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Abstract: Improving the performance of the convolution operation has become a key target for High
Performance Computing (HPC) developers due to its prevalence in deep learning applied mainly to
video processing. The improvement is being pushed by algorithmic and implementation innovations.
Algorithmically, the convolution can be solved as it is mathematically enunciated, but other methods
allow to transform it into a Fast Fourier Transform (FFT) or a GEneral Matrix Multiplication (GEMM).
In this latter group, the Winograd algorithm is a state-of-the-art variant that is specially suitable for
smaller convolutions. In this paper, we present openCNN, an optimized CUDA C++ implementation
of the Winograd convolution algorithm. Our approach achieves speedups of up to 1.76× on Turing
RTX 2080Ti and up to 1.85× on Ampere RTX 3090 with respect to Winograd convolution in cuDNN 8.2.0.
OpenCNN is released as open-source software.

Keywords: deep learning; convolution; Winograd; CUDA

1. Introduction

The use of GPUs in machine learning is generating a tremendous innovation boost,
specially in areas like computer vision [1]. There are several problems that the community
is trying to solve using computer vision approaches [2–4]. Despite these proposals having
different targets, they usually share a key aspect, the architecture of the neural network
used under the hood—Convolutional Neural Networks (CNNs). CNNs have achieved
state-of-the-art accuracy in many areas related to computer vision, being able to pinpoint
the expected result and to overcome human precision in many cases. As their name
suggests, the convolution operation is the core of this type of networks.

CNNs architectures are continuously growing in depth and width, hence, their train-
ing and inference are causing the computational cost to increase [5]. For this reason, trying
to optimize the performance of the convolution operation is the target of recent research
works. In those terms, the Winograd’s algorithm has demonstrated a great performance in
convolutional operations, especially for 3× 3 filters, achieving a theoretical arithmetic com-
plexity reduction of 2.25×. The main hardware-vendor libraries provide implementations
carefully tuned for their devices, such as NVIDIA cuDNN [6], ARM Compute Library [7],
Intel oneDNN [8], previously called MKL-DNN, or AMD MIOpen [9]. In Nvidia GPUs,
cuDNN is clearly the reference to beat in terms of performance, Nvidia GPUs being also a
reference architecture for this type of workload. However, some considerations must be
taken into account:

• Some libraries such as cuDNN contain important sections of machine assembly code;
• Nvidia engineers hand-tune their libraries at Shader ASSembly (SASS) level to opti-

mize the performance on their devices at a very low level;
• These implementations are not usually open-source, so it is not possible to tune the

performance of these implementations for special use-cases.

For these reasons, recent research works [10,11] have cracked the Instruction Set
Architecture (ISA) of different generations of Nvidia GPUs providing an intermediate
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SASS assembler, which enables the direct generation of machine code. While these third-
party implementations usually outperform cuDNN, SASS programming is hard and the
resulting code is restricted to a specific architecture. Taking into account that in large
AutoML processes it is quite common to use hybrid or mixed devices to train neural
networks (NNs), these solutions will be unaffordable. An example of this is Neon [12], a
deep learning framework that achieves high performance on Maxwell and Pascal GPUs,
but fails in newer architectures such as Turing because some kernels were hand-crafted in
SASS. Nowadays, this project is discontinued. Another consequence of this situation is that
it is not easy to find CUDA-level implementations, as it is really difficult to outperform
SASS codes. Furthermore, third-party assembly-level implementations of the convolution,
particularly of the Winograd algorithm, are not publicly available, thus the difficulty is
even greater.

An analysis of the design of recent Winograd implementations detected deficiencies
that can lead to important performance drops [10]. A performance-competitive only-CUDA
implementation of the Winograd algorithm can be the base for a performance-portable
implementation and it makes it easier to tune low-level implementation details between
different platforms without requiring the generation of new specific SASS code, and
eventually having to crack the ISA of a new platform.

This paper makes the following contributions:

• An only-CUDA implementation of the single-precision Winograd algorithm for 3× 3
kernels is introduced. The code was released as open-source software under the
name openCNN and it can be found at https://github.com/UDC-GAC/openCNN,
accessed on 28 July 2021.

• Its performance has been evaluated on NVIDIA Turing RTX 2080Ti and NVIDIA
Ampere RTX 3090 and compared to the state-of-the-art Winograd implementation in
cuDNN 8.2.0, achieving a speedup up to 1.76× on RTX2080Ti and 1.85× on RTX 3090
in ResNet [13].

• Moreover, the performance of our openCNN implementation has been compared with
different convolution algorithms available in cuDNN. The average speedups achieved
are 1.81× (w.r.t. FFT), 3.77× (FFT Tiling), 3.35× (GEMM), 2.50× (Implicit GEMM),
1.57× (Precomputed implicit GEMM) and 0.93× (Winograd Non-Fused version)
on Turing NVIDIA RTX 2080Ti. Equivalently, on Ampere NVIDIA RTX 3090 the
speedups obtained are 1.80× (w.r.t. FFT), 3.26× (FFT Tiling), 2.82× (GEMM),
2.42× (Implicit GEMM), 1.18× (Precomputed implicit GEMM) and 0.97× (Winograd
Non-Fused version).

This paper uses the implementation proposed in [10] as a reference, making the
following contributions with respect to that work:

• Our implementation is fully written in CUDA and can be easily tuned and ported
to different NVIDIA hardware platforms. However, the implementation described
in [10] contains important fragments of architecture-specific assembly code which is
restricted to a particular GPU architecture and ISA encoding.

