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Abstract 

A correct system design can be systematically 
obtained from a specification model of a real-time 
system that integrates hybrid measurements In a 
realistic industrial environment, this has been carried 
out through complete Matlab / Simulink / Stateflow 
models. However, there is a widespread interest in 
carrying out that modeling resorting to Machine 
Learning models, which can be understood as 
Automated Machine Learning for Real-time systems 
that present some degree of hybridation. An AC motor 
controller which must be able to maintain a constant 
air flow through a filter is one of these systems. The 
article also discusses a practical application of the 
method for implementing a closed loop control system 
to show how the proposed procedure can be applied 
to derive complete hybrid system designs with ANN.   
 
Palabras clave: Automated Machine Learning, Real-
time embedded control systems, Cyber-physical 
systems, Time series forecasting, Neural networks, 
Energy efficiency.  
 
 
1 INTRODUCTION 
Automated Machine Learning (AML) methods for 
design and implementation of Real-Time systems, 
applied to the specification of non-functional user 
requirements, such as timing constraints between 
system actions, are also starting to be applied 
successfully in the requirement specification, design 
and implementation phases of cyber-physical systems.  
Although AML methods help us to find a consistent 
implementation of system requirements, however they 
present serious application problems regarding fitness 
calculation, overfitting, lack of scalability and a high 
amount of time to compute the hyperparameters on 
which real-time and control systems are dependable. 
The problem above is worsened if we chose an 
artificial neural network (ANN) to calculate the 
hyperparameters by following an optimization method 
as the gradient descent one. Therefore, we propose in 
this paper to complement the expensive training phase 
of artificial neural networks (ANN) with 
hyperparameter updates carried out manually with the 
help of tools widely used in the industry (Simulink and 
Stateflow). The values of the hyperparameters can be 

validated following a mixed approach that is based on 
the interleaving of updates of the values with the 
training of the neural network. This method could be 
considered as very model-specific but, on the other 
hand, it allows us to obtain efficiently and with time 
constraints many hyperparameters of the cyber-
physical model, which lays the basis for obtaining a 
great improvement over other approaches currently 
more used for example, obtaining hyperparameters 
using Bayesian optimization (HPO)[1]. 
 Our approach works better for modelling analogic 
systems or those that capture measured data 
continuously; and it is inspired in some prior results 
obtained in solving prediction problems with ANN [9] 
for Energy Efficiency systems; but if discrete 
components are interrelated with continuous ones, the 
common result is to produce inflexible models, with 
parameters that are difficult to change at run time in 
simulations.  
 In hybrid state machines [10] the continuous 
behavior described by a system of differential 
equations associated must change as result of the 
occurrence of discrete events too. Our approach gives 
very compact and flexible specifications of complex 
hybrid systems, however there are very few tools that 
support this class of tools now. In our case, we 
hypothesize that there is no major problem in building 
a trained ANN that substitutes the PID controller a 
closed loop control system to react and produce a 
correct response even in the case of discrete events, 
i.e., messages or signals that may modify the values of 
the cyber-physical model’s hyperparameters. 
 The remainder of the paper is structured as 
follows. We first give some background on 
Automated Machine Learning, which is the formal 
foundation of our method. Then, the approach 
proposed here is applied to solve an industrial problem 
of a real-time feedback closed loop used to maintain 
constant rotor speed of an induction motor driven by a 
TriaC device such as the one used by an AC motor to 
keep a constant air flow through a filter in HVAC 
systems. The case study shows how the proposed 
method can be applied to derive a hybrid system that 
also contains discrete components. Finally, the 
conclusions and the ongoing lines of work are 
presented. 
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2 AUTOMATED MACHINE 
LEARNING 

