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A B S T R A C T

Clustering of multivariate time series is a central problem in data mining with applications in many fields.
Frequently, the clustering target is to identify groups of series generated by the same multivariate stochastic
process. Most of the approaches to address this problem include a prior step of dimensionality reduction
which may result in a loss of information or consider dissimilarity measures based on correlations and cross-
correlations but ignoring the serial dependence structure. We propose a novel approach to measure dissimilarity
between multivariate time series aimed at jointly capturing both cross dependence and serial dependence.
Specifically, each series is characterized by a set of matrices of estimated quantile cross-spectral densities,
where each matrix corresponds to a pair of quantile levels. Then the dissimilarity between every couple of
series is evaluated by comparing their estimated quantile cross-spectral densities, and the pairwise dissimilarity
matrix is taken as starting point to develop a partitioning around medoids algorithm. Since the quantile-
based cross-spectra capture dependence in quantiles of the joint distribution, the proposed metric has a high
capability to discriminate between high-level dependence structures. An extensive simulation study shows that
our clustering procedure outperforms a wide range of alternative methods and exhibits robustness to noise
distribution besides being computationally efficient. A real data application involving bivariate financial time
series illustrates the usefulness of the proposed approach. The procedure is also applied to cluster nonstationary
series from the UEA multivariate time series classification archive.
1. Introduction

Time series clustering is a central problem in data mining with
applications in many fields. The objective is to split a large set of unla-
belled time series realizations into homogeneous groups so that similar
series are placed together in the same group and dissimilar series are
located in different groups. This unsupervised classification process is
useful to characterize different dynamic patterns without the need to
analyse and model each single time series, which is computationally
intensive and often far from being the real target. Many methods to
cluster time series have been proposed in the literature. Comprehen-
sive overviews including current advances, future prospects, significant
references and specific application areas are provided by Aghabozorgi,
Shirkhorshidi, and Wah (2015), Fu (2011), Liao (2005) and Rani, and
Sikka (2012), and more recently in the monograph by Maharaj, D’Urso,
and Caiado (2019). However, most of the proposed approaches concern
univariate time series (UTS) while clustering of multivariate time series
(MTS) has received much less attention. Unlike UTS, MTS involve a
number of variables which must be jointly considered to characterize
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the underlying dynamic pattern. From the clustering point of view, this
is a challenging issue because a dissimilarity measure between MTS
should take into account the interdependence relationship between
variables. For example, the cross-correlation between some specific
variables might be high in some clusters but non-significant in others.
In addition, MTS are two-dimensional objects, which increases the
computational complexity, making inefficient or even infeasible some
of the clustering procedures proposed to deal with UTS. In short, high
dimensionality and complexity to assess dissimilarity make particularly
challenging the MTS clustering task.

A key point in cluster analysis is to establish the dissimilarity notion
since different dissimilarity criteria can lead to different groupings.
A proper dissimilarity measure must be based on the nature and
specific purpose of the clustering task, thus allowing to interpret the
clustering solution in terms of the grouping target. If the target is
to discriminate between geometric profiles of the time series, then a
shape-based dissimilarity criterion is suitable. In contrast, a structure-
based dissimilarity is desirable if the intention is to compare underlying
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957-4174/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2021.115677
Received 4 November 2020; Received in revised form 15 July 2021; Accepted 25 J
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

uly 2021

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:a.oriona@udc.es
mailto:oriona38@hotmail.com
mailto:jose.vilarf@udc.es
https://doi.org/10.1016/j.eswa.2021.115677
https://doi.org/10.1016/j.eswa.2021.115677
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115677&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 185 (2021) 115677Á. López-Oriona and J.A. Vilar

u
g
o
f
d
p
m
d
a
u
d
(

dependence models. In the latter case, the clustering performance may
be seriously affected by noise, heteroskedasticity, heavy tails. . . and
hence dissimilarity measures capable of capturing high level dynamic
structures are particularly helpful. Many criteria to assess dissimilarity
between UTS are available in the literature, including measures based
on raw data, extracted features, generating models, complexity levels,
and forecast performances, among others. A survey of measures can be
seen in Montero, and Vilar (2014) and many of them are implemented
in the R package TSclust (Montero, & Vilar, 2014b).

The focus of this paper is on clustering of MTS according to the
nderlying dependence structures, i.e., on identifying groups of MTS
enerated by the same multivariate stochastic process. This problem
ften arises when dealing with sets of MTS consisting of environmental,
inancial, EEG and fMRI data, which may exhibit complex serial depen-
ence structures. Due to the high dimensionality of MTS, most of the
roposed dissimilarity criteria combine a previous step regarding di-
ensionality reduction methods with the application of a feature-based
issimilarity into the new coordinate space, with lower dimension-
lity. Principal component analysis (PCA) is one of the most widely
sed reduction techniques and metrics such as Euclidean distance,
ynamic time warping (DTW) distance, or an extended Frobenius norm
so-called Eros) have been employed in different studies to measure

dissimilarity between principal components. Approaches considering
PCA and some variants such as weighted principal component analysis
(WPCA), two-dimensional principal component analysis (2dPCA), com-
mon principal component analysis (CPCA) and variable-based principal
component analysis (VPCA) were proposed by He, and Tan (2020),
Karamitopoulos, Evangelidis, and Dervos (2010), Li (2016, 2019), Sing-
hal, and Seborg (2005) and Yang, and Shahabi (2004), among others.
However, dimensionality reduction may result in a loss of information
on the structural relationships of the MTS objects, thus hindering the
detection of the underlying cluster structure. In fact, our numerical
experiments have shown that some of these procedures behave poorly
in clustering of stationary MTS models with different cross-correlation
between their components (see Section 3). Wang, Wirth, and Wang
(2007) directly consider a feature-based approach where each MTS is
replaced by a vector of statistical features extracted from its univariate
components and then a standard 𝐾-means clustering is performed. By
construction, this method ignores the interdependence structure of the
MTS data.

A more reduced number of procedures addressed the evaluation
of MTS dissimilarity without dimensionality reduction and taking into
account the dependence relationship between components. In an early
work, Kakizawa, Shumway, and Taniguchi (1998) considered the
Kullback–Leibler and Chernoff information measures as particular cases
of a general disparity measure between sample spectral matrices,
showing its robustness to departures from Gaussianity. In the time
domain, Maharaj (1999) proposed a model-based measure designed to
compare vector autoregressive parameter estimates of the series. For
each pair of series, the fitted parameter vectors are used to check the
equality of generating models and then a clustering algorithm based
on the 𝑝-values is carried out. A procedure based on finite mixture
models where the group-specific model parameters are simultaneously
estimated by using Bayesian Markov chain Monte Carlo simulation
methods was proposed by Fröhwirth-Schnatter, and Kaufmann (2008).
In D’Urso, and Maharaj (2012), the dissimilarity between a pair of
MTS is evaluated in terms of the Euclidean distance between their
corresponding representations by uni and multidimensional wavelet
features. Specifically, the maximum overlap discrete wavelet transform
of each MTS component is obtained on a number of scales and then
the wavelet variances of all components and the wavelet correlations
of all pairs of components are concatenated to construct a vector rep-
resenting the MTS. Later, D’Urso, De Giovanni, Maharaj, and Massari
(2014) introduced a weighted version of this wavelet-based dissimilar-
ity where the weights are computed by training self-organizing maps.
2

The wavelet-based approach is non-parametric, no model assumptions
are required and the relationship between components is taken into
account.

Apart from the model-based approaches, which require modelling
the time series and rely obviously on prior model requirements, the
rest of procedures considering the dependence structure of MTS are
connected to the analysis of means, correlations and cross-correlations
but they ignore the serial dependence. Indeed, these clustering proce-
dures yield good results as the series are jointly Gaussian, but they are
expected to behave poorly when the MTS under consideration exhibit
serial features related to the joint distribution of their components, such
as changes in the conditional shape, heavy tails and dependence in the
extremes (Dette, Hallin, Kley, & Volgushev, 2015; Hagemann, 2013;
Kley, Volgushev, Dette, & Hallin, 2016). For UTS clustering, this fact
was highlighted in Lafuente-Rego, and Vilar (2016), where a dissimi-
larity measure comparing estimated quantile autocovariance functions
(QAF) was introduced. Quantile autocovariances provide information
about the serial dependence structure at different pairs of quantile
levels allowing to identify dependence features that covariance-based
methods are unable to detect. The QAF metric was used with the
partitioning around medoids (PAM) algorithm (Kaufman, & Rousseeuw,
2009) and an extensive simulation study showed its high capability to
cluster UTS generated from a broad range of dependence models, par-
ticularly to discriminate between conditionally heteroskedastic models,
and its robustness to the distributional form of the errors. In a further
work, Vilar, Lafuente-Rego, and D’Urso (2018) obtained asymptotic
properties and developed a novel fuzzy 𝐶-medoids approach based on
the QAF metric.

Motivated by the good behaviour of the QAF metric in UTS cluster-
ing, the aim of this paper is to extend this principle to MTS clustering
by introducing a metric addressing jointly both cross dependence and
serial dependence. In this case, we propose to work in the frequency
domain. A small set of quantile levels is fixed and every MTS is charac-
terized by estimates of the quantile cross-spectral densities associated
with each pair of components and each pair of quantile levels (see
e.g., Baruník, & Kley, 2019). Real and imaginary parts of all these esti-
mates are concatenated in a vector and the Euclidean distance between
any two vectors provides the dissimilarity between the corresponding
MTS. Since the quantile-based cross-spectra capture dependence in
arbitrary quantiles of the joint distribution, the proposed metric is
able to discriminate between any type of dependence structures. The
proposed approach has several advantages over its counterpart in the
time domain. For instance, the former only requires specification of
the quantile levels whereas the latter also need to set the lags to be
considered. Additionally, from a theoretical point of view, consistency
and asymptotic behaviour of the utilized estimates of the quantile cross-
spectral density have been properly established in the literature under
specific conditions on the underlying multivariate process (Baruník &
Kley, 2019).

Our experimental analyses show that the proposed metric produces
excellent results in clustering of MTS using the PAM algorithm. Com-
pared to other alternative dissimilarities, our metric is clearly more
effective in scenarios involving complex dependence models and highly
competitive in conventional setups where the cross-spectral density
fully characterizes the underlying dependence. Our approach also ex-
hibits robustness to the presence of heavy-tailed noise distributions and
high computational efficiency.

The rest of the paper is organized as follows. The dissimilarity mea-
sure between MTS based on estimated quantile cross-spectral densities
is presented in Section 2. First, a precise definition of the quantile cross-
spectral density is provided, the estimation procedure is detailed and
the capability of the dissimilarity to discriminate between multivariate
processes is motivated by means of a simple example. Its behaviour
in MTS clustering is analysed in Section 3 throughout an extensive
simulation study where different clustering scenarios featured by the
kind of generating processes are considered. Effects of different distri-

butional forms for the errors and different lengths of the series are also
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examined and the results are compared with the ones obtained using
other dissimilarity measures. A time consumption comparison between
the analysed approaches is shown in Section 4. In Section 5, we apply
the proposed tool to cluster real bivariate time series belonging to the
field of Finance. Furthermore, the new clustering algorithm is tested on
some additional sets of time series from various fields extracted from
the UEA multivariate time series classification archive in Section 6.
Some concluding remarks and future work are given in Section 7. All
the simulation experiments and the real data analysis have been carried
out using self-programmed code implemented in the R language (R
Core Team, 2020), which is available upon request.

2. A novel structure-based approach for multivariate time series
clustering

Consider a set of 𝑠 multivariate time series  =
{

𝑿(1)
𝑡 ,… ,𝑿(𝑠)

𝑡

}

,

where the 𝑗-th element 𝑿(𝑗)
𝑡 =

{

𝑿(𝑗)
1 ,… ,𝑿(𝑗)

𝑇𝑗

}

is a 𝑇𝑗 -length partial
realization from any 𝑑-variate real-valued strictly stationary stochastic
process (𝑿𝑡)𝑡∈Z. We wish to perform clustering on the elements of  in
such a way that the series generated from the same stochastic process
are grouped together. We propose to use a partitional algorithm starting
from a pairwise dissimilarity matrix based on comparing estimated
quantile cross-spectral densities. In this section, the quantile cross-
spectral density notion is presented and then used to define a distance
between MTS.

2.1. The quantile cross-spectral density

Let {𝑿𝑡, 𝑡 ∈ Z} = {(𝑋𝑡,1,… , 𝑋𝑡,𝑑 ), 𝑡 ∈ Z} be a 𝑑-variate real-
valued strictly stationary stochastic process. Denote by 𝐹𝑗 the marginal
distribution function of 𝑋𝑡,𝑗 , 𝑗 = 1,… , 𝑑, and by 𝑞𝑗 (𝜏) = 𝐹−1

𝑗 (𝜏), 𝜏 ∈
[0, 1], the corresponding quantile function. Fixed 𝑙 ∈ Z and an arbitrary
ouple of quantile levels (𝜏, 𝜏′) ∈ [0, 1]2, consider the cross-covariance
f the indicator functions 𝐼

{

𝑋𝑡,𝑗1 ≤ 𝑞𝑗1 (𝜏)
}

and 𝐼
{

𝑋𝑡+𝑙,𝑗2 ≤ 𝑞𝑗2 (𝜏
′)
}

iven by

𝑗1 ,𝑗2 (𝑙, 𝜏, 𝜏
′) = Cov

(

𝐼
{

𝑋𝑡,𝑗1 ≤ 𝑞𝑗1 (𝜏)
}

, 𝐼
{

𝑋𝑡+𝑙,𝑗2 ≤ 𝑞𝑗2 (𝜏
′)
})

, (1)

for 1 ≤ 𝑗1, 𝑗2 ≤ 𝑑. Taking 𝑗1 = 𝑗2 = 𝑗, the function 𝛾𝑗,𝑗 (𝑙, 𝜏, 𝜏′), with
𝜏, 𝜏′) ∈ [0, 1]2, so-called QAF of lag 𝑙, generalizes the traditional auto-
ovariance function. While autocovariances measure linear dependence
etween different lags evaluating covariability with respect to the
verage, quantile autocovariances examine how a part of the range of
ariation of 𝑋𝑗 helps to predict whether the series will be below quan-
iles in a future time. This way, QAF entirely describes the dependence
tructure of (𝑋𝑡,𝑗 , 𝑋𝑡+𝑙,𝑗 ), enabling us to capture serial features that
tandard autocovariances cannot detect. Note that 𝛾𝑗1 ,𝑗2 (𝑙, 𝜏, 𝜏

′) always
xists since no assumptions about moments are required. Furthermore,
AF also takes advantage of the local distributional properties inher-
nt to the quantile methods, including robustness against heavy tails,
ependence in the extremes and changes in the conditional shapes
skewness, kurtosis). Motivated by these nice properties, a dissimilarity
etween UTS based on comparing estimated quantile autocovariances
ver a common range of quantiles was proposed by Lafuente-Rego and
ilar (2016) to perform UTS clustering with very satisfactory results.

