of_reviews, Weekday] are most decisive according to feature importance, respectively (Ap-

pendix 4). This implies that the size of a listing (via accommodates and bathrooms) is mostly 
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relevant to its price, the point in time (via DoY and Weekday) is mostly relevant to bookings 

and location (via latitude and longitude) is highly important to both bookings and prices. 

As noted in the methodology, the bottom-up approach of using listing-level machine learning 

for the predictions enables further dimensional analysis. As they prove to be most relevant to 

supply and demand, the dimensions location (by location), size (by size) and timing (by time) 

are analyzed together with the impact of delisted items and cancellations (by forces) in more 

detail in section 4.2.  

4.2. Findings in model deployment 

For the sake of contextual comprehensibility, the identified dimensions are presented in the 

following order: by time, by forces, by location and by size. Just like the findings from the 

previous section, all findings from model deployment are visualized in the Appendix, examples 

of which are shown in this section. All figures (except frameworks, e.g., Figure 2) are fully and 

automatically generated by the Python3 code (including maps, whose background images are 

created using openstreetmap (OSMF 2020). 

Appendix 5.1 (Figure 5 shows it as an example) shows the daily predictions of the machine 

learning models (maroon scatter) and heuristic (black dotted) in direct comparison with actual 

observations (blue scatter). The figures visualize how significantly different the Lisbon obser-

vations have been distributed ever since the night of the first lockdown and how seasonality in 

prices, bookings and revenues has almost entirely vanished. The chart on median listing prices 

per day over time shows how median prices have decreased to prices usually expected in No-

vember by August 2020 and how they have since dropped to all-time lows. The daily total 

bookings indicate that with relatively little variation, between 5,000 and 10,000 bookings have 

been missing in Lisbon each day since the first lockdown. Revenues have dropped by roughly 

$0.5 million to $1 million per day. 
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4.2.1. Impact by time 

Figure 5: Comparison of observed and predicted values per night 

 

 

 
Source: Author 
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In order to better identify the seasonality of the losses, Appendix 5.2-5.4 aggregate the results 

by months: Median listing prices were down by roughly 10$ throughout June, rebounded in 

August and then dropped 15$ below the predictions during the second wave in October (Ap-

pendix 5.2). This proves that the supply market has significantly lost power over pricing. Book-

ings in Lisbon are found to have tumbled by roughly a quarter million each month (Appendix 

5.3). In monetary value, this translates into c. $20m in revenue losses each month (Appendix 

5.4). 

From a cumulative perspective, since the beginning of the first lockdown on March 18 (Appen-

dix 5.5), Lisbon is predicted to have lost $140m and $160m by Heuristic and Ml_models, re-

spectively. The loss stated by Heuristic is slightly lower because less listings were available in 

the beginning of 2019 (Appendix 1.4), which decreases the model’s predicted hypothetical rev-

enues. So far, the cumulative loss in the city of Lisbon is concluded to be roughly $150m. 

Applying the currency-adjusted 2€ nightly city government fee to the lost bookings, more than 

$4m have been lost in government fee payments alone (Appendix 5.5). Remember that the 

government fees are referring exclusively to the tourist fees, missing tax payments are not re-

flected. 

4.2.2. Impact by forces 

Mapping the cumulative losses to the identifiers of cancellations and delisted items, their rela-

tive shares in overall loss can be visualized (Appendix 6), which unveils the three forces that 

ultimately drive loss: Cancellation loss, Delisting loss and Aversion loss. The latter denotes the 

residual cumulative loss predicted by ML_models after Cancellation loss and Delisting loss. It 

is called Aversion loss because it is captured in neither of the other loss forces and therefore is 

assumed to be rooted in consumer aversion to book listings. Note that cancellations are calcu-

lated only from listings that have originally been in the system, hence the theoretical cancella-

tion losses for all items that have been taken offline because of C19 is embedded in Delisting 
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loss. The upper figure in Appendix 6 shows that so far, cancellations, delisted items and aver-

sion have contributed $20m, $60m and $80m to overall cumulative loss, respectively. As ex-

pected, the share of Cancellation loss has been significantly higher shortly after the first lock-

down, which can be derived from the lower figure in Appendix 6. Since its peak in April, Can-

cellation loss has decreased its share in overall losses from 80% to 20%. The observation that 

