
ORIGINAL RESEARCH

BASIC SCIENCE

SEXUAL MEDICINE
Implications of the Estrogen Receptor Coactivators SRC1 and SRC2 in
the Biological Basis of Gender Incongruence
Karla del Valle Ramírez, Pre-doc,1,2 Rosa Fern�andez, PhD,1,2 Enrique Delgado-Zayas, Pre-doc,1,2 Esther G�omez-Gil, MD,3

Isabel Esteva, MD,4 Antonio Guillamon, MD,5 and Eduardo P�asaro, PhD1,2
Received De
1Centro de I
Psicología. U
2Instituto de
3Unidad de
Barcelona, S
4Servicio de
Hospital Re
5Departame
tancia, Mad

Copyright ©
Internationa
under the C
nc-nd/4.0/)
https://doi.o

Sex Med 2
ABSTRACT

Introduction: Brain sexual differentiation results from the effects of sex steroids on the developing brain. The
presumptive route for brain masculinization is the direct induction of gene expression via activation of the estro-
gen receptors a and b and the androgen receptor through their binding to ligands and to coactivators, regulating
the transcription of multiple genes in a cascade effect.

Aim: To analyze the implication of the estrogen receptor coactivators SRC-1, SRC-2, and SRC-3 in the genetic
basis of gender incongruence.

Main Outcome Measures: Analysis of 157 polymorphisms located at the estrogen receptor coactivators SRC-1,
SRC-2, and SRC-3, in 94 transgender versus 94 cisgender individuals.

Method: Using SNPStats software, the allele and genotype frequencies were analyzed by x2, the strength of the
association was measured by binary logistic regression, estimating the odds ratio for each genotype. Measure-
ments of linkage disequilibrium and haplotype frequencies were also performed.

Results: We found significant differences at level P < .05 in 8 polymorphisms that correspond to 5.09% of the
total. Three were located in SRC-1 and 5 in SRC-2. The odds ratio analysis showed significant differences at level
P < .05 for multiple patterns of inheritance. The polymorphisms analyzed were in linkage disequilibrium. The
SRC-1 haplotypes CGA and CGG (global haplotype association P < .009) and the SRC-2 haplotypes GGTAA
and GGTAG (global haplotype association P < .005) were overrepresented in the transgender population.

Conclusion: The coactivators SRC-1 and SRC-2 could be considered as candidates for increasing the list of
potential genes for gender incongruence. Ramírez KDV, Fern�andez R, Delgado-Zayas E, et al. Implications
of the Estrogen Receptor Coactivators SRC1 and SRC2 in the Biological Basis of Gender Incongruence.
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INTRODUCTION

The term gender identity refers to a person’s innermost sense of
their own gender,1,2 while sex refers to the biological sex
characteristics, based on chromosomal, hormonal, physical, and ana-
tomical characteristics. For clarity in this work, sex will be used inter-
changeably with natal sex, biological sex, and sex assigned at birth.

Gender identities are classified into “cisgender” and “trans-
gender” umbrellas. Cisgender is used to refer to a gender identity
that matches a person’s natal sex, while transgender refers to a
gender identity that differs from the sex assigned at birth. Gender
Incongruence (GI) in the International Classification of Diseases
ICD-113 and Gender Dysphoria (GD) in the Diagnostic and
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Statistical Manual of Mental Disorders DSM-54 are character-
ized by a marked incongruence between one’s experienced gen-
der and the sex assigned at birth. In order to meet criteria for the
diagnosis of GD, the condition must also be associated with clin-
ically significant distress or impairment in social, occupational,
or other important areas of functioning.3

The origin of GI3 appears to be multifactorial. It might be
associated with neurodevelopmental processes of the brain5,6

under the influence of testosterone converted into estradiol in
the brain by the action of the aromatase, during a critical period
of development. Thus, in mammals, sex differences in the adult
brain are established very early in development, when the brain
is very immature.7 In the case of having inherited the SRY gene,
during embryogenesis, testosterone secreted by the testes enters
the brain and is converted to estradiol by the aromatase.8 Then,
the estradiol acts in the brain by binding to intracellular estrogen
receptors located predominantly in neurons, masculinizing spe-
cific brain regions.