In the case of the multivariate process {𝑿𝑡, 𝑡 ∈ Z}, we can consider
the 𝑑 × 𝑑 matrix

𝜞 (𝑙, 𝜏, 𝜏′) =
(

𝛾𝑗1 ,𝑗2 (𝑙, 𝜏, 𝜏
′)
)

1≤𝑗1 ,𝑗2≤𝑑
, (2)

which jointly provides information about both the cross-dependence
(when 𝑗1 ≠ 𝑗2) and the serial dependence (because the lag 𝑙 is consid-
ered). To obtain a much richer picture of the underlying dependence
structure, 𝜞 (𝑙, 𝜏, 𝜏′) can be computed over a range of prefixed values
of 𝐿 lags,  = {𝑙1,… , 𝑙𝐿}, and 𝑟 quantile levels,  = {𝜏1,… , 𝜏𝑟}, thus
having available the set of matrices

{ ′ ′ }
3

𝜞𝑿𝑡
(,  ) = 𝜞 (𝑙, 𝜏, 𝜏 ), 𝑙 ∈ , 𝜏, 𝜏 ∈  . (3)
In the same way as the spectral density is the representation in
the frequency domain of the autocovariance function, the spectral
counterpart for the cross-covariances 𝛾𝑗1 ,𝑗2 (𝑙, 𝜏, 𝜏

′) can be introduced.
Under suitable summability conditions (mixing conditions), the Fourier
transform of the cross-covariances is well-defined and the quantile
cross-spectral density is given by

f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏
′) = (1∕2𝜋)

∞
∑

𝑙=−∞
𝛾𝑗1 ,𝑗2 (𝑙, 𝜏, 𝜏

′)𝑒−𝑖𝑙𝜔, (4)

for 1 ≤ 𝑗1, 𝑗2 ≤ 𝑑, 𝜔 ∈ R and 𝜏, 𝜏′ ∈ [0, 1]. Note that f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏
′)

is complex-valued so that it can be represented in terms of its real
and imaginary parts, which will be denoted by ℜ(f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏

′)) and
ℑ(f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏

′)), respectively. The quantity ℜ(f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏
′)) is known as

quantile cospectrum of (𝑋𝑡,𝑗1 )𝑡∈Z and (𝑋𝑡,𝑗2 )𝑡∈Z, whereas the quantity -
ℑ(f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏

′)) is called quantile quadrature spectrum of (𝑋𝑡,𝑗1 )𝑡∈Z and
(𝑋𝑡,𝑗2 )𝑡∈Z.

For fixed quantile levels (𝜏, 𝜏′), the quantile cross-spectral density is
the cross-spectral density of the bivariate process

(𝐼{𝑋𝑡,𝑗1 ≤ 𝑞𝑗1 (𝜏)}, 𝐼{𝑋𝑡,𝑗2 ≤ 𝑞𝑗2 (𝜏
′)}). (5)

Therefore, the quantile cross-spectral density measures dependence
between two components of the multivariate process in different ranges
of their joint distribution and across frequencies. Proceeding as in (3),
the quantile cross-spectral density can be evaluated on a range of fre-
quencies 𝛺 and of quantile levels  for every couple of components in
order to obtain a complete representation of the process, i.e., consider
the set of matrices

f𝑿𝑡
(𝛺,  ) =

{

f(𝜔, 𝜏, 𝜏′), 𝜔 ∈ 𝛺, 𝜏, 𝜏′ ∈ 
}

, (6)

where f(𝜔, 𝜏, 𝜏′) denotes the 𝑑 × 𝑑 matrix in C

f(𝜔, 𝜏, 𝜏′) =
(

f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏
′)
)

1≤𝑗1 ,𝑗2≤𝑑
. (7)

Representing 𝑿𝑡 through f𝑿𝑡
, complete information on the general

dependence structure of the process is available. Comprehensive dis-
cussions about the nice properties of the quantile cross-spectral density
are given in Baruník and Kley (2019), Dette et al. (2015) and Lee,
and Rao (2012), including invariance to monotone transformations,
robustness and capability to detect nonlinear dependence. It is also
worth enhancing that the quantile cross-spectral density provides a
full description of all copulas of pairs of components in 𝑿𝑡, since
the difference between the copula of an arbitrary couple (𝑋𝑡,𝑗1 , 𝑋𝑡+𝑙,𝑗2 )
evaluated in (𝜏, 𝜏′) and the independence copula at (𝜏, 𝜏′) can be written
as

P
(

𝑋𝑡,𝑗1 ≤ 𝑞𝑗1 (𝜏), 𝑋𝑡+𝑙,𝑗2 ≤ 𝑞𝑗2 (𝜏
′)
)

− 𝜏𝜏′ = ∫

𝜋

−𝜋
f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏

′)𝑒𝑖𝑙𝜔 𝑑𝜔. (8)

According to the prior arguments, a dissimilarity measure between
realizations of two multivariate processes {𝑿𝑡, 𝑡 ∈ Z} and {𝒀 𝑡, 𝑡 ∈ Z},
could be established by comparing their representations in terms of the
quantile cross-spectral density matrices, f𝑿𝑡

and f𝒀 𝑡
, respectively. For

it, estimates of the quantile cross-spectral densities must be obtained.
Let

{

𝑿1,… ,𝑿𝑇
}

be a realization from the process (𝑿𝑡)𝑡∈Z so that
𝑿𝑡 = (𝑋𝑡,1,… , 𝑋𝑡,𝑑 ), 𝑡 = 1,… , 𝑇 . For arbitrary 𝑗1, 𝑗2 ∈ {1,… , 𝑑}
and (𝜏, 𝜏′) ∈ [0, 1]2, Baruník and Kley (2019) propose to estimate
f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏

′) considering a smoother of the cross-periodograms based
on the indicator functions 𝐼{𝐹𝑇 ,𝑗 (𝑋𝑡,𝑗 )}, where 𝐹𝑇 ,𝑗 (𝑥) = 𝑇 −1 ∑𝑇

𝑡=1 𝐼
{𝑋𝑡,𝑗 ≤ 𝑥} denotes the empirical distribution function of 𝑋𝑡,𝑗 . This ap-
proach extends to the multivariate case the estimator proposed by Kley
et al. (2016) in the univariate setting. More specifically, the called
rank-based copula cross-periodogram (CCR-periodogram) is defined by

𝐼 𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏′) = 1 𝑑𝑗1 (𝜔, 𝜏)𝑑𝑗2 (−𝜔, 𝜏′), (9)
𝑇 ,𝑅 2𝜋𝑇 𝑇 ,𝑅 𝑇 ,𝑅
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where

𝑑𝑗𝑇 ,𝑅(𝜔, 𝜏) =
𝑇
∑

𝑡=1
𝐼{𝐹𝑇 ,𝑗 (𝑋𝑡,𝑗 ) ≤ 𝜏}𝑒−𝑖𝜔𝑡.

he asymptotic properties of the CCR-periodogram are established in
roposition S4.1 of Baruník and Kley (2019). Likewise the standard
ross-periodogram, the CCR-periodogram is not a consistent estima-
or of f𝑗1 ,𝑗2 (𝜔, 𝜏, 𝜏

′) (Baruník & Kley, 2019). To achieve consistency,
he CCR-periodogram ordinates (evaluated on the Fourier frequen-
ies) are convolved with weighting functions 𝑊𝑇 (⋅). The smoothed
CR-periodogram takes the form

̂ 𝑗1 ,𝑗2
𝑇 ,𝑅 (𝜔, 𝜏, 𝜏′) = (2𝜋∕𝑇 )

𝑇−1
∑

𝑠=1
𝑊𝑇

(

𝜔 − 2𝜋𝑠
𝑇

)

𝐼 𝑗1 ,𝑗2𝑇 ,𝑅

( 2𝜋𝑠
𝑇

, 𝜏, 𝜏′
)

, (10)

here

𝑇 (𝑢) =
∞
∑

𝑣=−∞
(1∕ℎ𝑇 )𝑊

(

𝑢 + 2𝜋𝑣
ℎ𝑇

)

,

ith ℎ𝑇 > 0 a sequence of bandwidths such that ℎ𝑇 → 0 and 𝑇ℎ𝑇 → ∞
s 𝑇 → ∞, and 𝑊 is a real-valued, even weight function with support
−𝜋, 𝜋]. Consistency and asymptotic performance of the smoothed CCR-
eriodogram �̂�𝑗1 ,𝑗2

𝑇 ,𝑅 (𝜔, 𝜏, 𝜏′) are established in Theorem S4.1 of Baruník
nd Kley (2019).

This way, the set of complex-valued matrices f𝑿𝑡
(𝛺,  ) in (6) char-

acterizing the underlying process can be estimated by

f̂𝑿𝑡
(𝛺,  ) =

{

f̂(𝜔, 𝜏, 𝜏′), 𝜔 ∈ 𝛺, 𝜏, 𝜏′ ∈ 
}

, (11)

where f̂(𝜔, 𝜏, 𝜏′) is the matrix

f̂(𝜔, 𝜏, 𝜏′) =
(

�̂�𝑗1 ,𝑗2
𝑇 ,𝑅 (𝜔, 𝜏, 𝜏′)

)

1≤𝑗1 ,𝑗2≤𝑑
. (12)

Throughout this article, the smoothed CCR-periodograms were ob-
tained by using the R-package quantspec (Kley, 2016).

2.2. Motivating example

In order to illustrate the high capability of the quantile cross-
spectral density to distinguish between generating processes, we have
considered realizations of three different bivariate processes:
P1
(

𝑋𝑡,1
𝑋𝑡,2

)

=
(

𝜖𝑡,1
𝜖𝑡,2

)

,

P2
(

𝑋𝑡,1
𝑋𝑡,2

)

=
(

0.8 0.7
−0.4 0.6

)(

𝑋𝑡−1,1
𝑋𝑡−1,2

)

+
(

𝜖𝑡,1
𝜖𝑡,2

)

,

P3
(

𝑋𝑡,1
𝑋𝑡,2

)

=
(

0 1.5(𝑈𝑡,1 − 0.5)
1.5(𝑈𝑡,2 − 0.5) 0

)(

𝑋𝑡−1,1
𝑋𝑡−1,2

)

+
(

𝛷−1(𝑈𝑡,1)
𝛷−1(𝑈𝑡,2)

)

.

The process (𝜖𝑡,1, 𝜖𝑡,2)⊺ in P1 and P2, denoting ⊺ the transpose vector,
follows a multivariate standard normal distribution. With regards to P3,
𝑈𝑡,1 and 𝑈𝑡,2 are assumed to be independent and uniformly distributed
on [0, 1], and 𝛷−1 stands for the quantile function of the standard
normal distribution. Additionally, the error process in the three cases
is an i.i.d. vector process. Processes P1, P2 and P3 are, respectively,
a bivariate white noise process, a VAR(1) process, and a QVAR(1)
process (Baruník & Kley, 2019). Note that in both P1 and P3 the
univariate processes (𝑋𝑡,1)𝑡∈Z and (𝑋𝑡,2)𝑡∈Z are uncorrelated. However,
whereas in process P1 they are independent, this is not the case for
process P3.

After generating a large sample size (𝑇 = 20000) realization from
each one of the processes above, we have depicted estimates of both the
quantile cospectrum and the quantile quadrature spectrum of (𝑋𝑡,1)𝑡∈Z
4

and (𝑋𝑡,2)𝑡∈Z as a function of 𝜔, according to (9). The considered
quantile levels were 𝜏1 = 0.5 and 𝜏2 ∈ {0.1, 0.5, 0.9}. The corresponding
plots are given in Fig. 1.

It is clear from Fig. 1 that both the quantile cospectrum and the
quantile quadrature spectrum show a different behaviour depending on
the generating process. For instance, in the top panels (𝜏1 = 0.5 and
𝜏2 = 0.1), the red lines, which stand for the white noise process P1,
follow closely zero with deviations due to random variations, which is
expected since P1 is formed by independent components. On the other
hand, the blue and green lines show distinctive features for processes
P2 and P3, exhibiting different levels of cross-dependence across the
frequencies between the 0.5 and 0.1 quantiles of the joint distribution.
Therefore, the top panels of Fig. 1 clearly reveal that each of the
simulated time series comes from a different process, thus proving
themselves as a useful graphical aid to distinguish between realizations
of different generating processes.

A different phenomenon is observed for levels 𝜏1 = 𝜏2 = 0.5
(middle panels). Whereas the blue lines show the existence of a clear
dependence structure between components of the VAR(1) process (P2),
the green line representing the QVAR(1) process (P3) is now virtually
indistinguishable from the red line because the two components in P3
are uncorrelated. Under the normality assumption, the use of 𝜏1 =
𝜏2 = 0.5 to detect dependence is equivalent to assess the correlation
between (𝑋𝑡,1)𝑡∈Z and (𝑋𝑡,2)𝑡∈Z. Thus, when both quantile levels are
set to 0.5, the quantile cross-spectral-based quantities fail to detect
the dependence relationship in P3, which remains completely hidden.
Hence, the middle panels of Fig. 1 do not allow to deduce the existence
of three different dependence structures. As in the top panels, the lines
in both plots of the bottom panels exhibit fairly distinct behaviours,
thus unravelling the existence of three different generating processes.

To highlight the huge discriminative power of the quantile cross-
spectral density in comparison to its classical counterpart, estimates
of traditional cospectrum and quadrature spectrum for processes P1,
P2 and P3 are displayed in Fig. 2. The estimates were obtained by
smoothing the classical periodogram with a series of modified Daniell
smoothers (Bloomfield, 2004; Daniell, 1946; Priestley, 1981). The top
and bottom panels, which correspond to the white noise process (P1)
and the QVAR(1) process (P3), respectively, are almost identical except
for random variations, as the traditional cross-spectral density between
uncorrelated variables is zero across all frequencies. On the other hand,
the middle panels of Fig. 2 illustrate that the estimates are able to
differentiate the VAR(1) process (P2) from processes P1 and P3. Note
that the situation in Fig. 2 is rather similar to that in the middle panels
of Fig. 1, in the sense that one can only distinguish two classes of
dependence structures. Hence, when 𝜏1 = 𝜏2 = 0.5, the quantile cross-
spectral density resembles the traditional cross-spectral density, failing
to tell apart different underlying processes in some situations as the one
shown here. However, when one of the quantile levels is different from
0.5, the dependence scheme becomes visible.