• The implementation of the reference paper uses assembly code to improve the per-
formance of key hotspots of the method, some of them containing costly memory
movements. In our paper, these hotspots are encoded in CUDA, using microbench-
marking to find the most efficient way to implement them. The paper also discusses
different alternative methods to implement those important sections of the code.
As a consequence of all this, our implementation achieves speedups up to 2.15× on
NVIDIA Turing RTX 2080Ti and up to 2.07× on NVIDIA Ampere RTX 3090 over the
CUDA implementation of [10]. A direct comparison with [10] is not possible as its full
code is not publicly available.

• Unlike the study in [10], the full code of our paper is released as open-source software.

The rest of the paper is organized as follows: Section 2 introduces the fundamentals of
the Winograd algorithm. Section 3 presents a high-level analysis of the Winograd algorithm

https://github.com/UDC-GAC/openCNN
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oriented to its implementation and reveals the baseline code details. In Section 4, the set
of optimizations applied to the baseline implementation is described. The experimen-
tal results are reported in Section 5, while Section 6 summarizes the related work and
Section 7 concludes the paper.

2. The Winograd Convolution Algorithm

The minimal filtering algorithm for convolution was promoted initially in [14] by
Shmuel Winograd and later rescued for its application in convolutional neural networks
in [15]. The algorithm has the status of a state-of-the-art implementation of the convolution
operator, and its popularity resides in its reduction of the number of operations required
with respect to the direct method. For this, it takes advantage of the inherent overlapping
present in the direct method.

The general (direct) 2D batched 3× 3 convolution can be expressed as:

Ok,h,w,n =
R

∑
r=1

S

∑
s=1

C

∑
c=1

Ic,h+r,w+s,n × Fc,r,s,k (1)

where Ic,h+e,w+s,n is the input data element, Fc,r,s,k is a filter element and Ok,h,w,n is an output
tile. Each subindex represents:

• h: input image height;
• w: input image width;
• r: filter height;
• s: filter width;
• n: number of input images;
• c: number of channels;
• k: number of filters.

Let us illustrate the aforementioned overlapping of this method through an example.
Figure 1 shows the convolution operation of a single channel input matrix and a

3× 3 filter with stride 1. The direct convolution slides the filter along the input image
performing separated Hadamard products [16] which are then reduced with a sum. If this
processing is divided into 4× 4 tiles, the convolution generates a matrix of 2× 2 values
per tile. The right side of the figure focuses on the processing of the first of these tiles, the
top leftmost one, showing that all the elements of the highlighted tile of the input image,
except a, d, m and p, are used in several Hadamard multiplications.

Figure 1. Traditional convolution.
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Winograd exploits this overlapping by creating an intermediate representation of the
input tile and the filter that generates the same result as the direct method but requiring
fewer operations and, thus, instructions. The mathematical rationale of this approach is
now illustrated for the one-dimensional case. Let us consider the convolution of a vector K
and a filter w, where ∗ is the convolution operation:[

O0 O1
]
=
[
k0 k1 k2 k3

]
∗
[
w0 w1 w2

]
Using stride 1, the resulting O vector would be calculated as:[

O0 O1
]
=[

k0 × w0 + k1 × w1 + k2 × w2 k1 × w0 + k2 × w1 + k3 × w2
]

thus involving six multiplications and four additions.
In this case, Winograd’s method proposes computing O as:[

O0 O1
]
=
[
m0 + m1 + m2 m1 −m2 −m3

]
where:

m0 = (k0 − k2)× w0

m3 = (k1 − k3)× w2

m1 = (k1 + k2)×
w0 + w1 + w2

2

m2 = (k2 − k1)×
w0 − w1 + w2

2
which requires four multiplications and eight additions. However, the filter weights remain
constant for the entire input image, so w0+w1+w2

2 and w0−w1+w2
2 can be precomputed, which

reduces the total number of additions to four. By substitution we can check that this method
provides the same result as the direct one.

This idea can be extended to different numbers of dimensions and input sizes.
The formulation of the method depends on two factors: the output tile size m and the filter
size r. These two values condition the value of the input tile size which can be calculated as:

α = (m + r− 1) (2)
In the general case, the Winograd algorithm solves the convolution between a filter g

and an input tile d using the following formula:

F(m, r) = AT [(Gg)� (BTd)]

where � is a Hadamard (element-wise) product. The contents of matrices B, G and A are
constant for a given combination of m and r. For instance, for F(2, 3), the contents of these
matrices are:

B =


1 0 0 0
0 1 −1 1
−1 1 1 0
0 0 0 −1

G =


1 0 0

0.5 0.5 0.5
0.5 −0.5 0.5
0 0 1

A =


1 0
1 1
1 −1
0 −1

 (3)

The fact that the contents of these matrices change for every possible value of α is not
a big deal for deep learning applications, as the shape of the inner layers of convolutional
networks is very regular. For instance, having filters of 3× 3 elements is common in modern
networks, and the value of the output tile can be fixed to favor the performance of the
implementation. The generic algorithm used to build these matrices for each combination
of m and r can be found in [17].
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In the two dimensional case (Figure 2), the value of α is calculated as:

α = (m + r− 1)× (m + r− 1) (4)

and the convolution formula is adapted as:

F(m×m, r× r) = AT [(GgGT)� (BTdB)]A

Figure 2. Winograd’s convolution in two dimensional case.