But a genetic component may also be involved in GI since sib-
lings of transgender individuals are more likely to be transgender,
compared with the general population.9 Most genetic studies that
investigate the genetic component of gender incongruence analyze
the implication of polymorphisms related to the estrogen receptors
(ERs) a and b, the androgen receptor AR or the aromatase
CYP19A1,10−17 as well as the interaction effects (epistasis)
between them18 or the effect of epigenetics.19,20 This gene
Figure 1. Molecular mechanisms of action of ERs. Hormone 17b-Es
dimerization and translocation to the nucleus, the nuclear receptor co
response element (ERE). The nuclear receptor DNA complex in turn re
targets.
selection is based on the fact that sex hormone receptors belong to
the nuclear receptor superfamily of ligand activated transcriptional
factors. In the case of the AR, their ligand is androgen21 while for
the ER is estrogen, 17b-Estradiol (E2) in particular.22 E2 exerts a
wide variety of effects on growth, development, the function of
reproductive systems and regulation in the central nervous
system.22,23 The mechanism of action of the two isoforms ERa
and ERb consists of binding with the E2 ligand to obtain the
receptor`s dimerization (Figure 1), originating the necessary con-
formational changes in the ligand binding domain (LBD)24 and
coupling with the estrogen response elements (EREs)24 in the
genes that are regulated by E2. On the other hand, this conforma-
tional change in the LBD allows coactivators and other coregulat-
ing proteins to be recruited. This step is critical for the
transcriptional regulation of genes induced by E225 (Figure 1).

Among the coactivating proteins are the steroid receptor coac-
tivators (SRCs)26 that consist of three related members: SRC-1,
SRC-2, and SRC-3. The role of SRCs in ER-mediated gene
expression was demonstrated by the discovery of increased ampli-
fication of the AIB1 gene in ER-positive breast and ovarian can-
cer cells27 and partial resistance to E2

28,29 is evident in knock-
out mice SRC-1.

Estrogen is produced in many regions of the brain including
the hippocampus, the cortex, the cerebellum, the hypothalamus,
and the amygdala.30 The actions of estradiol in the developing
brain are generally permanent and range from the establishment
tradiol (E2) binds to the nuclear receptor (ERa or ERb), and after
mplex binds to a specific sequence of DNA known as an estrogen
cruits the SRCs coactivators that activate the transcription of gene
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Implication of the Estrogen Receptor Coactivators in Gender Incongruence 3
of sexual differences (cerebral dimorphism), to generalized tro-
phic and neuroprotective effects.31

Given the importance of estrogens in brain dimorphism, and
the critical role of the coactivators in the transcriptional regula-
tion of genes induced by E2, and based on previous genetic stud-
ies,10−17 in the present research we analyzed 157 polymorphisms
located at SRC-1, SRC-2 and SRC-3 coactivators in a transgen-
der versus a cisgender population. We postulated that variation
at the DNA level at the steroid receptor coactivators (SRC-1,
SRC-2, and/or SRC-3) could affect the function of the E2-ER
complex, and consequently could also modify the transcription
of the genes regulated by E2.
METHODS AND MATERIALS

Participants
We analyzed 94 transgender individuals (47 transmen and 47

transwomen) versus 94 cis gender individuals (44 cismen and 50
ciswomen). The transgender population was recruited and diag-
nosed through the Gender Unit of the Clínic Hospital of Barce-
lona (Spain) at the moment of starting gender-affirming
hormonal treatment. All transgender participants identified with
the other gender (male or female) and were erotically attracted to
persons with the same anatomical sex. All of them presented an
early onset of gender nonconformity, before or at puberty, and
showed a marked intensity of gender dysphoria. Sexual orienta-
tion was established by asking which partner (a man, a woman,
both or neither) they would prefer or feel attraction to if they
were completely free to choose and their body did not interfere.

The inclusion criteria were: presenting gender incongruence
according to ICD-113 and having no disorder of sexual develop-
ment. The exclusion criteria for all participants were DSD
(differences in sex development), neurological and hormonal dis-
order, major medical condition and history of alcohol and/or
drug abuse. To rule out the presence of psychiatric disorders and
substance abuse in all participants, the Mini-International Neu-
ropsychiatric Interview32 was administered.

The cisgender population was selected from a country census
(Pizarra, M�alaga, Spain) matched by geographic origin, race, and
sex. The main characteristics of the Pizarra census were described
in a previous study.33

Written informed consent was obtained from the transgender
group after full explanation of the procedures. The DNA samples
of the cisgender group were recruited from the biobank generated
for the Pizarra study, in which all participants signed informed
consent for donation of the samples to the biobank of the Hospital
Regional Universitario de M�alaga for medical research studies. The
study was approved by the UNED Ethics Committee.
DNA Analysis
Genomic DNA was extracted from EDTA blood samples

using the DNeasy Blood & Tissue Kit from Qiagen (Madrid,
Sex Med 2021;9:100368
Spain) according to the manufacturer’s protocol. The analyzed poly-
morphisms were single nucleotide polymorphisms (SNPs) located,
according to the Ensembl database (www.ensembl.org/), in the ste-
roid receptor coactivators SRC-1, SRC-2, and SRC-3. Genotyping
was performed by the array Axiom Spanish BioBank (Affymetrix).
Statistical analyses were performed using the free online software
SNPStats (http://bioinfo.iconcologia.net/SNPstats).
Statistical Analyses
The analyses were conducted by chromosomic sex, in 2

independent populations: individuals assigned as females at birth
and individuals assigned as males at birth, considering significant
a P value lower than .05.