In sum, we can conclude that, in a potential scenario with series
coming from processes P1, P2 and P3, a clustering algorithm taking into
account the quantities displayed in Fig. 1 would probably succeed, as
the series coming from different generating processes are represented
by means of clearly distinct features. On the contrary, the use of
the quantities in Fig. 2 would likely prove useless, since series from
processes P1 and P3 would be treated as identical. This toy example
highlights the usefulness of the quantile cross-spectral density as a
powerful tool to distinguish between unequal dependence structures
under some circumstances in which the only use of the traditional
cross-spectral density can lead to erroneous conclusions.

2.3. An innovative spectral dissimilarity measure between MTS

A simple dissimilarity criterion between a pair of 𝑑-variate time
series 𝑿(1)

𝑡 and 𝑿(2)
𝑡 can be obtained by comparing their estimated

sets of complex-valued matrices f̂𝑿(1)
𝑡

(𝛺,  ) and f̂𝑿(2)
𝑡

(𝛺,  ) evaluated
on a common range of frequencies and quantile levels. Specifically,
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Fig. 1. Estimates of quantile cospectrum and quantile quadrature spectrum for large sample size realizations of processes P1, P2 and P3 according to different quantile levels.
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each time series 𝑿(𝑢)
𝑡 , 𝑢 = 1, 2, is characterized by means of a set of

𝑑2 vectors {𝜳 (𝑢)
𝑗1 ,𝑗2

, 1 ≤ 𝑗1, 𝑗2 ≤ 𝑑} constructed as follows. For a given
set of 𝐾 different frequencies 𝛺 = {𝜔1,… , 𝜔𝐾}, and 𝑟 quantile levels
 = {𝜏1,… , 𝜏𝑟}, each vector 𝜳 (𝑢)

𝑗1 ,𝑗2
is given by

(𝑢)
𝑗1 ,𝑗2

= (𝜳 (𝑢)
1,𝑗1 ,𝑗2

,… ,𝜳 (𝑢)
𝐾,𝑗1 ,𝑗2

), (13)

here each 𝜳 (𝑢)
𝑘,𝑗1 ,𝑗2

, 𝑘 = 1,… , 𝐾 consists of a vector of length 𝑟2 formed
by rearranging by rows the elements of the matrix
(

�̂�𝑗1 ,𝑗2
𝑇 ,𝑅 (𝜔𝑘, 𝜏𝑖, 𝜏𝑖′ )

)

1≤𝑖,𝑖′≤𝑟
. (14)

Once the set of 𝑑2 vectors, {𝜳 (𝑢)
𝑗1 ,𝑗2

, 1 ≤ 𝑗1, 𝑗2 ≤ 𝑑}, is obtained,
its elements are all concatenated in a vector 𝜳 (𝑢) in the same way as
vectors of the form 𝜳 (𝑢)

𝑘,𝑗1 ,𝑗2
constitute 𝜳 (𝑢)

𝑗1 ,𝑗2
in (13). In this manner,

the dissimilarity between 𝑿(1)
𝑡 and 𝑿(2)

𝑡 is obtained by means of the
Euclidean distance between the complex vectors 𝜳 (1) and 𝜳 (2)

𝑑𝑄𝐶𝐷(𝑿
(1)
𝑡 ,𝑿(2)

𝑡 ) =
[

‖ℜ𝑣(𝜳 (1)) −ℜ𝑣(𝜳 (2))‖2 + ‖ℑ𝑣(𝜳 (1)) −ℑ𝑣(𝜳 (2))‖2
]1∕2

=
[ 𝑑

∑

𝑗1=1

𝑑
∑

𝑗2=1

𝑟
∑

𝑖=1

𝑟
∑

𝑖′=1

𝐾
∑

𝑘=1

(

ℜ
(

�̂�𝑗1 ,𝑗2
𝑇 ,𝑅 (𝜔𝑘, 𝜏𝑖, 𝜏𝑖′ )(1)

)

−ℜ
(

�̂�𝑗1 ,𝑗2 (𝜔 , 𝜏 , 𝜏 )(2)
)

)2
+

5

𝑇 ,𝑅 𝑘 𝑖 𝑖′
𝑑
∑

𝑗1=1

𝑑
∑

𝑗2=1

𝑟
∑

𝑖=1

𝑟
∑

𝑖′=1

𝐾
∑

𝑘=1

(

ℑ
(

�̂�𝑗1 ,𝑗2
𝑇 ,𝑅 (𝜔𝑘, 𝜏𝑖, 𝜏𝑖′ )(1)

)

−ℑ
(

�̂�𝑗1 ,𝑗2
𝑇 ,𝑅 (𝜔𝑘, 𝜏𝑖, 𝜏𝑖′ )(2)

)

) 2
] 1∕2

, (15)

here ℜ𝑣 and ℑ𝑣 denote the element-wise real and imaginary part
perations, respectively, and �̂�𝑗1 ,𝑗2

𝑇 ,𝑅 (𝜔𝑘, 𝜏𝑖, 𝜏𝑖′ )(𝑢) is the corresponding
moothed CCR-periodogram for the series 𝑿(𝑢)

𝑡 , 𝑢 = 1, 2.
Computation of 𝑑𝑄𝐶𝐷 for every couple of MTS subjected to cluster

produces a pairwise dissimilarity matrix which can be used as input to
the PAM algorithm. Of course, developing another partitional clustering
method, for instance, using the 𝐾-means algorithm, is also possible by
veraging the vectors (ℜ𝑣(𝜳 (𝑢)),ℑ𝑣(𝜳 (𝑢))), 1 ≤ 𝑢 ≤ 𝑠 in order to compute

the centroids. Then, the dissimilarity 𝑑𝑄𝐶𝐷 would be used to obtain the
required distances in the iterative process. However, for the sake of
simplicity and interpretation, our analyses have been limited to PAM.

3. Experimental evaluation of the proposed clustering procedure

In this section we carry out a set of simulations with the aim
of assessing the performance of 𝑑𝑄𝐶𝐷 in different scenarios of MTS
clustering. Firstly we describe the simulation mechanism, then we
explain how the assessment of the proposed approach was done and
finally we show the results of the simulation study.
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Fig. 2. Estimates of traditional cospectrum and traditional quadrature spectrum for large sample size realizations of processes P1, P2 and P3.
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3.1. Experimental design

The simulated scenarios cover a wide variety of generating pro-
cesses. Specifically, three unsupervised classification setups were con-
sidered, namely clustering of (1) VARMA processes, (2) dynamic condi-
tional correlation processes, and (3) processes exhibiting different types
of quantile dependence. The selection of such kind of processes was
made with the goal of performing the assessment task in a fair and
general manner. Indeed, the three chosen setups are pivotal in several
application domains. The generating models concerning each class of
processes are given below.

Scenario 1. VARMA processes clustering.
(a) VAR(1)

⎛

⎜

⎜

⎝

𝑋𝑡,1
𝑋𝑡,2
𝑋𝑡,3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0.6 0.5 0
−0.4 0.5 0.3
0 −0.5 0.7

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑋𝑡−1,1
𝑋𝑡−1,2
𝑋𝑡−1,3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝜖𝑡,1
𝜖𝑡,2
𝜖𝑡,3

⎞

⎟

⎟

⎠

,

(b) VAR(1)

⎛

⎜

⎜

𝑋𝑡,1
𝑋𝑡,2

⎞

⎟

⎟

=
⎛

⎜

⎜

0.4 0.4 0
−0.4 0.5 0.4

⎞

⎟

⎟

⎛

⎜

⎜

𝑋𝑡−1,1
𝑋𝑡−1,2

⎞

⎟

⎟

+
⎛

⎜

⎜

𝜖𝑡,1
𝜖𝑡,2

⎞

⎟

⎟

,

6

⎝𝑋𝑡,3⎠ ⎝ 0 −0.5 0.7⎠ ⎝𝑋𝑡−1,3⎠ ⎝𝜖𝑡,3⎠ p
(c) VMA(1)

⎛

⎜

⎜

⎝

𝑋𝑡,1
𝑋𝑡,2
𝑋𝑡,3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0.6 0.5 0
−0.4 0.5 0.3
0 −0.5 0.7

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜖𝑡−1,1
𝜖𝑡−1,2
𝜖𝑡−1,3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝜖𝑡,1
𝜖𝑡,2
𝜖𝑡,3

⎞

⎟

⎟

⎠

,

(d) VMA(1)

⎛

⎜

⎜

⎝

𝑋𝑡,1
𝑋𝑡,2
𝑋𝑡,3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0.4 0.4 0
−0.4 0.5 0.4
0 −0.5 0.7

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜖𝑡−1,1
𝜖𝑡−1,2
𝜖𝑡−1,3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝜖𝑡,1
𝜖𝑡,2
𝜖𝑡,3

⎞

⎟

⎟

⎠

,

e) VARMA(1,1)

𝑋𝑡,1
𝑋𝑡,2
𝑋𝑡,3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0.6 0.5 0
−0.4 0.5 0.3
0 −0.5 0.7

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑋𝑡−1,1
𝑋𝑡−1,2
𝑋𝑡−1,3

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0.6 0.5 0
−0.4 0.5 0.3
0 −0.5 0.7

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜖𝑡−1,1
𝜖𝑡−1,2
𝜖𝑡−1,3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝜖𝑡,1
𝜖𝑡,2
𝜖𝑡,3

⎞

⎟

⎟

⎠

,

here, in all cases, (𝜖𝑡,1, 𝜖𝑡,2, 𝜖𝑡,3)⊺ is an i.i.d. vector error process follow-
ng the trivariate normal distribution with zero mean and covariance
atrix equals the identity matrix.

cenario 2. Dynamic conditional correlation processes clustering. Con-
ider (𝑋𝑡,1, 𝑋𝑡,2)⊺ = (𝑎𝑡,1, 𝑎𝑡,2)⊺ = (𝜎𝑡,1𝜖𝑡,1, 𝜎𝑡,2𝜖𝑡,2)⊺. The data-generating

rocess consists of two Gaussian GARCH models (Bollerslev, 1986), one
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which is highly persistent and the other which is not.

𝜎2𝑡,1 = 0.01 + 0.05𝑎2𝑡−1,1 + 0.94𝜎2𝑡−1,1,

𝜎2𝑡,2 = 0.5 + 0.2𝑎2𝑡−1,2 + 0.5𝜎2𝑡−1,2,
(

𝜖𝑡,1
𝜖𝑡,2

)

∼ 𝑁
[(

0
0

)

,
(

1 𝜌𝑡
𝜌𝑡 1

)]

.

The correlation between the standardized shocks, 𝜌𝑡, is given by the
following expressions:
(a) Constant correlation

𝜌𝑡 = 0.5,

(b) Piecewise constant correlation

𝜌𝑡 = 0.7𝐼{𝑡≤(𝑇 ∕2)} − 0.9𝐼{𝑡>(𝑇 ∕2)},

(c) Piecewise constant correlation

𝜌𝑡 = 0.9𝐼{𝑡≤(𝑇 ∕2)} − 0.7𝐼{𝑡>(𝑇 ∕2)},

(d) Piecewise varying correlation

𝜌𝑡 =
0.99

log(𝑡 + 2)
𝐼{𝑡 odd} −

0.99
log(𝑡 + 2)

𝐼{𝑡 even},

where 𝐼 stands for the indicator function.

Scenario 3. QVAR processes clustering. Consider = (𝑈𝑡,1, 𝑈𝑡,2)⊺ a se-
quence of independent random vectors with independent components
𝑈𝑡,𝑘 which are uniformly distributed on [0, 1], and 𝛷−1(𝑢), 𝑢 ∈ (0, 1), the
quantile function of the standard normal distribution.
(a) QVAR(1)
(

𝑋𝑡,1
𝑋𝑡,2

)

=
(

0 −0.5(𝑈𝑡,1 − 0.5)
−0.5(𝑈𝑡,2 − 0.5) 0

)(

𝑋𝑡−1,1
𝑋𝑡−1,2

)

+
(

𝛷−1(𝑈𝑡,1)
𝛷−1(𝑈𝑡,2)

)

,

b) QVAR(1)

𝑋𝑡,1
𝑋𝑡,2

)

=
(

0 0.5(𝑈𝑡,1 − 0.5)
0.5(𝑈𝑡,2 − 0.5) 0

)(

𝑋𝑡−1,1
𝑋𝑡−1,2

)

+
(

𝛷−1(𝑈𝑡,1)
𝛷−1(𝑈𝑡,2)

)

,

c) QVAR(1)

𝑋𝑡,1
𝑋𝑡,2

)

=
(

0 1.5(𝑈𝑡,1 − 0.5)
1.5(𝑈𝑡,2 − 0.5) 0

)(

𝑋𝑡−1,1
𝑋𝑡−1,2

)

+
(

𝛷−1(𝑈𝑡,1)
𝛷−1(𝑈𝑡,2)

)

.

Scenario 1 was partially considered before in Bandyopadhyay,
aulik, and Baragona (2010) with the purpose of checking whether or

ot their proposed clustering algorithm based on genetic multiobjective
ptimization is able to distinguish series generated from different
ARMA processes. Here, our goal is pretty much the same, showing

o what extent the dissimilarity measure based on the quantile cross-
pectral density is capable of dealing with this kind of processes. Note
hat the choice of the coefficient matrices in Scenario 1 is driven
y the requirements of stationarity. Scenario 2 was motivated by
he landmark work of Engle (2002), where the dynamic conditional
orrelation models are introduced. A simulation study is performed
here in order to check the quality of several correlation estimators.
he models presented here are very similar to the models offered

n that analysis, except for the fact that we have decided to include
lso negative correlation to cover a wider range of situations. Indeed,
egative correlation arises in many real life scenarios in which the
se of dynamic conditional correlation models is common. For in-
tance, Andersson, Krylova, and Vähämaa (2008) analysed data from
S, UK and Germany and stated that stock and bonds are either
ositive or negative correlated depending on the period. Scenario 3
s based on QVAR models introduced in Baruník and Kley (2019),
hich provide a natural way of generating rich dependence structures
etween two random variables and over different frequencies. QVAR
odels extend the quantile autoregression models defined in Koenker,

nd Xiao (2006), who showed their usefulness when dealing with series
s unemployment rates or gasoline prices. This last scenario is aimed
7

o demonstrate how the quantile cross-spectral density is capable of
etecting some forms of dependence that remain otherwise invisible.