The three-dimensional case is quite similar, as it consists of applying the base Winograd
algorithm independently to all the C input channels and then reducing the results into a
single matrix using an element-wise addition, resulting in the expression:

F(m×m× C, r× r× C) = AT [
C

∑
i=i

(GgiGT)� (BTdiB)]A (5)

3. Implementation of the Winograd Algorithm

This section provides further details of the implementation of the Winograd algorithm.
At the top level, the algorithm starts with an input matrix, which is divided into tiles of
α× α elements. Then, these tiles are processed separately. In fact, the processing of different
tiles can take place in parallel and this is an important source of parallelism. The processing
of each tile is done using the formulas introduced in the previous section, making space
for the following sequence of four steps, where h̃ and w̃ are the row and column of the
tile, respectively :

1. Filter transformation: the original filter g is operated with matrix G using the following
expression Uc,k = Ggc,kGT ;

2. Input transformation: the input tile dc,h,w,n is operated with matrix B using the
following expression Vc,h̃,w̃,n = BTdc,h,w,nB;

3. Multiplication: the outputs of the two previous steps are multiplied
Mk,h̃,w̃,n = ∑C

c=1 Uc,h̃,w̃,n �Vc,k using a Hadamard product;
4. Output transformation: the result of the previous step is operated using the following

expression Yk,h̃,w̃,n = AT Mk,h̃,w̃,n A.

Let us recall that the contents of matrices G, B and A are constant for each tile size α.
The value of α has a big influence on the performance of the algorithm. The larger it is, the
higher the arithmetic reduction ratio, but also the worse the precision of the calculation.
Thus, it is necessary to find a trade-off between precision and performance when choosing
the value of α. Many previous implementations of the algorithm use α = 4 as standard.
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This paper uses the implementation proposed in [10] as a starting point. In the re-
maining, it will be called the reference implementation. Its authors combine several low-level
optimizations with the usage of Shader ASSembly (SASS) code to achieve state-of-the-art
performance on GPUs. Our aim is to generate a CUDA-only C++ implementation and to
optimize it as much as possible. In addition, our implementation (https://github.com/
UDC-GAC/openCNN, accessed on 28 July 2021) is open-source and competitive in several
hardware platforms.

Our code was written from scratch, as the reference implementation is not freely
available. Algorithm 1 shows an enriched version of the pseudocode introduced in the
original paper, which contains additional details such as software pipelining, barrier
synchronization and data prefetch.

Algorithm 1: Pseudocode of the Winograd’s algorithm implementation for α = 4. SMEM
stands for Shared MEMory while GMEM stands for Global MEMory.

1 __shared__ input_smem[16][bc][bn];
2 __shared__ filter_smem[16][bc][bk];
3 input_tiles[16]; // Prefetch input from GMEM
4 filter_tiles[2][16]; // Prefetch filter from GMEM
5 input_frag[2][8]; // Data from SMEM to do outer product (16 of 32)
6 filter_frag[2][8]; // Data from SMEM to do outer product (16 of 32)
7 accumulator[2][64]; // Accumulators
8 input_frag′ [2][8]; // Prefetch data from SMEM (16 of 32)
9 filter_frag′ [2][8]; // Prefetch data from SMEM (16 of 32)

10 input_tiles← prefetch 16-element input tile;
11 filter_tiles← prefetch 2× 16-element filter tile;
12 // Mainloop - iterates over the entire C dimension - not unrolled.

Thread-block level
13 for iter← 0 to C by bc do
14 filter_smem← bk × bc of transformed filter_tiles;
15 input_smem← bn × bc of transformed input_tiles;
16 __syncthreads();
17 input_frag′ ← prefetch 2× 8 elements from input_smem;
18 filter_frag′ prefetch 2× 8 elements from filter_smem;
19 // Warp tile level - iterates over a Thread Block tile
20 #pragma unroll
21 for i← to bc do
22 if i<(bc-1) then
23 filter_frag← 2× 8 elements from filter_smem;
24 input_frag← 2× 8 elements from input_smem;
25 end
26 // Thread tile level - accumulate an outer product
27 #pragma unroll
28 foreach element in accumulator do
29 accumulator [][] += input_frag′ [][] × filter_frag′ [][];
30 end
31 filter_frag↔ filter_frag′
32 input_frag↔ input_frag′
33 end
34 if iter < (C-bc) then
35 input_tiles← prefetch 16-element input tile;
36 filter_tiles← prefetch 2× 16-element filter tile;
37 end
38 end
39 Transpose and transform accumulated result;
40 Store result to global memory;

GPUs have a small amount of fast memory (i.e., shared memory and registers) avail-
able. The reference implementation uses cache blocking for maximizing data reuse, hence,

https://github.com/UDC-GAC/openCNN
https://github.com/UDC-GAC/openCNN
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bk filters, bn input tiles and bc channels are assigned to each thread block in each iteration,
which means that bn × bc and bk × bc block sizes are used for input and filter, respectively.

The reference implementation uses a cache block size of bk = 64, bn = 32, unlike
other recent implementations like cuDNN [6] and Neon [12] that use bk = 32, bn = 32.
The reason is that several recent CNN architectures like VGG or ResNet have a number of
filters multiple of 64 and this block size increases the arithmetic intensity by 33%, while it
reduces the number of input data loads and transformation steps. Furthermore, it makes
the resulting code more robust to L2 cache misses.

The filter transformation step is implemented following the FX variant [15,18]
(Figure 3), i.e., in a kernel separate from the main loop. The filter is usually much smaller
than the input, thus its transformation takes a negligible time. The implementation details
of this filter transformation are not included in the pseudocode. To put this into perspective,
in this step of the reference implementation, each thread block loads bk × bc = 64× 8 = 512
filter tiles in each iteration. As each thread block has bn × bc = 32× 8 = 256 threads, each
thread of the block loads two tiles (Line 4 in Algorithm 1).

Figure 3. Implementation alternatives of Winograd’s algorithm.