The allele and genotype frequencies were analyzed by x2 test.
The strength of the associations with gender incongruence was
measured by binary logistic regression, estimating the odds ratio
(OR) for each genotype.

Polymorphisms located very close to each other in the same
chromosome tend to be inherited together with a high degree of
correlation. This correlation, called linkage disequilibrium, was
also analyzed. Moreover, we were also interested in the simulta-
neous analysis of multiple loci (haplotypes), given that they may
themselves be causal variants.34

Measurement of linkage disequilibrium, designated as D' and
r2, and subsequent measurement of haplotype frequencies were
performed using the free online software SNPStats (http://bio
info.iconcologia.net/SNPstats)35 using logistic regression models
to determine the strength of the associations. In all analyses, a
missing value for any response, polymorphism, or covariate
was cause for exclusion of that individual from the analysis.
Any false positives were controlled with the Bonferroni correc-
tion (P < .05/157 = .0003). A post-hoc power analysis showed
a 67.8% power, with the following study parameters: incidence
group (1) 45.74%, incidence group (2) 28.72%. Subjects, group
(1): 94. Subjects group (2): 94. Alpha = 0.05.
RESULTS

Analysis of Allele and Genotype Frequencies
We analyzed 157 SNPs distributed in the coactivators SRC-1

(63 SNPs), SRC-2 (64 SNPs), and SRC-3 (30 SNPs) (Table 1)
in 94 transgender individuals (47 transmen and 47 transwomen)
versus 94 cis gender individuals (44 cismen and 50 ciswomen).
All the polymorphisms were in Hardy-Weinberg equilibrium.
The prevalence rates for all analyzed polymorphisms were similar
to those found in the global 1000 genomes and the European
1000 genomes http://www.1000genomes.org.

When we compared the distribution of the allele frequencies,
we found significant differences in 8 SNPs that correspond to
5.09% of the analyzed polymorphisms: three located in SRC-1
(polymorphisms 1, 2, and 3) and five in SRC-2 (polymorphisms

http://www.ensembl.org/
http://bioinfo.iconcologia.net/SNPstats
http://bioinfo.iconcologia.net/SNPstats
http://bioinfo.iconcologia.net/SNPstats
http://www.1000genomes.org


Table 1. Description of the analyzed SRCs

Gene Chromosome Location Function Analyzed SNPs

SNPs with
significant
differences

SRC-1 2 24491254-24770702 The protein encoded by this gene acts as a
transcriptional coactivator for steroid and nuclear
hormone receptors.

63 3

SRC-2 8 70109770-70405390 The encoded protein acts as an intermediary factor
for the ligand-dependent activity of nuclear
receptors, which regulate their target genes upon
binding of cognate response elements.

64 5

SRC-3 20 47501887-47656872 The protein encoded by this gene is a nuclear
receptor coactivator that interacts with nuclear
hormone receptors to enhance their
transcriptional activator functions

30 0

Total SNPs 157 8
% 100 5.09

This table shows the main characteristic of the SRCs analyzed: the gene name, the chromosome location, the main function of the protein, the number of
SNPs analyzed and the number of the polymorphisms (SNPs) that showed statistical significance P < .05.
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4 to 8) (Table 1). The description of the statistically significant
polymorphisms is in Tables 1 and 2.

Association Analysis of Each Polymorphism With
Gender Incongruence

We found significant differences in the analysis of the strength
of the association with gender incongruence. The odds ratio
(OR) analysis for the P1 to P8 polymorphisms showed signifi-
cant differences for multiple patterns of inheritance (Table 3):

P1 polymorphism: The genotype T/T was overrepresented in the cis
population (OR > 2.13; P < .034 for the dominant model).
P2 polymorphism: The genotype T/T was overrepresented in the cis
population (OR > 2.12; P < .014).
P3 polymorphism: The genotype A/A was overrepresented in the cis
population (OR > 2.19; P < .008 for the dominant model).
P4 polymorphism: The genotype G/G was overrepresented in the cis
population (OR > 2.58; P < .033 for the log-additive model).
Table 2. Description of the SNPs with significant differences

Gene Polymorphism Alias
DNA
variation Regulation by Ensembly

SRC-1 rs10495747 P1 T/C Intron Variant
rs2584940 P2 T/G Regulatory Region Variant/

Intron Variant
rs6756785 P3 A/G Intergenic Variant/ 500B

Downstream Variant
SRC-2 rs76968380 P4 G/A Intergenic Variant

rs34406737 P5 G/A Intergenic Variant
rs1963250 P6 G/T Intergenic Variant
rs10755950 P7 G/A Intergenic Variant
rs56055423 P8 A/G Intergenic Variant