Most real-time systems problems that can be solved 
by algorithms or heuristics are characterized by 
complexities such as non-convexity, nonlinearities, 
discontinuities, variables of mixed nature, which 
involve expertise in multiple disciplines, as well as to 
face high dimensionality, which renders algorithms 
ineffective, impractical, or inapplicable in Real-time 
systems (RTS) implementation. There are no known 
mathematically well-founded algorithms for finding 
the best solution for RTS and for control problems, in 
general cyber-physical domains, within a limited 
amount of time. In order to solve such problems 
practically, we are compelled to search new 
optimization algorithms, which are typically 
developed by using heuristics that, despite lacking 
strong mathematical foundations, are capable of 
reaching an approximate solution in a reasonable 
amount of time to the aforementioned problems. 
These so-called metaheuristic methods do not 
guarantee that the exact optimal solution will be 
found, but they can lead to a near-optimal solution in 
a computationally efficient manner. Therefore, 
metaheuristic methodologies are gaining an every day 
growing popularity in a variety of application domains 
due to their practical appeal and ease of 
implementation. 
 Most metaheuristic methods are stochastic in 
nature and imitate a natural, physical, or biological 
principle that resembles a search or optimization 
process. Evolutionary algorithms, more specifically, 
genetic algorithms and their evolution strategy; 
particle swarm, ant colony, bee colony optimization; 
simulated annealing, and a variety of other methods, 
are among the most used nowadays. 
 Metaheuristics have a certain advantage over 
traditional optimization methods, namely, 
• Can provide good solutions that can hinder 

traditional methods for computationally easy 
challenges involving large input complexity. 

• Can yield sufficient solutions to difficult 
problems, e.g., problems for which an exact 
algorithm is not known and can be resolved in 
reasonable time. 

• In contrast to most conventional methods, they do 
not require information on gradients and can 
therefore be used with non-analytical black box or 
simulation-based objective functions. 

• Most of them are inherently stochastic or 
deterministic heuristics that are specifically 
designed for this purpose and have the ‘capacité’ 
to recover from local optima. 

• Because metaheuristics can better deal with 
interties in goals, they are also able to recover 
from local optima. 

• Most metaheuristics have only a few algorithmic 
changes to handle multiple objectives. 

2.1 ARTIFICIAL NEURAL NETWORKS 
AND GRADIENT BASED 
OPTIMIZATION 

Complex numerical and symbolic calculations can be 
made at incredible speed on modern parallel 
computers. However, they cannot still be close to the 
performance of human minds to carry out perceptual 
tasks such as the recognition of language and images. 
Computers need accurate input information and 
sequentially follow instructions’ streams while the 
human mind performs tasks in a highly distributed and 
parallel mode. We can say, therefore, that a biological 
neural network is the basis for the design of an 
artificial intelligence neural network (ANN) and 
thereof it must be considered as a computation model 
that is intrinsically parallel and convenient to solve 
very complex problems in the cyber-physical domain. 

 

Figure 1: Artificial Neuron 

 Just as the human brain is made up of 
interconnected biological neurons, an ANN is made 
up of artificial neurons connected and grouped at 
different levels called layers. For a neural network to 
obtain satisfactory results, it must have been 
previously trained. The latter process consists of 
adjusting each of the weights of the inputs of all the 
neurons that are part of the neural network so that the 
responses of the output layer fit as closely as possible 
to the known data. 

 
Figure 2: Simple Artificial Neural Network 

2.1.1 Optimization and Gradient Descent 

Modern parallel computers and graphics cards as 
NVIDIA GPUs make currently possible to obtain the 
gradient of model selection w.r.t. crucial 
hyperparameters of cyber-physical models [1]. 
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Following this approach, evaluations of the target 
function results into a hyper-gradient vector instead of 
single values that are usually obtained by other 
methods such as the called hyperparameter 
optimization (HPO). 
 Thanks to parallel computing we can now handle 
many hyperparameters of a model [2] [3] by deploying 
gradient-based methods efficiently, more specifically, 
our method for ANN applied to high-dimensional 
HPO problems can perform the following tasks, 
•optimize the learning rate of an ANN for each 
iteration and layer separately. 
•Calculate optimal weights for each layer in the ANN. 
•Reduce likelihood of overfitting by L2 regularization 
for each individual parameter of the model. 
We can, therefore, overcome the backpropagation 
through the complete training procedure of an ANN 
by carrying out hyperparameter updates and by 
following separate validation interleaved with the 
training of the network. This method is highly model-
specific but, in return, it allows us to tune many 
hyperparameters of the cyber-physical model, which 
sets the ground for obtaining a great improvement 
with respect to HPO carried out, e.g., by Bayesian 
optimization. 

2.2 FEATURE PROCESSING ALGORITHMS 

To build arbitrary size ML pipelines our approach 
proposes to use more than one algorithm and 
dynamically add these algorithms to the parallel 
calculation in order to enlarge the search space and 
then to haste select the right algorithm and its 
hyperparameters [4][5]. 