The Input Transformation step is implemented in the CUDA kernel of the main loop
(Line 15 in Algorithm 1). In each iteration of the algorithm, each thread block loads
bn × bc = 256 input tiles to shared memory and transforms them. As each block has
256 threads, each thread loads and transforms a single input tile (Line 3 in Algorithm 1).

The following step of the algorithm is the element-wise (Hadamard) matrix multipli-
cation (EWMM) (Line 28 in Algorithm 1). At this point we should remember Equation (5),
where, after calculating the Hadamard product independently for all the channels, they
have to be reduced using an element-wise addition. The reference implementation takes
advantage of the fact that the accumulation on each tile can be performed concurrently.
Thus, we can turn the element-wise multiplication into a 16-batched matrix multiplication.
Letting each thread compute two 8× 8× bc matrix multiplications, the computation inten-
sity increases, hiding better the shared memory latency. As a result, each warp computes
2× 32 of 8× 8× 8 GEMMs.

A key aspect for performance of the batched matrix multiply step is to map input and
filter tiles to the threads of a warp avoiding bank conflicts. The reference implementation
uses the Lane ID arrangement shown in Figure 4, which requires transposing the data first.
The data transposing buffer is arranged as [16][bc][bn] for input tiles and [16][bc][bk] for filter
tiles (Line 1, 2 in Algorithm 1), 16 being the number of elements of an α× α = 4× 4 = 16 tile.
Each lane loads four consecutive elements from shared memory (LDS, LoaD from Shared
memory instruction), enabling the usage of 128-bit instructions (LDS.128). For example
lane16 loads input data at locations 8, 9, 10, 11 and 24, 25, 26, 27, and filter data at locations
0, 1, 2, 3 and 32, 33, 34, 35, across bc = 8 channels. As a result, 8× 8 elements of input data
and 8× 8 of filter data are stored into registers.
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Figure 4. Lane ID arrangement for the data transposing buffer.

Finally, the last step of the algorithm corresponds to the output transformation and
storage. In this step, the pre-transform output data (result of the multiplication step) are
transposed back to return to the initial matrix organization. Specifically, each thread block
has 128 KB of information stored in registers that have to be written to global memory
in several rounds. Every round transposes and transforms an output tile (Line 39 in
Algorithm 1) of 32 KB. The proposed layout is shown on the right side of Figure 5. The
padding defined between elements for avoiding bank conflicts implies that 8 additional KB
of shared memory are needed in every round. As a consequence, this process is performed
in 4 rounds of 32 KB because in Turing GPUs the shared memory can be configured up
to 64 KB [19] and every round needs 32 + 8 = 40 KB. The left side of Figure 5 highlights
in red the data transposed in the first round. The 32 KB correspond to 4 bytes/element
× 32 (elements to transform in a round) × 4 (filters per position in data transposing buffer,
Figure 4) × 4 (input elements per position in data transposing buffer, Figure 4) × 8 (warps
within each block of threads) × 2 (output tiles per thread).

Figure 5. Lane ID arrangement for output transform buffer (right side, being p the padding elements)
and pre-transform output data transposed in the first round (left side).
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4. Optimization of the Method

The layout proposed by the reference implementation for the output transform
buffer (right side of Figure 5) in the output transform step leads to thread divergence,
as it uses a quarter of each half-warp per round (e.g., lanes 0–7 and 16–23 in round 1).
The reference implementation uses this layout for several reasons: (1) it matches the
initial data organization and thus it ensures result correctness; (2) it generates stores of
32 continuous output elements to shared memory and avoids bank conflicts; and (3) the
total buffer size of 40 KB fits in the available shared memory on Turing GPUs, 64 KB [19].

The 64 KB of shared memory of Turing architectures is organized in 32 banks
and data are distributed cyclically among the banks in 32-bit words. Additionally,
each bank can transfer 32 bits per clock cycle [20]. The theoretical peak memory
throughput can be calculated by multiplying the Load Store Unit (LSU) count per
Streaming Multiprocessor (SM) (nLSU , 16 in Turing) by the number of bytes that each
LSU can load per cycle per instruction (4 bytes in Turing) which gives 64 bytes/cycle
in Turing [21].

The theoretical peak shared memory performance is achieved if the 32 threads of
a warp read/write 32-bit words on separated memory banks simultaneously. Shared
memory instructions of more than 32 bits per thread (64- or 128-bit) are broken down into
128-byte (32 banks×32 bits/bank) memory operations by the memory controller. Thus,
if the word size is 64 or 128 bits, then two or four transactions per instruction will be
needed, respectively.

It has been demonstrated [11] that, in Kepler architectures, 64-bit loads perform
better for shared memory while texture cached 128-bit load instructions perform better for
global memory. We wanted to make our own study of the performance of load and store
instructions from/to shared memory in our testing environment since the performance of
these instructions is crucial in the output transformation step.

There are some works that try to measure the performance of shared memory
loads and stores in Turing [21,22]. In [22], the authors prove that benchmarking those
instructions using code written in CUDA or PTX is not fair since the compiler can apply
its own optimizations, thus they recommend doing the test directly using SASS code.

The repository associated to our paper contains a reproduction of these experiments
(https://github.com/UDC-GAC/openCNN/tree/main/bench/smem, accessed on
28 July 2021), that has been used to validate their conclusions on our testing environ-
ment. The test are written directly in Turingas SASS code [10].