The simulation study was carried out as follows. For each scenario,
ive time series of length 𝑇 ∈ {250, 1000} were generated from each
odel in order to perform clustering twice, thus allowing to assess the

ffect of the series length. The distance 𝑑𝑄𝐶𝐷 between each pair of MTS
as calculated using 𝑟 = 3 quantiles of levels 0.1, 0.5 and 0.9 along
ith the set of Fourier frequencies {𝜔𝑘 = 2𝜋𝑘∕𝑇 , 0 ≤ 𝑘 ≤ 𝑇 ∕2}. The
btained pairwise dissimilarity matrix was then processed by the PAM
lgorithm to reach the clustering solution. The simulation procedure
as repeated 100 times for each scenario and each value of 𝑇 .

.2. Alternative metrics and assessment criteria

To shed light on the performance of 𝑑𝑄𝐶𝐷, clustering solutions based
n some state of the art approaches measuring dissimilarity between
TS were also obtained. The considered dissimilarities are summarized

elow.

− Dynamic time warping-based distances. Particularly, the two multi-
variate extensions of dynamic time warping discussed in
Shokoohi-Yekta, Hu, Jin, Wang, and Keogh (2017). The ‘‘indepen-
dent’’ warping version (𝑑𝐷𝑇𝑊 𝐼 ) computes the classical dynamic
time warping between each pair of univariate time series, whereas
the ‘‘dependent’’ version (𝑑𝐷𝑇𝑊𝐷) forces all dimensions to warp
identically, in a single warping matrix.

− Model-based distance. Specifically, the distance proposed by Ma-
haraj (1999) assessing the difference between vector autoregres-
sive parameter estimates of the series. The original approach
implies three main steps. First, a finite order VAR model is fitted
to each series via a given criterion. Second, a 𝑝-value is obtained
for each pair of series, regarding the null hypothesis stating
that there is no significant difference between both underlying
generating processes. Finally, hierarchical clustering is applied
to the set of MTS via the 𝑝-values, but only those series whose
associated 𝑝-value is greater than some predetermined number
(e.g 0.05 or 0.01) are grouped together. This implies that the
number of clusters is determined by the outcome of the tests of
hypotheses and therefore the desired number of groups cannot be
set in advance. In this case, to make homogeneous comparisons,
we simply used the Euclidean distance between the vectors of
coefficient estimates of the VAR models (𝑑𝑉 𝐴𝑅) in the first step to
construct the initial dissimilarity matrix. The number of consid-
ered lags was determined by the maximum fitted order amongst
the MTS as given by the Akaike Information Criterion. This way,
when computing the distance between two vectors of coefficients
of unequal length, the shortest vector was padded with zeros until
it reached the length of the longest vector.

− PCA-based distance. Singhal and Seborg (2005) consider a
weighted similarity factor based on principal components and
the angles between the principal components subspaces. Then,
a dissimilarity measure (𝑑𝑃𝐶𝐴) is obtained by subtracting the
similarity factor from one. In order to perform PCA, we applied
the singular value decomposition to the correlation matrices and
considered a number of principal components, 𝑟, as the minimum
value such that at least 95% of the variability of all MTS was
explained by means of the first 𝑟 principal components. This
criterion led always to the retention of all principal components.

− Wavelet-based distance. D’Urso and Maharaj (2012) introduce a
Euclidean distance between wavelet features of MTS, specifically,
between estimates of wavelet variances and wavelet correlations
(𝑑𝑊 ). The estimates are obtained through the maximum overlap
discrete wavelet transform, which requires choosing a wavelet
filter of a given length and a number of scales. After performing
some brief preliminary analyses, we reached the conclusion that

the wavelet filter of length 4 of the Daubechies family, DB4,
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Table 1
Summary of the dissimilarities used in the simulation study.

Dissimilarity Principle

𝑑𝑄𝐶𝐷 Quantile cross-spectral density
𝑑𝐷𝑇𝑊 𝐼 Independent dynamic time warping
𝑑𝐷𝑇𝑊𝐷 Dependent dynamic time warping
𝑑𝑉 𝐴𝑅 Estimated VAR coefficients
𝑑𝑃𝐶𝐴 PCA
𝑑𝑊 Wavelets
𝑑𝐺𝐶𝐶 Generalized cross-correlation
𝑑𝐽 Nonparametric spectral distance

along with the maximum allowable number of scales (which
depends on the series length), were the choices that led to the
best average results in Scenarios 1, 2 and 3. Hence, they were the
hyperparameters chosen for the simulation study.

− Generalized cross-correlation-based distance. Alonso, and Peña
(2019) propose to measure similarity between two UTS, 𝑋𝑡 and
𝑌𝑡, via the generalized cross correlation (𝐺𝐶𝐶(𝑋𝑡, 𝑌𝑡)), which
compares the determinant of the correlation matrix until some
lag 𝑟 of the bivariate vector with those of the two univariate
time series. Conceptually, 𝐺𝐶𝐶(𝑋𝑡, 𝑌𝑡) evaluates the level of
linear dependency among both series. Considering the sample
correlation matrices, a matrix of pairwise distances of the form
1 − 𝐺𝐶𝐶
⋀

(𝑋𝑡, 𝑌𝑡) can be directly constructed from every couple
of series subjected to the clustering procedure. We propose to
extend their approach to a multivariate framework as follows.
Each 𝑑-variate series is first represented through a matrix 𝐗 =
(

𝑋𝑡,𝑗
)

1≤𝑡≤𝑇 , 1≤𝑗≤𝑑 , and then described by means of a vector of
length 𝑑(𝑑 − 1) whose components are given by

1 − 𝐺𝐶𝐶
⋀

(𝑋∶,𝑗1 , 𝑋∶,𝑗2 ), 𝑗1, 𝑗2 ∈ {1,… , 𝑑}, 𝑗1 ≠ 𝑗2, (16)

where 𝑋∶,𝑖 is the 𝑖-th column of the matrix 𝐗. Then we construct
a distance matrix by considering the Euclidean distance between
the vectors of features (𝑑𝐺𝐶𝐶 ) given by (16). It is important to
remark that the primary goal of Alonso and Peña (2019) is to
cluster UTS by linear dependence, i.e., two series are grouped
together if they present a high degree of dependence, but the
purpose of our extension is different. In our case, the degree
of dependence between each pair of UTS within the MTS is
evaluated in order to characterize the MTS. For the simulation
study, the hyperparameter 𝑟 was set to 𝑟 = 1, a reasonable choice
since all models in Scenarios 1, 2 and 3 present one significant
lag.

− Nonparametric dissimilarity in the frequency domain (Kakizawa
et al., 1998). A dissimilarity between estimates of the spectral
density matrices via the smoothed periodogram. The J-divergence
was used to compute the distance between the estimated matrices
(𝑑𝐽 ).

A summary of the dissimilarities considered in the simulation study
is given in Table 1.

The quality of the clustering procedure was assessed by comparing
the clustering partition given by the algorithm, 𝑃𝑘, with the true cluster
solution, which is usually referred to as ground truth, 𝐺𝑘. The ground
truth consisted of 𝑘 = 5 groups in Scenario 1, 𝑘 = 4 groups in Scenario
2, and 𝑘 = 3 groups in Scenario 3, each one of them involving five time
series with the same generating process. The value of 𝑘 was given as
an input parameter to the PAM algorithm. Partitions 𝑃𝑘 and 𝐺𝑘 were
then compared by using three well-known external clustering validity
indexes: the Larsen–Aone index (LA) (Larsen, & Aone, 1999), the
adjusted Rand index (ARI) (Hubert, & Arabie, 1985), and the Jaccard
index (JI). It is worth remarking that the expected value of ARI is zero
for two partitions picked at random according to the generalized hyper-
geometric distribution. Hence, the value of zero can be associated with
8
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a noninformative clustering solution. Additionally, we have also com-
puted a fourth index by considering the 1-nearest neighbour classifier
evaluated by leave-one-out cross-validation (LOO1NN). Specifically,
LOO1NN index returns the proportion of series which, according to
𝐺𝑘, are in the same cluster that their nearest series, based on the
given dissimilarity measure. Notice that LOO1NN does not evaluate
the clustering algorithm, but gives insights into the quality of the
dissimilarity measure. This evaluation criterion has been extensively
used in a broad range of pattern recognition applications, including
time series clustering (see e.g., Keogh, & Kasetty, 2003 and Lafuente-
Rego & Vilar, 2016). The indexes LA, JI and LOO1NN take values
between 0 and 1. As for ARI index, it takes values between -1 and 1. In
all cases, the closer to one the index, the better the clustering solution.

3.3. Results and discussion

Averages and standard deviations of the quality indexes over the
100 trials for the best performing metrics, namely 𝑑𝑄𝐶𝐷, 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 ,
𝑑𝑉 𝐴𝑅 and 𝑑𝑃𝐶𝐴, are given in Tables 2 (𝑇 = 250) and 3 (𝑇 = 1000). The
results concerning 𝑑𝐷𝑇𝑊 𝐼 and 𝑑𝐷𝑇𝑊𝐷 for Scenario 1 and 𝑇 = 250 are
separately shown in Table 4.

One can work out from Table 4 that the dynamic time warping-
based measures showed a very similar performance and, most impor-
tantly, they were not able to distinguish between the different processes
appropriately. By comparing the results of Table 4 with those of Table 2
for Scenario 1, it is easy to see that the dissimilarity measures in Table 2
outperformed 𝑑𝐷𝑇𝑊 𝐼 and 𝑑𝐷𝑇𝑊𝐷 by far. Regarding the ARI, both
𝑑𝐷𝑇𝑊 𝐼 and 𝑑𝐷𝑇𝑊𝐷 got average values close to zero, 0.046 and 0.027,
respectively, whereas the worst dissimilarity in Table 2 for Scenario
1, 𝑑𝑃𝐶𝐴, led to an average value of 0.290. Something similar occurred
when 𝑑𝐷𝑇𝑊 𝐼 and 𝑑𝐷𝑇𝑊𝐷 dealt with series from the remaining settings.
Consequently, we have decided to omit the corresponding results. The
poor performance of the dynamic time warping-based distances was
expected since they are aimed to compare shape patterns being dom-
inated by local comparisons. In contrast, our simulation scenarios are
characterized by different latent dependence structures which describe
the global behaviour of the series.

According to results in Table 2, the dissimilarity based on the quan-
tile cross-spectral density 𝑑𝑄𝐶𝐷 produced the highest average scores in
Scenarios 2 and 3, and presented worse behaviour in Scenario 1. With
VARMA models, 𝑑𝑄𝐶𝐷 outperformed the wavelet-based metric 𝑑𝑊 and
he cross-correlation-based metric 𝑑𝐺𝐶𝐶 , although presenting clustering
uality indexes lower than the ones reached by the dissimilarities 𝑑𝐽
nd 𝑑𝑉 𝐴𝑅. The metric 𝑑𝑄𝐶𝐷 showed the best results in Scenario 3,
here it indisputably defeated the remaining measures. By means of

he quantile cross-spectral density, the dissimilarity 𝑑𝑄𝐶𝐷 was able to
nmask complex types of dependence as those generated by QVAR
odels, which remained completely hidden when other dissimilarities
ere considered.

As expected, the metric based on VAR models 𝑑𝑉 𝐴𝑅 was affected by
odel misspecification and hence it performed fine in Scenario 1 but
roduced unsatisfactory results in Scenarios 2 and 3. In fact, according
o ARI, 𝑑𝑉 𝐴𝑅 did not a better job than picking a clustering solution
t random in the latter scenarios. The nonparametric dissimilarity 𝑑𝐽
chieved the best results in Scenario 1, even better than the ones
eached by 𝑑𝑉 𝐴𝑅, but its results worsened substantially when dealing
ith heteroskedastic models. Despite its poor results in Scenario 3, it
as the only measure other than 𝑑𝑄𝐶𝐷 that seemed to detect some

lustering structure in the data in that complex scenario.
With regards to dissimilarities 𝑑𝑊 and 𝑑𝐺𝐶𝐶 , they achieved in Sce-

arios 1 and 2 results lower than but close to the ones reached by 𝑑𝑄𝐶𝐷.
t is worth mentioning here than even though the dissimilarity 𝑑𝐺𝐶𝐶
s based on cross-correlations, which are clearly different between the
enerated groups of series in Scenarios 1 and 2, its results are still worse
han the ones achieved by both 𝑑 and 𝑑 , indicating that even in
𝑄𝐶𝐷 𝑊
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Table 2
Averages and standard deviations (in brackets) of four clustering validity indexes for measures 𝑑𝑄𝐶𝐷 , 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 , 𝑑𝑉 𝐴𝑅 and
𝑑𝑃𝐶𝐴, according to the 100 trials of the simulation procedure. For each scenario and index, the best result is shown in bold.
The length of each series was 𝑇 = 250.

Index 𝑑𝑄𝐶𝐷 𝑑𝑊 𝑑𝐺𝐶𝐶 𝑑𝐽 𝑑𝑉 𝐴𝑅 𝑑𝑃𝐶𝐴

Scenario 1 ARI 0.592
(0.087)

0.507
(0.110)

0.588
(0.076)

0.801
(0.122)

0.730
(0.132)

0.290
(0.132)

LA 0.777
(0.060)

0.739
(0.069)

0.777
(0.053)

0.902
(0.069)

0.856
(0.081)

0.622
(0.083)

LOO1NN 0.746
(0.094)

0.707
(0.102)

0.711
(0.105)

0.914
(0.067)

0.901
(0.062)

0.534
(0.132)

JI 0.504
(0.080)

0.432
(0.092)

0.502
(0.072)

0.732
(0.151)

0.653
(0.149)

0.278
(0.089)

Scenario 2 ARI 0.384
(0.121)

0.303
(0.090)

0.285
(0.082)

0.256
(0.106)

−0.006
(0.061)

0.260
(0.112)

LA 0.700
(0.081)

0.634
(0.061)

0.627
(0.053)

0.612
(0.069)

0.443
(0.054)

0.613
(0.079)

LOO1NN 0.656
(0.109)

0.519
(0.105)

0.489
(0.129)

0.516
(0.126)

0.226
(0.114)

0.447
(0.141)

JI 0.364
(0.013)

0.306
(0.059)

0.307
(0.049)

0.281
(0.067)

0.144
(0.033)

0.291
(0.078)

Scenario 3 ARI 0.436
(0.172)

0.024
(0.112)

0.000
(0.077)

0.154
(0.131)

0.016
(0.087)

0.006
(0.098)

LA 0.746
(0.092)

0.534
(0.076)

0.516
(0.059)

0.615
(0.081)

0.524
(0.065)

0.519
(0.067)

LOO1NN 0.719
(0.116)

0.370
(0.150)

0.294
(0.150)

0.467
(0.140)

0.302
(0.144)

0.295
(0.148)

JI 0.453
(0.131)

0.203
(0.059)

0.192
(0.043)

0.275
(0.068)

0.213
(0.048)

0.193
(0.055)
Table 3
Averages and standard deviations (in brackets) of four clustering validity indexes for measures 𝑑𝑄𝐶𝐷 , 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 , 𝑑𝑉 𝐴𝑅 and
𝑑𝑃𝐶𝐴, according to the 100 trials of the simulation procedure. For each scenario and index, the best result is shown in bold.
The length of each series was 𝑇 = 1000.