2.3 SCALABILITY 
There are many machine learning problems which 
cannot be directly tackled due to their scale. We 
understand the term scale here as the size of the 
configuration space and the highly computational cost 
of individual model evaluations. There are currently 
some successes in training the neural network with 
small datasets and setting the hyperparameters of the 
training procedure manually [6]. Our approach with 
respect to cope with the scalability  problem is to take 
advantage of massive parallel computing and try to 
full exploit large-scale computer clusters or the 
thousand of SMs of GPU/CUDA multiprocessors. 

2.4 OVERFITTING AND 
GENERALIZATION 

Overfitting is an open problem when we try to apply 
ANN with a finite validation set and the calculation of 
the model’s hyperparameters suffer from this problem 
[7]. To reduce the amount of overfitting we can use a 
different shuffling for each function that we need to 
evaluate. This approach has shown to improve the 
generalization accuracy and recall by deploying a 
cross-validation strategy of the cyber-physical 

models. We can also use the strategy of finding stable 
optima instead optima in the objective function, as it 
was noted in [8]. 

3 MODELING METHOD 
In the proposed ANN-based method [9] to design a 
real-time hybrid system with continuous and discrete 
components, we use a typical design of a neural 
network, in which we define the usual two main 
phases: training and testing. The generated output of 
the model, i.e., next values of variables of the cyber-
physical system, which represent the functional and 
dynamic aspects of model, are used to feed 
Simulink/Stateflow blocks. 

 
Figure 3: Diagram of the approach to deploy the AC 
Motor general model; there is only one neural network 
that learns from input data and outputs the next value 

4. REGULATION OF ROTOR SPEED 
WITH AN INDUCTION MOTOR 

An informal description of the user´s requirements 
specification of a closed loop control system is 
presented for controlling an AC motor (or induction 
motor) in figure 4. The open loop control of the engine 
is obtained by feeding it with a controlled voltage of 
220 volts and 50 Hz. This control is carried out by 
cutting the sinus wave, which represents the input 
voltage using an electronic device named TriaC, 
which operates as a very fast switch. The control line 
of the TriaC is driven by a synchronization signal 
(synch), which informs when the input voltage passes 
through a zero value, at this moment the TriaC 
automatically stops to conduct electricity.  

If after switching the TriaC off, it is fed with current 
several milliseconds later, it will be driven to 
saturation by the signal texct and will start to conduct 
until the input voltage passes through a zero value 
again. The closed loop of control is obtained in this 
case by calculating the precise time at which the TriaC 
must be enabled, so the excitation time must be 
calculated in real-time and in every cycle of the input 
voltage. The system should address its own safety if 
synchronization signal fails, or the TriaC overheats. If 
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the synch signal is missed out after passing a complete 
cycle of the input voltage, then syncf is raised. Other 
possible failure could happen if the TriaC overheated, 
in this case the electronic device might short-circuit 
and lead the engine to start working at the maximum 
number of revolutions, which would cause the loss of 
the engine after 1 second approximately. 

 
Figure 4: Description of the operation of TriaC 
device that controls the AC induction motor 

 The combination of induction motor with TriaC 
device can be used to control or maintain constant the 
velocity of a centrifuge of washing machine, the air 
flow through a filter, the speed of a vehicle, etc. From 
now on we suppose that AC induction motor directed 
by the TriaC device controls the air flow through a 
filter.  

4.1 SYSTEM MODEL DERIVATION 

The high-level diagram can be seen in the following 
figure 5, which includes five control flows: the 
synchronization signal (synch), which informs when 
the input voltage passes through zero value; the TriaC 
overheating warning; two signals, the first one signals 
the missing of synch and the second one signals TriaC 
overheating; the reactivating (texct) signals can make 
the TriaC returns to allow current to pass again. It also 
includes 2 data flows: the first one gives the present 
air flow through the filter (flow) and the second one, 
the air flow reference value (ref).  

 
Figure 5. System Context Diagram. 

 
value, respectively. If the timeval is outside the 
interval [0,1/freq*2], its value is saturated by the 
maximum or minimum value. Then one Simulink 
subsystem block can traditionally designed as the PID 
controller with its interface made up of two ports: the 
error signal (speed error signal) as the input port and 
the corrected timeval as the output one (figure 6). 
 