Table 1a,b contains the results of our experiment and show that their conclusions
also apply to our testing environment. The tests have been performed using an NVIDIA
RTX 2080Ti GPU with Turing architecture and the CUDA 11.2 Toolkit. The results show
that memory throughput improves using wider memory words. For example, 128-bit
memory instructions have 20% higher throughput than 64-bit ones (remember the peak
limit of 64 bytes/cycle). However, this advantage vanishes if using wider instructions
imply using just half of the threads of a warp for storing the information as it happens
in the proposal of Figure 5. To test this, we measured the CPI and throughput of a
SASS code with the same divergence patterns as Figure 5 and the result is that the
CPI is 10 clocks and the throughput 25.60 (51.21/2) bytes/cycle. That means that
despite halving the number of memory transactions required, the number of clock
cycles per instruction remains the same, therefore, the throughput is divided by two.
However, if STS.64 stores are used, the throughput, 42.61, is larger, which means that
using narrower instructions and avoiding thread divergence can significantly improve
memory performance.

https://github.com/UDC-GAC/openCNN/tree/main/bench/smem
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Table 1. LoaD from Shared memory (LDS) and STore to Shared memory (STS) instructions metrics.

(a) CPI

Width

Type 32 64 128

LDS 2.11 4.00 8.00

STS 4.06 6.01 10.00

(b) Throughput (Bytes/Cycle)

Width

Type 32 64 128

LDS 60.55 64.00 64.00

STS 31.50 42.61 51.21

4.1. Alternative Output Buffer Layouts

The previous analysis indicates that there is an important performance drop in the
output transformation step of Winograd due to the way data are written from registers
to shared memory when transposing the pre-transform output data. Notice that 16-tile
elements are placed across different thread registers, which are private. Thus, the results
must be merged into Shared MEMory (SMEM) first, where all the threads in the block can
share their results. The implementation proposed in this paper solves this performance
problem at CUDA-source code level. Let us remark that the output transformation step
is composed by three tasks that are: (1) transposition of the pre-transform output data
from registers to shared memory, (2) output data transformation from shared memory to
registers and (3) transformed data storage from registers to global memory. Each of these
tasks is covered separately in the rest of this section.

4.1.1. (1) Output Data Transposition

The first task transposes the pre-transform output data, stored in registers, into shared
memory. Our implementation uses a new layout for the output transform buffer. The layout
is shown in Figure 6, whose cell numbers indicate the lane ID and padding locations. Notice
that this figure follows the same representation convention as the right side of Figure 5 and
it replaces it in our implementation. Furthermore, this one uses float2 instead of float4 data
types, and it partially keeps the original data layout order (left part in yellow/green and
red/dark blue), but it appends a second half buffer containing some elements that would
be transposed in a second round (right part in gray/cyan and magenta/orange). Since a
shorter data type, float2, is now used, the initial layout, based on float4, has been organized
into two different buffers, each one with one half of the associated elements. Thus, in this
layout, half of the float4 elements are located in the upper matrix while the other half are in
the lower one. This layout uses twice more threads in each round than the original proposal
and it avoids thread divergence as well as bank-conflicts. As we are doubling the amount
of information written in each round (two rounds are represented in Figure 6), we have to
divide by two the number of filters in each of those rounds. Consequently, the final size
of this buffer layout is 4 bytes/element × 64 (elements to transform in a round) × 2 (half
of the filters per position in the data transposing buffer, Figure 4) × 4 (input elements per
position in the data transposing buffer, Figure 4) × 8 (warps within each block of threads)
× 2 (output tiles per thread) = 32 KB.

The amount of padding can be reduced with the new layout proposal shown in
Figure 7. This layout merges the left and right halves of the previous matrix layout
proposal while keeping the order of the elements and avoiding bank conflicts. The color
pattern of this figure does not match the one of the previous figure, so it should not be
interpreted the same way. This new layout locates contiguously the analogous rows of
the two halves (e.g., row n of matrices 0 and 1, which are always in the same memory
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bank). This allows to remove some padding, which may not be a big concern in Turing
architectures but it can make a difference in older platforms. In the following, this proposal
will be called optSTS64, and it is one of the alternative optimizations that will be compared
in the experiments section.

0 1 16 17 0 1 16 17 8 9 24 25 8 9 24 25
pad pad 2 3 18 19 2 3 pad pad 10 11 26 27 10 11
18 19 pad pad 4 5 20 21 26 27 pad pad 12 13 28 29
4 5 20 21 pad pad 6 7 12 13 28 29 pad pad 14 15
22 23 6 7 22 2 pad pad 30 31 14 15 30 31 pad pad

0 1 16 17 0 1 16 17 8 9 24 25 8 9 24 25
pad pad 2 3 18 19 2 3 pad pad 10 11 26 27 10 11
18 19 pad pad 4 5 20 21 26 27 pad pad 12 13 28 29
4 5 20 21 pad pad 6 7 12 13 28 29 pad pad 14 15
22 23 6 7 22 2 pad pad 30 31 14 15 30 31 pad pad︸ ︷︷ ︸

128bytes

Figure 6. optSTS64 layout.

0 1 16 17 0 1 16 17 8 9 24 25 8 9 24 25
0 1 16 17 0 1 16 17 8 9 24 25 8 9 24 25
pad pad 2 3 18 19 2 3 18 19 10 11 26 27 10 11
26 27 2 3 18 19 2 3 18 19 10 11 26 27 10 11
26 27 pad pad 4 5 20 21 4 5 20 21 12 13 28 29
12 13 28 29 4 5 20 21 4 5 20 21 12 13 28 29
12 13 28 29 pad pad 6 7 22 23 6 7 22 23 14 15
30 31 14 15 30 31 6 7 22 23 6 7 22 23 14 15
30 31 14 15 30 31︸ ︷︷ ︸

128bytes

Figure 7. Final optSTS64 layout.

