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A B S T R A C T   

Quality control of natural gas frequently relies on off-line slow standardized chromatographic techniques. Pre
vious implementations of new measurement approaches focused of synthetic mixtures without extensive in
dustrial validation. Here, a fast alternative based on infrared spectra is presented to predict the gas constituents 
and a physical parameter, the Wobbe index. Commercial samples instead of synthetic mixtures were used to 
develop predictive models. Method performance parameters were calculated and ca. 100 % of the sample- 
specific confidence intervals for the predictions overlapped with those of the reference values and the 
approach was unbiased and precise. The limits of detection and quantification (classical and considering errors of 
type I and II) outperformed other approaches. Validation included commercial samples and primary mixtures. 
Furthermore, prediction models considering reduced sets of variables were sought for using Markov-chain Monte 
Carlo guided searches (uninformative variable elimination and random frog) and common (iPLS, UVE and SR) 
approaches. The prediction errors and limits of detection of these ‘reduced’ models outperformed those from 
other approaches. The methodology takes only minutes to analyse a sample, requires few sample and no reagents 
(only some argon), making this approach cost-effective and environmentally-friendly.   

1. Introduction 

Despite petroleum being a non-renewable resource its distillates are 
still critical as energetic and raw material sources. Unfortunately, their 
combustion lead to atmospheric pollution [1], which constitutes one of 
the strongest causes of global climate change. Many countries adopted 
policies to reduce the carbon footprint and pollution by empowering the 
use of greener energies. Obvious renewable energy sources (wind, sun, 
etc.) should be complemented with natural gas (NG) to change smoothly 
some energetic paradigms as its combustion leads to reduced emissions 
of CO2, NOx and SOx [2]. Besides, massive deposits have been discov
ered, many of which are still under-exploited. Nowadays NG is 
employed mainly to generate electric power and to industrial and do
mestic applications. Its use in transportation is not as prevalent, mainly 
due to the low energy density (for liquefied NG, ca. half that of gasoline) 
which would require bigger fuel tanks, so that hybrid and electric en
gines are preferred in most cases [3]. However, the EU promoted it as a 
suitable fuel for heavy-duty vehicles and maritime transport [4]. The EU 

objective is to change traditional diesel engines for liquefied natural gas 
(LNG) propellers, and it was planned to deploy the corresponding fa
cilities on maritime ports and on land along the Trans-European 
Transport Networks by the end of 2025. The trend of changing tradi
tional personal vehicles to alternative fuel vehicles (considering com
pressed natural gas and gas-hybrid engines) is also rising. The EU 
directive [5] is gaining momentum rapidly as most European capitals 
strongly limit the circulation of traditional vehicles through their city 
centers. 

The growing use of NG requires reliable quality control methodolo
gies to determine its composition and energetic properties. They depend 
on the geological deposit where the NG comes from. NG is composed 
mainly of methane (75–99 %), mixed with other light hydrocarbons, like 
ethane (0–20 %), propane, butanes and pentanes, plus nitrogen and/or 
carbon dioxide (all of them ≪ 10 %). Sometimes, hexane isomers could 
be present at trace levels. Hence, the composition of the NG must be 
known to evaluate its physical properties and combustion power. In 
particular: 
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i) The methane number, MN, is an analogue to the octane number in 
gasoline or the cetane number in diesel. Its determination is 
controversial [6–8] and there exist different algorithms to estimate 
its value once the NG composition is known. Recently an IR-based 
alternative without that need has been proposed [9].  

ii) The Wobbe index, WI, evaluates the combustion energy of the NG 
using standardized formulae and its composition and represents the 
volume-basis calorific value, at specified reference conditions, 
divided by the square root of the relative density at the same speci
fied metering reference conditions. The WI is said to be gross or net 
(sometimes, lower or higher) according to whether the calorific 
value used is the gross or net calorific value (in common usage, the 
WI as employed here refers to the gross index) [10,11]. The WI is the 
primary gas interchangeability criterion for residential and com
mercial appliances as well as for some large-scale combustion 
equipment in industry and power generation. 

Currently, the NG composition is measured by standardized gas 
chromatography (GC) procedures [12]. However, GC is difficult to adapt 
to online devices and small facilities [13], and is costly (overall, ca. 600 
€ per sample) [14]. Modern on-line devices are relatively rapid (ca. 4 
min/sample) but they still need frequent time-consuming calibrations 
and verifications. GC off-line systems need ca. 150 min to get a full, 
validated result [14], which may delay pipeline distribution and energy 
custody transfer activities (shipments, storage, etc.). Thus, faster and 
cheaper methods are required to simplify and accelerate NG routine 
quality control. 

Published alternatives rely mostly on IR (infrared) measurements 
(although molecular fluorescence was also proposed [15]), with notable 
reductions in costs (e.g., less than 200 € per sample, in total [14]). Note 
that although the IR region can reflect accurately the NG composition 
[16,17] gas spectra are pretty hard to interpret due to the strong overlap 
of the peaks and so multivariate chemometric treatments are required to 
get predictions, typically by partial least squares regression (PLS) 
[13,18]. 

Very scarce papers applied multivariate regression to deal with the 
prediction of NG properties. To the best of the authors’ knowledge, the 
most relevant examples are reviewed herein. The two typical IR regions, 
near and medium (NIR and MIR) were used, although the former was 
more common. 