  
4.2 MATLAB/SIMULINK MODEL OF AN 
INDUCTION MOTOR DRIVE 
The model of an induction motor 
http://lsi.ugr.es/~mcapel/miscelanea/motor has been 
structured in 3 main blocks: (1) transforms the three 
stator voltages va, vb, vc , with a phase of 2p/3 between 
each two, into the rotating reference system dq; (2) the 
block representing the induction motor  itself (which 
inputs the three phase voltages, the synchronous 
angular speed we  and the load torque); (3) this block 
returns the expression of the model variables in the dq 
system back to the three phases abc reference system, 
since the latter one give us the standard graphical 
representation of currents in the stator. Two specific 
blocks have been designed to calculate the electrical 
torque Me given by the motor and another to calculate 
the rotor axis angular speed wr. 

Finally, all the physical model constants given in 
table I have been defined using IS physical units in a 
m-file of Simulink, which has to be executed in Matlab 
before opening the Simulink model of the system. 

 
Fig.6. Simulink model of the final system 
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Table I: Constants and variables of the physical variables of an induction motor 

d: direct axis of the rotating reference system c*lm= 1/(1/cls+1/clr+1/cm): total reactance with the loses 
for magnetizing (cm) 

q: quadrature axis of the rotating referente system  iqs, ids: currents of the q and d stator axis 
s: subindex for the stator variable iqr, idr: currents of the q and d rotor axis 
r: subíndex for the rotor variable p: number of poles of the motor 
Fij=Fij, magnetic linkage, where i=q or d and j=s 
or r 

J: inertia momentum 

vqs, vds: stator voltages Me: motor electrical torque (output variable) 
vqr, vdr: rotor voltages Ml: load torque (input variable) 
Rr, Rs: rotor and stator resistors we: stator synchronous speed (input variable) 
cls: stator reactance (we Lls) wb=2×p×fb: angular speed corresponding to the electric 

frequence of the motor feeding voltage. 
clr: rotor reactance (we Llr) wr: rotor angular speed (output variable) 

5. HYBRID SYSTEM SIMULATION 

In order to carry out a simulation of the hybrid system 
proposed in this paper, more components must be 
added to the model. We need to construct the model of 
a TriaC device, one for the AC Motor, and the sensor 
of flow (i.e., a sensor to measure the speed of the rotor 
as a tachometer does in trucks), the sensor of 
temperature and one for the sync generator. This 
model is implemented by using the Simulink/ 
Stateflow framework, as figure 6 shows, as usual. 

5.1 PHYSICAL MODELING OF AN 
INDUCTION MOTOR 

The most difficult component to model is the AC 
Motor since the rest of the other devices can be 
modeled by means of simple switches or a 
combination of them.  
 The functioning of an induction motor is based on 
the Physical principle of mutual induction between 
electrical circuits traversed by a variable magnetic flux 
F. According to the Faraday law, which is given by 
the following equation: 

 
(1) 

the magnetic flux traversing a motor winding only 
depends on the current conducted by the circuit. It 
does not depend, for instance, on the number of poles 
of the motor. We can assign a self-induction constant 
L to any circuit being affected by magnetic induction, 
according to the equation:  

 (2) 

Nowadays the winding of induction motors is made of 
three windings, carrying each one of them a voltage 
phase separated π rad. from the next phase, which  

yields a rotating magnetic field in the stator, as figure 
7 shows. The velocity of rotation is called the 
synchronous speed, which is given as a parameter of 
induction motors. If we short-circuit the rotor winding 
–using a squirrel cage winding, for instance-, then the 
motor will start rotating because the change in the 
magnetic field direction yielded by the synchronous 
speed of the stator we induces a current that produces 
an electromagnetic force in the rotor. The difference 
between the rotation velocity of the stator we and the  
rotor’s one wr is named slip, which is also given as a 
parameter of induction motors. 

5.2 THE TWO-PHASE SYNCHRONOUS 
ROTATING FRAME 

We can assume a reference system that rotates at the 
synchronous speed we of the stator to ease the 
representation of the rotating  and inductance 
linkages by a system of coupled differential equations 
that describe the physical induction and motor 
dynamics, as figure shows. The induction motor is 
therefore modeled by two reels, the first one is aimed 
at conducting the current in the stator and it also 
generates the rotating magnetic field. The second one 
generates the induced magnetic field in the rotor. This 
simple model allows us to describe the magnetic 
coupling between the stator and rotor windings of an 
induction motor very accurately. 
 The first axis of the following figure is called the 
direct axis and the second one, the quadrature axis.   qe 
is an additional variable representing the rotor angle 
and it can be considered an additional state of the 
induction motor model. An induction motor with a 
squirrel cage rotor winding (short-circuited) will have 
null vqr and vdr voltages. The constants and system 
variables of the above linear differential equations 
system are given in table I. 
 