This table shows the main characteristic of the polymorphisms that showed statist
in this work, the DNA variation, the gene location of the polymorphisms, and the
genomes and the European 1000 genomes databases.
P5 polymorphism: The G/G genotype was overrepresented in the
trans population while the A/G genotype was overrepresented in the
cis population (OR > 0.48; P < .003 for the codominant model).
P6 polymorphism: The T/T genotype was overrepresented in the
trans population while the T/G and G/G were overrepresented in
the cis population (OR > 0.42; P < .007 for the dominant model).
P7 polymorphism: The A/A genotype was overrepresented in the
trans population (OR > 2.42; P < .024 recessive model).
P8 polymorphism: The genotype A/A was overrepresented in the cis
population (OR > 4.83; P < .007 dominant model; OR > 4.64; P
< .006 log-additive model).
Polymorphism Interaction Analysis With Covariate
Sex

When we analyzed the interaction with the covariate sex, only
P2 showed significant differences in both trans populations
(women and men) (Table 4). The genotype T/G was more
Our study
frequency

Global 1000 genomes
frequency

European 1000 genomes
frequency

C= 0.11 C=0.1330 C=0.1153
G= 0.38 G=0.4605 G=0.4125

G=0.32 G=0.2115 G=0.2883

A=0.06 A=0.1138 A=0.0646
A=0.15 A=0.1300 A=0.1262
T=0.57 T=0.5691 T=0.5368
A=0.42 A=0.5655 A=0.4483
G=0.05 G=0.0132 G=0.0457

ical significance: the gene name, the polymorphism name, the alias used
frequencies of the polymorphisms in our study versus the Global 1000

Sex Med 2021;9:100368



Table 3. Polymorphism association analysis with gender incongruence, in different models of inheritance (n = 188, crude analysis)

Model Genotype Cis groups (%) Trans groups (%) OR P AIC BIC

P1 polymorphism (rs10495747)
Codominant T/T 79 (84%) 67 (71.3%) 1.00 (reference) .07 263.1 276

T/C 15 (16%) 26 (27.7%) 2.05 (1.00−4.19)
C/C 0 (0%) 1 (1.1%) NA (0.00−NA)

Dominant T/T 79 (84%) 67 (71.3%) 1.00 (reference) .034* 261.9 271.7
T/C-C/C 15 (16%) 27 (28.7%) 2.13 (1.05−4.33)

Recessive T/T-T/C 94 (100%) 93 (98.9%) 1.00 (reference) .25 265.1 274.8
C/C 0 (0%) 1 (1.1%) NA (0.00−NA)

Overdominant T/T-C/C 79 (84%) 68 (72.3%) 1.00 (reference) .05* 262.6 272.3
T/C 15 (16%) 26 (27.7%) 2.02 (0.99−4.13)

Log-additive — — — 2.15 (1.07−4.30) .027* 261.5 271.3
P2 polymorphism (rs2584940)
Codominant T/T 43 (45.7%) 27 (28.7%) 1.00 (reference) .039* 261.9 274.9

T/G 42 (44.7%) 52 (55.3%) 2.00 (1.06−3.76)
G/G 9 (9.6%) 15 (16%) 2.72 (1.04−7.10)

Dominant T/T 43 (45.7%) 27 (28.7%) 1.00 (reference) .014* 260.4 270.1
T/G-G/G 51 (54.3%) 67 (71.3%) 2.12 (1.16−3.89)

Recessive T/T-T/G 85 (90.4%) 79 (84%) 1.00 (reference) .18 264.6 274.3
G/G 9 (9.6%) 15 (16%) 1.82 (0.75−4.39)

Overdominant T/T-G/G 52 (55.3%) 42 (44.7%) 1.00 (reference) .14 264.3 274
T/G 42 (44.7%) 52 (55.3%) 1.54 (0.87−2.74)

Log-additive — — — 1.74 (1.11−2.73) .013* 260.3 270
P3 polymorphism (rs6756785)
Codominant A/A 50 (53.2%) 32 (34%) 1.00 (reference) .03* 261.4 274.4

A/G 38 (40.4%) 54 (57.5%) 2.21 (1.20−4.06)
G/G 6 (6.4%) 8 (8.5%) 2.09 (0.66−6.60)

Dominant A/A 50 (53.2%) 32 (34%) 1.00 (reference) .008* 259.4 269.2
A/G-G/G 44 (46.8%) 62 (66%) 2.19 (1.22−3.95)

Recessive A/A-A/G 88 (93.6%) 86 (91.5%) 1.00 (reference) .57 266.1 275.8
G/G 6 (6.4%) 8 (8.5%) 1.38 (0.46−4.14)

Overdominant A/A-G/G 56 (59.6%) 40 (42.5%) 1.00 (reference) .02* 261 270.8
A/G 38 (40.4%) 54 (57.5%) 1.98 (1.11−3.54)

Log-additive — — — 1.77 (1.10−2.87) .018* 260.8 270.5
P4 polymorphism (rs76968380)
Codominant G/G 88 (93.6%) 80 (85.1%) 1.00 (reference) .073 263.2 276.1

A/G 6 (6.4%) 12 (12.8%) 2.22 (0.79−6.19)
A/A 0 (0%) 2 (2.1%) NA (0.00−NA)