In the previous layout proposal, the padding introduced in the layout for avoiding
bank conflicts can be replaced with useful data. To do this while keeping the layout
properties, the padding must be replaced with the last cells of a segment of consecutive
128 bytes. For example, lane 26 and 27 are moved up to the padding position from row
fourth to third. This movement of data generates a ripple effect of lane reorganization that
flushes padding from the buffer. Figure 8 shows the result of this lane rearrangement. In
the remaining we will refer to this proposal as optSTS64 compact.

0 1 16 17 0 1 16 17 8 9 24 25 8 9 24 25
0 1 16 17 0 1 16 17 8 9 24 25 8 9 24 25
26 27 2 3 18 19 2 3 18 19 10 11 26 27 10 11
26 27 2 3 18 19 2 3 18 19 10 11 26 27 10 11
12 13 28 29 4 5 20 21 4 5 20 21 12 13 28 29
12 13 28 29 4 5 20 21 4 5 20 21 12 13 28 29
30 31 14 15 30 31 6 7 22 23 6 7 22 23 14 15
30 31 14 15 30 31 6 7 22 23 6 7 22 23 14 15︸ ︷︷ ︸

128bytes

Figure 8. optSTS64 compact layout.
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The optSTS64 compact layout enables a more efficient memory usage and a reduction of
the total number of rounds needed to transpose the data, transferring 32 KB of useful data
to shared memory in every round. Considering that there are 64 KB of shared memory in
Turing GPUs, it is possible to double the amount of information transposed on each round.

The problem of writing 64 KB of data to SMEM in each round, unlike the 40 KB
of the original proposal, is that it is more difficult to overlap memory accesses with
computation. However, the extra 32 KB available using the optSTS64 compact layout
can be used as a virtual double memory buffer. Thus, data storage can be pipelined with
transformation as it was done in the main loop with the input and filter transformation
and GEMM. This approach still requires four rounds to finish the data transposition and
transformation but memory accesses are overlapped with computation, thus reducing the
effect of memory latency.

4.1.2. (2) Output Data Transformation

The transformation step of the output begins just after the results have been transposed
into the shared memory. Each warp of threads reads and transforms a set of two consecutive
rows of the previous layout (notice that, despite their being stored separately they are
actually a float4 datatype broken into two float2 elements), that is 256 B in total.

Figure 9 shows how our implementation reads the previously transposed data, ensur-
ing coalesced and bank conflict-free shared memory accesses. Within each cell, two laneIds
are represented since each one contains a float2 value but LDS.32 instructions are used
for loading data. For simplicity, we have just depicted the first two rows of the optSTS64
layout taking into account that the other rows will be processed by other warps in the same
way. There exist several possible ways to read these data, but we have to take into account
how they will be stored later in Global Memory (GMEM), so the next major concerns must
be considered:

• The red/yellow vectors will not be consecutive to the green/blue ones. Remember
that in Figure 6, two buffers had been appended side-by-side that were not contiguous
in memory according to the initial layout, in Figure 4. That enabled the full warp
utilization in the transposition step, but the initial organization must be taken into
account at this point to ensure result correctness.

• Float4 data types were divided into two float2 elements. For this reason, the final order
in GMEM within each group of elements (yellow/red or blue/green) is as Figure 10
depicts. After the first column the flow has been simplified for clarity, but it would be
as it is depicted here for the first four elements.

• Each thread computes two output tiles, so the wider instruction that can be used to
store the results to GMEM is STG.64.

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24, 25 26, 27 28, 29 30, 31
0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24, 25 26, 27 28, 29 30, 31︸ ︷︷ ︸

128bytes

Figure 9. Data reading order from shared memory to registers.

Figure 10. Order of the elements after replacing float4 elements by two float2 elements.

As a result of the previous considerations, each half-warp must be associated to one of
the analogous two vectors as Figure 9 shows, avoiding bank conflicts and ensuring future
GMEM 128-bit coalesced accesses, since memory instructions will be broken down into
two separate transactions. Furthermore, using STG.64 instructions requires previously
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shuffling the results as Figure 11 represents. This way, data can be read from SMEM using
32-bit instructions (Figure 9), but later each thread will have two consecutive values to
store to GMEM, enabling the usage of STG.64.

Figure 11. Virtual elements shuffle.

Nevertheless, the shuffle instruction introduces an overhead that can be avoided if
the swap is performed during the Outer-Product step. Considering that the datatype used
in that stage is float4, the values of the ‘y’ and ‘z’ coordinates can be swapped with no
performance degradation (Figure 12).

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24, 25 26, 27 28, 29 30, 31
0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17 18, 19 20, 21 22, 23 24, 25 26, 27 28, 29 30, 31︸ ︷︷ ︸

128bytes

Figure 12. Final data reading order from shared memory to registers after the shuffle of elements.

The previous considerations can be applied to the optSTS64 compact layout, the only
difference being that the indexes of the wrapped-around elements within each warp must
be recomputed.

Another possibility is to replace the 32-bit loads from shared memory by 64-bit ones.
One way to do so is depicted in Figure 13. Some sources in the bibliography define
a half-warp as a group of 16 consecutive threads. Thus, this access pattern leads to
shared memory bank conflicts when loading data. Furthermore, no great performance
improvement is expected from changing 32-bit to 64-bit instructions when loading data
from shared memory. Returning to Table 1b, going from 32- to 64-bit loads only means a
5.6% of higher throughput, which is a small improvement in the total computation time.
This alternative has been discarded after checking the previous concerns empirically.