Index 𝑑𝑄𝐶𝐷 𝑑𝑊 𝑑𝐺𝐶𝐶 𝑑𝐽 𝑑𝑉 𝐴𝑅 𝑑𝑃𝐶𝐴

Scenario 1 ARI 0.778
(0.096)

0.666
(0.103)

0.693
(0.069)

0.994
(0.030)

0.894
(0.133)

0.612
(0.174)

LA 0.886
(0.057)

0.832
(0.058)

0.833
(0.042)

0.998
(0.013)

0.943
(0.072)

0.812
(0.099)

LOO1NN 0.887
(0.064)

0.826
(0.075)

0.848
(0.083)

0.999
(0.013)

0.983
(0.025)

0.810
(0.116)

JI 0.701
(0.121)

0.577
(0.107)

0.606
(0.078)

0.991
(0.013)

0.860
(0.176)

0.536
(0.165)

Scenario 2 ARI 0.900
(0.013)

0.400
(0.113)

0.339
(0.106)

0.340
(0.108)

0.013
(0.067)

0.372
(0.157)

LA 0.960
(0.013)

0.698
(0.078)

0.649
(0.062)

0.661
(0.070)

0.458
(0.053)

0.682
(0.097)

LOO1NN 0.979
(0.013)

0.589
(0.109)

0.568
(0.130)

0.617
(0.118)

0.218
(0.109)

0.604
(0.147)

JI 0.866
(0.013)

0.374
(0.085)

0.344
(0.065)

0.336
(0.072)

0.152
(0.035)

0.368
(0.113)

Scenario 3 ARI 0.893
(0.137)

0.046
(0.123)

0.003
(0.084)

0.401
(0.133)

−0.009
(0.077)

0.009
(0.100)

LA 0.963
(0.013)

0.547
(0.075)

0.522
(0.065)

0.722
(0.066)

0.509
(0.057)

0.523
(0.067)

LOO1NN 0.973
(0.043)

0.415
(0.138)

0.328
(0.144)

0.587
(0.137)

0.297
(0.134)

0.299
(0.166)

JI 0.874
(0.158)

0.213
(0.067)

0.193
(0.048)

0.425
(0.088)

0.195
(0.043)

0.192
(0.054)
p
o
t

an ‘‘ideal situation’’ like this, the use of standard cross-correlations to
perform clustering could not be the best choice.

Table 3 shows the results for 𝑇 = 1000. With regards to VARMA
processes, the results are pretty much the same as in Table 2. The
nonparametric dissimilarity 𝑑𝐽 achieved almost perfect results, signif-
icantly better than the ones reached by the model-based dissimilarity
𝑑𝑉 𝐴𝑅. The dissimilarity 𝑑𝑄𝐶𝐷 got again acceptable results. The findings
concerning Scenario 2 are quite impressive. Unlike in Table 2, where
𝑑𝑄𝐶𝐷 slightly outperformed most of the measures, here 𝑑𝑄𝐶𝐷 showed

noteworthy superiority over the remaining dissimilarities, including
𝐽 . Whereas increasing the length of the series from 250 to 1000 had
ittle to moderate effect in their quality indexes, there was a different
9
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story for 𝑑𝑄𝐶𝐷, whose quality indexes skyrocketed. This is worth noting
because it makes 𝑑𝑄𝐶𝐷 the most versatile measure, capable of dealing
either with VARMA or with conditional heteroskedastic processes. Re-
garding Scenario 3, only 𝑑𝑄𝐶𝐷, with high scores, and 𝑑𝐽 , with moderate
scores, were able to detect the underlying structure in the data.

It is important to mention that we have redone the simulations in
Scenario 1 by considering correlated error terms, i.e., a nondiagonal
covariance matrix for (𝜖𝑡,1, 𝜖𝑡,2, 𝜖𝑡,3)′. Our aim was to see whether the
erformance of the analysed dissimilarities, at least in relation to each
ther, was the same as under the assumption of independent error
erms. Indeed, the results, which are available upon request, were very
imilar to the ones in Tables 2 and 3.
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Table 4
Averages and standard deviations (in brackets) of four clustering validity indexes for
measures 𝑑𝐷𝑇𝑊 𝐼 , 𝑑𝐷𝑇𝑊𝐷 in Scenario 1, according to the 100 trials of the simulation
procedure. The length of each series was 𝑇 = 250.

Scenario 1 Index 𝑑𝐷𝑇𝑊 𝐼 𝑑𝐷𝑇𝑊𝐷

ARI 0.046
(0.013)

0.027
(0.015)

LA 0.372
(0.004)

0.367
(0.004)

LOO1NN 0.210
(0.018)

0.206
(0.015)

JI 0.179
(0.007)

0.169
(0.008)

In order to gain illustrative insights into the previous remarks, Fig. 3
isplays the boxplots based on the clustering validity indexes from the
00 simulation trials and for length 𝑇 = 1000.

As we can deduce from the middle and the bottom panel, 𝑑𝑄𝐶𝐷
as by far the best performing dissimilarity in Scenarios 2 and 3. In
cenario 3, according to ARI, the dissimilarities 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝑉 𝐴𝑅 and
𝑃𝐶𝐴 were not able to detect the relationship of dependency gener-
ted by QVAR models at all. The nonparametric dissimilarity 𝑑𝐽 lies
omewhere in the middle between 𝑑𝑄𝐶𝐷 and the remaining metrics.
n Scenario 2, the dissimilarity 𝑑𝑉 𝐴𝑅 suffered from its model-based
ature, thus attaining very poor results. The metrics 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 and
𝑃𝐶𝐴 achieved similar results in terms of the four indexes, but they
ere no match for 𝑑𝑄𝐶𝐷, which dealt considerably well with dynamic

onditional correlation models.
The top panel of Fig. 3 corroborates that the worst performance of

𝑄𝐶𝐷 occurred when VARMA models came into play. In that case, the
-divergence-based measure achieved impressive results. For instance,
n terms of the goodness-of-assignment index LOO1NN, it got the max-
mum score 98 out of 100 times. It is followed by Maharaj’s distance,
hich is specifically designed to deal with this type of models. Among

he remaining dissimilarities, though, 𝑑𝑄𝐶𝐷 was the best performing
according to the four clustering quality indexes.

To better clarify the clustering solutions achieved by each metric,
we present in Fig. 4 the distribution (in percentage) of the number
of correctly identified clusters over the 100 trials of the simulation
mechanism. By correctly identified cluster we mean a group in the
clustering solution which contains only the five series generated by the
same process.

According to the top panel of Fig. 4, the J-divergence-based distance
reached the authentic solution of five clusters almost 100% of the
times in Scenario 1, whereas the model-based measure was capable of
detecting the true solution only 60% of the times. The metric 𝑑𝑄𝐶𝐷
got the perfect partition around 10% of the trials but 61% of the times
identified correctly 3 clusters, clearly outperforming the rest of metrics,
which obtained the right solution only the 1% of the times. These
arguments corroborate an acceptable behaviour of 𝑑𝑄𝐶𝐷 also under
VARMA models.

The middle panel of Fig. 4 shows the distribution for Scenario 2.
Again, it is clear that the Maharaj's metric is highly dependent on
the underlying model, since it was not capable of correctly identifying
even only a group in the 100 simulation trials. The distance 𝑑𝑄𝐶𝐷
obtained very good results in terms of clustering identification, usually
identifying 4 or 2 correct groups with percentages of 47% and 42%,
respectively. The remaining dissimilarities performed worse, never dis-
covering the true partition and generally discerning 0 or 1 correct
clusters.

As for Scenario 3, the bottom panel shows the clear superiority of
𝑑𝑄𝐶𝐷 in this setting. Its percentages of 1 and 3 correctly identified clus-
ters were 41% and 59%, respectively. The rest of the metrics obtained
almost always 0 correct clusters, aside from 𝑑𝐽 , which unmasked 1 true
group almost half of the trials.
10
Table 5
Percentage of times that the series of each process in Scenario 1 were grouped together
in the clustering solution, according to the six measures whose performance is given
in Table 3. The length of each series was 𝑇 = 1000.

Measure VAR(1) (a) VAR(1) (b) VMA(1) (c) VMA(1) (d) VARMA(1, 1) (e)

𝑑𝑄𝐶𝐷 84 82 9 9 98
𝑑𝑊 41 41 3 2 74
𝑑𝐺𝐶𝐶 53 47 1 1 100
𝑑𝐽 100 100 96 96 100
𝑑𝑉 𝐴𝑅 68 69 84 84 100
𝑑𝑃𝐶𝐴 46 39 7 9 28

Table 6
Percentage of times that the series of each process in Scenario 2 were grouped together
in the clustering solution, according to the six measures whose performance is given
in Table 3. The length of each series was 𝑇 = 1000.

Measure Constant (a) Piecewise (b) Piecewise (c) Piecewise (d)

𝑑𝑄𝐶𝐷 100 64 68 54
𝑑𝑊 80 2 0 0
𝑑𝐺𝐶𝐶 47 0 0 0
𝑑𝐽 63 0 1 0
𝑑𝑉 𝐴𝑅 0 0 0 0
𝑑𝑃𝐶𝐴 28 2 4 0

As a way of clarifying which were the easiest processes to group,
as well as the most difficult ones, Tables 5–7 contain the percentage of
times that each process was correctly classified in Scenarios 1, 2 and 3,
respectively.

As expected, Table 5 shows that the dissimilarities 𝑑𝐽 and 𝑑𝑉 𝐴𝑅
orrectly grouped each of the five processes most of the times. The main
ifference lies in VAR processes, whose patterns were more successfully
etected by 𝑑𝐽 than by 𝑑𝑉 𝐴𝑅. As for the rest of the distances, they often
ailed to unmask the underlying structure of VMA processes, and were
ore successful in distinguishing VAR processes. It is worth mentioning

hat the metric based on the quantile cross-spectral density was able to
etect uniformity in the series coming from VAR processes far more
ften than the wavelet-based, the cross-correlation-based and the PCA-
ased dissimilarities. Regarding the VARMA process, 𝑑𝑄𝐶𝐷 was able
o achieve a rate of detection close to 100%, which was reached by
𝐺𝐶𝐶 . It is followed by 𝑑𝑊 , which correctly grouped the series coming
rom the VARMA process 74% of the trials. In this regard, 𝑑𝑃𝐶𝐴 was
he worst performing dissimilarity, mixing series generated from the
ARMA process with those coming from both VAR processes.

Concerning Scenario 2, we can see in Table 6 that all the mea-
ures, aside from 𝑑𝑄𝐶𝐷, were unable to detect homogeneity in series
enerated from processes that exhibit piecewise correlation. Although
he average correlation between the standardized shocks is different in
he processes (b), (c) and (d) presented in Scenario 2, those distances
truggled to classify accurately this kind of processes, mixing the three
ypes of series with one another. On the other hand, the quantile-based
istance succeeded in discriminating the constant correlation process
00% of the times, and indisputably outperformed all of its competitors
n the piecewise correlation context. It achieved a success percentage
bove 50% classifying processes (b), (c) and (d) in Scenario 2.

Finally, Table 7 reveals that dissimilarities other than 𝑑𝑄𝐶𝐷 and 𝑑𝐽
re not suitable to tackle the forms of dependence that arise in Scenario
. The metric 𝑑𝑄𝐶𝐷 always grouped together the series generated from
rocess (a) in Scenario 3, sometimes mixing the series coming from
rocesses (b) and (c). The distance 𝑑𝐽 failed to distinguish between
rocesses (a) and (b), but often succeeded in grouping together series
rom process (c).

We repeated the simulations for Scenarios 1 and 2, but this time the
rocesses (𝜖𝑡,1, 𝜖𝑡,2)′ and (𝜖𝑡,1, 𝜖𝑡,2, 𝜖𝑡,3)′ were generated from a multivari-
te t distribution with 3 degrees of freedom. This allowed us to check
he performance of the analysed dissimilarities under some amount
f fat-tailedness in the error distribution. This feature is frequently
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Fig. 3. Boxplots of four clustering validity indexes according to the 100 trials of the simulation procedure. The length of each series was 𝑇 = 1000.
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Table 7
Percentage of times that the series of each process in Scenario 3 were grouped together
in the clustering solution, according to the six measures whose performance is given
in Table 3. The length of each series was 𝑇 = 1000.

Measure QVAR(1) (a) QVAR(1) (b) QVAR(1) (c)

𝑑𝑄𝐶𝐷 100 59 59
𝑑𝑊 0 0 1
𝑑𝐺𝐶𝐶 0 0 0
𝑑𝐽 0 0 47
𝑑𝑉 𝐴𝑅 0 0 0
𝑑𝑃𝐶𝐴 0 0 0

exhibited by some series, mainly within the field of Finance. Therefore,
it is reasonable to introduce fat-tailedness in the simulations, especially
in Scenario 2, since dynamic conditional correlation models originally
arose to model financial time series of stock returns.

The results involving this new distribution for the error terms are
given in Table 8 for 𝑇 = 250 and in Table 9 for 𝑇 = 1000. Observing
the latter, one can reach several conclusions. In Scenario 1, the quantile
cross-spectral dissimilarity 𝑑𝑄𝐶𝐷 does not seem to be affected by the fat-
tailedness of the error distribution, achieving a value of 0.772 for the
11

t

ARI, versus 0.778 when the error terms follow a normal distribution.
On the contrary, the remaining dissimilarities decreased their perfor-
mance, especially 𝑑𝐽 and 𝑑𝑃𝐶𝐴. The model-based dissimilarity 𝑑𝑉 𝐴𝑅

as the one achieving the best results, followed closely by the ones
eached by 𝑑𝑄𝐶𝐷.