Dominant G/G 88 (93.6%) 80 (85.1%) 1.00 (reference) .054 262.7 272.4
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Table 3. Continued

Model Genotype Cis groups (%) Trans groups (%) OR P AIC BIC

A/G-A/A 6 (6.4%) 14 (14.9%) 2.58 (0.95−7.05)
Recessive G/G-A/G 94 (100%) 92 (97.9%) 1.00 (reference) .095 263.6 273.3

A/A 0 (0%) 2 (2.1%) NA (0.00−NA)
Overdominant G/G-A/A 88 (93.6%) 82 (87.2%) 1.00 (reference) .13 264.1 273.9

A/G 6 (6.4%) 12 (12.8%) 2.16 (0.77−6.03)
Log-additive — — — 2.58 (1.01−6.60) .033* 261.9 271.6
P5 polymorphism (rs34406737)
Codominant G/G 63 (67%) 72 (76.6%) 1.00 (reference) .003* 256.9 269.9

A/G 31 (33%) 17 (18.1%) 0.48 (0.24−0.95)
A/A 0 (0%) 5 (5.3%) NA (0.00−NA)

Dominant G/G 63 (67%) 72 (76.6%) 1.00 (reference) .15 264.4 274.1
A/G-A/A 31 (33%) 22 (23.4%) 0.63 (0.33−1.19)

Recessive G/G-A/G 94 (100%) 89 (94.7%) 1.00 (reference) .008* 259.4 269.1
A/A 0 (0%) 5 (5.3%) NA (0.00−NA)

Overdominant G/G-A/A 63 (67%) 77 (81.9%) 1.00 (reference) .02* 261 270.7
A/G 31 (33%) 17 (18.1%) 0.45 (0.23−0.89)

Log-additive — — — 0.86 (0.49−1.49) .58 266.1 275.8
P6 polymorphism (rs1963250)
Codominant T/T 20 (21.3%) 37 (39.4%) 1.00 (reference) .016* 260.2 273.1

T/G 54 (57.5%) 46 (48.9%) 0.46 (0.24−0.91)
G/G 20 (21.3%) 11 (11.7%) 0.30 (0.12−0.75)

Dominant T/T 20 (21.3%) 37 (39.4%) 1.00 (reference) .007* 259.2 268.9
T/G-G/G 74 (78.7%) 57 (60.6%) 0.42 (0.22−0.80)

Recessive T/T-T/G 74 (78.7%) 83 (88.3%) 1.00 (reference) .079 263.3 273.1
G/G 20 (21.3%) 11 (11.7%) 0.49 (0.22−1.10)

Overdominant T/T-G/G 40 (42.5%) 48 (51.1%) 1.00 (reference) .25 265.1 274.8
T/G 54 (57.5%) 46 (48.9%) 0.71 (0.40−1.27)

Log-additive — — — 0.53 (0.34−0.83) .005* 258.5 268.2
P7 polymorphism (rs10755950)
Codominant G/G 33 (35.1%) 31 (33%) 1.00 (reference) .068 263.1 276

A/G 50 (53.2%) 40 (42.5%) 0.85 (0.44−1.61)
A/A 11 (11.7%) 23 (24.5%) 2.19 (0.91−5.27)

Dominant G/G 33 (35.1%) 31 (33%) 1.00 (reference) .79 266.4 276.1
A/G-A/A 61 (64.9%) 63 (67%) 1.08 (0.59−1.99)

Recessive G/G-A/G 83 (88.3%) 71 (75.5%) 1.00 (reference) .024* 261.3 271
A/A 11 (11.7%) 23 (24.5%) 2.42 (1.10−5.33)

Overdominant G/G-A/A 44 (46.8%) 54 (57.5%) 1.00 (reference) .14 264.3 274
A/G 50 (53.2%) 40 (42.5%) 0.65 (0.36−1.15)
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frequent in trans people with female natal sex than in the cis
female population (OR > 2.76; P < .029) while the genotype G/
G was more frequent in trans people with male natal sex than in
the cis male population (OR>8.0; P < .016).

The other polymorphisms (P3, P5, P6, and P8) showed sig-
nificant differences in the distribution of the genotypes only in
the population with male natal sex (Table 4), while the P5
showed the significant difference only in the female natal sex.
Haplotype Analysis
For polymorphisms located in SRC-1 (Table 5), the T allele

for P1 was linked to the T allele for P2, and to the A allele for P3
(haplotype 1: T-T-A) with a total frequency of 0.45 (Table 5).
However, the C allele for P1 was linked to the G allele for P2
and to the A allele for P3 (haplotype 5: C-G-A) (OR > 2.62; P
< .05) or to the G allele for P3 (haplotype 7: C-G-G) (P <
.0001) (Table 5), with a global haplotype association P < 0.009.

