
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2017; 29(12):e4152–n/a
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.4152

Facilitating the development of stencil applications using the
Heterogeneous Programming Library

M. Viñas, B.B Fraguela∗, D. Andrade, R. Doallo

Universidade da Coruña, Grupo de Arquitectura de Computadores, A Coruña, Spain

SUMMARY

Stencil computations are very common in scientific codes. Heterogeneous systems achieve good results
solving these problems, but their programming is complex because of the ghost regions required in
multi-device implementations and the difficulty to properly exploit their hardware. The Heterogeneous
Programming Library (HPL) is a recent framework that improves the programmability of heterogeneous
devices. This paper describes two extensions of HPL focused on stencil computations. The first one allows
to automatically update the ghost regions they involve. The second one automates the implementation of
the computational kernels of these algorithms. In our evaluation the first mechanism reduces on average the
number of lines of code and the Halstead programming effort of the host code of comparable HPL baselines
by 34% and 64.2%, respectively, while the second contribution reduces these metrics by 72% and 79%
in the computational kernels, respectively. Also, the first technique has negligible performance overheads,
while the second one matches the performance of manually developed kernels. As an added benefit, the
facilitation of the development of these codes thanks to these techniques helps programmers experiment
with optimizations suited for this applications such as the ghost cell expansion technique, which provides
speedups of up to 13% in our experiments. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: programmability, heterogeneity, OpenCL, stencils, shadow regions

1. INTRODUCTION

Stencil computations are found in many scientific applications (simulations, PDE solvers, image

processing, . . .) with computations that follow a fixed pattern. In this pattern, which can appear

in computations involving any number of dimensions, the value of an element of the output array

depends on the values of elements of the input array that belong to a given neighborhood. In general,

the thread in charge of a given position of the output array has to access the same position in

the input array as well as several of the elements surrounding it. In shared-memory environments

this restriction does not cause any trouble because all the threads can access the whole arrays.

Nevertheless, in distributed-memory environments such as systems with several accelerators, where

both data and computations are divided among several devices with separate memories, stencil

computations require that each device also accesses regions of data that are updated by other

device. The traditional solution to this problem is to enlarge the data located in each device with

ghost regions, which replicate pieces of data updated by other devices. Still, there is the problem of

updating these regions with the correct values that reside in the owner device after each round of

computations. The management of the memory coherence of these ghost regions among the different

devices gives place to an exchange of information from the owner device to the one where the ghost

∗Correspondence to: Basilio B. Fraguela, Facultade de Informática, Campus de Elviña, s/n. 15071, A Coruña, Spain.
Email: basilio.fraguela@udc.es

Copyright c© 2017 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

basilio
Typewritten Text
This is the accepted version of the following article: "Facilitating the development of stencil applications using the Heterogeneous Programming Library" by M. Viñas, B. B. Fraguela, D. Andrade and R. Doallo in Concurrency and Computation: Practice and Experience, 29(12), e4152, 2017, which has been published in final form at http://dx.doi.org/10.1002/cpe.4152. This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy.

2 M. VIÑAS ET AL.

region resides. In general, stencil computations are performed repetitively in a loop [21, 28] and the

result of an array in the current iteration depends on the result of this same array in the previous one.

Thus, the update of the ghost regions has to be done each iteration, before starting the next stencil

computation.

Heterogeneous devices have proven to be successful choices for challenging applications with

stencil computations. Traditionally, the most popular approaches to program these architectures

have been low level frameworks [12, 17]. These approaches present several inconveniences such as

their large programming complexity and the potential lack of portability in case of choosing CUDA,

for example. As a result of this situation there has been much research focusing on improving

the programmability of heterogeneous systems [6, 11, 18, 21]. The Heterogeneous Programming

Library (HPL) [24], built on top of OpenCL, is one of these efforts. HPL automates all the

management done by the backend low level frameworks like OpenCL or CUDA. This includes

the transfers between host and devices, and in fact it provides automatic memory coherency for the

memory objects it manipulates, which are multidimensional arrays of a class called Array.

HPL allows to define pieces of Arrays, called subarrays, that map into a subregion of an existing

array. This feature gives programmers a very intuitive way to update ghost regions. While this

largely facilitates the development of stencil computations, it still requires users to manually build

the ghost regions, select the required origin subarrays and perform the updates by hand. Also, until

now HPL did not offer any specific mechanism to help users implement the heterogeneous kernels

of their stencil computations. These kernels can be somewhat complex due to the need to exploit

the special memories offered by many devices to reach the best performance. Namely, the OpenCL

local memory of the GPUs is an excellent resource for this kind of codes due to the high locality of

the accesses of the work-items in each work-group and the high speed that this memory offers, the

problem being that it has to be manually managed by the programmer.

In this work, we present two enhancements to HPL that are focused on stencil computations. The

first one is a new mechanism to update ghost regions that automatically detects and updates them.

This new system frees users from the tedious and error-prone tasks involved by the manual update

so that they only need to specify when to perform the update. In terms of performance, our proposal

does not involve any penalty with respect to the HPL implementations based on manual updates.

However, the addition of this automatic system noticeably improves the programmability, which is

the main motivation of this work. In a similar line, the second enhancement is a series of templates

that automate the efficient implementation of stencil kernels. Our templates allow to easily exploit

the hardware resources of heterogeneous devices such as the OpenCL local memory.

The remainder of this paper is organized as follows. The next section explains the semantics

and syntax of HPL. Section 3 discusses the problems of the ghost region update and the optimal

implementation of heterogeneous stencil kernels, and the solutions we propose, which are evaluated

in Section 4. Section 5 summarizes the related work, and the conclusions in Section 6 finish the

paper.

2. THE HETEROGENEOUS PROGRAMMING LIBRARY

This library, which is freely available under GPL license at http://hpl.des.udc.es, largely

facilitates the programming of heterogeneous systems. It uses the OpenCL standard as its backend

so that the portability of the developed codes is guaranteed. Both approaches, HPL and OpenCL,

share the same programming model and hardware model. The applications run in a general-purpose

host processor and several parts of the code, called kernels, are executed on one or more OpenCL-

capable devices. Each one of these devices has processors and a separate memory. The processors

of a device can only access its memory, so the host is in charge of transferring data from and to

each device. We now we summarize the basics of HPL and illustrate its use with simple examples.

Detailed explanations on its syntax and functionality can be found in [24, 26, 27].

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 3

1 void simpleKernel(Array<float,1> b, Array<float,1> a)

2 {
3 b[idx] = 2 ∗ a[idx];

4 }
5 ...

6 Array<float,1> a(N), b(N);

7

8 eval(simpleKernel)(a, b);

Figure 1. Example of an 1-D problem in HPL.

2.1. Basics of HPL

HPL applications follow the same scheme as OpenCL or CUDA ones. The main program runs on

the host and it is in charge of the management of the parallel executions on the devices. The kernels

are functions that can be run on the devices. Each kernel is executed in parallel by a number of

threads defined in a space from one to three dimensions called global domain. This global domain

can be divided into groups of threads of the same number of dimensions. The size of each group of

threads is called local domain. All the threads share the same global and constant memories of the

device. Nevertheless, only the threads belonging to the same group can share a fast on-chip memory

called local memory. Additionally, each thread has a private memory which is exclusive to it.

HPL allows to express the kernels to run in the accelerators in two ways that can be mixed in

the same program. One possibility is to write them in OpenCL C, storing the associated code in

strings or separate files that the runtime reads, compiles and executes [27]. The second possibility is

to express the kernels using a language embedded in C++ that is described in [24]. The examples in

this paper are based in this second alternative, as it integrates better all the code of the application. It

also has the advantage that it allows to dynamically build the codes of the kernels using runtime code

generation, which can be used to adapt them to the characteristics of the devices or the data at hand,

thus enabling important performance improvements [7]; although that is out of the scope of this

manuscript. Following this strategy, a kernel is a regular C++ function whose arguments must have

type Array<type, ndim [, memoryFlag]>, where ndim is the number of dimensions of the array

(ndim=0 for scalars), type is the C++ type of each element of the array and memoryFlag indicates the

kind of memory (Global, Local, Constant or Private) where this array will be located in the device.