0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23
8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31︸ ︷︷ ︸

128bytes

Figure 13. Data reading order from shared memory to registers with LDS.64 instructions.

4.1.3. (3) Output Data Storage

Finally, the results can be written to global memory following the order in
Figure 14. This order is followed in our two candidate implementations optSTS64 and
optSTS64 compact. As it relies on STG.64 stores, the memory operations must be broken
into 128-byte transactions, one for each half-warp.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31︸ ︷︷ ︸
256bytes

Figure 14. Layout STG.64 from registers to global memory (fully coalesced).

5. Experimental Results

This section evaluates our CUDA C++ Winograd minimal filtering implementation.
The CUDA 11.2 Toolkit has been used on two platforms: NVIDIA Turing RTX 2080Ti and
NVIDIA Ampere RTX 3090 GPUs. The dataset used consists of all the 3× 3 layers of the
ResNet architecture (Table 2). ResNet is a powerful CNN model used in many computer
vision (CV) problems [13]. Its recent incorporation in the standard machine learning bench-
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marks [23] supports the importance of this NN since it is considered a milestone in deep
learning. ResNet represents a backbone model applied very frequently to CV tasks such as
object detection. Time measurement is done using CUDA events [24] and calculated using
the average value of 50 executions. The performance of our implementation is compared
to that of a CUDA-only C++ implementation of [10] and cuDNN 8.2.0 (23 April 2021)
Winograd implementation (CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD) with
the NCHW data layout.

Table 2. ResNet 3× 3 layers.

Layer Output (H ×W) Filter (C, R×S, K)

Conv2 56 × 56 [64, 3 × 3, 64]
Conv3 28 × 28 [128, 3 × 3, 128]
Conv4 14 × 14 [256, 3 × 3, 256]
Conv5 7 × 7 [512, 3 × 3, 512]

The performance is expressed in FLOPS, which are calculated following Equation (6).
The filter transformation time is negligible compared to the execution time, so it is ignored
in the FLOPs calculation, but it is included in time measurement.

FLOPS =
2NCHWKRS

2.25 ∗ time
(6)

Figure 15 compares the performance of our implementation with a CUDA-only C++
implementation of [10] and cuDNN’s Winograd convolution. Four batch sizes are tested:
32, 64, 96, 128. All the possible combinations of layers and batch sizes are named as
ConvmNn, n being the batch size and m the layer number, so that greater values of m are
associated to deeper layers in the network. The results show that our approach is better
than cuDNN as we go deeper in the network, the reason being that since our approach
uses larger blocks (bk = 64 vs. bk = 32), then it can hide better the input data over-fetching
when K, the number of filters, increases. We can also see that the difference between our
implementation and [10] decreases with the number of channels because the waste of time
of the output transposition is better overlapped with computation. We must notice that the
outer loop of Algorithm 1 is with respect to C. This way, since each thread block always
writes 128 KB of output data, when C increases, the number of computations increases
accordingly, and the time wasted on transposing the results can be hidden more easily.

Something remarkable is that the optSTS64 compact layout does not achieve a better
performance than optSTS64. The advantage of using the optSTS64 compact layout is that
it allows to build a double buffer for interleaving data transposition with data transfor-
mation and the storage to global memory. A profiling analysis of the machine assembly
code generated by the compiler shows that memory instructions were overlapped with
arithmetic instructions as we had expected, namely, each STS.64 with 2 FADDs. However,
this does not generate a significant performance gain. In [10], the scheduling of load/store
instructions is changed to increase the distance between memory instructions, improv-
ing the performance notably. We speculate that the optSTS64 compact layout could have
achieved a much better performance if assembly-level optimizations were applied, but the
generation of platform-specific assembly code is out of the scope of this paper.

Table 3 shows the speedups of openCNN with respect to cuDNN and the method
in [10]. The peak speed up with respect to cuDNN is 1.76×, and the average speedup
is 1.34×. Since ours is a CUDA C++ level implementation while cuDNN code is di-
rectly written in SASS, we consider that these results are very positive.As for the CUDA
version of [10], the maximum and averages of speedup achieved are 2.15× and 1.58×,
respectively. The higher speedups are related to the first layers, precisely where the SASS
implementation of [10] achieved the lower speedups with respect to cuDNN [10]. We hope
that these optimizations can also be applied to SASS-level implementations, improving
their performance.
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Figure 15. Winograd’s openCNN performance on Turing RTX 2080Ti.

Figure 16 contains a roofline model representation showing the effect of applying the
previous optimizations on the three main tasks of the output transformation. The model
compares the Fused Winograd convolution using optSTS64 layout (blue dot) to the cuDNN
implementation (orange dot). Our implementation significantly increases the arithmetic
intensity with respect to cuDNN because it uses a more aggressive cache-block size strategy
as described in Section 3.

Figure 17 shows the speedups of openCNN with respect to different cuDNN convo-
lution implementations. The average speedups achieved with respect to the algorithms
listed from top to bottom in the figure are: 1.81×, 3.77×, 3.55×, 2.50×, 1.57× and 0.93×.
The results are favorable in most layers, the exception being the non-fused version of
Winograd when K > 128. However, this is agnostic to the algorithm implementation, since
in mathematical terms, there exists a break point with respect to the Non-Fused version of
F(4× 4, 3× 3) when the K value is above this threshold. Nevertheless, since the Non-Fused
version implements each Winograd step in a different kernel, it needs to store the interme-
diate results in global memory, hence it must allocate a significant amount of memory as
workspace and data loading can turn into a bottleneck. Moreover, the speedup over the
GEMM-based convolution (IMPLICIT PRECOMP GEMM) goes up to 2.07×, which is close
to the theoretical 2.25×multiplication reduction.