Cancellation loss has reached its peak only weeks after the first lockdown is induced by the 

fact that it accounts for actual losses, which occur on the hosting night, not the cancellation 

night (bookings are made in advance). Delistings loss is found to capture roughly 40% of cu-

mulative loss. As previously explained, bookings that are not made in the first place (neither 

cancelled nor delisted) are embedded in Aversion loss. The losses assigned to this force have 

become visible 2 months after the first lockdown and currently make up c. 40% of cumulative 

hosting revenue loss.  

4.2.3. Impact by location 

Applying the model predictions to the dimension of location demonstrates how significantly 

different C19 has impacted neighborhoods (Appendix 7). For instance, aggregating loss by 

neighborhood shows that besides the central Lisbon area, especially Lourinha, Santo Isodoro, 

Ericeira, Sintra and Cascais have been hit hardest (Appendix 7.1). Prices have dropped the most 

in denser areas, which can be interpreted from the distribution of colors in the lower right map 

in Appendix 7.1: Green and blue values, which denote higher discounts, are mostly observed 

in central Lisbon. Taking an isolated look at the impact in central Lisbon (Appendix 7.2) reveals 

that half of the overall Lisbon area loss is concentrated in only two neighborhoods: Santa Maria 

Maior (lower Alfama) has lost $48m and Misericórdia (Bairro Alto, Baixa, Chiado) has lost 

$38m. The five hardest-hit districts also contain Arroios ($22m), Santo Antonio ($17m) and 

São Vicente ($15m). Santo Antonio comprises Marquês and Avenida, São Vicente is like Santa 

Maria Maior a part of Alfama.  
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Appendix 7.3 shows how prices have changed in central Lisbon. Just like with the results from 

Lisbon area (Appendix 7.1), it can be observed that larger decreases in prices (brighter values) 

can be observed in the more central areas, i.e., those that have also seen the highest hosting 

revenue losses. This indicates that while most areas have been hit by missing bookings, these 

central areas have additionally seen strong decreases in prices and consequently lost more 

money. One explanation for this dynamic might be that consumers are more elastic to price 

when two listings are closer to each other and substitution is more effortless, implying that the 

combination of C19 and a high density of listings has spurred a ‘price war’ in Lisbon’s touristic 

areas. 

4.2.4. Impact by size 

As with the other dimensions, the bottom-up modeling approach also allows to group losses by 

listing size. As an example for supplementary analysis, larger and smaller listings are split at 3 

bedrooms to identify differences in means (Appendix 7.8). Occupancy rates for larger houses 

have declined less (-11%) than small listings (-14%) since the first lockdown, which is in line 

with findings from Hu et al. Furthermore, the predictions by ML_models indicate that while 

mean prices of smaller listings have remained unchanged (means are not robust to outliers, 

which is why they do not detect the losses reflected in median prices), the mean prices for larger 

houses have gained 7%. Despite the larger absolute mean loss per night for large listings ($8 as 

opposed to $6), the much higher base prices inherent with more spacious listings cause large 

listings’ relative revenue loss (-6%) to be smaller than the one measured across smaller listings 

(-13%). These results are exemplary and descriptive, i.e., no causal relationships are tested. 
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5. Discussion 

5.1. Theoretical and practical contributions 

The research objective of answering questions Q1-Q5 has been accomplished in this paper. For 

Q1, quantified financial loss estimations and a breakdown on prices and bookings has been 

supplied. The ability to recursively model hosting revenue loss in the short-term rental market 

for Q2 has been achieved in the case study and can be updated at any time by running the Python 

script again. Since bookings have been optimized towards F1-score, which takes into account 

both precision and recall, the decision thresholds for bookings can be interpreted as balanced 

and the booking predictions as neither aggressive nor conservative. Still, with regard to the fact 

that bookings steadily increased in 2019 (Appendix 1.4) but were synthesized at late 2019 lev-

els, it might be reasonable to assume that the loss estimates are rather conservative. Evidently, 

this only holds under the assumption that even more listings would have surfaced on Lisbon’s 

2020 supply market in absence of C19. 