Likely, one of the very first studies considered methane-ethane- 
propane ternary mixtures and NIR and MIR measurements combined 
with PLS and PCR (principal components regression) [18]. Only two 
pipeline NG samples were considered to test the models, with good 
agreements for methane and ethane and worst results for propane. The 
MIR models doubled the errors of the NIR ones and the latter were 
selected. On the contrary, another report proposed MIR to predict the 
concentrations of 12 light hydrocarbons (C1-C4) when studying the 
catalytic degradation of butane [19], with most errors around ± 10 % 
(relative standard deviation). Noteworthy, ethane and propane could 
not be determined individually but their sum was predicted accurately. 

A fast screening NIR-based method for methane in NG was imple
mented considering classification by SIMCA (soft independent model
ling of class analogy) instead of a regression because the interest was on 
ascertaining whether the samples had a minimum methane content 
[16]. Models were developed using synthetic gas mixtures and validated 
with a collection of 55 commercial NG samples. Similar to this approach, 
a very fast microNIR system using hollow waveguides was proposed to 
determine methane, ethane, propane and total butane in synthetic 
mixtures using PLS regression [20]. That study was amplified next 
considering a microNIR advanced system and an acoustic-optical 
tunable filter device [21]; although only synthetic mixtures were 
considered, not truly NG samples. In another report, the NIR spectra of 
31 synthetic mixtures were used to develop PLS models that were vali
dated using synthetic mixtures and one additional certified gas mixture 
[13]. The authors studied the impact of temperature and pressure 

fluctuations in the models and derived some performance parameters 
(figures-of-merit). In these studies no commercial NG samples were 
analyzed. 

The flue gas of a NG-fired generator was studied to determine 
methane, CO and CO2 using NIR spectra, non-linear PLS regression and 
real samples of flue gas (reference values determined by GC) [22]. 
Finally, a US patent [23] was issued for a NIR-based system (coupled to a 
PCA-PLS computing module) to be deployed in gas fields and/or trans
mission infrastructures to monitor the gas composition and WI of several 
wells. 

Very recently two different sensors comprising either six electro
chemical detectors and a tunable mid-IR photometer were proposed to 
determine the composition of NG-like standard mixtures [7], although 
they are not still on the market. 

With regards to the WI, to the best of our knowledge, only a handful 
of publications evaluated it without resorting to the composition of the 
gas [24] or other physical parameters [25–27]. A relevant, seminal 
approach predicted the energy content of NG by combining NIR and PLS 
[28]. There, synthetic mixtures of the NG components (including N2 and 
CO2) were used to get a model that was validated using a certified 
standard gas mixture. In another work, a micromachined thermoelectric 
sensor was proposed to measure several NG properties [29], including 
the WI, methane and ethane using PLS. Synthetic mixtures composed of 
methane, ethane, CO2 and N2 were used for calibration, and this 
involved a degradation on the performance of the Wobbe models when 
typical levels of propane were considered. Also, fiber-enhanced Raman 
spectroscopy [30] was employed to determine a partial composition of 
the sample (C1-nC4, N2 and CO2) used subsequently to calculate the WI 
in real time. 

From this review it is concluded that true commercial and/or in
dustrial NG samples have scarcely being considered into the studies. 
From the pragmatic viewpoint of industrial and quality control labora
tories, this is a relevant drawback that should be addressed. In addition, 
almost no synthetic samples contained N2 nor heavier compounds than 
butane (although they are indeed present in NG) and most reports did 
not differentiate between i- and n-butane. 

The major aim of this paper is to develop and validate a methodology 
to determine the composition and the Wobbe index of NG samples by 
hybridizing their gas-phase MIR spectra with multivariate regression. 
Our working hypothesis was that having enough industrial samples to 
build a sound model, the composition of unknown samples can be pre
dicted with remarkable accuracy and, even, complex physical parame
ters (the Wobbe index) can be addressed. Further, should the approach 
be satisfactory enough, industrial laboratories can avoid the preparation 
(purchase) of a huge number of synthetic gas mixtures to develop cali
bration models. A second objective is to reduce the time required for the 
analyses as much as possible and make them robust to uninformative 
variables. For this, a suite of spectral variable reduction methods have 
been applied to select the most relevant wavenumbers, although without 
compromising the predictions. 

2. Experimental 

2.1. Samples 

The routine-operation NG samples used throughout correspond to a 
one-year-collection of ca. 120 samples in the Reganosa regasification 
plant (Mugardos, A Coruña, Spain) in 500 cm3 stainless steel cylinders. 
They were NG, vaporized liquefied NG (LNG), and boil-off-gas (BOG) 
samples. LNG samples from tanks at the terminal harbour were also 
taken. In the following only the term NG will be used for all samples for 
the sake of simplicity. Most samples had been employed in the European 
EMPIR LNGIII project [9] although it did not include the objectives 
addressed here. 

As an additional validation set, 27 mixtures specially developed by 
Nippon Gases (formerly Praxair) and Linde Gas Benelux B.V. during the 
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European EURAMET-EMRP LNG II and EURAMET-EMPIR LNG III 
research projects were employed. Their compositions were determined 
by standardized methods [9]. 

2.2. Apparatus 

Gas-phase IR measurements were made with an 8400S Shimadzu 
FTIR spectrometer. The cell setup consisted of a 10 cm path, stainless 
steel Harrick gas cell (Harrick Scientific, USA) with 2 mm- thick, 47 mm- 
diameter ZnSe windows, an input tube with a Swagelock 3 way valve, an 
exhaust tube and an internal pressure gauge (see Fig. 1). The resolution 
used was 1 cm− 1, with a spectral range from 5500 to 480 cm− 1 and 
Happ-Genzel apodization. A background was made before each sample, 
using 0.5 bar of the broadening gas (Argon, Carburos Metálicos (Bar
celona, Spain), 99.9992 % purity). All measurements were done at 25 ±
1 ◦C, mixing 0.2 bar of the selected sample (ca. 500 mL were enough to 
perform the studies) and 1.3 bar of argon, employed as broadening gas 
to enhance the intensity of the spectral features, more comprehensive 
details and explanations on this issue and the use of broadening gases 
were detailed previously [14]. The chemical composition of the samples 
was determined by the ISO-17025-accredited Reganosa laboratory using 
a protocol based on ISO 6974–4 [12] (more details can be found else
where [14]). 