If the array is declared in the host without specifying memoryFlag, after the kernel invocation it will

be allocated at the global memory of the device. Otherwise, if the array is declared in the kernel

code with no memoryFlag specified, it will be allocated at the private memory. Additionally, there

are custom types that facilitate the definition of scalars (Float, Uint, etc.)

Figure 1 shows in lines 1-4 a simple HPL kernel that computes b=2×a. In line 3, each thread

(identified by idx) takes the element of the position idx of Array a and computes the value

of the element of the same position of Array b. HPL provides several predefined variables that

contain basic information about the kernel execution. For example, idx, idy and idz uniquely

identify each thread within the global domain. As we can see in this particular case, the differences

of a HPL kernel with a regular C function are the use of the predefined variables that identify

the thread running the kernel and the HPL required datatypes. Other relevant difference is that

the control keywords share the same name of those of C but finished with an underscore: if (),

while (), for () The associated host code, in lines 6-8, declares the kernel arguments and

invokes it with syntax eval(f)(args) where f is the kernel function. Non-scalar arguments must

be declared in the host code as Arrays, while standard C/C++ scalars are directly supported. If

the user does not specify the sizes of the global and local domains, as in this case, HPL chooses

them by itself. It takes the size of the first argument of the kernel as the global domain and it lets

the system choose the best option for the local domain. The user can specify these two parameters

or the target device by means of several setter functions. For example, eval(f).device(GPU,

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

4 M. VIÑAS ET AL.

1 void simpleKernel(Array<float,1> b, Array<float,1> a)

2 {
3 b[idx] = 2 ∗ a[idx];

4 }
5 ...

6 Array<float,1> a(N), b(N);

7

8 const int ndevices = getDeviceNumber(GPU);

9

10 for(i = 0; i < ndevices; i++)

11 {
12 Range elems(i ∗ (N/ndevices), (i+1) ∗ (N/ndevices)−1);

13 eval(simpleKernel).device(GPU,i)(a(elems), b(elems));

14 }

Figure 2. Example on multiple GPUs using subarrays.

0).global(50).local(10)(a, b) runs kernel f with 50 threads in parallel divided in groups

of 10 threads in the GPU number 0 using the arguments a and b.

When a kernel execution starts, its inputs must be prepared in the memory of the device, and space

for the outputs must also have been allocated. Thus if an Array does not have yet a buffer allocated

in the device, HPL allocates the memory space for it before starting the execution. Otherwise, HPL

will reuse the buffer previously allocated. Moreover, HPL also analyzes the accesses to the Arrays

in the kernels to know whether they are read and/or written. This allows HPL to know where is the

most up-to-date copy of an array, and to perform the necessary data transfers so that both the host

and the kernels always work with the most up-to-date version of every piece of data. These transfers

are automatically done without any user intervention and they only happen on demand, this is,

when an array is read in a memory space where no previous copy exists or that copy is outdated.

This feature makes the host codes of HPL programs clean and concise while highly efficient.

2.2. Multi-device applications: Subarrays and Subkernels

When the main program of an HPL application launches a kernel, it continues its execution in

parallel with the execution of the kernel in the device. This allows HPL to launch multiple kernels

that can execute in parallel in different devices [25]. Coherency is maintained, as if during its

execution the host program, or the execution of a new kernel in a device, requires the contents of an

Array, HPL checks whether the associated memory has an updated copy according to sequential

consistency. If this is not the case, the host program creates or updates that copy with the most recent

version, which could imply a wait period if the Array is written by a kernel in execution or whose

execution is pending.

The initial proposal for multi-device programming under HPL presented in [25] required the use

of full Arrays as unit of transfer and coherency, which does not adapt well to the semantics of most

applications. For this reason, three new approaches that allow to create subarrays were presented

in [26], breaking the Array as coherency and transfer unit, and further simplifying the development

of applications that exploit multiple accelerators. We now describe the two simplest approaches.

2.2.1. Explicit subarrays: HPL allows the definition of regions inside Arrays, which are also

called subarrays. These subarrays, as their container or parent arrays, are transfer units and share

the same memory coherence mechanism, so that the changes made on a subarray are automatically

reflected in the container array. Subarrays are created by selecting the region of the parent Array

they are associated to. This is achieved by indexing this array with ranges of memory positions using

the notation Range(a,b), which is associated to the range [a, b]. Figure 2 depicts a multi-device

implementation of the example program in Figure 1. As in the single device case, lines 1-4 declare

the kernel code. Multi-device execution is driven by the loop of line 10. First, in line 12, we define

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 5

the range of elements of the arrays that will be processed in each device. Finally, in line 13 the

kernel is launched on each GPU found with the corresponding subarrays.

Subarrays can be also used to copy portions of an Array using the assignment operator.

Assignments are allowed between subarrays with the same size or from scalars, which provokes

the replication of that scalar in each element of the target subarray.

2.2.2. Subkernels based on annotations: In the previous example, the i-th device works with the

i-th subarrays of each Array, each array having been partitioned in as many subarrays as devices

are involved in the computation and following a regular distribution. This scheme is followed by a

large number of applications. For this reason, HPL provides support for it by means of annotations

that specify how to partition the arrays. Once the user provides this information, HPL takes care

of the partitioning, the transfers and the related coherency issues. The annotations take the form of

modifiers that are applied to each array argument of a kernel in order to indicate how to partition it

for that kernel. For example, the modifiers PART1, PART2 and PART3 specify that an Array has

to be divided by its first, second or third dimension, respectively. Each one of the devices involved

in the execution receives one of these pieces. The non annotated Arrays are replicated in all the

devices. This approach allows to write eval(simpleKernel)(PART1(a), PART1(b)) for our

example code, so that arrays a and b are divided among all the devices found. This is the most

concise way to launch multi-device applications in HPL as in fact, the only change with respect to

the single device application is the PART1 modifier.

Let us notice that the annotations just described cannot be used in stencil computations because

they split the kernel in disjunct chunks of data, without overlapping. This restriction was removed

by extending the annotations to allow overlapping between the subarrays generated. Namely, the

annotations support the syntax ANNOTATION(a,n) where a is the Array to split and n is the

number of elements of overlapping in each direction in the selected dimension. If the user needs to

specify a different number of overlapped elements per dimension, she can specify them separately

with ANNOTATION(a,x,y), where x is the number of elements of the current chunk of data

overlapped with the previous chunk (lower memory positions) and y defines the overlapped region

with the following chunk (upper memory positions). This notation allows users to define stencil

applications concisely and reducing the possibility of incurring in common errors in these kind of

codes.

3. STENCIL COMPUTATIONS IN MULTI-DEVICE ENVIRONMENTS

Stencil computations in heterogeneous systems bring a new challenge for programmers due to the

management of the special memories that these devices offer. In addition, in multi-device systems

there is the extra complication of the management of the ghost regions. These regions, which

replicate the border of the portion of an array involved in a stencil computation that is assigned

to another device, are needed for two reasons. The first one is that in these codes the computation of

each value of the output array requires accessing a neighborhood around it in its input array, which

implies using data assigned to another device when we are working in the borders of the subarray

assigned to each device. The second reason is that most accelerators have disjunct memories, and

thus the data assigned to a computing device can only be used in another accelerator if we make

a copy of it in the memory of that device. Also, since stencil computations typically happen in

repetitive loops that continuously modify the values of the arrays involved, these copies must be

constantly refreshed with the most up to date value computed in the owner device. Although there

are proposals in the bibliography that target the two problems mentioned, we will show that our

solution is the one that couples the larger generality and flexibility with the best performance. In

the remaining of this section we will first illustrate the complexity of these codes, even using a

high level approach such as HPL, which largely facilitates their implementation with respect to

lower level frameworks such as OpenCL, and we will then present our proposals to deal with these

problems.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

6 M. VIÑAS ET AL.

1 void simpleKernel(Array<float,1> input, Array<float,1> accum, Int nelems)

2 { Array<float, 1, Local> tmp(64 + 2);

3 if (idx < nelems) {
4 tmp[lidx + 1] = input(idx);

5 if (!lidx) {
6 tmp[0] = where(idx, input[idx − 1], 0.f);

7 tmp[65] = where(idx + 64 < nelems, input[idx + 64], 0.f);

8 }
9 accum[idx] = tmp[lidx − 1] + tmp[lidx] + tmp[lidx + 1];

10 }
11 }
12 void update(Array<float,1> accum, Array<float,1> array)

13 {
14 array[idx] = accum[idx];

15 }
16 ...

