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Summary 
 
In this work, we apply artificial intelligence to guide a 
drone to a certain point autonomously. Unreal engine 
creates a virtual environment where the drone can fly, 
and the algorithm is trained simulating the drone 
dynamics thanks to Airsim plugin. The implemented 
algorithm is Asynchronous Actor-Critic Advantage 
(A3C), which trains a neural network with less 
computing resources than standard reinforcement 
learning algorithms that normally needs costly GPUs. 
To prove these advantages, several experiments are 
run using a different number of parallel simulations 
(threads). The drone should reach a point randomly 
generated each episode. The reward, the value and the 
advantage function are used to evaluate the 
performance.  
As expected, these experiments show that a higher 
number of threads helps the leaning process improve 
and become more stable. These learning results are of 
interest to optimize the computing resources in future 
applications. 
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learning, Autonomous driving, Airsim, Multithread. 
 
 
1 INTRODUCTION 
 
Artificial intelligence nowadays is at the leading edge 
in almost all the industry fields, from data analytics to 
self-driving cars or drones [1][15]. It is evolving at a 
breakneck speed and enterprises are more and more 
interested in taking advantage of this technology, 
which pretty means that more researching efforts are 
being intended to develop new utilities.  
 
In the framework of autonomously guiding a drone to 
a specific point, the main objective of this work is the 
use of reinforcement learning to achieve the best 
guiding performance using the least possible 
resources. We deem efficiency very important as it 
yields flexibility to run different trainings at the same 
time, easing the comparison of different algorithms as 
well as it also optimizes the time to get final results. 
 

Unreal Engine and Airsim [17][18] will be used to 
simulate the drone’s behaviour due to the simplicity 
and flexibility this API offers over other graphic 
engines’ APIs (Gazebo, Unity) to be integrated in the 
code along IA libraries. In addition, they are not as 
user friendly, as they required a deep knowledge and 
specialization in their software to achieve the same 
results. 
 
In this case, the control of the drone will be focused 
on reaching a specific point, randomly generated each 
episode of the training. The “brain” that will determine 
the variation of the speed vector searching for the 
objective point will be a traditional recurrent neural 
network with one LSTM (Long Short-Term Memory) 
cell to provide it with some memory. In the future, 
more architectures will be explored such as some 
variations of ResNet [24], kvCORE or DRNN (Deep 
Recurrent Neural Network). 
 
For the training strategy, we have deemed several 
algorithms but selected A3C (Asynchronous Actor-
Critic Advantage) [20] as one of our biggest concerns 
is the efficiency and the ability to run this code in a 
low performance server. A3C algorithm does not need 
GPUs and yields the opportunity of squeezing the 
CPU’s performance to the max achieving great results. 
Also it has a better relation simplicity/results over 
others such as DQN (Deep Q Learning) [11], A2C 
(Advantage Actor Critic), PPO (Proximal Policy 
Optimization)[8], ACKTR (Actor–Critic using 
Kronecker–Factored Trust Region) [26], GAIL 
(Generative Adversarial Imitation Learning) [9]. 
 
A3C algorithm needs several instances of neural 
networks, also called models: those that will interact 
with the environment at the same time (local models); 
and another from where the local models will update 
their own weights when starting the episode and also 
to which the local models will update the weights 
when the episode has finished (shared model). A3C 
uses the leverage of multithreading to perform 
asynchronous updates to the shared model. By 
continuously updating the shared model, it is expected 
that the more threads used the steadier and the faster 
the model should learn. In our set up, we will 
reproduce this algorithm being able to validate that the 
learning performance improves when increasing the 
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number of threads applied to our specific purpose, 
guiding the drone towards a random point. 
 
In the following text, we will explain how we have 
solved some of the difficulties faced. In the 
methodology section, we will firstly sum up the 
reinforcement learning algorithm that has been 
implemented, defining the return function, actor, 
critic, advantage and loss. Then, we will explain the 
set up developed with the different functions such as 
reward, actions codification, random point generation, 
multithreading in Airsim and the structure of the 
neural network. Finally, we will show our results and 
state some conclusions and future work to do. 
 