In Scenario 2, all the dissimilarities worsened their performance,
ut 𝑑𝑄𝐶𝐷 was still the measure getting the highest scores. According
o ARI, its average scores were at least twice as large as those reached
y all the remaining dissimilarities. These results are very powerful,
ince they indicate that the quantile cross-spectral dissimilarity not only
ffers the best general performance when a wide variety of situations
re taken into account, but it is also quite robust to changes in the error
istribution. This makes 𝑑𝑄𝐶𝐷 probably one of the best dissimilarities
or practitioners to perform time series clustering, since it is well known
hat normality of the error terms cannot be guaranteed in many time
eries arising in several fields.

Again, in order to better understand the previous results, we have
epicted in Fig. 5 the boxplots based on the clustering validity indexes
or the 100 simulation trials (𝑇 = 1000).

The top panel of Fig. 5 shows that, when introducing heavy tails in
he error distribution, the nonparametric dissimilarity 𝑑 substantially
𝐽
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Fig. 4. Distribution (in percentage) of the number of correctly identified clusters in each trial of the simulation procedure. The length of each series was 𝑇 = 1000.
Table 8
Averages and standard deviations (in brackets) of four clustering validity indexes for measures 𝑑𝑄𝐶𝐷 , 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 , 𝑑𝑉 𝐴𝑅 and
𝑑𝑃𝐶𝐴, according to the 100 trials of the simulation procedure. Innovations were drawn from a multivariate t distribution with
3 degrees of freedom. For each scenario and index, the best result is shown in bold. The length of each series was 𝑇 = 250.

Index 𝑑𝑄𝐶𝐷 𝑑𝑊 𝑑𝐺𝐶𝐶 𝑑𝐽 𝑑𝑉 𝐴𝑅 𝑑𝑃𝐶𝐴

Scenario 1 ARI 0.607
(0.097)

0.421
(0.112)

0.441
(0.121)

0.531
(0.063)

0.645
(0.013)

0.142
(0.102)

LA 0.790
(0.067)

0.659
(0.079)

0.690
(0.076)

0.723
(0.052)

0.808
(0.013)

0.513
(0.072)

LOO1NN 0.735
(0.084)

0.640
(0.102)

0.632
(0.121)

0.770
(0.090)

0.852
(0.013)

0.354
(0.117)

JI 0.519
(0.093)

0.374
(0.077)

0.384
(0.094)

0.455
(0.056)

0.562
(0.013)

0.187
(0.060)

Scenario 2 ARI 0.714
(0.013)

0.411
(0.123)

0.255
(0.119)

0.440
(0.150)

0.012
(0.070)

0.333
(0.112)

LA 0.867
(0.085)

0.687
(0.078)

0.613
(0.072)

0.718
(0.088)

0.461
(0.054)

0.653
(0.080)

LOO1NN 0.875
(0.013)

0.682
(0.128)

0.428
(0.141)

0.676
(0.122)

0.242
(0.112)

0.517
(0.153)

JI 0.653
(0.013)

0.389
(0.090)

0.274
(0.073)

0.411
(0.114)

0.151
(0.030)

0.331
(0.086)
t
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r
t
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worsened its performance, at least as far as the ARI, JI and LA indexes
are concerned. In fact, the median values of these three indexes for
𝑑𝑄𝐶𝐷 and 𝑑𝑉 𝐴𝑅 are very close, showing the latter measure better
average performance because it sometimes got scores close to one as
it can be deduced from the corresponding position of the box. On
the other hand, the bottom panel of Fig. 5 displays almost the same
picture as the middle panel of Fig. 3. The only difference is that all the
measures, impacted by the fat-tailedness of the standardized shocks,
decreased their scores regarding the four indexes by a similar degree.
As a consequence, 𝑑𝑄𝐶𝐷 retained its status as the best performing
issimilarity in the transformed scenario.
12
The barplots depicting the distribution of correctly identified clus-
ters for each dissimilarity are shown in Fig. 6 for this new setting.
The main difference of the top panel of Fig. 6 with respect to the
top panel of Fig. 4 is that no longer the dissimilarity 𝑑𝐽 identified
he true cluster partition most of the times. In fact, under these new
ircumstances, 𝑑𝐽 usually recognized one correct cluster, being able to
each the perfect partition a tiny percentage of the trials, 3%. Perhaps
he most important information that the top panel of Fig. 6 contains is
hat, as far as 𝑑𝑄𝐶𝐷 is concerned, the distribution of correctly identified
lusters remained almost the same as in the previous framework, where
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Table 9
Averages and standard deviations (in brackets) of four clustering validity indexes for measures 𝑑𝑄𝐶𝐷 , 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 , 𝑑𝑉 𝐴𝑅
and 𝑑𝑃𝐶𝐴, according to the 100 trials of the simulation procedure. Innovations were drawn from a multivariate t distribution
with 3 degrees of freedom. For each scenario and index, the best result is shown in bold. The length of each series was
𝑇 = 1000.

Index 𝑑𝑄𝐶𝐷 𝑑𝑊 𝑑𝐺𝐶𝐶 𝑑𝐽 𝑑𝑉 𝐴𝑅 𝑑𝑃𝐶𝐴

Scenario 1 ARI 0.772
(0.092)

0.577
(0.083)

0.625
(0.093)

0.650
(0.111)

0.845
(0.013)

0.262
(0.124)

LA 0.883
(0.057)

0.766
(0.058)

0.797
(0.055)

0.806
(0.074)

0.917
(0.013)

0.589
(0.088)

LOO1NN 0.884
(0.059)

0.763
(0.093)

0.785
(0.092)

0.914
(0.056)

0.970
(0.013)

0.519
(0.127)

JI 0.692
(0.013)

0.495
(0.073)

0.540
(0.085)

0.568
(0.116)

0.650
(0.111)

0.261
(0.078)

Scenario 2 ARI 0.775
(0.013)

0.359
(0.116)

0.282
(0.098)

0.352
(0.115)

0.000
(0.070)

0.313
(0.121)

LA 0.897
(0.013)

0.671
(0.075)

0.627
(0.064)

0.667
(0.068)

0.452
(0.056)

0.646
(0.073)

LOO1NN 0.898
(0.013)

0.552
(0.114)

0.490
(0.135)

0.527
(0.109)

0.222
(0.115)

0.480
(0.172)

JI 0.713
(0.013)

0.352
(0.077)

0.305
(0.061)

0.348
(0.080)

0.144
(0.037)

0.316
(0.081)
Fig. 5. Boxplots of four clustering validity indexes according to the 100 trials of the simulation procedure. Innovations were drawn from a multivariate t distribution with 3
degrees of freedom. The length of each series was 𝑇 = 1000.
t

the error terms were normally distributed. Indeed, aside from the VAR-
based dissimilarity, the metric 𝑑𝑄𝐶𝐷 was the only one that identified
at least one correct cluster in each one of the trials. This strongly
reinforces the nature of 𝑑𝑄𝐶𝐷 as an all-purpose distance measure.

The main difference of the bottom panel of Fig. 6 in comparison to
he middle panel of Fig. 4 rests on the fact that, when heavy tails were
onsidered in the error distribution, the dissimilarity 𝑑𝑄𝐶𝐷 arrived at

the true solution only 10% of the times, whereas this percentage was
47% under normality of errors. In the new framework, 𝑑𝑄𝐶𝐷 almost
always reached two correct clusters, being again the only metric that
always identified at least one correct group.
13
As before, the percentage of times that each one of the processes
was correctly classified is provided in Tables 10 and 11 for Scenarios 1
and 2, respectively. The most remarkable element of Table 10 are the
results achieved by 𝑑𝐽 , which totally failed to discriminate between
both VMA processes when the normality assumption for the error
terms was removed. Except for the model-based dissimilarity 𝑑𝑉 𝐴𝑅,
the quantile-based distance 𝑑𝑄𝐶𝐷 was the single metric capable of
detecting the VARMA process almost 100% of the times. With regards
to Scenario 2, by observing Table 11, we can now better understand
the distribution of correctly identified clusters associated with 𝑑𝑄𝐶𝐷
hat we previously talked about (displayed on the bottom panel of
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Fig. 6. Distribution (in percentage) of the number of correctly identified clusters in each trial of the simulation procedure. Innovations were drawn from a multivariate t distribution
with 3 degrees of freedom. The length of each series was 𝑇 = 1000.
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Table 10
Percentage of times that the series of each process in Scenario 1 were grouped together
in the clustering solution, according to the six measures whose performance is given
in Table 9. Innovations were drawn from a multivariate t distribution with 3 degrees
of freedom. The length of each series was 𝑇 = 1000.

Measure VAR(1) (a) VAR(1) (b) VMA(1) (c) VMA(1) (d) VARMA(1, 1) (e)

𝑑𝑄𝐶𝐷 87 78 5 5 99
𝑑𝑊 7 14 0 0 81
𝑑𝐺𝐶𝐶 33 33 0 0 80
𝑑𝐽 37 36 3 4 74
𝑑𝑉 𝐴𝑅 55 79 71 71 100
𝑑𝑃𝐶𝐴 4 7 1 1 0

Table 11
Percentage of times that the series of each process in Scenario 2 were grouped together
in the clustering solution, according to the six measures whose performance is given
in Table 9. Innovations were drawn from a multivariate t distribution with 3 degrees
of freedom. The length of each series was 𝑇 = 1000.

Measure Constant (a) Piecewise (b) Piecewise (c) Piecewise (d)

𝑑𝑄𝐶𝐷 95 95 10 10
𝑑𝑊 54 1 0 0
𝑑𝐺𝐶𝐶 10 1 0 0
𝑑𝐽 58 2 0 0
𝑑𝑉 𝐴𝑅 0 0 1 0
𝑑𝑃𝐶𝐴 16 5 0 0

Fig. 6). When heavy tails were assumed for the error distribution, the
distance 𝑑𝑄𝐶𝐷 generally (95% of the times) grouped correctly the series
generated from processes (a) and (b) in Scenario 2. However, it was
often incapable of telling apart the series coming from processes (c)
and (d). This was probably due to the fact that the standardized shocks
in these two processes exhibit the most similar average correlations, 0.2
and 0, respectively.
14

s

4. Time consumption assessment

In order to assess the efficiency of the main six dissimilarity mea-
sures analysed throughout Section 3, we have recorded the runtime
of the corresponding programs to finish the clustering task regarding
Scenario 1. Note that, for some metrics, as 𝑑𝑄𝐶𝐷, the clustering task
onsists of a feature extraction, which is the most time consuming part,
ollowed by the computation of a distance matrix. In contrast, for other
etrics, as 𝑑𝐽 , the clustering task consists directly of the computation

f a distance matrix. Of course, in both cases, the distance matrix is
rovided as input to the PAM algorithm, which gives the clustering
olution, thus finishing the clustering task. In order to uncover the
volution of the running time as a function of the length 𝑇 , it was
ecorded for 𝑇 = 250 and 𝑇 = 1000. Besides, with the aim of removing
he uncertainty caused by uncontrollable factors, we have taken the
unning time over several trials. Thus, given a metric and a value for 𝑇 ,
e reported the average CPU runtime spent in finishing the clustering

ask for one of the sets of 25 series of length 𝑇 which were simulated
n Scenario 1.

The runtime was recorded in exactly the same way for the six
issimilarity measures. The computer used to run the programs was
MacBook Pro with processor Quad-Core Intel Core i7, a speed of

.9 GHz and a RAM memory of 16 GB. The programs were coded and
xecuted in RStudio. The R version was 3.6.1.

The CPU runtime for the six dissimilarity measures is provided
n Table 12. The more efficient distances were the wavelet-based
issimilarity and the PCA-based dissimilarity, both spending less than
.17 s in completing the clustering task for 𝑇 = 1000. The metric 𝑑𝑄𝐶𝐷
onsumed about 1.57 s when dealing with series of length 250, and
bout 5.3 s when coping with series of length 1000. This suggests
hat the time complexity of 𝑑𝑄𝐶𝐷 scales linearly with the length of
he series. The generalized cross-correlation-based dissimilarity 𝑑𝐺𝐶𝐶
pent roughly 12 s in finishing the clustering task for 𝑇 = 250, and
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Table 12
The CPU runtime for the six measures in Table 3, regarding the 100 simulation trials
in Scenario 1. Two values for the length of the series were considered, 𝑇 = 250 and
𝑇 = 1000.

Measure CPU runtime (minutes)
for 𝑇 = 250

CPU runtime (minutes)
for 𝑇 = 1000

𝑑𝑄𝐶𝐷 0.0262 0.0889
𝑑𝑊 0.0017 0.0024
𝑑𝐺𝐶𝐶 0.2038 0.2058
𝑑𝐽 0.3516 1.6845
𝑑𝑉 𝐴𝑅 2.9431 14.0209
𝑑𝑃𝐶𝐴 0.0027 0.0028

almost the same time for 𝑇 = 1000. This implies that, whereas the
autocorrelations and the cross-correlations are computed in an efficient
way, the calculation of determinants and inverse matrices associated
with each pair of components of a MTS (see equations (8) and (9)
in Alonso & Peña, 2019) slows down the process. Finally, the model-
based dissimilarity 𝑑𝑉 𝐴𝑅 was the slowest by a large degree, spending
about 14 min to obtain the experimental partition when 𝑇 = 1000. This
was expected, since performing clustering through 𝑑𝑉 𝐴𝑅 implies fitting
VAR models to each MTS, which is computationally expensive.

In summary, although the quantile-based metric is not the best
dissimilarity in terms of time consumption, it has proven to be compu-
tationally efficient in performing MTS clustering. This fact, combined
with the effectiveness that 𝑑𝑄𝐶𝐷 has shown in grouping time series
generated from a wide variety of different processes, makes 𝑑𝑄𝐶𝐷 an
attractive dissimilarity in terms of both performance and efficiency.

5. A case study: Clustering bivariate series of daily returns and
trading volume of some S&P 500 companies

In this section, the dissimilarity based on the quantile cross-spectral
density, 𝑑𝑄𝐶𝐷, is used to perform clustering on a real data example
involving financial time series. We consider both the daily stock prices
and trading volume of some companies belonging to the S&P 500
index, which comprises 505 common stocks issued by 500 large-cap
companies and traded on American stock exchanges. The S&P 500 is
commonly divided in eleven sectors. Only the companies belonging to
financial and utilities sectors are considered. The reason of this choice
rests on the fact that these two sectors are clearly different, in the sense
that the activities performed by any two companies pertaining to each
one of them greatly differ from one another. This is highly desirable,
as our main purpose is to show to what extent 𝑑𝑄𝐶𝐷 is able to distin-
guish between series belonging to highly different economic sectors,
supposedly representing strongly different economic behaviours. Had
we chosen somehow overlapping sectors (e.g., all the eleven sectors)
and the achieved conclusions could be misguided. The financial sector
consists of banks, insurance companies, credit card issues and a host of
other money-centric enterprises. The utilities sector includes many local
electricity and water companies, among many others. Our database
contains information about 55 companies belonging to the financial
sector and 25 companies belonging to the utilities sector. The sample
period spans from 8th February 2013 to 7th February 2018, thus
resulting serial realizations of length 𝑇 = 1258. The data are sourced
from the Kaggle repository of Cameron Nugent1 (Nugent, 2017).