For polymorphisms located in SRC-2 (Table 6), the signifi-
cant haplotypes were haplotype 2: (G-G-T-A-A) (OR > 2.49; P
< .02), and the haplotype 8: (G-G-T-A-G) (OR > 12.86; P <
.028) (Table 6), with a global haplotype association P < .005.
DISCUSSION

The estrogen receptors a and b, in addition to hormonal
receptors, are also transcription factors that, when exposed to
their ligand, dimerize and form complexes, binding to coactiva-
tor proteins36 (Figure 1), modifying the transcription of multiple
target genes in cascade mode37 and, ultimately, the neuronal
function. Therefore, coactivators are proteins that influence the
ability of the transcription factors to activate or inhibit expression
of multiple genes.26 Some coactivators for sex steroids receptors
are SRC-1, SRC-2, and SRC-3.23 Given the intimate relation-
ship between sex steroids and brain dimorphism, and sex steroids
and gene transcription, it seems is clear that we can to postulate
the implication of the DNA coactivators in the process of brain
dimorphism.

In our study, we analyzed the allele and genotype frequencies,
the association with gender incongruence, the interactions with
the covariate sex, and the linkage disequilibrium of 157 polymor-
phisms located at the coactivators SRC-1, SRC-2, and SRC-3 in
a population of 94 transgender individuals versus 94 cis gender
individuals. We found significant differences in eight polymor-
phisms located in SRC-1 and SRC-2. Furthermore, only P2
(rs2584940) in SRC-1 showed significant differences in the
interaction analysis with covariate “sex”. When the analysis was
carried out in separate populations according to their natal sex,
we found that polymorphisms P2 and P5 were statistically signif-
icant for female natal sex populations, while P2, P3, P6, and P8
were statistically significant for male natal sex populations
(Table 4). The SRC-1 haplotypes C-G-A and C-G-G and the



Table 4. P2, P3, P5, P6 and P8 interaction analysis with covariate sex. The table shows the ORs (odds ratios) for the P2, P3, P5, P6 and P8 polymorphism interactions with the
covariable sex. First comparing assigned female at birth (cisgender vs. transgender individuals), and assigned male at birth (cisgender vs. transgender individuals), the comparisons of
the “covariate sex within each polymorphism”, and finally each “polymorphism within the covariate sex”.

P2 and covariate sex cross-classification interaction table (n = 188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

T/T 22 11 1 — 21 16 1.52 (0.58-4.03) .404
T/G 21 29 2.76 (1.10−6.90) .029* 21 23 2.19 (0.86-5.58) .100
G/G 7 7 2.00 (0.56−7.15) .289 2 8 8.00 (1.45-44.24) .016*
Interaction P-value: 0.23
Sex within P2 (n = 188, crude analysis)
Genotypes Sex Cis population Trans population OR (95% CI) P
T/T female 22 11 1 —

male 21 16 1.52 (0.58−4.03) .404

T/G female 21 29 1 —
male 21 23 0.79 (0.35−1.79) .583

G/G female 7 7 1 —
male 2 8 4.00 (0.62−25.96) .146

Test for interaction in the trend: 0.76
P2 within sex (n = 188, crude analysis)
Sex Genotypes Cis population Trans population OR (95% CI) P

T/T 22 11 1 —
female T/G 21 29 2.76 (1.10−6.90) .029*

G/G 7 7 2.00 (0.56−7.15) .289

T/T 21 16 1 —
male T/G 21 23 1.44 (0.60−3.46) .422

G/G 2 8 5.25 (0.98−28.18) .052
Test for interaction in the trend: 0.23

P3 and sex cross-classification interaction table (n = 188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

A/A 27 17 1 — 23 15 1.04 (0.43−2.52) .936
A/G 19 26 2.17 (0.93−5.07) .072 19 28 2.34 (1.01−5.43) .046*
G/G 4 4 1.59 (0.35−7.21) .559 2 4 3.18 (0.52−19.27) .211
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Table 4. Continued

P3 and sex cross-classification interaction table (n = 188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

Test for interaction in the trend: 0.64
Sex within P3 (n = 188, crude analysis)
Genotypes Sex Cis population Trans population OR (95% CI) P
A/A female 27 17 1 —

male 23 15 1.04 (0.43−2.52) .936

A/G female 19 26 1 —
male 19 28 1.08 (0.47−2.47) .865

G/G female 4 4 1 —
male 2 4 2.00 (0.22−17.89) .547

Test for interaction in the trend: 0.64
P3 within sex (n = 188, crude analysis)
Sex Genotypes Cis population Trans population OR (95% CI) P
female A/A 27 17 1 —

A/G 19 26 2.17 (0.93−5.07) .072
G/G 4 4 1.59 (0.35−7.21) .559

male A/A 23 15 1 —
A/G 19 28 2.26 (0.94−5.41) .067
G/G 2 4 3.07 (0.50−18.89) .228

Test for interaction in the trend: 0.86

P5 and sex cross-classification interaction table (n=188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