17 Array<float,1> input(N), accum(N);

18 ...

19 for(i = 0; i < 10; i++)

20 {
21 eval(simpleKernel).local(64)(input, accum, N);

22 eval(update)(accum, input);

23 }

Figure 3. HPL stencil example code for a single device.

3.1. Motivating example : A stencil written with HPL

We will use as running example a simple stencil computation that can be implemented in a single

device using HPL as Figure 3 shows. This code computes in each iteration of the loop at line 19

the expression input[idx] = input[idx-1] + input[idx] + input[idx+1] by means

of two kernels: simpleKernel, which computes the accumulation in the temporary array accum

and update, which stores it into input. This code verifies the condition of stencil because it is a

1-D problem where the value of input[idx] depends on input[idx] and its neighborhood. This

is a single-device version, where only one device does all the work and therefore there are no ghost

regions. Despite this simplicity, the fact that the kernel tries to optimize the memory accesses by

exploiting the local memory of the GPU and that we must correctly handle the computations in the

borders of the array complicate the implementation. Namely, the kernel uses a temporary storage

in the local memory called tmp which can store 64 floats, one for each thread in the group (notice

the size is defined in the invocation of the kernel in line 21), plus the neighbors needed at the left

of the first element and the right of the last one. This storage is usually accessed using the local

index of each work-item within its work-group, provided by the predefined variable lidx. In line 5,

the local thread 0 branches to take care of the loading of these neighbors in lines 6 and 7. These

statements use the HPL function where(a,b,c) that represents the C expression a ? b : c, so

that either the neighbors, or the border conditions are loaded. In this example we have assumed

that a fixed value of 0 must be used for the borders. As the number of dimensions of the problem

and/or the size of the stencil grows, the complexity of the manipulation of the local memory and

the boundary conditions also increases. Similarly, the execution of the kernel using multiple devices

further complicates the implementation of the kernel. For instance, in our example the element at

the left of thread 0 would be a boundary condition in the device 0, but it would be a ghost region

that replicates the last element owned by device i for all the devices i > 0. In addition, these multi-

device executions require a non trivial mechanism of memory management due to the ghost regions.

To understand the details of this mechanism, a multi-device version of the example in Figure 3 is

presented in Figure 4.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 7

1 int obtain subarrays sizes(std::vector<int>& s s, std::vector<int>& s e, const int ndevices)

2 {
3 int accum work, current work;

4 accum work = 0;

5 const int last = ndevices−1;

6 const float work = 1.0f / ndevices;

7 for(int j = 0; j < ndevices; j++)

8 {
9 if(j == last)

10 current work = N − accum work;

11 else

12 current work = N ∗ work;

13

14 int r begin = accum work − (j!=0);

15 int r end = accum work + (current work + (j!=(last))) −1;

16 s s.push back(r begin);

17 s e.push back(r end);

18 accum work += current work;

19 }
20 }
21 ...

22 Array<float,1> input(N), accum(N);

23 vector<int> s s; // Subarray start points

24 vector<int> s e; // Subarray end points

25 const int ndevices = getDeviceNumber(GPU);

26 obtain subarrays sizes(s s, s e, ndevices);

27 ...

28 for(i = 0; i < 10; i++)

29 {
30 for(int j = 0; j < ndevices; j++)

31 eval(simpleKernel).device(GPU, j).local(64)(input(Range(s s[j],s e[j])), accum(Range(s s[j],s e[j])), s s[j]−
s e[j]+1);

32

33 for(int j = 0; j < ndevices; j++)

34 eval(update).device(GPU, j)(accum(Range(s s[j],s e[j])), input(Range(s s[j],s e[j])));

35

36 for(int j = 1; j < ndevices; j++)

37 {
38 input(Range(s s[j],s e[j]))(Range(0)) = input(Range(s s[j−1],s e[j−1]))(Range(s e[j−1]−s s[j−1]−1));

39 input(Range(s s[j−1],s e[j−1]))(Range(s e[j−1]−s s[j−1])) = input(Range(s s[j],s e[j]))(Range(1));

40 }
41 }

Figure 4. HPL stencil example in multi-device using subarrays.

The code exploits the advantage that HPL allows the definition of overlapped subarrays [26], that

is, subarrays with shared parts of their memory spaces. When the subarrays are updated in different

devices, their shared parts are called ghost regions and they must be synchronized to guarantee

that the most up-to-date values are available in each device when they are needed. In our example,

this involves manually updating the ghost regions of input in each iteration as lines 36-40 in

Figure 4 show. Another issue is the correct computation of the limits of each subarray needed in

any multi-device problem, which is performed in function obtain subarrays size() (lines [1-

20]). The bounds, stored in the vectors s s and s e in the code, are computed taking into account

the size of the problem and the number of devices involved, and they are used to select the correct

subarray sizes in the kernel executions in the lines 31 and 34. When these kernels finish, the ghost

regions of the input array are outdated. Lines 36-40 perform the required update by exploiting HPL

facilities such as the use of subarray assignments and nested subarrays, this is, subarrays defined

inside another subarray. For example, when j and ndevices are 1 and 2 respectively, in line 39 the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

8 M. VIÑAS ET AL.

0 1 2 3 4 3 4 5 6 7

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 33

2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 55

2

(a)

(b)
(c)

A(8)

Figure 5. Examples of ghost regions for (a) 1-D, (b) 2-D and (c) 3-D problems in a problem divided by two
devices.

2nd element of subarray input(Range(N/2-1, N-1)) is copied in the last element of subarray

input(Range(0,N/2)). This is the update of the ghost region of the GPU 0. Similarly, the update

of the ghost region of GPU 1 takes place in line 38. Once the ghost regions have been updated, a

new iteration can start. Notice that this update process becomes even more complex and error-prone

as the number of dimensions of the problem involved increases.

3.2. Automatic update of the shadow regions: syncGhosts

Ghost regions always appear in the frontiers of the subarrays. Figure 5 illustrates typical examples

of ghost regions, which are the shadowed cells, for three spaces (1-D, 2-D and 3-D). For example, in

the case 5(a), where the vector A of eight elements is distributed, the device in charge of processing

the elements [0-3] has one extra element that replicates A(4), which is updated in parallel by the

other device. The same happens in the second device with A(3). When the parallel executions of

both devices have finished, these ghost regions must be updated because they are outdated. We now

explain the details of the novel automatic mechanism to update ghost regions in HPL.

A first thing to take into account is that ghost regions are naturally generated in HPL by selecting

subarrays that overlap in their borders and which are used in computations in different devices. No

matter the subarrays are generated by means of explicit indexing, as in the example in Figure 4 or

by means of an automatic distribution of an Array using annotations, the HPL runtime keeps track

of their size and relative position within the global Array where they are defined. In addition, as

explained in [26], the HPL coherency system knows where the current and the outdated versions

of every Array are, no matter it is a subarray of another Array or not. With this information

it is possible to infer which are the ghost regions and which device owns each portion on them.

For example, in Figure 5(a) since one device would work on A(Range(0,4)) and the other one on

A(Range(3,7)), HPL would realize that A(Range(3,4)) is shared between both devices, A(3) being

actually owned by the first device and A(4) by the second one. In this case the overlapped area

has just two cells, but it could be more complex, containing elements in several dimensions when

multidimensional problems are addressed. Also, the ghost regions can have a width of more than one

element, which is achieved simply by making bigger the region shared between the subarrays or by

using a larger value for the overlapping extent when using annotations. The HPL runtime has been

enhanced to correctly identify all these situations and determine which part of each shared region

is owned by each device based on its relative position within the region. With this information,

HPL can apply its automatic update algorithm, called syncGhosts, whose pseudo-code for the one-

dimensional version is shown in Figure 6.