Figure 16. Roofline model of cuDNN and openCNN on the Fused Winograd convolution.
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Table 3. SpeedUp. 1.34× on average over cuDNN and 1.58x over the [10] CUDA C++ implementation
on Turing RTX 2080Ti.

Code N
Layers

Conv2 Conv3 Conv4 Conv5

cuDNN

32 1.18l× 1.25× 1.20× 1.69×
64 1.19× 1.26× 1.21× 1.76×
96 1.19× 1.25× 1.18× 1.73×
128 1.20× 1.23× 1.19× 1.74×

Yan et al.

32 2.15× 1.75× 1.53× 1.31×
64 2.02× 1.58× 1.44× 1.29×
96 2.00× 1.50× 1.38× 1.26×
128 2.01× 1.46× 1.36× 1.27×

Figure 17. Heatmap with respect to other cuDNN convolution algorithms on Turing RTX 2080Ti.

As described at the beginning of this section, the performance of our approach has also
been measured on the Ampere architecture, namely on a NVIDIA RTX 3090 GPU. The aim of
this experiment is to prove that, contrary to SASS code, our implementation can be ported to
other architectures with little or no performance loss. Figure 18 depicts the results obtained. We
can see that the proportions are maintained with respect to the results in Turing. However, this
GPU provides much higher FP32 performance, and thus the FLOPS increase significantly.

Figure 18. Winograd openCNN performance on Ampere RTX 3090.
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Table 4 shows the speedUp over cuDNN and the [10] CUDA implementation. In this
case, the peak speedup with respect to cuDNN is 1.85× and the average speedup is 1.34×,
both being higher than in Turing (Table 3).

Table 4. SpeedUp. 1.34× on average over cuDNN and 1.49× over the [10] CUDA C++ implementa-
tion on Ampere RTX 3090.

Code N
Layers

Conv2 Conv3 Conv4 Conv5

cuDNN

32 1.16× 1.26× 1.12× 1.64×
64 1.19× 1.23× 1.26× 1.60×
96 1.23× 1.28× 1.18× 1.85×
128 1.24× 1.26× 1.25× 1.78×

Yan et al.

32 2.07× 1.70× 1.37× 1.15×
64 1.98× 1.53× 1.35× 1.27×
96 1.97× 1.43× 1.25× 1.14×
128 1.94× 1.39× 1.26× 1.11×

Finally, returning to the comparison with different cuDNN convolution algorithms,
Figure 19 represents the same information as Figure 17, but for the Ampere RTX 3090 GPU.
We can see that the results are also positive despite changing the GPU architecture.

Figure 19. Heatmap with respect to other cuDNN convolution algorithms on Ampere RTX 3090.

6. Related Work

There are some other works that focus on the optimization of the Winograd convo-
lution algorithm in GPUs [15], CPUs [18] and FPGAs [25]. Regarding GPU approaches,
the study in [10] tries to crack the ISA encoding in order to generate it directly from a
machine assembly code (SASS) written by the programmer. This topic is not new, since
many other projects followed a similar approach for older architectures like Kepler [11]
and Maxwell/Pascal [26]. This strategy opens the possibility of hand-tuning low-level
parameters like warp load-balancing or load/store instruction scheduling. Although [10]
demonstrates that this approach can achieve a good performance on the Winograd con-
volution in comparison to cuDNN, it lacks generality with respect to other architectures,
especially older ones.

Other works try to accelerate the Winograd convolution in a different way, by reusing
computations rather than applying traditional optimizations [27]. This novel technique is
called deep reuse. Another recent but sophisticated approach [28] divides the Winograd
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algorithm in subcomputations and establishes the data movement lower bounds to finally
define the optimal I/O dataflow that maximizes data re-reuse. Furthermore, they propose
an auto-tuning technique to dynamically find the optimal parameter configuration. We
have noticed that none of the aforementioned projects have released their source code,
making it difficult to reproduce this research and to compare with the performance of
other approaches.

Another strategy is to try to accelerate CNNs through different convolution algorithms
like FFT [29], GEMM-based [30] or direct convolution [31]. FFT is a competitive approach
compared to Winograd when the filter size is large. However, in current CNN architectures,
small 3× 3 filters are more popular [15]. A collection of CUDA C++ templates for Linear
Algebra Subroutines is developed in [30]. As a result, in [30] there exists an open-source
GEMM-based convolution implementation. However, Winograd implementations are
approaching the theoretical 2.25× multiplication reduction compared to GEMM-based
solutions and thus, as we have seen in Section 5, Winograd is currently the reference to
beat, free implementations being the key to continue improving its performance.

7. Conclusions

We have presented an open-source CUDA-only implementation of the Winograd
convolution which is competitive in modern Nvidia GPU architectures such as Turing
and Ampere. This implementation is based on the optimization ideas of a previous
implementation of the algorithm, which combined CUDA and SASS code to achieve
state-of-the-art performance. Unlike this reference implementation, ours is open-source
and it is completely written in CUDA C++, which makes it more portable in terms of
other platforms.

The design process of our proposal used microbenchmarking to fine-tune the per-
formance of different hotspots detected in the reference implementation. Our openCNN
approach achieves speedups up to 1.76× with respect to cuDNN on Turing RTX 2080Ti
and up to 1.85× on Ampere RTX 3090. The code of this proposal has been released with the
name openCNN as open-source software at https://github.com/UDC-GAC/openCNN,
accessed on 28 July 2021.

As future work, we plan to generate a version of our code, the performance of which
can be easily ported between different architectures through iterative parameter tuning.
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