Inherent with the bottom-up methodology, predictions across listings and nights can be decon-

structed for further analysis, which is highly important for the research objective behind Q3: 

For example, being able to breakdown losses into aversion, cancellation and delisted items 

shows that the progressive side-effects of long-term renting discussed by Dolnicar and Zare 

account for a maximum of 40% of cumulative losses. It has to be taken into account that this 

includes the extra cancellations that would have been made in absence of the delisting wave. 

Also, their socio-economic interpretation is based on the disputable assumption that all money 

lost from delisting flows into long-term renting, hence the actual share realized for long-term 

renting is likely to be even less than 40%. This implies that at least the other 60% of the cumu-

lative losses, i.e., roughly $100m still have been lost in Lisbon without any positive side effect 

absorbing them.  
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Q4, the quest for features that drive prices and bookings, has also been successfully completed. 

In the code, the entire feature sets are ranked by importance, only the most relevant are dis-

played in this paper (Appendix 4). The use cases of identifying relevant features have been 

presented among the exemplary dimensions of time, location and size. In Q5, mapping the pre-

dictions to listing coordinates and neighborhoods revealed further insights into the hardest-hit 

districts. Losses are distributed in a way that leaves the two neighborhoods of Santa Maria 

Maior and Misericórdia losing as much money as all other districts in Lisbon area combined, 

which is an interesting revelation and should be considered by the government when injecting 

cash into the local economy.  

Apart from being able to apply well to the case study city of Lisbon, the value of this paper lies 

in those analyses that have not yet been done. The way for these has been paved by coding 

extensive curation and model development infrastructure. The Python3 script that runs the en-

tire analysis comprises 1,133 lines of relatively information-dense code. Up to the start of the 

supplementary case study analysis, which is inherently bound to the city of Lisbon (e.g., 2€ city 

government fee, maps with fixed coordinates), the entire pipeline can be applied to other cities 

by simply changing the identifiers for “city”, “country”, and “start_date_pandemic”, which de-

notes the start of the first lockdown. Proof that the modeling approach generalizes well to other 

cities can be found in Appendix 7.9, which shows exemplary figures from the same script being 

run on data from Venice, Italy. 

In a nutshell, the tools developed in this paper help to quantify C19’s severe impact on short-

term renting via Airbnb and unlock significant potential for global analysis, targeting any city 

whose data is available on Inside Airbnb.  
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5.2. Limitations and further research 

As indicated in the previous paragraph, most value supplied by this paper lies in its own limi-

tation of scope. The largest share of enabled analysis is still to be done on many more cities, 

longer time periods and broader sets of features. While the obtained predictions could be ap-

plied in many ways, some examples are listed below: 

• The impact on pricing could be analyzed across neighborhood aggregations 

• Cumulative loss per neighborhood could be mapped over time or aggregated by month  

• Dimensional analysis has been done on exemplary basis with only three of the most 

relevant dimensions (time, location and size). Much more analysis can be done on ad-

ditional features (e.g., “review_score_rating” could be used to visualize impact of rat-

ings on losses) 

• Losses in government payments could be further inspected by multiplying the identified 

losses with income tax rates 

• The losses over time could be compared to the infection rates over time. Especially 

when applied across cities with different lockdown behaviors and similar infection rates, 

the costs of excess stringency could be quantified 

The findings from the dimensional analyses are exemplary and descriptive to show the depth 

of analysis enabled by modeling losses through a bottom-up approach. Although significance 

of findings can be assumed given the vast sample sizes compared (Prec and Post contain almost 

17m instances), further research could measure actual relationships using significance levels. 