Several steps are performed for each ghost region of the Array. First, its size is computed in

line 3. It deserves to be mentioned that regions always have an even size, because the number of

ghost elements that each subarray has, matches with those of the neighbor in charge of their update

and vice versa. Then, the overlapped arrays are selected: the SL or lower positions subarray, and the

SU or upper positions subarray (lines 4 and 5). After this, two memory copies are done. First, in

line 6, the data of SU needed to update the ghost region in SL are transferred. Then, in line 7, the

appropriate data of SL are copied in the ghost region of SU. HPL takes into account the location of

the most up-to-date copy of these subarrays so that only the minimum number of memory copies

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 9

1 Algorithm syncGhosts(A)
input: Array with overlapped subarrays

2 foreach ghost region in A do

3 N = size(ghost region)

4 SL = ghost region.getLowerSubarray()

5 LU = ghost region.getUpperSubarray()

6 SL(Range(size(SL)−N)) = SU(Range(N/2, N)))

7 SU(Range(0, N/2)) = SL(Range(size(SL)−N/2))

8 end

Figure 6. 1-D syncGhosts algorithm.

1 int obtain subarrays sizes(std::vector<int>& s s, std::vector<int>& s e, const int ndevices)

2 {...}
3 ...

4 Array<float,1> input(N), accum(N);

5 vector<int> s s; // Subarray start points

6 vector<int> s e; // Subarray end points

7 const int ndevices = getDeviceNumber(GPU);

8 obtain subarrays sizes(s s, s e, ndevices);

9 ...

10 for(i = 0; i < 10; i++)

11 {
12 for(int j = 0; j < ndevices; j++)

13 eval(simpleKernel).device(GPU, j).local(64)(input(Range(s s[j],s e[j])), accum(Range(s s[j],

s e[j])), s s[j]−s e[j]+1);

14

15 for(int j = 0; j < ndevices; j++)

16 eval(update).device(GPU, j)(accum(Range(s s[j],s e[j])), input(Range(s s[j],s e[j])));

17

18 input.syncGhosts();

19 }

Figure 7. Example on multiple GPUs using subarrays with syncGhosts.

will be done to keep updated the ghost regions. The algorithm shown in the figure does not express

all the details for the different shapes of the ghost regions. The algorithm for 2-D and 3-D problems

is much more complex due to the introduction of one or two additional dimensions respectively. The

process is also optimized so that these memory copies do not necessarily imply a true exchange of

data between two devices. Namely, they will be done only if they are strictly necessary, i.e., only

ghost regions that are not up-to-date will be updated.

The syncGhosts algorithm is run on an Array when the user invokes the new method

syncGhosts() on it. Figure 7 shows the code of Figure 4 after replacing the manual updates with a

syncGhosts call. The obtain subarray sizes() method has the same body as in the example of

Figure 4. It deserves to be mentioned that the benefit of the syncGhosts() call is not exclusively

related to the lower number of lines of code, but also with the complexity of the computations of the

regions of data to exchange. Using the array distributing annotations, the same example of Figure 7

could be rewritten as Figure 8 shows.

Notice that coupling the use of annotations with syncGhosts(), the code related with the

definition of subarrays, such as function obtain subarrays sizes(), is no longer needed. As

we can see, the complexity related to the creation of subarrays and their exchange is largely reduced

using this new approach.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

10 M. VIÑAS ET AL.

1 Array<float,1> input(N), accum(N);

2

3 for(i = 0; i < 10; i++)

4 {
5 eval(simpleKernel).local(64)(PART1(input,1), PART1(accum,1), input1.part(1));

6 eval(update)(PART1(accum,1), PART1(input,1));

7 input.syncGhosts();

8 }

Figure 8. Example on multiple GPUs using annotations with syncGhosts.

3.3. HPL stencil templates

As discussed in Section 3.1, the implementation of stencil kernels in the kind of environment

we are considering has many complications. Some of them, such as the boundary conditions,

are in common with general purpose CPUs. Others, such as the different treatment that the

boundaries require in different devices, depending on the chunk of the computation assigned to

each device, appear also in any distributed-memory system. Finally, other issues are very particular

of heterogeneous systems such as GPUs. This is the case of the decomposition in groups of threads

that can only synchronize with the other threads in the same group or the need to manually manage

local memories of a restricted size that can only be shared by the threads within each group. The

fact that HPL offers a language embedded in C++ allows to write on top of it complex software

that exploits advanced C++ features, including not only classes and templates, but even the variadic

templates provided by C++11. By exploiting these features, we have developed a series of templates

that automate the generation of heterogeneous kernel codes, only requiring from the user basic

informations such as the nature of the boundary conditions, the size of the stencil in each direction,

and of course, the stencil computation to perform.

Figure 9 illustrates the implementation of the computational kernel of well-known Conway’s

Game of Life game, which simulates through time the evolution of the existence of life in each cell

in a matrix depending on the number of neighbors that are alive and the current status of the cell. The

user is in charge of writing a basic function in HPL that performs the computation for a single point

(lines 1-8). The first argument of this function is always an AliasArray object, which is basically

an indexable pointer to the element to process in the input. In a problem with N dimensions, this

pointer is followed by N − 1 integers that contain the displacements required to access elements

through this pointer in the N − 1 non-first dimensions (the displacement in the less significant

dimension being always obviously 1). Finally, this can be followed by arbitrary arguments needed

by the computation; in this example no extra parameters are needed. It is important to mention that

although this API must be written in HPL, parts or all of the internals can be written in OpenCL

C just by first associating the OpenCL code to an interface function as explained in [27] and then

invoking it from the HPL function using the call function, discussed in [24].

The user must also define the kernel function (line 10) so that HPL learns which are the arguments

it requires. Our new proposed HPL feature is used inside this kernel: the programmer just invokes a

suitable stencil template, for example here StencilKernel2DF for a 2D stencil that uses a fixed

constant value for its boundary conditions. All the templates are parameterized by the size of the

stencil in each dimension. In this case the stencil extends one step in the four directions. This is

followed by the list of arguments. All our templates require the input, the output, and the array

in local memory to use in the stencil, as well as a helper array with values used by the internals

of the template. In this case, because the boundary condition consists of a fixed value, it is the

next argument, here a zero. The last compulsory argument of the template is the computational

function. After this point any additional argument provided to the stencil template is considered

as as additional argument for the computational function. These arguments are provided after the

standard ones described before.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 11

1 Int life(AliasArray<int> tmp v, Int lcl row sz)

2 {
3 Int tmp = tmp v[−lcl row sz − 1] + tmp v[−lcl row sz] + tmp v[−lcl row sz + 1] +

4 tmp v[−1] + tmp v[1] +

5 tmp v[lcl row sz − 1] + tmp v[lcl row sz] + tmp v[lcl row sz + 1];

6

7 return (tmp == 3) || (tmp v[0] && (tmp == 2));

8 }
9

10 void kernel(Array<int, 2> in, Array<int, 2> out, Array<int, 2, Local> tmp, Array<int, 1> helper)

11 {
12 StencilKernel2DF<1,1,1,1>(in, out, tmp, helper, 0, life);

13 }
14

15 //Partition ’in’ by the 1st dimension on nGPUs GPUs, use a 16x16 local domain and process 4 elems/thread

16 auto s = PrepareStencilKernel2D<1,1,1,1>(in, 1, nGPUs, Domain(16, 16), 4);

17 eval(kernel).global(s.global)local(s.local)(PART1(in, 1), PART1(out, 1), s.temp, s.helper);

Figure 9. Kernel of Conway’s Game of Life based on HPL stencil templates

The helper array is initialized in the host by a HPL function that prepares and object

with information to launch and execute the kernel. The user provides to this function, called

PrepareStencilKernel2D in line 16, the extent of the stencil in each dimension, the input array,

the dimension that will be partitioned, the number of devices to use, the work-group size and the

the desired number of elements that each parallel thread will process. The function simultaneously

initializes the helper vector, which just contains a few integers with offsets and sizes to use in each

device, a temporary vector located in local memory with the appropriate size, and vectors with the

global and local domains for the kernel executions. All of them are stored in the same information

object, called s in the figure. Finally, line 17 launches to execution the stencil kernel using the

elements prepared by this function. As we see, for the user both the helper and the local memory

arrays operate as black boxes that just must be provided to the kernel and the stencil template.