Each of the 80 considered companies is then described by means of
a bivariate time series whose components are the company's daily stock
price and trading volume. The relationship between price and volume
has been extensively analysed in the literature (Campbell, Grossman,
& Wang, 1993; Gebka, & Wohar, 2013; Karpoff, 1987) and constitutes
itself a topic of great financial interest. Prices and trading volume
are known to exhibit some empirical linkages over the fluctuations of

1 https://www.kaggle.com/camnugent/sandp500?.
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Table 13
Descriptive statistics of normalized returns and change in volume for the series in the
top left panel of Fig. 7.

Descriptive statistics Returns Change in volume

Minimum −7.4529 −3.1000
Maximum 3.5026 6.7142
Skewness −0.7321 0.4207
Kurtosis 4.1400 2.0883

stock markets. Here, however, our concern is not to analyse whether
these empirical facts hold true in the considered series, but to assess
if the study of the joint behaviour of prices and volume via 𝑑𝑄𝐶𝐷
an give insights into the sector to which a company pertains. It
eems reasonable to hypothesize that the joint behaviour of prices and
olume shows some distinctive features depending on the sector. It
an be observed that both the UTS of prices and trading volume are
onstationary in mean. For this reason, all UTS are transformed by
aking the first differences of the natural logarithm of the original
alues. This way, prices give rise to stock returns, and volume, to
hat we call change in volume. This transformation is common when
ealing with this kind of series (Chen, 2012). Finally, both series are
ormalized to have zero mean and unit variance. For each one of the
ectors, we have depicted nine of the transformed series. The series
orresponding to the financial sector are shown in Fig. 7, whereas the
eries corresponding to the utilities sector are displayed in Fig. 8. In
ll cases, the blue colour corresponds to the change in trading volume,
hile the red colour corresponds to the stock returns. We have included

he symbol of each one of the companies as given in the S&P 500.
Similar to other financial time series, stock returns exhibit empirical

tatistical regularities, so-called ‘‘stylized-facts’’. It is crucial to be aware
f them in order to perform a proper analysis. The most common
tylized facts include: heavy tails and a peak centre compared to
he normal distribution, volatility clustering (periods of low volatility
ingle with periods of high volatility), leverage effects (returns are neg-

tively correlated with volatility), and autocorrelation at much longer
orizons than expected. In the same way, trading volume is known to
mpirically depart from normality. Table 13 provides some descriptive
tatistics regarding the returns and change in volume of the series in the
op left panel of Fig. 7, which corresponds to the company Aflac. We
an see that both the returns and the change in volume are skewed. In
ddition, the value of the kurtosis for the returns is 4.14, thus implying
atter tails than those of the normal distribution. Then, our proposal is
o take advantage of the high capability of the quantile cross-spectral
ensity to detect these stylized facts and performing cluster analysis
ased on 𝑑𝑄𝐶𝐷. In fact, 𝑑𝑄𝐶𝐷 yielded by far the best average results
lassifying processes whose error terms exhibited some degree of fat-
ailedness (see Table 9). Given its great performance in this kind of
ituations, we hope that, in the current scenario, 𝑑𝑄𝐶𝐷 can distinguish
wo clusters, one mostly formed of the companies in the financial sector
nd the other mainly constituted of the companies in the utilities sector.

The 80 bivariate series of normalized returns and change in volume
ere subjected to PAM algorithm with the proposed dissimilarity,
𝑄𝐶𝐷. Just as in the simulations, 𝑟 = 3 quantiles of levels 0.1, 0.5
nd 0.9 along with the Fourier frequencies were considered to compute
𝑄𝐶𝐷. Once obtained the clustering solution, the performance of 𝑑𝑄𝐶𝐷
as assessed by comparing this solution with the assumed true parti-

ion, which is given by the sectors to which each company pertains. The
ame four indexes considered in Section 3 were used here to quantify
he performance of the proposed metric.

In order to show to what extent 𝑑𝑄𝐶𝐷 is better able to detect
he underlying structure in the data than other dissimilarities, the
ompetitors in Table 3 were considered in the problem of grouping
he financial time series. For all the dissimilarities, the same settings
s in Section 3 were considered. It is worth noting that the selection
f one lag for 𝑑 seems appropriate, given that the 1-lagged returns
𝐺𝐶𝐶

https://www.kaggle.com/camnugent/sandp500?
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Fig. 7. Bivariate series of returns (red colour) and change in volume (blue colour) for 9 companies of the S&P 500 belonging to the financial sector.
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able 14
our clustering validity indexes for measures 𝑑𝑄𝐶𝐷 , 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 , 𝑑𝑉 𝐴𝑅 and 𝑑𝑃𝐶𝐴, with
egards to the financial time series.
Measure ARI LI LOO1NN JI

𝑑𝑄𝐶𝐷 0.718 0.918 0.963 0.771
𝑑𝑊 0.352 0.790 0.863 0.532
𝑑𝐺𝐶𝐶 0.147 0.700 0.813 0.433
𝑑𝐽 0.030 0.641 0.863 0.567
𝑑𝑉 𝐴𝑅 0.023 0.598 0.663 0.381
𝑑𝑃𝐶𝐴 0.167 0.616 0.725 0.574

have been proven to have a highly predictive ability over the trading
volume (Chen, 2012).

Table 14 shows the values achieved by the six dissimilarities with
regards to each one of the indexes. It can be seen that 𝑑𝑄𝐶𝐷 got the
best results, clearly outperforming the remaining dissimilarity mea-
sures in terms of all the considered indexes. Regarding the ARI, the
proposed measure obtained 0.718, while its nearest competitor, 𝑑𝑊 ,
nly achieved 0.352. The generalized cross-correlation-based distance
nd the PCA-based metric slightly detected some structure in the data,
hereas the Maharaj's distance and the nonparametric dissimilarity 𝑑𝐽
ere not capable of discriminating the series in both sectors at all.
imilar insights can be obtained from the results with regards to the
16

b

able 15
reakdown of the number of companies from each sector located in each cluster, with
egards to the clustering solution achieved by 𝑑𝑄𝐶𝐷 .

No. companies in
the financial sector

No. companies in
the utilities sector

Cluster 1 6 25
Cluster 2 49 0

rest of the indexes. For instance, the high value of LOO1NN that 𝑑𝑄𝐶𝐷
ttained indicates that this metric is indeed the most appropriate to
istinguish between underlying sectors in this kind of series.

In order to better understand the solution reached by 𝑑𝑄𝐶𝐷, Ta-
le 15 shows the number of companies pertaining to each sector which
ell in each one of the clusters. It can be noticed that all the companies
n the utilities sector were located in the first cluster, along with 6
ompanies belonging to the financial sector. In addition, the second
luster is a ‘‘pure’’ cluster, containing the remaining 49 companies in
he financial sector.

The general impression that one gets from Table 15 is that the
oint behaviour of price and volume is strongly related to the sector a
iven company pertains to, and that 𝑑𝑄𝐶𝐷 is indeed able to distinguish
etween the different underlying relationships of dependence. It seems
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Fig. 8. Bivariate series of returns (red colour) and change in volume (blue colour) for 9 companies of the S&P 500 belonging to the utilities sector.
that, in real-life situations like this, the approach followed by this
metric, aimed to capture any type of dependence, gives it a pivotal
advantage over the remaining measures, which are devised to uncover
particular types of dependence. By analysing this type of series via
𝑑𝑄𝐶𝐷, an investor could realize, for instance, that there are 6 particular
companies in the financial sector whose behaviour is similar to that of
the companies in the utilities sector, giving her valuable information
about the market.

Perhaps one of the biggest advantages of using the PAM algorithm
to perform clustering is that it produces a real prototype for each
encountered group. These prototypes are usually known as medoids,
and they actually pertain to the original set that was subjected to the
clustering procedure, giving them high interpretation. In this example,
the medoids are bivariate time series which represent all the time
series belonging to each cluster. They synthesize the cluster information
and represent the prototype features of the clusters, then summarizing
the characteristics of the time series within each group. Given this
informative power of medoids, it is undeniably interesting to know
which company is playing the role of prototype in both sectors.

The medoid time series of both sectors are depicted in Fig. 9. The
top panel corresponds to the medoid bivariate time series within the
cluster containing the companies in the utilities sector (Cluster 1). It
represents the company Dominion Energy, commonly referred to as
Dominion, a power and energy company headquartered in Richmond,
17
which supplies electricity and natural gas in different parts of the
United States. The bottom panel, displaying the medoid series regarding
the financial cluster (Cluster 2), corresponds to U.S. Bancorp, a bank
holding company based in Minneapolis, Minnesota, which provides
banking, investment, and payment service products, among others. An
investor could use the companies associated with both medoids as a
proxy to describe the financial situation of the corresponding sectors.
Maybe, analysing these two companies gives more valuable insights
into the future of both sectors than performing an extensive study over
the whole groups.

It is difficult to work out from Fig. 9 that those two series correspond
to two kinds of financial behaviours which are profoundly different.
This is in part due to the length of both series, 1258, which makes
difficult for the eye to detect any pattern. Besides, this is probably also
attributable to the complex forms of dependence that exist between the
price and the volume of each company. For instance, we have seen
in Table 14 that 𝑑𝐺𝐶𝐶 , a dissimilarity measure based on an intuitive
quantity as the cross-correlation, barely noticed the existence of two
different underlying sectors.

Given the previous results, we are compelled to emphasize that
practitioners in the field of MTS clustering should take into account
the dissimilarity based on the quantile cross-spectral density, capable
of detecting patterns that could remain invisible otherwise.
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Fig. 9. Top panel: bivariate series of returns (red colour) and change in volume (blue colour) of the company Dominion Energy, which represents the medoid of the cluster
f companies in the utilities sector (Cluster 1). Bottom panel: bivariate series of returns (red colour) and change in volume (blue colour) of the company U.S. Bancorp, which
epresents the medoid of the cluster of companies in the financial sector (Cluster 2).
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. Application to some UEA datasets

In this section, we apply the proposed approach to the MTS datasets
rovided in the well-known UEA multivariate time series classifica-
ion archive (Bagnall et al., 2018). The archive consists of 30 MTS
atasets covering a wide range of cases, dimensions and series lengths.
t is worth highlighting that most of the series in this collection are
onstationary. Note that QCD is ill-defined for nonstationary series.
owever, even when the corresponding MTS lack stationarity, one can

till compute the smoothed CCR-periodograms in (10) as descriptive
eatures. Indeed, several works have followed a similar path, either
or clustering or classification of MTS. For instance, Zagorecki (2015)
roposed a generic method that can be applied to an arbitrary dataset
n order to perform MTS classification. Each MTS is described by means
f a set of features derived from its UTS, which are then used to feed a
andom forest classifier. Among these features, several autocorrelations
egarding some lags are considered, although such quantities are only
ell-defined for stationary series. In the same way, Wang et al. (2007)

ntroduced an approach for clustering general MTS taking into account
he Box–Pierce statistic, which is based on the series autocorrelations.
oth procedures are successfully applied in real MTS databases. Thus,
nalysing the performance of 𝑑𝑄𝐶𝐷 when dealing with nonstationary
TS gives insights into the quality of this metric to perform clustering

oncerning general real situations, even when the necessary theoretical
equirements are not fulfilled.

The distance 𝑑𝑄𝐶𝐷 and the dissimilarities analysed throughout Sec-
ion 3 were used to perform clustering in the 30 datasets contained
n the UEA archive plus an additional dataset collected from the PTB
iagnostic ECG database (Goldberger et al., 2000). Note that ECG
18

n

signals are one of the most common type of nonstationary MTS. The
considered databases were created for classification purposes, so train-
ing and testing sets are provided for each dataset. As we are considering
a clustering algorithm, we merged both to get whole sets of MTS which
are subjected to the clustering technique. The same clustering quality
indexes as in Section 3 were computed. The ground truth was assumed
to be given by the true labels of the MTS provided in the UEA archive
and in the PTB database.

For illustrative purposes and a clear presentation of the results, we
first focus on a preliminary analysis of 7 of the 31 datasets (see sum-
mary in Table 16). These databases cover a broad variety of dimensions,
series lengths and numbers of classes, thus constituting, aside from the
ECG dataset, a heterogeneous subset of the UEA archive. Each one of
them describes a different problem. For instance, the dataset named
RacketSports was created from university students playing badminton
or squash while wearing a smart watch, being the target to identify
the sport and the stroke of each player. A detailed summary of the
corresponding problems can be seen in Bagnall et al. (2018).

The clustering quality indexes obtained for the seven databases
presented in Table 16 are reported in Table 17. The symbol ∅ used for
𝑑𝑉 𝐴𝑅 with RacketSports indicates that the corresponding VAR models
could not be correctly fitted to the MTS in this dataset due to numerical
issues.

Overall, results in Table 17 show that the spectral metrics 𝑑𝑄𝐶𝐷 and
𝑑𝐽 substantially outperformed the remaining dissimilarities in relation
o the four quality indexes. In fact, when the whole set of 28 scores
btained for each dissimilarity measure are ranked and compared, we
bserve that 𝑑𝑄𝐶𝐷 acquired the best scores in 15 of them, the same
umber as 𝑑 . The remaining distances were unable to get the best
𝐽
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Table 16
Summary of a subset of six datasets from the UEA multivariate time series classification
archive and the ECG database.