2.3. Software and chemometrics 

The spectrometer was controlled by the Shimadzu IR Solutions 
software, v.1.30. The raw spectra were digitized to 9375 data points per 
spectrum (from 5000 to 480 cm− 1, 1 datum per ca. 0.5 cm− 1). The 
spectral treatments and developments of multivariate models used the 
PLS Toolbox (Eigenvector Co, WA, USA). Different preprocessings were 
studied and the selected one consisted of an iterative baseline correction 
(automatic weighted least squares, using a polynomial of order 2), fol
lowed by spectral normalization (total area = 1) and mean centring. 
Variable selection was made using the PLS_Toolbox and a collection of 
routines for Monte Carlo natural computation presented recently [31], 
the latter complemented with in-house Matlab routines. 

For the purposes of this manuscript, PLS can be described concep
tually as a powerful regression method where both the spectral infor
mation (X-space) and each of the properties to be predicted (Y-space) are 
maximally related by means of a set of abstract factors (termed latent 
variables or, just, factors). PLS has become a de-facto standard and, 
hence, it was considered here; technical details can be found elsewhere 
[32,33]. Roughly, PLS modelling consists of a calibration (training) and 
a validation stage. The latter verifies that neither underfitting (i.e., a 

model with a lack of predictive capability due to a lack of information) 
nor overfitting (i.e., a model with a lack of predictive capability due to 
memorization of too particular information associated to the training 
samples, e.g., some minor spectral characteristics) occur. Noteworthy, 
the latter problem is pretty much frequent than the former [34]. See 
Supplementary Material for practical details. The usual practice by 
which a minimum in the internal validation procedure (Supplementary 
Material) is used to fix the number of latent variables can lead to 
overfitting [34] and, so, it is highly advisable to compare the average 
error in cross-validation (RMSECV, root mean square error of cross- 
validation when calibrating) and the average error in a ‘true’ external 
prediction set of new samples –RMSEP- (root mean square error of 
prediction). Sometimes, this set of samples is called the fine-tuning set, 
as it is used to refine the selection of the number of LV. Ideally, RMSECV 
and RMSEP should be of the same order, which results from a trade-off 
among fitting and prediction [35]. A final external validation set of 
samples is needed to accurately check how the model behaves (some
times it is called testing set). Hence, two ‘validation’ steps were under
gone here, both with external new samples: a first one to fine-tune the 
model after a number of factors was suggested by internal cross vali
dation, and a final one to validate the model. 

2.3.1. Variable reduction methods and performance parameters 
A model can be refined by avoiding those spectral variables that do 

not contribute to the predictions. Variable selection methods, thus, play 
an important role in potentially improving model robustness and/or 
allowing for the development of dedicated instruments. In this paper we 
selected five strategies. The first three are applied frequently and are 
broadly available; the other two are based on exhaustive ‘natural 
computation algorithms’ (population-driven or Bayesian approaches) 
and constitute quite new developments [31]; however, they were not 
applied in quality control. A conceptual overview of each of them is 
presented in the Supplementary Material. 

After developing the models several statistical performance param
eters [34] must be calculated to assess their adequacy (details are given 
in the Supplementary Material): the coefficient of determination (R2), 
bias, the standard error of performance (SEP) (if bias is statistically 
negligible, the value of SEP equals the RMSEP and, so the latter is 
interpreted as a standard deviation), and the ratio of prediction to de
viation (RPD) [34]. In addition, the modern IUPAC, EU and ISO limits of 
detection and quantification (i.e., including both the risks of type I –false 
positives- and type II -number of false negatives) [36–39,40,41] were 
employed. 

Here, both the classical and the modern limits of detection were 
calculated for ethane, propane, n-butane and i-butane because they have 
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Fig. 1. a) Measurement setup, 8400S Shimazdu FTIR spectrometer and connections to a synthetic NG-like mixture container. b) Experimental setup diagram (the 
grey background indicates the parts of the Shimadzu 8400S spectrometer). 

B. Ferreiro et al.                                                                                                                                                                                                                                 



Fuel 305 (2021) 121500

4

concentrations close to zero, whereas methane and the WI values remain 
far apart from the origin and, so, they would require large extrapolations 
which would render unreasonable figures. Noteworthy, the modern 
limits have not still been reported for usual NG analysis. 

3. Results and discussion 

3.1. Predictive model for % of methane 

The model to predict the percentage molar volume concentration, 
vol%, of Methane was developed from a calibration set of 71 samples 
whose concentrations spread evenly between 89 % and 99 %. During our 

sampling period (ca. one year) only 4 samples with percentages between 
68 % and 85 % methane were collected and, thus, the models could not 
predict them reliably and they were discarded. The model selected 
finally considered 5 latent variables (LV), see Fig. 2, and was quite 
satisfactory. Note that this methodology can definitely be adequate to 
other ranges of values (typically, around 75 % which are common in 
many deposits worldwide) as long as enough samples are available to get 
a calibration, which was not the case here. 