2 METHODOLOGY  
 
2.1 REINFORCEMENT LEARNING 
 
This work will follow the standards reinforcement 
learning [19][20][21][11] settings where we have an 
agent interacting with an environment. In this case, the 
agent will be the NN and the environment will be the 
Unreal engine graphic engine alongside Airsim. 
 
Each discrete step will have its own state 𝑠  and for 

this state, the agent will output a policy 𝜋 that will 
indicate which action is best to take. Once the action 
has been carried out, the reward 𝑟  will measure how 
good the performance has been. This process is 
repeated continuously until a final state is achieved, 
for example a collision or distance too large to the 
objective point. 
 
The process just mentioned only measures the 
behaviour in a single discrete point. As the drone is 
moving in a continuous state, it is also important to 
consider other discrete points. For this, we use the 
Return function, defined as in (1) 
 

 

(1) 

 
, which allows considering several discrete points with 
a discount factor 𝛾 ∈ (0,1]. 
The goal of the NN will be to maximize 𝑅 . The 

neural network will output the policy 𝜋; the policy, as 
mentioned above, will tell us the expected return 
for 𝑅  when applying that specific action in that 
specific state. This is also called the Action Value or 
the Actor, defined as in (2), 
 

 (2) 
 
Thus, given a state st, the neural network outputs a 
policy 𝜋 that tell us the expected returns to choose an 

action a (2). With this action, the reward is calculated 
to tell us how good the performance has been in this 
specific discrete point. The fact of evaluating only a 
discrete point is that sometimes, some reward must be 
sacrificed to achieve a major reward in the future. For 
this, we use the Value function, also called Critic and 
defined as in (3), 
 

 (3) 
 
This means, given a state and a policy, which return 
should we expect. With this function, we are in 
condition of evaluating how good is the state we are in 
to achieve the best possible reward. Thus, this is a 
reference to control whether the action-value function 
(2) output by the NN is good or not. 
 
While learning the model needs to be continuously 
updating by backpropagating the loss. The loss 
function will allow us to measure if the Critic is correct 
or also if the Critic has the correct criteria to judge the 
Actor. The Critic (3) asses the Actor (2) but it 
somehow needs to be assessed as well, for this we 
have the loss function, defined as in (4), 
 

 (4) 
 
,where A is the Advantage function. This is defined as 
in (5). 
 

 (5) 
 
and means that, given a state 𝑠  whose Critic value is 
V (3), what extra reward can be achieved if an action 
at is taken.  
 
 
2.2 MULTITHREADING IN AIRSIM 
 
In this work, Unreal Engine and Airsim [17] will be 
used to implement the simulation environment. For 
A3C implementation, several Airsim instances will be 
used at the same time; each one of them will be one of 
the environments in which the agent will interact with.  
As there will be several threads, several instances of 
Airsim will have to be implemented at the same time. 
This is one of the main difficulties, as the 
configuration of Airsim does not allow multithreading 
[18]. The only way we have figured out to solve that 
is to configure different Local Host IPs to each Airsim 
instance. This way, each thread will have its 
environment with its single IP. The configured IPs are 
from 127.0.0.1 to 127.0.0.n, being n the number of 
threads used in the simulation (see Figure 1). 
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Figure 1: A3C Structure 
 
2.3 RANDOM POINT GENERATION 
 
The objective of the drone is to reach a specific point 
in a 3D virtual environment. The random point will be 
calculated using trigonometry in XY plane (𝛼), and a 
random Z coordinate (z) in a constant spherical radius 
d, as Figure 2 illustrates. 
 
 

 

(6) 

 
 

 
Figure 2: Parameters used for the objective point 

calculation 
 
Note that the virtual environment has objects in which 
the drone could collide, preventing it from reaching 
the objective point. For this work, the object 
avoidance is not yet implemented, and the only drone 
information used as input for the NN will be the 
absolute drone´s coordinates. If the drone collides 
with an object, the experiment will have finished, and 
another episode will start. The object will have 
reached the objective point when the distance between 
the drone and the point is less than 1 meter. 
 