4. EVALUATION

In this section we evaluate the two improvements of the HPL library proposed in this paper. Both of

them aim to improve the programmability of the stencil computations, the automatic mechanism for

updating ghost regions being only of interest in multi-device environments. Our proposals have also

the virtue of reducing the errors typically related to the management of boundary conditions, local

memory manipulation, and ghost regions. It is also important to ensure that these improvements do

not hurt the performance of applications. Therefore in this section both the performance and the

programmability impact of our extension are considered.

For these studies, we have selected five well-known benchmarks that use stencil computations.

The main characteristics of each benchmark are shown in Table I as follows. After the name,

the number of dimensions of each problem appears in the second column and the third one

defines the size of the problem tested. The last three columns are the shape of the stencil used

in each benchmark, the number of iterations needed in each execution and finally, the number of

kernels launched in each iteration/execution. Briefly, CANNY and GAUSS are two image processing

benchmarks. CANNY is an algorithm used for detecting edges in images. A simple solution consists

in four steps, one kernel per step. First, a Gaussian filter is applied to smooth the image. Then, an

edge detection operator is applied (e.g. Sobel). Third, a non-maximum suppression is performed as

an edge thinning technique. Finally, a double threshold is applied to reduce the variety of output

values. GAUSS is an image processing algorithm aimed at reducing the noise in images. Regarding

their structure, the main difference between GAUSS and CANNY, is that the former one is usually

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

12 M. VIÑAS ET AL.

Table I. Benchmark details.

Benchmark Dimensions Problem size Stencil shape Iterations Kernels

CANNY 2-D 4096×4096 5×5 1 4

GAUSS 2-D 4096×4096 11×11 1000 1

JACOBI3D 3-D 512×512×512 3×3×3 1 1

LIFE 2-D 2048×2048 3×3 5000 1

SHWA 2-D 2000×2000 3×3 100000 3

Table II. Programmability improvement without and with the syncGhosts mechanism of HPL programs
based on annotations with respect to versions based on explicit subarrays, and relative improvements due to

the use of the syncGhosts mechanism in the codes based on annotations.

HPL annotations HPL annotations HPL annotations
Benchmark with manual sync with syncGhosts with syncGhosts

vs HPL subarrays vs HPL subarrays vs HPL annotations
with manual sync with manual sync with manual sync
∆SLOC ∆PE ∆SLOC ∆PE ∆SLOC ∆PE

CANNY 18.18 23.48 67.90 93.90 60.77 92.03

GAUSS 15.63 20.40 47.66 79.01 37.96 73.63

JACOBI3D 12.28 20.79 37.72 75.42 29.00 68.97

LIFE 17.05 14.33 49.61 73.11 39.25 68.61

SHWA 20.86 34.61 23.31 46.18 3.10 17.69

performed inside a loop instead of a fixed number of steps. JACOBI3D is an algorithm that is very

used in scientific computations, as it is the simplest approach to a numerical solution of the 3-D

Laplace Equation via relaxation. LIFE is the Conway’s Game of Life, a game that simulates the

evolution of a 2-D environment. Each cell can be dead or alive and following several behavior

rules each cell changes its state during the game. Finally SHWA is a shallow water simulator with

pollutant transport presented in [28]. This iterative benchmark needs three stages/kernels to compute

the evolution of a mesh of finite volumes: in the first one, the flux variation among the elements of

the mesh is computed. Then, the global time step is computed for each iteration. Finally, the new

flux value is computed taking into account the variations computed at the first stage.

4.1. Programmability

We will first focus on the programmability advantages of the mechanism to automatically

synchronize ghost regions. HPL has proven to be a good alternative to low level approaches like

OpenCL or CUDA in terms of programmability and performance as we can see in [25, 24]. Also,

its evaluation in [26] showed that the usage of subarrays largely improved the programmability

while having a negligible impact on performance when compared to native OpenCL. Thus, the

baseline for our evaluation is an HPL implementation using subarrays written following the strategy

explained in Section 2.2.1. We use two objective metrics based on the source code to measure

the programmability of the different approaches tested, the source lines of code (SLOCs) and the

Halstead’s programming effort [10] (PE, expressed in thousands) of the host side. This latter metric

is an estimation of the cost of the development of a code taking into account the number of unique

operands, unique operators, total operands and total operators found in the code. In our opinion,

this metric is a fairer measurement than the SLOCs because the length and complexity of a SLOC

can widely vary. We measured only the host code because the feature presented does not affect the

kernels.

Table II shows the percentage reduction of SLOCs and programming effort of two HPL versions

based on annotations (Section 2.2.2) with respect to versions written using subarrays (Section 2.2.1)

and manual updates. One of the versions based on annotations performs manually the update of the

ghost regions , while the other one uses syncGhosts. Also, the last two columns show the relative

SLOC and programming effort reduction among the two codes based on annotations. These two

versions reduce significantly the programming effort (PE) with respect to the use of subarrays for

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 13

CANNY GAUSS LIFE
0

20

40

60

80

100

%
 r

e
d

u
c
ti
o

n
 o

f
c
o

m
p

le
x
it
y
 m

e
tr

ic
s

SLOCs

Programming effort

Figure 10. Programmability improvement of the computational kernels thanks to the usage of HPL stencil
templates.

all the benchmarks. The largest programmability improvement achieved by annotations without

syncGhosts takes place in SHWA, where the SLOCS and PE are reduced by 20.86% and 34.61%,

respectively. The improvements are much bigger in all the benchmarks when syncGhosts is used,

reaching its maximum values in CANNY, which requires 67.9% and 93.9% fewer SLOCS and PE

than the subarray-based HPL version, respectively. In fact, while the average PE reduction when

using annotations instead of subarrays is 22.72%, this reduction grows to 73.52% (3.2 times larger)

when syncGhosts is also used. In terms of SLOCS, the average reduction achieved is 16.8% for the

first case, and 45.24% for the second one. As the last two columns show, when the use of subarrays

is factored out of the comparison, the use of syncGhosts reduces the number of SLOCs and the

programming effort of the version based on annotations by a noticeable average of 34% and 64.2%,

respectively.

Our stencil templates have an even clearer impact on the development cost of this kind of

applications. The reason is that while HPL, even as described in its original version in [24], largely

reduced the complexity of the host-side of heterogeneous applications, this is not the case in the

computational kernels, which are either written in native OpenCL C, or in the HPL language, which

has basically a one-to-one correspondence to OpenCL C. Figure 10 shows the reduction of the

complexity metrics considered in the kernels of three of our benchmarks when they are written

using stencil templates instead of manually. JACOBI3D is not included because according to [22]

the use of local memory for 3D stencils is of little help and sometimes even counterproductive,

thus our kernel directly access the data from the global memory. Since this noticeably simplifies

the implementation of the kernel, a stencil template for it would be of little use, the programming

cost being very similar to that of the development by hand. For this reason, the kernel does not

involve any template. Regarding SHWA, although it can benefit from local memory [28], the

implementation using the generic stencil templates we developed would be less efficient than a

manual implementation, and thus the kernel used was written manually. There are two main reasons

why the stencil templates are not a good match for the stencil kernel of this problem. First, this

kernel follows a stencil pattern to access two arrays, not a single one. This problem could be solved

fusing both arrays in a single one, as they have the same shape. But this would result in decreased

performance because one of them is read-only, and is only used in this kernel, while the other one

is modified in the third kernel. Fusing them would thus result in worse locality in the third kernel

and in an increase of unnecessary data to transfer in the ghost region updates. The second reason

is that the SHWA stencil kernel has two different outputs. Again, they could be fused because

they have the same shape, but one of them is only used in the second kernel, while the other one

is only used in the third kernel of this application, so again, much locality would be lost. Also,

in both cases the memory requirements of the application would grow considerably because one

of the arrays is made of float4 vectors, while the other one is a matrix of scalar floats, thus,

due to alignment requirements, a C struct composed by both elements would require 32 bytes,

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

14 M. VIÑAS ET AL.

 CANNY GAUSS JACOBI3D LIFE SHWA
0.5

1

1.5

S
p
e
e
d
u
p
 w

.r
.t
 v

e
rs

io
n
 u

s
in

g
 s

u
b
a
rr

a
y
s

NO-SYNCGHOSTS

SYNCGHOSTS

Figure 11. Performance in the Fermi system using
both GPUs.