As indicated in the methodology section, computational expense has significantly limited the 

research depth of this paper. Running the script for a city that has as many listings as Lisbon 

requires multiple hours of computation, the Lisbon directory with all curated data, workflow-

related pickle files and models requires roughly 24GB of disk space. Further research should 
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utilize GPUs (Graphics Processing Units) to put the bottom-up modeling approach developed 

in this paper to a test with broader cities and even consider developing a more holistic model 

across the entire Inside Airbnb dataset. Furthermore, deep learning has yet to work its way into 

quantifying C19 impact. Future research could establish similar approaches using neural net-

works. 

The pipeline that synthesizes delisted items still has intense workloads, since the Post data-

frame needs to be filtered and sorted for millions of items given their night and listing id. A 

future model might be able to simply predict the feature arrays for these synthesized instances 

using e.g., naïve bayes to eradicate lengthy computations. Furthermore, perpetuating the delist-

ing rate from Prec data by random sampling is blind to the non-random occurrence of delisted 

items. The probability of a listing to be in the system assumably depends on whether the listing 

had been in the system on the previous day. Specifically, delisted items are likely to remain 

delisted. Randomly adding instances has been selected because of its simplicity, but more ad-

vanced selection methods could be applied in future research. 

Finally, despite Airbnb having large market-shares around the world, the short-term renting 

market is impacted by C19 not just through the dynamics of a single company. Future research 

might focus on building more integrative models that feed data with various sources. 
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Appendix 

Appendix 1.  The data 

Appendix 1.1.  Directory structure 

 

Appendix 1.2.  Allocation of data to training and predictions 

 

Appendix 1.3.  Availability of booking data over time 
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Appendix 1.4.  Synthesizing delisted items 

 

Appendix 1.5.  Data dictionary of features used 

Feature Types Missing (%) # diff. values Most common 

listing_id int64 0.00 24235 10362958 

date object 0.00 366 2021-05-03 

available object 0.00 2 t 

price object 0.06 1011 $60.00 

minimum_nights float64 0.01 67 2 

maximum_nights float64 0.01 195 1125 

id int64 0.00 24235 985087 

host_response_time object 31.45 4 within an hour 

host_response_rate object 31.45 59 100% 

host_acceptance_rate object 11.02 85 100% 

host_is_superhost object 0.00 2 f 

neighbourhood_cleansed object 0.00 128 Santa Maria Maior 

latitude float64 0.00 9477 38.7119 

longitude float64 0.00 11196 -9.1361 

property_type object 0.00 39 Apartment 

room_type object 0.00 4 Entire home/apt 

Accommodates int64 0.00 20 2 

Bathrooms float64 0.11 29 1 

Bedrooms float64 0.05 17 1 

Beds float64 0.58 34 1 

bed_type object 0.00 5 Real Bed 

security_deposit object 23.87 129 $0.00 

cleaning_fee object 18.38 129 $0.00 

guests_included int64 0.00 18 1 
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Feature Types Missing (%) # diff. values Most common 

extra_people object 0.00 68 $0.00 

number_of_reviews int64 0.00 435 0 

review_scores_rating float64 18.89 53 100 

review_scores_accuracy float64 18.95 9 10 

review_scores_cleanliness float64 18.93 9 10 

review_scores_checkin float64 18.98 9 10 

review_scores_communication float64 18.96 8 10 

review_scores_location float64 18.97 9 10 

review_scores_value float64 18.97 9 9 

instant_bookable object 0.00 2 t 

is_business_travel_ready object 0.00 1 f 

cancellation_policy object 0.00 8 strict_14_with_grace_p
eriod 

require_guest_profile_picture object 0.00 2 f 

require_guest_phone_verification object 0.00 2 f 

 

Appendix 2.  Base model selection 

Appendix 2.1.  Performance at scale: Pricing model base algorithms 

Instances Model RMSE MAE R2 Cost (s) 