The external validation set to fine-tune the model consisted of 13 
external samples, not included in the model at all, which confirmed its 
good predictive properties. It takes account of a large amount of infor
mation in the spectra and in the parameter of interest (methane), and 

Fig. 2. Global average errors for different PLS models on calibration and validation for each studied parameter. The boxes indicate the number of latent variables 
selected for each model. RMSEC = root mean square error of calibration, RMSECV = root mean square error of cross-validation, RMSEP = root mean square error of 
prediction (fine-tuning external set), all them in vol%. 
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yields a high coefficient of determination, 98.5 % (Table 1), so that a 
huge amount of information related to methane is explained. 

Fig. 3 presents the typical accuracy line (‘actual vs predicted’ line) 
for calibration, which summarizes the predictive performance of the 
model. The average overall error for calibration, measured as RMSEC, 
was ca. 0.3 vol% methane. The model has not a statistical bias (Table 1 
and Fig. 3) nor relevant outliers, as seen at Figure SM1 (supplementary 
material), which shows two common diagnostic statistics, the Q re
siduals and the Hotelling T2 statistics (they two yield the so-called, 
applicability domain) [13]. 

Further validation with an external test set comprising 20 NG sam
ples distributed throughout the working range was also satisfactory. 
Fig. 4 presents its predictions and Table 1 resumes some relevant asso
ciated statistics. The RPD index (>3) shows that accurate predictions 
can be expected throughout the working range, without bias and a 
predictive average standard error ca. 0.4 vol% of methane. The RMSEC 
and RMSEP values can be compared directly with the precision of the GC 
method (method-reproducibility) thanks to the absence of bias. They are 
of the same order as the 0.37–0.39 vol% reproducibility values obtained 
for methane using the chromatographic method in this range (Table 2). 

Indeed, 95 % of the external validation samples yield prediction 
differences (=predicted – reference) smaller than the maximum GC 
reproducibility allowed by the ISO 6975:1997 [42]. Fig. 5 depicts the 
reference compositional values derived from the GC measurement, 
along with their 95 % confidence intervals, superimposed to the MIR +
PLS predicted values, also with their sample-specific 95 % PLS confi
dence intervals (calculated as formulated elsewhere [43]). The key idea 
is that to get statistically unbiased predictions both confidence intervals 
must overlap and this occurs for 100 % of the validation samples. A note 
about the interpretation of Table 2 and Fig. 5 is in order: note that the 
reproducibility values given in table 2 act as confidence intervals of the 
GC values alone. When the number of predictions that are excluded from 
this range are counted, a ‘worst scenario’ situation is considered. In ef
fect, as the PLS predictions themselves have associated confidence in
tervals it may happen that even when a PLS prediction is out of the GC 
reproducibility range the PLS-predicted and GC-values do agree (sta
tistically), when both confidence intervals overlap. Hence, the use of 
sample-specific intervals for the predictions are of most importance 

(Fig. 5). 
The average predictive error (RMSEP) obtained in this model com

pares nicely to literature, see Table 3, mostly considering that we used 
true NG samples whereas the other approaches considered mostly syn
thetic mixtures. 

3.2. Predictive model for % of ethane 

The model established to predict the vol% of ethane considered a 
calibration set with 73 industrial LNG samples in the 0 – 6 % volume 
molar range concentration and 7 LV (see Fig. 2). It yielded a good 
calibration (Fig. 3) with reasonably good statistics (Table 1). Although a 
slight improvement could be seen for the fine-tuning test set when 8 LV 
were considered (Fig. 2) it was only marginal and was not observed for 
the external validation set. The model explained ca. 99 % of the infor
mation in the spectral and concentration domains, and the coefficient of 
determination was very high (99.4 %), as well as the RPD index (>11). 

No obvious suspicious samples were seen on the applicability domain 
plot (Figure SM1, supplementary material). No bias was observed 
neither for calibration (Table 1 and Fig. 3), nor for validation (Table 1 
and Fig. 4) and, so, it is worth noting that the average prediction errors 
for the samples of the calibration, fine-tuning and external validation 
sets (i.e., 0.2 vol% ethane, Table 1) were comparable to the GC method- 
reproducibility range (Table 2). When the external validation set of 
samples was considered, only 37.5 % of them yielded predictions within 
the ISO 6975:1997 maximum GC reproducibility values. However, Fig. 5 
indicates that 96 % of the 95 % confidence intervals associated to the 
reference and predicted values overlap. Two samples gave bad pre
dictions although their behaviour was very good for the other parame
ters so we could not find a reason for that point. In addition, the average 
error (RMSEP) obtained when validating this model is of the same order 
as the best ones reported using NIR (Table 3). 

Both the modern and classical limits of detection and quantification 
(xd and xq, and LOD and LOQ, respectively; see Supplementary Ma
terial) were calculated (see Table 1). The classical limits were calculated 
following the Eurachem Guide [44] which recommends using the 10 
samples with the lowest concentration values, along with blanks or 
samples without the analyte. As there were no industrial samples with 

Table 1 
Performance parameters associated to each selected model for calibration and validation; N = number of samples used in the model after removing outliers. X rep
resents the spectra and Y represents the parameter of interest, see text for more details. The parameters specified for the selected variable reduction method are shown 
between brackets.   