G/G 29 38 1 — 34 34 0.76 (0.39−1.50) .432
A/G 21 7 0.25 (0.10−0.68) .004* 10 10 0.76 (0.28−2.08) .603
A/A 0 2 — — 0 3 — —
Interaction P-value: 0.15
Sex within P5 (n = 188, crude analysis)
Genotypes Sex Cis population Trans population OR (95% CI) P
G/G female 29 38 1 —
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Table 4. Continued

P5 and sex cross-classification interaction table (n=188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

male 34 34 0.76 (0.39−1.50) .432

A/G female 21 7 1 —
male 10 10 3.00 (0.88−10.21) .078

A/A female 0 2 1 —
male 0 3 1 —

Test for interaction in the trend: 0.044*
P5 within sex (n = 188, crude analysis)
Sex Genotypes Cis population Trans population OR (95% CI) P
female G/G 29 38 1 —

A/G 21 7 0.25 (0.10−0.68) .004*
A/A 0 2 — —

male G/G 34 34 1 —
A/G 10 10 1.00 (0.37−2.71) 1
A/A 0 3 — —

Test for interaction in the trend: 0.15

P6 and sex cross-classification interaction table (n=188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

T/T 10 15 1 — 10 22 1.47 (0.49−4.38) .500
T/G 31 23 0.49 (0.19−1.30) .146 23 23 0.67 (0.25−1.79) .433
G/G 9 9 0.67 (0.20−2.26) .528 11 2 0.12 (0.02−0.67) .017*
Interaction P-value: .074
Sex within P6 (n = 188, crude analysis)
Genotypes Sex Cis population Trans population OR (95% CI) P
T/T female 10 15 1 —

male 10 22 1.47 (0.49−4.38) .500

T/G female 31 23 1 —
male 23 23 1.35 (0.61−2.97) .466

(continued)

10
R
am

írez
et

al

S
ex

M
ed

20
21;9

:10
0
36

8



Table 4. Continued

P6 and sex cross-classification interaction table (n=188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

G/G female 9 9 1 —
male 11 2 0.18 (0.03−1.06) .058

Test for interaction in the trend: 0.072
P6 within sex (n = 188, crude analysis)
Sex Genotypes Cis population Trans population OR (95% CI) P
female T/T 10 15 1 —

T/G 31 23 0.49 (0.19−1.30) .146
G/G 9 9 0.67 (0.20−2.26) .528

male T/T 10 22 1 —
T/G 23 23 0.45 (0.18−1.17) .094
G/G 11 2 0.08 (0.02−0.44) .001*

Test for interaction in the trend: 0.074

P8 and sex cross-classification interaction table (n = 188, crude analysis)

Female Male

Genotypes Cis population Trans population OR (95% CI) P Cis population
Trans
population OR (95% CI) P

A/A 49 43 1 — 42 38 1.03 (0.57−1.88) .929
A/G 1 3 3.42 (0.34−34.10) .299 2 9 5.13 (1.05−25.05) .042*
G/G 0 1 — — 0 0 — —
Interaction P-value: .8
Sex within P8 (n = 188, crude analysis)
Genotypes Sex Cis population Trans population OR (95% CI) P
A/A female 49 43 1 —

male 42 38 1.03 (0.57−1.88) .929

A/G female 1 3 1 —
male 2 9 1.50 (0.10−23.07) .782

G/G female 0 1 1 —
male 0 0 — —

Test for interaction in the trend: 0.89
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SRC-2 haplotypes G-G-T-A-A and G-G-T-A-G were more fre-
quent in the trans population and showed statistical significance.

Based on experiments in rodents, it is believed that male sexual
differentiation of the brain is caused by androgens, after conversion
to estrogens by the aromatase. Moreover, observations in human
subjects show that the direct effects of testosterone on the develop-
ing fetal brain and also during puberty, are of great importance for
the development of male gender identity.38 However, in the analysis
that our group carried out on androgen coactivators (NCOA-4), we
did not find any significant differences (data not shown).

Our data are in concordance with recent work that showed that
the nuclear receptor coactivators, SRC-1 and SRC-2, are essential
for efficient ER transcriptional activity in brain.39 Furthermore,
SRC-1 and SRC-2 are distributed in several specific areas of the
brain in different proportions, such as the hypothalamus and the
hippocampus, showing at the same time, differences in the binding
preference to ER a or b subtypes when located in different brain
regions.39,40 For example, SRC-1 from the hippocampus interacts
equally with ERa and ERb, while SRC-1 obtained from hypothala-
mus interacts more with ERa than with ERb. On the other hand,
SRC-2 interacts with ERa in the hippocampus but, in contrast, did
not interact with ERb under any ligand condition.

These differential interactions of SRC-1 and SRC-2 with the ER
subtypes suggest that these brain regions have distinct expression
patterns of coregulators. Understanding how nuclear receptor coac-
tivators' function with various steroid receptors is critical to under-
standing how the hormones act in different brain regions.