50000 LGBMRegressor 69.3 32.7 0.51 0 

50000 AdaBoostRegressor 134.5 101.5 -0.85 4 

50000 XGBRegressor 75.4 30.6 0.42 3 

50000 GradientBoostingRegressor 67.0 34.1 0.54 9 

50000 DecisionTreeRegressor 100.2 32.9 -0.03 1 

50000 LassoCV 99.0 53.6 -0.0 0 

50000 RidgeCV 17585.4 693.6 -31544.48 0 

50000 ElasticNetCV 99.0 53.6 -0.0 0 

50000 RandomForestRegressor 66.6 26.3 0.55 42 

100000 LGBMRegressor 128.3 32.1 0.4 0 

100000 AdaBoostRegressor 172.1 81.4 -0.08 4 

100000 XGBRegressor 124.5 30.7 0.43 5 

100000 GradientBoostingRegressor 142.0 36.5 0.26 17 

100000 DecisionTreeRegressor 121.6 26.9 0.46 1 
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Instances Model RMSE MAE R2 Cost (s) 

100000 LassoCV 165.4 56.4 0.0 1 

100000 RidgeCV 13507.4 394.7 -6661.63 0 

100000 ElasticNetCV 165.4 56.4 0.0 1 

100000 RandomForestRegressor 115.4 23.0 0.51 85 

500000 LGBMRegressor 64.1 28.9 0.74 2 

500000 AdaBoostRegressor 135.3 65.9 -0.17 19 

500000 XGBRegressor 60.1 27.0 0.77 27 

500000 GradientBoostingRegressor 86.1 35.1 0.53 111 

500000 DecisionTreeRegressor 55.8 11.8 0.8 7 

500000 LassoCV 125.2 54.6 0.0 4 

500000 RidgeCV 710700.4 18844.3 -32223914.08 2 

500000 ElasticNetCV 125.2 54.6 0.0 4 

500000 RandomForestRegressor 37.7 10.9 0.91 663 

1000000 LGBMRegressor 79.0 28.8 0.67 4 

1000000 AdaBoostRegressor 137.8 64.2 0.0 39 

1000000 XGBRegressor 72.2 27.0 0.73 68 

1000000 GradientBoostingRegressor 111.1 35.5 0.35 259 

1000000 DecisionTreeRegressor 40.4 8.0 0.91 16 

1000000 LassoCV 137.8 54.5 0.0 9 

1000000 RidgeCV 12957847.3 369972.9 -8832472267 3 

1000000 ElasticNetCV 137.8 54.5 0.0 10 

1000000 RandomForestRegressor 46.4 8.0 0.89 1131 

1500000 LGBMRegressor 76.8 28.9 0.75 5 

1500000 AdaBoostRegressor 143.5 63.8 0.14 76 

1500000 XGBRegressor 65.1 26.9 0.82 100 

1500000 GradientBoostingRegressor 129.9 36.0 0.29 425 

1500000 DecisionTreeRegressor 41.6 6.5 0.93 25 

1500000 LassoCV 154.4 55.2 0.0 14 

1500000 RidgeCV 2437051.5 70547.6 -248978425.34 4 

1500000 ElasticNetCV 154.4 55.2 0.0 15 

1500000 RandomForestRegressor 37.2 6.6 0.94 1785 
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Appendix 2.2.  Evaluating pricing base algorithm performance 

 

Appendix 2.3.  Performance at scale: Booking model base algorithms 

Instances Model Accuracy Recall Precision F1 ROC Cost (s) 