C1 C2 C3 n-C4 i-C4 Wobbe Index 

Calibration N 71 73 65 60 50 65 
LVs (PLS) 5 7 11 5 4 9 
RMSEC (vol%) 0.3  

[SR: 0.4] 
0.1  
[SR: 0.2] 

0.03  
[SR: 0.04] 

0.02  
[iPLS: 0.007] 

0.03  
[iPLS: 0.004] 

0.02  
[SR: 0.05] 

RMSECV (vol%) 0.4  
[SR: 0.4] 

0.2  
[SR: 0.4] 

0.06  
[SR: 0.05] 

0.03  
[iPLS: 0.009] 

0.05  
[iPLS: 0.009] 

0.03  
[SR: 0.07] 

Total % info explained in X 93.40 98.86 99.44 81.58 78.83 93.42 
Total % info explained in Y 98.49 99.46 99.80 95.63 92.48 99.16 
R2 0.985 0.994 0.998 0.956 0.894 0.992 
BIAS 0 0 0 0 0 0 
LOD (vol%) – 0.264  

[SR: 0.161] 
0.052  
[SR: 0.033] 

0.020  
[iPLS: 0.0072] 

0.024  
[iPLS: 0.0064] 

– 

LOQ (vol%) – 0.880  
[SR: 0.458] 

0.174  
[SR: 0.097] 

0.067  
[iPLS: 0.019] 

0.082  
[iPLS: 0.018] 

– 

xd (vol%) – 1.11 0.27 0.107 0.108 – 
xq (vol%) – 3.24 0.80 0.331 0.336 – 

1st Validation (fine-tuning) N 13 15 12 11 16 14 
RMSEP (vol%) 0.2 0.2 0.1 0.02 0.04 0.05 
RPD 2.84 11.01 3.40 4.80 2.79 3.38 
R2 0.993 0.993 0.932 0.962 0.873 0.913 

External Validation N 20 24 17 18 27 20 
RMSEP (vol%) 0.4  

[SR: 0.4] 
0.2  
[SR: 0.3] 

0.03  
[SR: 0.03] 

0.03  
[iPLS: 0.008] 

0.05  
[iPLS: 0.007] 

0.03  
[SR: 0.03] 

RPD 5.83 11.8 15.7 3.38 2.38 4.85 
R2 0.971 0.991 0.990 0.919 0.847 0.959  
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0 % ethane concentration the samples used as ‘zero’ had concentrations 
ranging from 0.01 to 0.027 vol% ethane. With respect to the classical 
limit of detection (LOD) very few comparisons could be established with 
literature because of the scarcity of reported values, and none of them 
reported the modern definitions (xd, xq). All LODs are clearly higher than 
the chromatographic ones (Table 3), which is the reference methodol
ogy. However, positively enough, the mid-IR approach leads to lower 
LODs than the NIR ones. 

3.3. Predictive model for % of propane 

The model to predict the concentration of propane was developed 
using a calibration set consisting of 78 LNG samples in a range between 
0 and 2.1 % volume molar concentration of propane. A model with 11 
LVs (see Fig. 2) yielded a good calibration (Fig. 3 and Table 1). The need 
for this rather high number of LVs was attributed to the requirement for 
considering minor spectral signals which can correlate positively with 
propane (likely because its spectral bands overlap strongly with those 
from other NG components). In fact, a bit more than 99 % of the 
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Fig. 3. Calibration accuracy lines for the PLS models selected for each predicted parameter. The green line depicts the theoretical perfect prediction (45⁰ line) 
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information in the spectral domain was required to explain the con
centration of propane (R2 = 0.998, Table 1). No obvious suspicious 
samples were seen on the applicability domain plot (Figure SM1, sup
plementary material) and no relevant bias was observed for calibration 
or validation (Figs. 3 and 4, and Table 1). 

The model was validated using external NG samples. The RMSEP 
values were similar to the RMSECV one (0.03 vol% – 0.1 vol%) so no 
overfitting occurred. The model was not biased (Table 1) and its preci
sion was comparable to the GC reproducibility (Table 2). In fact, 73.3 % 
of the predictions of the validation samples where within the ISO 

6975:1997 maximum GC reproducibility and, also, 100 % of them 
overlapped their confidence sample-specific intervals with the GC ones 
(Fig. 5). 

The limits of detection and quantification were calculated (Table 1). 
As for ethane, there were not enough industrial samples with zero pro
pane concentration. Thus, the LOD and LOQ were calculated considering 
samples with concentrations ranging from 0 to 0.004 vol%. The LOD was 
higher than the GC ones although quite similar to that reported by Haghi 
et al [13] and much better that that of Rivessi et al [21] (Table 3). The 
average error (RMSEP) obtained when validating this model is clearly 
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better than those reported for NIR (Table 3). 

3.4. Predictive model for % of Butane. 

The models to predict the concentrations of n- and i-butane were 
developed using calibration sets including 60 and 50 industrial LNG 
samples, respectively, whose concentration ranges were between 0 % 
and 0.3 vol%, and between 0 and 0.4 vol%, each. The optimized models 
considered 5 LVs for n-butane, and 4 LVs for i-butane (see Fig. 2). They 
yielded good calibrations, without bias and quite good performance 
parameters (Fig. 3 and Table 1). No obvious outliers were seen on the 
models (Figure SM1, supplementary material). The models were vali
dated using external fine-tuning and test sets. The RMSEP values were 
similar to the RMSECV ones (0.02 vol%–0.03 vol%, n-butane, and 0.05 
vol%–0.06 vol%, i-butane) so no overfitting occurred. In addition, those 
values were similar to the ISO 6975:1997 maximum GC reproducibility 
precision, being the number of predictions within those figures 77.8 % of 
the external validation samples for n-butane, and 63.0 % for i-butane 
(Table 2). Fig. 5 shows that 100 % of the confidence intervals overlap for 
the validation samples. 