)( BN
dt
d

F×-=e

reelB iLN ×=F×

®

B
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Figure 7: (a)Motor winding (b) Rotating reference system  
 

 
 

5.3 CALCULATION OF THE 
ELECTROMAGNETIC TORQUE 
GENERATED BY THE MOTOR     

We can derive a mathematical expression for 
calculating the electromagnetic torque generated by 
the motor. Since we know that the mechanical power 
given by the motor is obtained from the 
electromagnetic equation: 

 (3) 

 and the magnetic linkage only depends on the 
angular speed and the magnetic flux Fij = we×Fij. The 
mechanical power can be made equivalent to the 
electrical torque Te generated by the motor, then we 
can obtain: 
 from the magnetic linkages Fds, Fqs, and currents, 
which are obtained by solving a system of differential 
linear equations with concrete values of p (the number 
of poles) and we as the input data to the induction 
motor model. The angular velocity wr of the rotor can 
also be calculated since the load torque Tl and moment 
of inertia J are also parameters of the induction motor 
model. As the above equations show, the electrical 
torque and the angular rotor velocity depend on the 
number of poles of the rotor winding, on the contrary 
of what happens with the magnetic couplings. 

6. MATLAB/SYMULINK MODEL OF 
AN INDUCTION MOTOR DRIVE 

The model of an induction motor 
http://lsi.ugr.es/~mcapel/miscelanea/motor has been 
structured in 3 main blocks: (1) transforms the three 
stator voltages va, vb, vc , with a phase of 2p/3 between 
each two, into the rotating reference system dq; (2) the 
block representing the induction motor  itself  (which 
inputs the three phase voltages, the synchronous 

angular speed we  and the load torque); (3) this block 
returns the expression of the model variables in the dq 
system back to the three phases abc reference system, 
since the latter one give us the standard graphical 
representation of currents in the stator. 
 Two specific blocks have been designed to 
calculate the electrical torque Me given by the motor 
and another to calculate the rotor axis angular speed 
wr. Finally, all the physical model constants given in 
table I have been defined using IS physical units in a 
m-file of Simulink, which must be executed in Matlab 
before opening the Simulink model of the system.  

6.1 OBTAINED RESULTS 

The results obtained with the two models (OLP and 
CLP) were quite different. In the first case, it was only 
considered an open control loop model; thus, only 
after a constant time the TriaC is excited in every 
cycle. In this case the disturbances in the system 
response (wr) are remarkable. Rotor speed follows the 
changes produced in the synchronous angular speed in 
the stator (we) (figure 9), but any change in the value 
of we provokes fast oscillations around the new value 
in the rotor velocity. If we carry out a simulation with 
the rotor velocity controlled by a PID, then we will 
obtain better results (figure 8). 

Moreover, if we take a plot of the electrical torque 
output by the induction motor w.r.t. a constant load 
torque, which is given as an input variable to the 
system, we will take only important oscillations at the 
beginning, while the system is trying to get a 
stabilisation point. The oscillations shown in figure 8 
represent about the 20% of the target value for the 
torque Me, (300 Nm); these oscillations are caused by 
dynamic conditions during motor functioning, as the 
rotor axis friction. 
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7. CONCLUSIONS AND FUTURE 
WORK 

We have presented one method and application 
derivation scheme to obtain a correct control system 
with real-time features. Automated Machine Learning 
methods together with a certain class of ANN will 
allow us modeling continuous and discrete dynamic 
systems, such as the AC motor controller that is the 
case study. We have shown that PID (proportional 
integrative differential) controllers can be substituted 
by a trained neural network that has been used to 
integrate continuous components in a hybrid real/time 
system design without any accuracy or timeliness 
losses. However, unlike other proposals that attempted 
to overcome the same problem, our methodological 
scheme is mainly a set of guidelines at moment, which 
have proved to be of use for deriving a verifiable 
model of a cyber-physical complex system. The 
method has been defined for its easy integration in 
industrial environments for simulation 
(Simulink/Stateflow) and can be used with standard 
libraries for neural networks development, such as 
SkLearn [11] and PySpark. As future work, we plan to 
develop a tool capable of automated code generation 
of real-time and embedded system software for several 
computing platforms. 
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Figure 8: Closed loop control response to changes in the stator speed 

 
Figure 9:  Response of the rotor to changes in the stator speed 
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