50000 LGBMClassifier 0.726000 0.676205 0.778838 0.723902 0.729314 0 

50000 AdaBoostClassifier 0.715600 0.657520 0.800087 0.721831 0.723701 2 

50000 XGBClassifier 0.725400 0.677986 0.770598 0.721331 0.727812 2 

50000 GradientBoostingClassifier 0.715800 0.658432 0.797485 0.721318 0.723416 10 

50000 DecisionTreeClassifier 0.683000 0.657768 0.651778 0.654759 0.681002 1 

50000 RandomForestClassifier 0.743800 0.700117 0.777537 0.736799 0.744893 7 

100000 LGBMClassifier 0.728300 0.676750 0.777486 0.723629 0.731082 1 

100000 AdaBoostClassifier 0.705700 0.645662 0.790601 0.710819 0.713918 5 

100000 XGBClassifier 0.734900 0.684080 0.781421 0.729517 0.737306 5 

100000 GradientBoostingClassifier 0.711100 0.652111 0.789945 0.714441 0.718272 20 

100000 DecisionTreeClassifier 0.691700 0.661822 0.666885 0.664344 0.689538 1 

100000 RandomForestClassifier 0.750800 0.706770 0.778142 0.740741 0.751128 15 

500000 LGBMClassifier 0.738460 0.692426 0.778987 0.733161 0.740268 2 

500000 AdaBoostClassifier 0.710760 0.653659 0.793166 0.716687 0.718499 27 

500000 XGBClassifier 0.752940 0.706809 0.793513 0.747656 0.754645 28 

500000 GradientBoostingClassifier 0.719480 0.665774 0.786792 0.721242 0.724802 124 

500000 DecisionTreeClassifier 0.748660 0.729680 0.722877 0.726263 0.747155 7 

500000 RandomForestClassifier 0.810160 0.779678 0.820180 0.799417 0.809284 93 

1000000 LGBMClassifier 0.738320 0.694179 0.774377 0.732088 0.739689 5 

1000000 AdaBoostClassifier 0.712190 0.655729 0.792939 0.717836 0.719644 64 

1000000 XGBClassifier 0.752220 0.705692 0.794802 0.747601 0.754159 64 

1000000 GradientBoostingClassifier 0.717670 0.663943 0.786680 0.720119 0.723251 268 

1000000 DecisionTreeClassifier 0.769000 0.753038 0.743513 0.748245 0.767705 14 
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Instances Model Accuracy Recall Precision F1 ROC Cost (s) 

1000000 RandomForestClassifier 0.831520 0.805069 0.837990 0.821200 0.830531 180 

1500000 LGBMClassifier 0.736293 0.692271 0.773611 0.730684 0.737820 6 

1500000 AdaBoostClassifier 0.709373 0.652974 0.792901 0.716166 0.717285 94 

1500000 XGBClassifier 0.752493 0.707171 0.793218 0.747727 0.754253 91 

1500000 GradientBoostingClassifier 0.716747 0.662920 0.788273 0.720183 0.722709 408 

1500000 DecisionTreeClassifier 0.784533 0.768587 0.764111 0.766342 0.783345 22 

1500000 RandomForestClassifier 0.844160 0.820713 0.848305 0.834281 0.843170 287 

 

Appendix 2.4.  Booking model base algorithms computational expense 

 

Appendix 2.5.  Evaluating booking model base algorithms performance 
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Appendix 3.  Hyperparameter-tuning through forward-chained validation 

Appendix 3.1.  Pricing model validation MAE per fold 
Note: X-axis are days until first lockdown, Y-axis is median price as estimated by winning model. Since counts per day are not 
equally distributed, it appears like some fold are longer (time) than others, but all folds have the same number of instances 
 

 

Algorithm Hyperparameters F1 F2 F3 F4 Score 

LGBMRegressor {'learning_rate': 0.1, 'reg_alpha': 0} 31.169 31.553 29.630 29.408 30.197 

LGBMRegressor {'learning_rate': 0.1, 'reg_alpha': 0.01} 31.830 31.553 29.630 29.404 30.196 

LGBMRegressor {'learning_rate': 0.1, 'reg_alpha': 0.1} 31.845 31.553 29.630 29.407 30.197 

LGBMRegressor {'learning_rate': 0.01, 'reg_alpha': 0} 44.067 42.397 41.110 44.127 42.545 