Despite quite good models were obtained, they have low RPDs (ca. 3, 
Table 1), which seems to be caused mainly by the reduced working 
ranges. The average errors (RMSEP) obtained when validating this 
model with true NG samples are slightly higher (although of the same 
order) than those reported using NIR using synthetic mixtures [13] 
although much better than those reported for the sum of i + n butanes 
[20,21] (Table 3). The limits of detection and quantification were also 
calculated (see Table 1). In this case there were 15 production samples 
without butane, so that they constituted a true zero. The LODs were 
better than those reported for NIR [13,21]; all IR-based approaches had 
bigger LODs than the GC ones (Table 3). 

3.5. Predictive model for the Wobbe index 

The model developed for the Wobbe index considered 65 NG samples 
ranging from 14.5 to 15.5 kWh/Nm3. This interval does not include the 
low values associated to some samples, that can be as low as 12.6 kWh/ 
Nm3 in some countries [45]. Despite some very few samples had WIs 
between 13.0 and 14.5 kWh/Nm3 they disrupted the models. This was 
attributed to their contents on N2 as it decreases dramatically the WI. 
The problem here is that N2 is transparent to the mid-IR radiation, thus 
making it hard for the models to take it into account. This yielded a 
broad dispersion of the predictions at the lowest values of the calibra
tion. Therefore, those particular samples were not considered in the 
models. 

After several preliminary studies (Fig. 2 was not conclusive by itself) 
with the fine-tuning dataset 6 LV were fixed, which yielded a good 
calibration (Fig. 3 and Table 1), without bias and no outliers 
(Figure SM1, supplementary material). The RMSECV and RMSEP 
average errors for the calibration and the fine-tuning and external 
validation sets (Fig. 4) were similar (ca. 0.03–0.05 kWh/Nm3), sug
gesting that overfitting did not occur. These errors (0.28 % as relative 

error, for the experimental range of values) compare very well to other 
publications reporting relative errors between 1 % and 0.03 % [25]. 
Other authors reported even higher relative errors, like 1.5 % [29] or 14 
% [27]. Although Brown et al [28] reported average errors around 0.5 
%, those corresponded to energy predictions, using BTU units. 

As ISO 6975:1997 does not contemplate the WI, the precision figures 
calculated for this parameter using the MIR+PLS approach were 
compared to the experimental reproducibility (strictly, intermediate 
precision) obtained by Reganosa using GC (ca. 0.04 kWh/Nm3). They 
are similar (Table 2), and 80 % of the predictions of the validation 
samples became within the reproducibility range. Notwithstanding, 100 
% of the sample-specific confidence intervals of the validation samples 
overlaped with the reference ones (Fig. 5). 

3.6. Validation with synthetic gas mixtures 

As mentioned in the experimental part, 27 gas mixtures from two 
European projects were considered. Some of them were used to check 
two new sensors, one based on electrochemical membranes and a TFIR 
system [7]. Despite some of these mixtures were only binary or ternary 
ones (and, so, quite different from the industrial NG samples employed 
in the models above), it was considered interesting to predict them as a 
benchmark activity to see whether the MIR + PLS approach could pre
dict them. Table 3 summarizes the average prediction errors (as RMSEP) 
and despite they are of somewhat lower quality than those from the real 
NG samples (as expected because of the spectral differences), they are 
very encouraging. The RMSEPs (as they had not bias, they can be 
immediately compared with standard deviations) for methane and 
ethane are midway between those of the other two methods [7] while 
for propane, the MIR-PLS approach yields slightly better results. The 
predictions for the two isomers of butane yielded only semiquantitative 
results because many synthetic mixtures were out of the calibration 
range of the models and they contained much more butanes (0–2 vol% 
range) than our usual NG samples (0–0.45 vol% range). 

3.7. Variable reduction methods 

As mentioned in the experimental section, the spectra measured in 
this work contain as many as 9375 variables/spectrum because of the 
need to register the sharp IR spectral peaks of the gaseous components at 
high resolution. This can be a problem when time is an issue (here, at 
least 30 min/spectrum were needed to get a high signal/noise ratio, 
including the background), when implementing probes or portable 
equipment, or when some of those wavenumbers offer no relevant in
formation and degrade the predictions. Hence, spectral variable reduc
tion appears as a nice option. Disappointingly, as mentioned in the 
Supplementary Material, many variable selection strategies do not set 
absolute thresholds for their statistics [46] and these have to be estab
lished ad-hoc. Here, we took advantage of the many trials the algorithms 
performed to set a strategy rooted on classical quality control. As for 
traditional quality control charts, average values of the statistics asso
ciated to all the variables (e.g., the reliability (of the MCUVE approach) 

Table 2 
Range-dependent overall-method reproducibility values calculated for the gas chromatography reference method (indicated as the reproducibility for the lowest and 
highest concentrations of each component). The percentages between parentheses indicate the number of external samples whose predictions using gas-phase FTIR +
PLS are within these reproducibility values, for the full-spectrum and reduced models.   

GC calibration range(Vol.% or kWh/Nm3) GC method ISO 6975:1997 reproducibility values(% of predictions within the reproducibility ranges) 

Methane 99.850–93.220 0.37–0.39 (PLS: 95; SR: 100) 
Ethane 3.002–0.010 0.0092–0.11 (PLS: 37.5; SR: 42) 
Propane 3.115–0.003 0.0032–0.56 (PLS: 73.3; SR: 53) 
n-Butane 0.717–0.002 0.0032–0.034 (PLS: 77.8; iPLS: 83) 
i-Butane 0.722–0.002 0.0032–0.038 (PLS: 63.0; iPLS: 96]) 
Wobbe index 14.866–14.552 0.04 (PLS: 80; SR: 85])  
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and the selection probability (for random frog) can be calculated, along 
with their 2 and 3 standard deviation upper limits. Hence, any variable 
outside the upper control limit is deem to be selected; see next para
graphs for an example. 