Moreover, our results are also in concordance with the study
of the functional significance of the nuclear receptor coactivator
SRC-1 in the developing brain.41 The authors, Auger et al, inves-
tigated the consequence of reducing SRC-1 protein during sexual
differentiation of the brain, and reported that reducing this pro-
tein interferes with the defeminizing actions of estrogen in neo-
natal rat brains. Their data indicated that SRC-1 expression is
critically involved in the hormone-dependent development of
normal male reproductive behavior and brain morphology.

Consequently, our data are in agreement with the results of
Auger et al,41 since the polymorphic analysis of this coactivator
showed significant differences when allelic and genotypic fre-
quencies were analyzed. Furthermore, the P2 polymorphism,
located in SRC-1, also showed statistically significant interactions
with the covariate "sex."

One of the limitations of our study is that the sample analyzed
is small and not all P values pass the Bonferroni correction. To
make our study more robust, it would be necessary to analyze a
larger sample, or validate the conclusions with a new analysis
from another trans population.

In conclusion, our results have shown that the coactivators,
SRC-1 and SRC-2 could be considered as candidates for increasing
the list of potential “susceptibility” genes for gender incongruence.
Furthermore, our data continue to support the hypothesis that gen-
der incongruence is a multifactorial complex trait, involving intricate
Sex Med 2021;9:100368



Table 5. Haplotype analysis for polymorphisms located in SRC-1 (P1, P2 and P3 polymorphisms)

Haplotype frequencies estimation and haplotype association with response (n = 188, adjusted by sex)

Haplotypes P1 P2 P3 Total Cis population
Trans
population

Cumulative
frequency OR (95% CI) P-value

1 T T A 0.4501 0.5201 0.377 0.4501 1.00 (reference) —
2 T T G 0.1495 0.134 0.1699 0.5996 2.25 (0.99−5.13) .054
3 T G G 0.147 0.1319 0.1601 0.7466 1.73 (0.81−3.71) .16
4 T G A 0.139 0.1341 0.144 0.8856 1.80 (0.81−3.97) .15
5 C G A 0.069 0.0531 0.0897 0.9546 2.62 (1.00−6.83) .05*
6 C T A 0.0228 0.0267 0.0169 0.9774 1.39 (0.23−8.34) .72
7 C G G 0.0226 0 0.0423 1 379142884.10 (379142883.16−

379142885.04)
<.0001*,y

Global haplotype association P-value: .009*

The risk for each haplotype is compared with regards to the reference category (1.00 reference); OR = Odds ratio.
*Statistically significant (P < .05).
yStatistically significant after Bonferroni correction (P < .05/157 = .0003).

Table 6. Haplotype analysis for polymorphisms located in SRC-2 (P4, P5, P6, P7 and P8 polymorphisms)

Haplotype frequencies estimation and haplotype association with response (n = 188, adjusted by sex)

Haplotypes P4 P5 P6 P7 P8 Total Cis population
Trans
population

Cumulative
frequency OR (95% CI) P-value

1 G G G G A 0.2546 0.3239 0.1963 0.2546 1.00 (reference) —
2 G G T A A 0.2206 0.2142 0.236 0.4752 2.49 (1.16−5.34) .02*
3 G G T G A 0.2022 0.1721 0.2303 0.6773 2.00 (0.93−4.31) .079
4 G G G A A 0.0891 0.0861 0.0793 0.7664 1.05 (0.38−2.88) .92
5 G A G G A 0.0474 0.0656 0.0235 0.8138 0.55 (0.11−2.89) .48
6 G A T A A 0.0419 0.0474 0.0423 0.8557 1.11 (0.24−5.24) .89
7 G A T G A 0.041 0.0393 0.0426 0.8967 3.00 (0.10−86.09) .52
8 G G T A G 0.0217 0 0.036 0.9184 12.86 (1.34−123.38) .028*
9 A G T G A 0.0173 0.0085 0.0228 0.9357 5.62 (0.56−56.71) .15
10 A G G G A 0.0165 0.0077 0.0205 0.9522 3.53 (0.40−31.50) .26
11 G A T A G 0.0138 0.0028 0.0189 0.9659 2.68 (0.27−26.20) .4
12 A G T A A 0.0108 0.0158 0.0093 0.9767 0.00 (-Inf−Inf) 1
rare * * * * * 1 2688767424666564139

4185292538194458249
58476503371363684397
8752.00 (268876742466
22846799367197037120
806603076791371544336
569204736.00 - 26887674
246708435989003388039
268109896092738695882
937118752768.00)

<.0001*,y

Global haplotype association P-value: .005*

The risk for each haplotype is compared with regards to the reference category (1.00 reference); OR = Odds ratio.
*Statistically significant (P < .05).
yStatistically significant after Bonferroni correction (P < .05/157 = .0003).

Implication of the Estrogen Receptor Coactivators in Gender Incongruence 13
interactions among sex steroids, sex steroids receptors, coactivators,
and multiple other genes and polymorphisms.
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