LGBMRegressor {'learning_rate': 0.01, 'reg_alpha': 0.01} 44.067 42.397 41.110 44.127 42.545 

LGBMRegressor {'learning_rate': 0.01, 'reg_alpha': 0.1} 44.067 42.397 41.110 44.127 42.545 

LGBMRegressor {'learning_rate': 0.001, 'reg_alpha': 0} 55.455 53.147 52.974 55.738 53.953 

LGBMRegressor {'learning_rate': 0.001, 'reg_alpha': 0.01} 55.455 53.147 52.974 55.738 53.953 

LGBMRegressor {'learning_rate': 0.001, 'reg_alpha': 0.1} 55.455 53.147 52.974 55.738 53.953 

DecisionTreeRegressor {} 19.727 22.578 25.655 22.934 23.722 

LassoCV {'eps': 0.01} 57.549 55.375 55.476 58.146 56.332 
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Appendix 3.2.  Booking model validation F1-score per fold 
Note: X-axis are days until first lockdown, Y-axis is total bookings as estimated by winning model 

 

Algorithm Hyperparameters F1 F2 F3 F4 Score 

DecisionTreeClassifier {} 0.667 0.702 0.619 0.611 0.644 

LGBMClassifier {'learning_rate': 0.1, 'reg_alpha': 0} 0.305 0.061 0.323 0.607 0.330 

LGBMClassifier {'learning_rate': 0.1, 'reg_alpha': 0.01} 0.306 0.061 0.326 0.606 0.331 

LGBMClassifier {'learning_rate': 0.1, 'reg_alpha': 0.1} 0.305 0.046 0.277 0.606 0.309 

LGBMClassifier {'learning_rate': 0.01, 'reg_alpha': 0} 0.088 0.688 0.691 0.519 0.633 

LGBMClassifier {'learning_rate': 0.01, 'reg_alpha': 0.01} 0.088 0.688 0.691 0.519 0.633 

LGBMClassifier {'learning_rate': 0.01, 'reg_alpha': 0.1} 0.088 0.693 0.701 0.519 0.638 

LGBMClassifier {'learning_rate': 0.001, 'reg_alpha': 0} 0.000 0.000 0.000 0.000 0.000 

LGBMClassifier {'learning_rate': 0.001, 'reg_alpha': 0.01} 0.000 0.000 0.000 0.000 0.000 

LGBMClassifier {'learning_rate': 0.001, 'reg_alpha': 0.1} 0.000 0.000 0.000 0.000 0.000 
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Appendix 4.  Feature importance 
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Appendix 5.  Predictions over time 

Appendix 5.1.  Daily comparison 
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Appendix 5.2.  Monthly aggregations: Price 

 

Appendix 5.3.  Monthly aggregations: Bookings 

 

Appendix 5.4.  Monthly aggregations: Revenues 
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Appendix 5.5.  Cumulative loss to hosts and city governments 

 

Appendix 6.  Impact by forces 
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Appendix 7.  Impact by location 

Appendix 7.1.  C19 impact on Lisbon (area) 
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Appendix 7.2.  C19 impact on Lisbon (central) 
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Appendix 7.3.  Pricing discounts ($) in Lisbon (central) 

 

Appendix 8.  Impact by size 
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Appendix 9.  Applying the script on data from Venice, Italy 

 

Appendix 10.  Python packages used 

Use Packages 

Basics  os, sys, time, warnings, datetime, itertools, pickle, operator, collections 

Computation numpy, random, pandas, scipy, math 

Scraping BeautifulSoup, urllib, wget 

Plots cv2, seaborn, matplotlib 

Machine learning Sklearn, xgboost, lightgbmDecisionTreeClassifier 

 
Appendix 11.  Table of abbreviations 

Abbreviation Explanation 

C19 Covid-19 
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Abbreviation Explanation 

CPU Central Processing Unit 

GPU Graphics Processing Unit 

HP Hyperparameters 

MAE Mean absolute error 

 