 CANNY GAUSS JACOBI3D LIFE SHWA
0.5

1

1.5

S
p
e
e
d
u
p
 w

.r
.t
 v

e
rs

io
n
 u

s
in

g
 s

u
b
a
rr

a
y
s

NO-SYNCGHOSTS

SYNCGHOSTS

Figure 12. Performance in the K20 system using two
GPUs.

compared to the 20 bytes of the separate implementation, thus requiring a 60% larger footprint. It is

interesting to notice that the fact that HPL supports the use of arbitrary manual kernels, allows users

to attain the best performance while enjoying the programmability benefits of the automatic ghost

region synchronization just evaluated. Nevertheless, solutions based on skeletons [6, 21] enforce

the assumption of a single stencil input and a single stencil output, with the negative consequences

just described. As we can see in Figure 10, in those situations in which our stencil templates are

applicable, there is a drastic reduction in the complexity of the implementation of the kernel. The

reason for the slightly smaller reduction in CANNY is that its fourth kernel is not actually an stencil,

but a map operation, and thus this enhancement is not applicable to it.

4.2. Performance of the automatic ghost synchronization

The performance evaluation took place in two systems called Fermi and K20. Fermi has an Intel

Xeon X5650 CPU with 6-core and 12 GB of memory. Additionally, it has two GPUs Nvidia M2050

with 3 GB of memory. K20 has two 8-core Intel E5-2660 with 64 GB of memory connected to

3 GPUs NVIDIA K20m with 5 GB per GPU. The compiler used to obtain our measurements is

g++-4.7.2 with optimization level -O3. The size of the input problem chosen for each benchmark

is reflected in the third column of Table I. Regarding performance, another relevant parameter to

take into account in this kind of applications is the shape of the stencil used in each case (fourth

column). Finally, the fifth column includes the number of iterations of each benchmark. In summary,

CANNY and GAUSS need 4096× 4096 pixels image as input. CANNY uses a stencil shape’s extent

of 2 in each direction and GAUSS a stencil with 5 elements in each direction and 1024 iterations.

A 3-D matrix of 512 elements per dimension was used in JACOBI3D. A 2048× 2048 mesh and

5000 iterations is the configuration of LIFE, while SHWA performed simulations of a mesh of

2000× 2000 cells. In these three last benchmarks the extent of the stencil shape was of one element

in each direction.

Figures 11 and 12 show the speedup of the HPL versions based on annotations with respect to

the subarray versions based on manual updates when two devices are used in our Fermi and K20

platforms, respectively. As we expected, the syncGhosts mechanism does not add any overhead to

the manual mechanism. In fact, the performance differences among the three versions do not reach

1% for any benchmark in both systems.

In order to demonstrate that the good performance obtained is independent of the number of

devices, the same benchmarks were run using the three devices available in our K20 system. It is

remarkable that in this configuration, there is a device that exchanges ghost regions with the other

two. Figure 13 shows the speedup of the two versions based on annotations that update the ghost

regions manually (no-syncGhosts) and automatically (syncGhosts) with respect to our baseline HPL

version based on subarrays and manual updates in this environment. The differences among the three

versions are again minimal, as the maximum performance difference observed between any two

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 15

 CANNY GAUSS JACOBI3D LIFE SHWA
0.5

1

1.5

S
p
e
e
d
u
p
 w

.r
.t
 v

e
rs

io
n
 u

s
in

g
 s

u
b
a
rr

a
y
s

NO-SYNCGHOSTS

SYNCGHOSTS

Figure 13. Performance improvement using 3 GPUs in the K20 system.

versions of the same benchmark is below 2%. These results indicate that our syncGhosts mechanism

does not cause any meaningful performance penalty in comparison with manual versions.

4.3. Performance of the stencil templates

Our stencil templates efficiently generate the code of the kernel using the HPL runtime code

generation properties, which have proved to have a negligible impact on performance [24]. Indeed,

we have observed exactly the same performance in the code generated by our templates and the

versions we wrote for comparison purposes by hand, which is not surprising since they follow

the same strategy. Therefore this section compares the quality of the code of our stencil templates

with the code generated by the tool with the most similar properties, which is SkelCL [21], a

family of skeletons for OpenCL that includes two skeletons related to stencil computations. One of

them, MapOverlap, which is also present in the SkePU library [6], generates partially overlapping

subarrays in the heterogeneous devices, i.e., with overlapped regions, but it offers no mechanisms to

keep them updated other than rebuilding the whole array in the host side and redistributing it again.

As a result it is not suitable for iterative stencils. The second skeleton, called Stencil, offers automatic

ghost region updates, although only for stencils that are executed in sequence or repetitively.

Although this is much better than MapOverlap, it is still far from the capabilities of HPL. For

example, in SHWA the iterative process involves a stencil computation (kernel 1), followed by a

global reduction (kernel 2), and a map operation (kernel 3), the ghost region update being required

after this third kernel. Therefore it is impossible to efficiently implement this sequence using the

Stencil skeleton in [21]. Regarding the kernel used in the heterogeneous devices, both skeletons

automatically generate it from a function that describes the computation for each point of the domain

and a description of the properties of the stencil such as the extent in each dimension or the boundary

conditions. Their approach is thus very similar to that of our stencil templates.

Since MapOverlap cannot be competitive in iterative stencils, we have compared in Figure 14

our proposal with the SkelCL Stencil skeleton using the benchmarks that consist of a single stencil

kernel. Notice that even if we had written JACOBI3D with our stencil templates, we could not have

included it in this comparison because it cannot be implemented with SkelCL. The reason is that

it does not support arrays of 3 dimensions, and even if we used a flattened representation to try to

avoid this limitation, the stencil kernels built by SkelCL and the indexing functions the user must use

in her custom computational function only consider 2 dimensions. The two problems used have a

very different nature, as GAUSS is based on single-precision floating point operations, has a stencil

size of 11, and it requires a mask array that is used in the processing of each input pixel, while LIFE

has only integer operations, a stencil extent of just one element, and no additional inputs besides

the universe to simulate. We can see that HPL achieves speedups between 6.1 and 19.7 with respect

to SkelCL. The figure classifies this speedup in three regions. The first one, labeled basic speedup,

is achieved by putting each parallel thread of the kernel in charge of the computation of a single

point of the domain, and in the case of GAUSS, locating the mask array used in the computations

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

16 M. VIÑAS ET AL.

G
au

ss
 1

 F
er

m
i

Li
fe

 1
 F

er
m

i

G
au

ss
 2

 F
er

m
i

Li
fe

 2
 F

er
m

i

G
au

ss
 1

 K
20

Li
fe

 1
 K

20

G
au

ss
 2

 K
20

Li
fe

 2
 K

20

G
au

ss
 3

 K
20

Li
fe

 3
 K

20
0

5

10

15

20

s
p
e
e
d
u
p
 o

f
H

P
L
 w

.r
.t
 S

k
e
lC

L basic speedup

n elems/work-item

constant memory

Figure 14. Performance comparison between HPL and SkelCL stencil kernels.

in global memory. Our stencil template, contrary to the stencil kernels of SkelCL and SkePU, also

supports the calculation of multiple points of the domain by the same thread. We can see that this

provides a small performance benefit for GAUSS, although only in the Fermi GPUs. Nevertheless,

it is responsible for most of the speedup of LIFE in the Fermi GPUs and an important portion of

it in the K20 units. Finally, we also experienced with declaring the mask used by GAUSS in the

GPU constant memory, something that again neither SkelCL nor SkePU support as of today. While

this had no impact in the executions in the Fermi GPUs, it was beneficial for the executions in the

K20 GPUs. Regarding the huge performance difference between the HPL stencil template kernels

and the SkelCL Stencil skeleton, an analysis of the latter revealed that the problem is concentrated

in the OpenCL kernel built by the skeleton. Besides losing optimization opportunities such as the

ones discussed before, the SkelCL kernel entrusts the filling of the local memory to a single row

of threads of each bidimensional group of threads. This is in contrast with our implementation, in

which this process involved all the threads in the group.