The number of selected spectral variables was varied from 10 to 400 
for all five approaches and all analytical parameters (composition plus 
Wobbe index). Further, the number of latent variables was also opti
mized for each trial. As this generates a very large number of models, to 
choose a final one we proceeded as follows (for each analytical param
eter): first, for each selection strategy the number of spectral variables 
leading to best predictions was chosen among the different trials (the 
number of latent variables in each PLS models were optimized as well); 
second, the best candidates of the five variable reduction methods were 

compared; third, whenever several ‘best’ candidate models performed 
approximately the same, that with less spectral variables and/or with 
the spectral variables more concentrated in particular spectral regions 
would be preferred. This criterion was applied at the final stage of the 
selection because one of our objectives was to simplify the measuring 
stage in the industrial laboratory, which is trivial whenever the selected 
variables become close to each other. 

As a general result, it was found that many models considering 
reduced suites of variables outperformed those considering full-spectra. 
However, the ‘best’ models disagreed on the number of wavenumbers 
they considered, as expected because of the different criteria involved in 
the approaches (see Supplementary Material), and they varied also 
with the property under consideration (as it is logical because relevant 

Fig. 5. Reference (blue asterisk) with the ISO 6975:1997 max. reproducibility (Reganosás in the case of the Wobbe index) and predicted (red circle) values with their 
respective 95 % confidence intervals for the external calibration samples. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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variables for methane may not be so for –e.g.- i-butane). This compli
cates any comparison and makes it difficult to decide which approach is 
best in an absolute sense. As a consequence, a trade-off was made for 
each analytical parameter. 

Table 1 depicts the variable reduction method of choice for each 
property, their RMSEC, RMSECV, RMSEP, and limits of detection and 
quantification. First of all, note the improvements achieved when the 
variable subsets are used as those performance parameters became half 
or a third those of the full-spectrum ones. Of most importance is the very 
large enhancement associated to i- and n-butane, which are particularly 
difficult to address because their bands overlap not only among them but 
with methane and ethane. 

The feature reduction method selected for methane, ethane, propane 
and WI was SR (the selectivity ratio index, see Supplementary Mate
rial), with 3 LV (50 wavenumbers), 6 LV (100 wavenumbers), 6 LV (50 
wavenumbers) and 6 LV (250 wavenumbers), respectively (see Fig. 6 
and Figure SM2, supplementary material). Despite the wavenumbers 
selected for methane became not too grouped (Fig. 7), they indeed 
formed nice, definite regions for ethane, propane and WI (Figure SM3, 
supplementary material). 

A good alternative for the former three properties may be VIP (var
iable importance in projection, Supplementary Material) as it chose 
limited spectral ranges (Fig. 7 and Figure SM3, supplementary mate
rial) although with slightly higher prediction errors. For the WI good 

alternatives might be random frog or common PLS (although all the 
spectrum needs to be measured). iPLS performs quite well although at 
the expense of selecting very sparse sets of variables (so all the full 
spectrum would still be required). Random frog yielded also sparse se
lections while MCUVE (Monte Carlo uninformative variable elimina
tion, Supplementary Material) and VIP lead to two very well defined 
groups around variables 5000–5500 and 1500–1800 (i.e., 2650–2900 
and 4430–4580 cm− 1, respectively). See Supplementary Material for a 
general chemical interpretation of the most relevant regions. Fig. 8 ex
emplifies how thresholds for MCUVE and random frog were set 
following the ‘quality control chart’ criterion depicted above. 

Note the very stable predictions SR yields for ethane and Wobbe 
index, where the dimensionality is not a critical factor (Figure SM2, 
Supplementary Material, in the figure it is called SRI to stress its 
indexing nature). This is a very possitive result for quality control pur
poses as parsimony can be applied, however in this paper we only 
focused on absolute minima to simplify the comparisons and 
discussions. 

Analogous situations were found for the other analytical parameters 
(Supplementary Material, Figures SM2 and SM3), i- and n-butane are 
predicted nicely by iPLS (200 wavenumbers and 6 LV in both cases; 
4500–2450 cm− 1 for i-butane and 4100–950 cm− 1 for n-butane). The 
alternative for i-butane (although with higher RMSEP) was random frog 
(10 wavenumbers), with a very stable behaviour when dimensionality is 

Table 3 
Average errors obtained in this work (RMSEP) compared to those reported in literature using NIR and other methods. The LODs are shown between parentheses (when 
available) and the calibration ranges, as percentage, between brackets. The chromatographic LODs are shown as a reference. All values represent vol% molar con
centration of the constituent. Note that RMSEPs can be related to SD because the models in this work are not biased (see text for details). SD means standard deviation.   