Dataset Number of series Dimensions Length Classes

Cricket 180 6 1197 12
ArticularyWord 575 9 144 25
BasicMotions 80 6 100 4
Epilepsy 275 3 206 4
Libras 360 2 45 15
RacketSports 303 6 30 4
ECG 80 6 500 2

Table 17
Clustering validity indexes for measures 𝑑𝑄𝐶𝐷 , 𝑑𝑊 , 𝑑𝐺𝐶𝐶 , 𝑑𝐽 , 𝑑𝑉 𝐴𝑅 and 𝑑𝑃𝐶𝐴 regarding
he 7 datasets summarized in Table 16. For each dataset and index, the best result is
hown in bold.
Dataset Index 𝑑𝑄𝐶𝐷 𝑑𝑊 𝑑𝐺𝐶𝐶 𝑑𝐽 𝑑𝑉 𝐴𝑅 𝑑𝑃𝐶𝐴

Cricket ARI 0.848 0.496 0.720 0.975 0.280 0.793
LA 0.916 0.670 0.836 0.989 0.493 0.876
LOO1NN 0.994 0.850 0.928 0.994 0.706 0.972
JI 0.754 0.369 0.592 0.955 0.208 0.680

ArticularyWord ARI 0.676 0.350 0.499 0.817 0.123 0.575
LA 0.811 0.534 0.678 0.887 0.345 0.745
LOO1NN 0.963 0.699 0.863 0.983 0.580 0.899
JI 0.526 0.232 0.351 0.700 0.088 0.421

RacketSports ARI 0.424 0.069 0.031 0.111 ∅ 0.085
LA 0.677 0.420 0.370 0.429 ∅ 0.422
LOO1NN 0.908 0.710 0.548 0.832 ∅ 0.756
JI 0.430 0.179 0.163 0.232 ∅ 0.196

BasicMotions ARI 0.686 0.651 0.491 1 0.517 0.686
LA 0.838 0.806 0.735 1 0.724 0.815
LOO1NN 1 1 0.900 1 0.938 0.900
JI 0.618 0.600 0.443 1 0.486 0.630

ECG ARI 0.520 −0.012 0.192 0.149 0.007 0.001
LA 0.862 0.488 0.724 0.698 0.649 0.608
LOO1NN 0.838 0.530 0.763 0.800 0.550 0.575
JI 0.610 0.326 0.422 0.403 0.459 0.389

Epilepsy ARI 0.693 0.251 0.333 0.692 0.090 0.284
LA 0.857 0.519 0.600 0.866 0.415 0.606
LOO1NN 0.927 0.825 0.542 0.967 0.833 0.622
JI 0.629 0.315 0.357 0.628 0.204 0.323

Libras ARI 0.323 0.037 0.066 0.268 0.203 0.115
LA 0.514 0.226 0.260 0.464 0.386 0.279
LOO1NN 0.775 0.311 0.289 0.820 0.564 0.322
JI 0.227 0.055 0.069 0.200 0.150 0.097

result in any instance, the only exception being 𝑑𝑊 in the dataset
BasicMotions, where it equalized 𝑑𝑄𝐶𝐷 and 𝑑𝐽 in terms of the LOO1NN
index.

The next step was to consider the results for the 31 datasets. Here,
the dissimilarity 𝑑𝑉 𝐴𝑅 was removed from the analyses due to the fact
that it gave rise to numerical problems in a large number of databases.
However, this is not a crucial issue since this metric usually was out-
performed by the remaining ones when successfully computed (e.g., see
Table 17). Additionally, due to the high computational complexity
of the distance 𝑑𝐽 (see Table 12), we selected a subset of instances,
dimensions and time observations in those datasets in which 𝑑𝐽 was
computationally infeasible. The subset selection was carried out by
retaining:

1. The first ⌈

300
𝐶 ⌉ instances of each category, being 𝐶 the total

number of categories in the set and ⌈⋅⌉ the ceiling function. This
way, a balanced subset of instances was always obtained.

2. The first 5 variables of each MTS.
3. The first 500 time observations, thus having available MTS of

length 𝑇 = 500.
19
Table 18
Results from the Nemenyi post-hoc tests for indexes ARI, LA, LOO1NN and JI: 𝑝-
values for the pairwise comparisons, sum of ranks for each metric and homogeneous
groups (different letters indicate significant differences, 𝑝 < 0.05). 21 MTS datasets were
considered. The 𝑝-values less than 0.05 are shown in bold.

Index 𝑝-values in pairwise comparisons Rank sum Groups

ARI
𝑑𝑄𝐶𝐷 𝑑𝐽 𝑑𝑃𝐶𝐴 𝑑𝐺𝐶𝐶 𝑑𝑊

𝑑𝑄𝐶𝐷 – 0.8772 0.0086 0.0035 5.0e−07 86.5 A
𝑑𝐽 – – 0.1294 0.0703 6.7e−05 77.0 A B
𝑑𝑃𝐶𝐴 – – – 0.9991 0.1991 53.5 B C
𝑑𝐺𝐶𝐶 – – – – 0.3172 51.0 B C
𝑑𝑊 – – – – – 32.0 C

LA
𝑑𝑄𝐶𝐷 𝑑𝐽 𝑑𝑃𝐶𝐴 𝑑𝐺𝐶𝐶 𝑑𝑊

𝑑𝑄𝐶𝐷 – 1.0000 0.0227 0.0086 3.4e−06 83.0 A
𝑑𝐽 – – 0.0306 0.0120 5.7e−06 82.0 A
𝑑𝑃𝐶𝐴 – – – 0.9982 0.2199 53.0 B
𝑑𝐺𝐶𝐶 – – – – 0.3735 50.0 B
𝑑𝑊 – – – – – 32.0 B

LOO1NN
𝑑𝑄𝐶𝐷 𝑑𝐽 𝑑𝑃𝐶𝐴 𝑑𝐺𝐶𝐶 𝑑𝑊

𝑑𝑄𝐶𝐷 – 0.9148 0.0166 0.0017 0.0017 79.5 A
𝑑𝐽 – – 0.0007 4.2e−05 4.2e−05 88.0 A
𝑑𝑃𝐶𝐴 – – – 0.9667 0.9667 48.5 B
𝑑𝐺𝐶𝐶 – – – – 1.0000 42.0 B
𝑑𝑊 – – – – – 42.0 B

JI
𝑑𝑄𝐶𝐷 𝑑𝐽 𝑑𝑃𝐶𝐴 𝑑𝐺𝐶𝐶 𝑑𝑊

𝑑𝑄𝐶𝐷 – 0.9999 0.1448 0.0141 7.4e−06 80.5 A
𝑑𝐽 – – 0.1023 0.0086 3.4e−06 82.0 A
𝑑𝑃𝐶𝐴 – – – 0.9148 0.0617 57.5 A B
𝑑𝐺𝐶𝐶 – – – – 0.3735 49.0 B
𝑑𝑊 – – – – – 31.0 B

Note that the selection procedure previously described totally avoids
the choice of a random seed, which could have been specifically tuned
to favour the authors' interests.

In order to eliminate undesirable noise from the comparative anal-
ysis, the datasets for which the five considered dissimilarities achieved
poor results were ignored. Specifically, we omitted the databases in
which the values of the ARI for all the metrics were below 0.05.
Note that this is a sensible choice, since the expected value of this
quantity is zero for a clustering solution picked at random. By pro-
ceeding this way, 10 datasets were removed from the study, namely
AtrialFibrillation, DuckDuckGeese, EthanolConcentration, FaceDetec-
tion, FingerMovements, HandMovementDirection, Heartbeat, MotorIm-
agery, SelfRegulationSCP2 and SpokenArabicDigits. It is worth men-
tioning that most of these databases were subjected to the subset
selection procedure described earlier.

With the aim of rigorously comparing the different dissimilarities,
statistical tests were performed by taken into account the 21 resulting
datasets. For each quality index, the Friedman test was first used to
assess whether there are statistically significant differences between the
index distributions with the considered metrics. In all cases, Friedman
test was significant, with respective 𝑝-values given by 𝑝 = 1.086e−07
for the ARI, 𝑝 = 7.237e−08 for the LA, 𝑝 = 5.28e−08 for LOO1NN and
𝑝 = 1.392e−07 for the JI. Then, multiple pairwise-comparisons using
the Nemenyi post-hoc test were carried out to determine which pairs
of metrics are different. The corresponding 𝑝-values are reported in
Table 18. Note that the Nemenyi test was developed to account for a
family-wise error and is already a conservative test. Therefore, there is
no need for a 𝑝-values adjustment.

Assuming a significance level of 0.05, results in Table 18 show that
the proposed metric 𝑑𝑄𝐶𝐷 attains values for ARI, LA and LOO1NN
significantly better than the ones obtained with 𝑑𝑊 , 𝑑𝐺𝐶𝐶 and 𝑑𝑃𝐶𝐴.
The only exception occurs with the Jaccard index, where 𝑑𝑃𝐶𝐴 clearly
exhibits lower ranges but not significant (𝑝 > 0.05). In all cases, no
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significant differences are observed between 𝑑𝑄𝐶𝐷 and 𝑑𝐽 , but the
latter measure does not differs significantly from 𝑑𝑃𝐶𝐴 and 𝑑𝐺𝐶𝐶 when
the ARI is considered. Overall, Table 18 suggests the existence of two
homogeneous groups of metrics, {𝑑𝑄𝐶𝐷, 𝑑𝐽 } and {𝑑𝑃𝐶𝐴, 𝑑𝐺𝐶𝐶 , 𝑑𝑊 }, in
such a way that the dissimilarities in the first group attained the best
overall results in the 21 analysed datasets. This outcome could be
already speculated from Table 17. Multiple pairwise comparisons using
the paired Wilcoxon signed-rank test were also performed and similar
results were obtained after adjusting the 𝑝-values with the Holm–
Bonferroni correction (which also controls the family-wise error rate
but in a more powerful approach than the Bonferroni procedure).

It should be pointed out that the different classes in the studied
databases are often presumed to be characterized by means of different
geometric profiles. However, even lacking shape-based information, the
measures 𝑑𝑄𝐶𝐷 and 𝑑𝐽 are capable of attaining good results in these
datasets.

The results obtained throughout this section are insightful, since
they allow us to conclude that the distance 𝑑𝑄𝐶𝐷 can be useful even
when dealing with nonstationary multidimensional time series. There-
fore, we encourage practitioners in the field of MTS clustering to add
the smoothed CCR-periodograms to their toolbox, as these features
could display a substantial discriminatory power in real MTS datasets.

7. Concluding remarks and future work

Cluster analysis of time series is a fundamental problem nowadays.
We live in a society which is generating huge amounts of data every
single day, a vast majority of which have a temporary nature. Whereas
clustering of univariate time series (UTS) has been broadly analysed in
the last twenty years, giving rise to a large amount of works, clustering
of multivariate time series (MTS) has received limited attention. How-
ever, given the importance of data such as ECG, EEG, sensor data...,
which can be naturally seen as MTS, it is clear that there is a need to
delve deeper into the topic. Most works on MTS clustering are based on
dimensionality reduction techniques as principal component analysis,
thus implying some loss of information. Only a few number of studies
present alternative procedures, but many of them do not take into
account the interdependence relationship between the components of
an MTS, which is a pivotal issue when dealing with MTS.

One of the key points in cluster analysis is deciding which type
of dissimilarity to use, which highly determines the nature of the
clustering solution. In the present paper, we focused on structure-
based dissimilarities, i.e., dissimilarity measures aimed to compare
underlying dependence structures. The challenge was to introduce an
efficient dissimilarity measure with a high capability of clustering MTS
generated from a broad range of dependence models. With this goal in
mind, a dissimilarity based on the quantile cross-spectral density, 𝑑𝑄𝐶𝐷,
was proposed. The great ability of the quantile cross-spectral density
to distinguish between different dependence structures was shown by
means of a toy example. Although an attractive tool, to the best of our
knowledge, the quantile cross-spectral density has not been used before
to perform time series clustering.

The proposed dissimilarity 𝑑𝑄𝐶𝐷 was fairly tested in a broad range
of simulated scenarios covering a wide variety of dependence schemes.
It was compared with several state of the art dissimilarities offered in
the literature. The distance 𝑑𝑄𝐶𝐷 produced its worst results grouping
linear processes. Under these circumstances, it was outperformed by
two dissimilarities, one of them being specifically designed to cope
with linear models. However, the results attained by 𝑑𝑄𝐶𝐷 were not
much worse than the best ones. Regarding heteroskedastic and quantile
autoregression-based processes, the distance 𝑑𝑄𝐶𝐷 obtained by far the
best scores, clearly outpacing the remaining competitors by a large
margin. The results have also shown a strong robustness of 𝑑𝑄𝐶𝐷 when
heavy tails are present in the error distribution, a situation which is
20

very common in some domains. In summary, the analyses have proved C
that 𝑑𝑄𝐶𝐷 is a robust and versatile dissimilarity that can be used to
perform cluster of MTS in many different contexts.

Another interesting property of the quantile cross-spectral density-
based metric is that it does not require the existence of any moments
and it is computationally inexpensive. Besides, it can be applied to clus-
ter series of unequal length. It must be noted that 𝑑𝑄𝐶𝐷 requires setting
a number of hyperparameters, namely the number of frequencies 𝐾, the
umber of quantile levels 𝑟, and the corresponding sets, {𝜔1,… , 𝜔𝐾}
nd {𝜏1,… , 𝜏𝑟}, respectively. Our numerical experiments have shown
hat a small number of quantiles with probability levels regularly
paced in [0, 1], along with the Fourier frequencies, are enough to reach
atisfactory results.

In order to illustrate the usefulness of the proposed methodology in
eal-life scenarios, it has been applied to clustering a set of bivariate
ime series containing the daily stock prices and trading volume of
ome S&P 500 companies pertaining to two different financial sectors.
he solution achieved by 𝑑𝑄𝐶𝐷, clearly differentiating between the
wo sectors and including only a small number of misclassifications,
s highly interpretable from a financial point of view. We have taken
dvantage of the high ability of the proposed metric to distinguish
etween heteroskedastic processes, a task which cannot be successfully
erformed by other structure-based dissimilarities. In addition, the
esigned metric was also tested in clustering of nonstationary MTS
rom the UEA multivariate time series classification archive. The results
ndicate that 𝑑𝑄𝐶𝐷 is effective even when the necessary requirements
f stationarity are not fulfilled, suggesting that the smoothed CCR-
eriodograms seen as descriptive features are useful in their own
ight.

There are two main ways through which this work can be extended.
irst, the excellent properties exhibited by 𝑑𝑄𝐶𝐷 in MTS clustering
rom a crisp point of view call for an extension of the distance to a
oft, fuzzy context. This way, the strength of the quantile cross-spectral
ensity and the versatility of the fuzzy logic could be combined in an
ndoubtedly powerful procedure, which could be probably useful in a
road range of application domains. Second, the high discriminative
ower demonstrated by the features extracted via the smoothed CCR-
eriodograms in an unsupervised learning framework suggests the
ossibility of a great performance also in a supervised learning setting,
here these features could be used to feed a traditional classification
lgorithm as the random forest or the support vector machine. Both
aths will be properly addressed in further work.
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Appendix. Supplementary material

All the code used to perform the analyses described throughout the
paper is available in https://github.com/anloor7/PhD_degree/tree/ma
ster/r_code/papers/paper_qcd. Please contact the corresponding author
for further information.
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