4.4. Ghost Cell Expansion

One of the most common techniques applied to applications with stencil computations in distributed

memory systems is known as Ghost Cell Expansion [4]. In those systems, ghost region updates

are done at the process level and they involve message passing among processes. These messages

typically reduce the performance of the application. The ghost cell expansion (GCE) technique

reduces their impact by decreasing their frequency. This is achieved using larger ghost regions so

that more iterations can be performed without requiring an update, as the size of the updated region

shrinks in each iteration. The price to pay is that each update is more expensive, as it involves a

wider ghost region. For this reason the best performance is typically found with an intermediate

ghost region width that balances the number of updates and their weight.

The GCE technique can be also used in multi-device systems since they are a kind of distributed

memory systems. Using this technique in multi-device systems, the user performs less but heavier

memory copies between devices. For example, in a 2-D problem with a ghost region of one row,

each device needs to update its ghost region every iteration. With two rows per region, in the first

iteration, one of the ghost rows can be updated avoiding its update in that iteration. In general, with

N rows per ghost region, the ghost rows that will be read in the next iteration can be updated N-1

times without perform any memory copy between devices. The implementation of this technique

in HPL using annotations is straightforward thanks to the freedom that the user has to locate the

syncGhosts calls where it is necessary, either once per iteration or each N iterations.

The syncGhosts algorithm and the notation introduced in this paper largely simplify the

application of GCE in heterogeneous applications involving several devices. For this reason, we

tested its application to our set of benchmarks using our notation, the results for two GPUs in the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 17

2 4 8 16 32 64 128

GCE size

-30

-20

-10

0

10

20

30

 %
 R

e
d
u
c
ti
o
n
 e

x
e
c
.
ti
m

e
 w

.r
.t
 s

y
n
c
G

h
o
s
ts

GAUSS

JACOBI3D

LIFE

SHWA

Figure 15. Performance of syncGhosts versions
varying the ghost region sizes and using two GPUs

in K20 system.

K20 systems being shown in Figure 15. Notice that CANNY is not included because it does not

have an iterative nature, and thus GCE is not appropriate for it. The y axis indicates the percentage

of reduction of the execution time of the syncGhosts version using ghost regions of different sizes

with respect to the syncGhosts version with a ghost region of only one row. The x axis specifies the

extra width of each ghost region. With ghost regions of width 2, the syncGhosts call is located every

2 iterations; with width 4, every 4 iterations, and so on.

GCE is beneficial for all the benchmarks but JACOBI3D. The reason is that this is a 3-D problem,

and thus the increase of the width of the ghost region in one unit involves adding a whole slice (in

this case of 512× 512 elements) to the region. In this situation the exchange of regions becomes too

expensive to compensate for the reduced update frequency. All the other benchmarks show some

degree of improvement for moderate amounts of GCE, ranking from a small 1% improvement of

SHWA for 8 elements to a worthy 13% for LIFE with 16 elements, in both cases each element

implying a row of the underlying array. The effect of GCE on the different benchmarks is quite

different because it depends on many parameters such as the increase of the ghost region size in

bytes it implies (not only because of the number of elements, but also because of the number of

bytes required to represent each element), the computational cost associated to the larger ghost

regions, whether there is a need to synchronize the devices because of other kernels used in the

application, etc.

As we can see, GCE can often improve the performance of stencil multi-device codes, and our

notation makes it very easy to implement it and experiment with its width. For example, using

annotations it is just enough to increase the extent of the overlapped region, by changing a single

number, and to reduce the frequency of invocations to the syncGhosts method just by adding an

appropriate conditional.

Overall, the good results achieved by our solution both in terms of performance, this is, the

absence of overhead, and programmability, turn HPL into an excellent tool for the development

of stencil codes.

5. RELATED WORK

A first source of related work has to do with the efforts to support ghost regions in traditional

distributed memory systems. Some approaches managed to totally hide their existence [13, 2],

although at the risk of failing to provide good performance or asking too much from the existing

compiler technology. For this reason, most proposals have required some indications from the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

18 M. VIÑAS ET AL.

user, either by asking to partition the computation [20, 1], or by associating the ghost regions to

(semi)automatically managed data structures rather than to regions of code [19, 16, 9, 15].

There has been much research aimed at improving the programmability of heterogeneous

systems. Some of these efforts, like ours, are specifically targeted to stencil codes, given the

difficulties for their development, particularly when multiple heterogeneous devices are used. In

particular, HLSF [5] provides a high-level interface for describing stencils hiding the low level

details on single-device systems. It is built on top of CUDA so that only CUDA-capable devices

are supported. PARTANS [14] automatically optimizes the distribution of data taking into account

both the problem and the device characteristics. It presents an interface consisting of two main

classes, Volume and Stencil, which define the elements of a grid and the operation to do with each

one of them, respectively. PARTANS is more focused on auto-tuning stencil applications than on

improving their programmability, which is the main goal of HPL. PATUS [3] is an auto-tuner of

stencil applications in the same fashion as PARTANS but while it allows the user to define stencils

and strategies to parallelize and optimize them, it only supports single-device environment based on

either CPUs by means of OpenMP, or CUDA-capable devices.

The programming of stencils on single or multiple accelerators can also be facilitated by

skeletons [6, 21]. An important limitation of approaches based on skeletons is that they can

only be applied to applications in which all the kernels have computational patterns that can be

accommodated to one of the available skeletons. Also, although sometimes applications can be

modified to match these specific patterns, this can result in important performance costs and/or

the requirement of many more resources, as we explained in Section 4.1. In contrast, HPL is a

completely general solution. Many other restrictions of the stencil skeletons provided by these

libraries compared to HPL were already discussed in Section 4.3.

Another limitation of multi-device solutions like [6, 14, 21] is that they do not allow to separate

the kernel launch from the synchronization of the ghost regions. This prevents users from delaying

the synchronization, thus making it impossible to take advantage of the gap between the kernel

execution and the synchronization in order to let the host to do useful work in the meantime. With

HPL users can freely locate useful work between the kernel execution and the swapping of the ghost

regions. This is a very interesting option when GCE is applied because the kernels are even heavier

because of the recomputed cells.

The parallelization of heterogenous computations on multiple devices, including support for

stencils, has also been explored by approaches based on compiler directives [23, 29]. However, as

discussed in [29], the lack of certain directives often makes the exploitation of multiple accelerators

under this paradigm challenging for programmers. However, the main concern with this strategy

is that compiler-based approaches strongly depend on the quality of the compiler, often lacking

a reasonable performance model and, worse, strongly underperforming with respect to other

alternatives due to missing optimization opportunities [8].

Finally, HPL has the unique feature with respect to all the preceding works that its kernels can be

written in a language embedded in C++. This allows to exploit runtime code generation under the

control of the programmer and thus to dynamically adapt and optimize the kernel codes for different

platforms and inputs, which can enable large performance improvements [7].

6. CONCLUSIONS

The Heterogeneous Programming Library (HPL) has proven to be an interesting choice to reduce

the effort of developing heterogeneous applications without incurring in meaningful performance

penalties. In this paper we have extended HPL to improve the programmability of stencil

applications both in single and multi-device environments. Our first proposal takes into account

that the complexity of these codes increases when several devices are used because of the

tasks associated to the data distribution and the synchronization of the ghost regions. Thus, the

simplification and automation of these tasks becomes a very attractive option.

The new mechanism, called syncGhosts has been evaluated with five very different applications,

showing that it largely reduces the programming effort without increasing the execution time. For

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

FACILITATING THE DEVELOPMENT OF STENCIL APPLICATIONS . . . 19

example, while the use of HPL annotations to express stencil multi-device applications reduces on

average the programming effort on 22.72% with respect to the usage of HPL subarrays, this average

reduction grows up to 73.52% when the syncGhosts mechanism described in this paper is also used.