Range  C1 C2 C3 i-C4 n-C4 

LNG samples in this work MIR:(PLS) RMSEP 0.4 0.2 0.03 0.03 0.05 
(LOD) – [99–89] (0.26)[6–0] (0.05)[2–0] (0.02)[0.4–0] (0.02)[0.4–0] 

MIR (reduced) RMSEP SR: 0.4[99–89] SR: 0.3[6–0] SR: 0.04[2–0] iPLS: 0.008[0.4–0] iPLS: 0.007[0.4–0] 
(LOD) – [99–89] SR: 0.161[6–0] SR: 0.033[2–0] iPLS: 0.0072[0.4–0] iPLS: 0.0064[0.4–0] 

SyntheticMixtures in this work MIR: RMSEP 1.04[95–89] 0.49[14–0] 0.28[5–0] – 
Electrochemical sensor (SD) [7] MIR: SD 0.58[95–89] 0.62[10–0] 0.34[5–0] 0.15[2–0] 0.22[2–0] 
TF-IR sensor (SD) [7] MIR SD 1.23[95–89] 0.13[10–0] 0.44[5–0] 0.34[2–0] 0.07[2–0] 
Haghi et al [13] NIR RMSEP 0.20 0.19 0.16 0.012 0.012 

(LOD) (0.90)[100–80] (0.39)[12–0] (0.33)[8–0] (0.13)[2–0] (0.15)[2–0] 
Rohwedder et al[20] NIR RMSEP 0.37[82–69] 0.36[17–6] 0.67[14–5] 0.37[7–2] 
Makhoukhi et al[18] MIR/NIR RMSEP 0.2[96–85] 0.2[10–2] 0.1[4–0] – 
Ribessi et al [21] NIR RMSEP 0.77 0.75 1.63 0.54 

(LOD) (0.42)[90–30] (0.59)[50–10] (1.42)[30–3] (1.67)[20–1] 
Cao et al [22] NIR RMSEP 0.95[0.46–0 ppm] – – – 
Udina et al [29] Thermic sensor RMSEP 0.6[100–72] 1.0[20–0] – – 
GC method – LOD – [99–68] 0.01[12–0] 0.003[3–0] 0.002[0.7–0] 0.002[0.7–0]  
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Fig. 6. Errors of prediction (RMSEP, vol%) for each latent variable and variable reduction method for the methane determination.  
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considered and an average error almost as good. Nevertheless, those 10 
variables spanned throughout the overall original spectrum, whereas for 
iPLS the intervals were collateral. For n-butane, SR (50 wavenumbers) 

may be a reasonable alternative, although with ca. 50 % more error. 
As a final remark, it is worth noting the very ‘homogeneous’ overall 

performance of iPLS throughout the various analytical parameters as it 
had a quite good behaviour almost always, but for the Wobbe index. 
However, it required high processing times (>8h for a 9375 to 400 
variables reduction) and it can only select intervals of variables. SR and 
VIP performed rather similarly to iPLS although much faster and, 
indeed, SR was the method of choice for methane, ethane and propane, 
mostly because it ‘clustered’ the selected wavenumbers (see, e.g. Fig. 7) 
and it appeared also as a good alternative for n-butane. 

MCUVE and Random frog demonstrated an intermediate behaviour, 
often similar to iPLS, with the advantages that they required much 
reduced computing times and can select discreet variables. The former 
tends to group them slightly more than iPLS, while random frog tended 
to select much more dispersed wavenumbers. 

4. Conclusions 

This work demonstrates that the combination of mid-IR spectrometry 
and PLS regression yields regression models that predict the primary 
composition of natural gas reliably. The approach is cost effective 
because it requires standard laboratory instrumentation, industrial 
samples (not standard mixtures) and requires ca. 45 min to get the main 
composition of natural gas, along with an important physicochemical 
property, the Wobbe index (this included recording the sample spec
trum, ca. 35 min, plus the software application to run the models). 
Further, it can be considered a green method because it does not demand 
chemicals (but some argon), uses very little sample (ca. 500 mL) and 
does not generate residues nor cleaning steps. 

The models were unbiased in the typical industrial working ranges, 
with precisions comparable to the chromatographic reference method. 
The mid-IR-PLS approach compares advantageously to other NIR-based 
methods, with better average errors and better limits of detection (or, in 
the worst case, similar to the best NIR ones). 

The models developed with reduced sets of variables clearly 
decreased the average predictions errors and limits of detection and 
quantification and, so, outperformed previous reports using other 
spectral regions. As a trade-off solution, the selectivity ratio index, SR, 
seemed the most satisfactory alternative because it was selected for four 
parameters and could be a good alternative for another one. iPLS 
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Fig. 7. Selected variables for each of the tested methods for the methane determination.  

a) 

b) 

Fig. 8. Exemplification of how a selection threshold can be set considering the 
average and classical upper quality control limits (±3SD) for the MCUVE (a) 
and random frog (b) indices calculated for methane (SD stands for standard 
deviation). See text for details. 
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behaved also very well, achieving the lowest errors to determine the 
butanes (although it selects variables across all the spectrum). The 
prediction capabilities of the advanced random frog method were good 
but it selected very sparse variables. 
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Rey-Garrote M, et al. Improved Sensitivity of Natural Gas Infrared Measurements 
Using a Filling Gas. Energy Fuels 2019;33:6929–33. https://doi.org/10.1021/acs. 
energyfuels.9b00549. 

[15] Dong C, O’Keefe M, Elshahawi H, Hashem M, Williams S, Stensland D, et al. New 
downhole-fluid-analysis tool for improved reservoir characterization. SPE Reserv 
Eval Eng 2008;11:1107–16. https://doi.org/10.2118/108566-pa. 

[16] Dantas HV, Barbosa MF, Nascimento ECL, Moreira PNT, Galvão RKH, Araújo MCU. 
Screening analysis of natural gas with respect to methane content by near-infrared 
spectrometry. Microchem J 2014;114:210–5. 

[17] Van Agthoven MA, Fujisawa G, Rabbito P, Mullins OC. Near-infrared spectral 
analysis of gas mixtures. Appl Spectrosc 2002;56:593–8. 
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