The peak reduction, which is 93.9%, is achieved in CANNY, an application with four stencil kernels.

Something similar can be said about the lines of code.

The experiments also show that the performance overhead introduced by the new syncGhosts

feature is negligible. Concretely using two devices, the performance differences are always below

1% and using three GPUs, in which more memory transfers are needed to maintain the coherence

of the arrays, they peak below 2% thanks to the underlying careful implementation.

We have also proposed HPL stencil templates as a mechanism to simplify the development of

high-performance stencil kernels. Our templates try to extract the best performance from current

heterogeneous systems by properly exploiting both the memory system and the parallelism they

provide, and by enabling potentially important optimizations such as the processing of multiple

elements per parallel thread. Their use reduced between 62% and 86% the complexity metrics of

the kernels of the applications to which we applied them. As for performance, in our test they

generated codes with a performance identical to the ones developed by hand and between 6.1 and

19.7 times faster than those generated by the most similar tool we found in the bibliography.

In addition, we applied the ghost cell expansion (GCE) technique in HPL obtaining interesting

results. Namely, with almost no programmability costs we improved the performance of multi-

device executions using ghost regions of different sizes. In particular, we achieved reductions of up

to 13% of the execution time in one benchmark, using ghost regions of 16 rows in comparison to

the same benchmark with ghost regions of a single row.

Acknowledgements

This research was supported by the Ministry of Economy and Competitiveness of Spain and FEDER

funds (80%) of the EU (Project TIN2016-75845-P).

REFERENCES

1. V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High Performance Fortran compilation techniques for parallelizing
scientific codes. In IEEE/ACM Conf. on Supercomputing (SC’98), page 11, 1998.

2. B. L. Chamberlain, S. Choi, E. Lewis, C. Lin, S. Snyder, and W. Weathersby. The case for high level parallel
programming in ZPL. IEEE Computational Science and Engineering, 5(3):76–86, July–September 1998.

3. M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation and Autotuning Framework for Parallel
Iterative Stencil Computations on Modern Microarchitectures. In Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, pages 676–687, May 2011.

4. C. Ding and Y. He. A ghost cell expansion method for reducing communications in solving PDE problems. In
Proc. Supercomputing 2001, SC 2001, pages 50–50, 2001.

5. F. Dütsch, K. Djelassi, M. Haidl, and S. Gorlatch. HLSF: A High-Level; C++-Based Framework for Stencil
Computations on Accelerators. In Proceedings of the Second Workshop on Optimizing Stencil Computations,
WOSC ’14, pages 41–4, New York, NY, USA, 2014. ACM.

6. J. Enmyren and C.W. Kessler. SkePU: a multi-backend skeleton programming library for multi-GPU systems. In
Proc. 4th intl. workshop on High-level parallel programming and applications, HLPP ’10, pages 5–14, 2010.

7. J. F. Fabeiro, D. Andrade, and B. B. Fraguela. Writing a performance-portable matrix multiplication. Parallel
Computing, 52:65–77, 2016.

8. S. Ghike, R. Gran, M. J. Garzarán, and D. Padua. Directive-based compilers for GPUs. In 27th Intl. Workshop on
Languages and Compilers for Parallel Computing (LCPC 2014), pages 19–35, 2014.

9. J. Guo, G. Bikshandi, B. B. Fraguela, and D. Padua. Writing productive stencil codes with overlapped tiling.
Concurrency and Computation: Practice and Experience, 21(1):25–39, 2009.

10. M. H. Halstead. Elements of Software Science. Elsevier, 1977.
11. T.D. Han and T.S. Abdelrahman. hiCUDA: High-level GPGPU programming. IEEE Trans. on Parallel and

Distributed Systems, 22:78–90, 2011.
12. Khronos OpenCL Working Group. The OpenCL Specification. Version 2.0, Nov 2013.
13. C. Koelbel and P. Mehrotra. An overview of High Performance Fortran. SIGPLAN Fortran Forum, 11(4):9–16,

1992.
14. T. Lutz, C. Fensch, and M. Cole. PARTANS: An Autotuning Framework for Stencil Computation on multi-GPU

Systems. ACM Trans. Archit. Code Optim., 9(4):59:1–59:24, January 2013.
15. J. Milthorpe, D. Grove, B. Herta, and O. Tardieu. Exploring the APGAS programming model using the LULESH

proxy application. Technical Report RC25555, IBM Research Technical Reports, 2015.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

20 M. VIÑAS ET AL.

16. J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà. Advances, applications and
performance of the global arrays shared memory programming toolkit. Intl. J. of High Performance Computing
Applications, 20(2):203–231, 2006.

17. Nvidia. CUDA Compute Unified Device Architecture. Nvidia, 2008.
18. OpenACC-Standard.org. The OpenACC Application Programming Interface Version 2.0a, Aug 2013.
19. J. V. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S. Banerjee, W. F. Humphrey, S. R. Karmesin,

K. Keahey, M. Srikant, and M. D. Tholburn. POOMA: A framework for scientific simulations of parallel
architectures. In Parallel Programming in C++, pages 547–588. MIT Press, 1996.

20. Aaron Sawdey and Matthew O’Keefe. Program analysis of overlap area usage in self-similar parallel programs. In
10th Intl. Workshop on Languages and Compilers for Parallel Computing (LCPC’97), pages 79–93, Aug 1997.

21. M. Steuwer, M. Haidl, S. Breuer, and S. Gorlatch. High-level programming of stencil computations on multi-GPU
systems using the SkelCL library. Parallel Processing Letters, 24(3), 2014.

22. H. Su, N. Wu, M. Wen, C. Zhang, and X. Cai. On the GPU performance of 3D stencil computations implemented
in OpenCL. In 28th Intl. Supercomputing Conference (ISC 21013), pages 125–135, 2013.

23. R. Veldema, T. Blaß, and M. Philippsen. Enabling multiple accelerator acceleration for java/openmp. In 3rd
USENIX Workshop on Hot Topics in Parallelism (HotPar’11), 2011.

24. M. Viñas, Z. Bozkus, and B. B. Fraguela. Exploiting heterogeneous parallelism with the Heterogeneous
Programming Library. J. of Parallel and Distributed Computing, 73(12):1627–1638, December 2013.

25. M. Viñas, Z. Bozkus, B. B. Fraguela, D. Andrade, and R. Doallo. Developing adaptive multi-device applications
with the Heterogeneous Programming Library. The Journal of Supercomputing, 71(6):2204–2220, 2015.

26. M. Viñas, B. B. Fraguela, D. Andrade, and R. Doallo. High productivity multi-device exploitation with the
Heterogeneous Programming Library. J. of Parallel and Distributed Computing, 101:51–68, march 2017.

27. M. Viñas, B. B. Fraguela, Z. Bozkus, and D. Andrade. Improving OpenCL programmability with the
Heterogeneous Programming Library. In Proc. Intl. Conf. on Computational Science (ICCS 2015), pages 110–
119. Elsevier, 2015.

28. M. Viñas, J. Lobeiras, B. B. Fraguela, M. Arenaz, M. Amor, J. A. Garcı́a, M. J. Castro, and R. Doallo. A multi-GPU
shallow-water simulation with transport of contaminants. Concurrency and Computation: Practice and Experience,
25(8):1153–1169, June 2013.

29. R. Xu, X. Tian, S. Chandrasekaran, and B. M. Chapman. Multi-GPU support on single node using directive-based
programming model. Scientific Programming, 2015:621730:1–621730:15, 2015.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe.4152

	1 Introduction
	2 The Heterogeneous Programming Library
	2.1 Basics of HPL
	2.2 Multi-device applications: Subarrays and Subkernels
	2.2.1 Explicit subarrays:
	2.2.2 Subkernels based on annotations:

	3 Stencil computations in multi-device environments
	3.1 Motivating example : A stencil written with HPL
	3.2 Automatic update of the shadow regions: syncGhosts
	3.3 HPL stencil templates

	4 Evaluation
	4.1 Programmability
	4.2 Performance of the automatic ghost synchronization
	4.3 Performance of the stencil templates
	4.4 Ghost Cell Expansion

	5 Related work
	6 Conclusions