2.4 NEURAL NETWORK ARCHITECTURE 
 
The Neural Network for the A3C algorithm is in 
Figure 3. It receives the relative distance to the 
objective point [∆𝑥, ∆𝑦, ∆𝑧] as well as the hidden state 
[ℎ ] and the cell state [𝑐 ][21]. On the other side, 
it outputs the Actor [𝑄(𝑠, 𝑎)], the Critic [𝑉(𝑠)], the 
hidden state [ℎ ] and the cell state [𝑐 ]. The internal 
structure is very simple. The network has an initial 
linear transformation with its linear rectification 
function (ReLU). Afterwards, the LSTM cell, whose 
hidden cell [ℎ ] will be used as input for both the Actor 
and Critic linear transformations. Matrix dimensions 
are detailed in Figure 3; let us remind that the Actor 
dimension n refers to the number of threads.  
 

 
 

Figure  3: Neural Network Architecture 
 
2.5 ACTION CODIFICATION 
 
The action will define how the drone interacts with the 
environment. In this case, the actions will modify 
linear velocities. Taking into account the output of the 
NN, the current linear velocity will be increased or 
decreased by a certain constant value that is previously 
defined. The constant value is set to 0.6 m/s, i.e. the 
linear velocity of the axe will be incremented or 
decremented by 0.6 m/s. The image in Figure 4 tries 
to clarify the concept. 
Thus, for a given Action 𝑎 and a constant value 𝑘 , 
the speed velocity will be incremented or decremented 
as 
 

 
(7) 

 
The action will be gotten after selecting a random 
sample of a multinomial distribution created using as 
input: 
 

 (8) 

 
After that, the action will be decodified as shown in 
Figure 4 obtaining the variation of linear velocity in 
the chosen axe, also called 𝑘 , 𝑘 , 𝑘 . Note that in 
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each episode only one of them will have a deviation 
value, the rest of them will be zero. 

 
Figure 4: Codification of the actions 

 
3.5 REWARD FUNCTION 
 
The reward function will determine how good is the 
action yielded by the neural network once it is carried 
out. In other words, it is the way we can tell the 
algorithm how good it is performing.  
 
The objective of the drone is to reach a given point in 
the environment. Thus, the variable used to compute 
the reward function will be the distance between the 
absolute position of the drone [𝑥 , 𝑦 , 𝑧 ] and the 
absolute coordinates [𝑥 , 𝑦 , 𝑧 ] of the objective point 
(6) 
 

 
(9) 

 
Then, the reward function  
 

 

(10) 

 
, which is represented in Figure 5, has been created 
following the tips in [6]. It is constrained between (-
1,1) to prevent the appearance of large numbers when 
backpropagating. For the intermediate values, an 
exponential function has been chosen to clarify that 
the desired behaviour is to minimize variable L.  

 
Figure 5: Reward function 

3.5 EXPERIMENT SET UP 
 
The experiments have been carried out in a Windows 
10 Server with Visual Studio 2019, Unreal Engine 21, 
Airsim 1.5.0 and python 3.7.  
 
To compare the impact the number of threads have in 
the learning process, several simulations will be 
carried out with different number of threads. We will 
simulate with 1,2,3,6 threads [2]. 
 
Each simulation will have 3000 episodes and each 
episode will last 15 seconds maximum, though it can 
finish before in case the point has been reached, there 
is a collision, or the drone gets stuck in the same 
position for three steps. 
 
4 RESULTS 
 
4.1 INITIAL EPISODE 
 
In the initial episodes we can observe (Figure 6) that 
the relation between the Remaining Length and the 
Reward is the one stated in 3.5 while the value shows 
a behaviour that is not yet properly defined. We can 
see that in the first steps, the value grows rapidly but 
then it starts decreasing and never reverts this 
tendency even though the Remaining Length is 
decreasing. 
 
A good behaviour would be that while the Remaining 
Length decreases, the Value function grows, as each 
step we are nearer to achieve our objective.  
 
In the first epochs, weights are not yet properly 
updated. The Loss is too large and if the 
backpropagation of the Loss function is done, it could 
cause exploding gradients. To avoid this the gradients 
will be clipped to ±20. This is a reason it takes several 
epochs to be able to see a proper behaviour 

 
Figure 6: Parameters of an initial episode 
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4.2 FINAL EPISODE 
 
If we pay attention to the behaviour in the final 
episodes (2400), we can see (Figure 7) that it behaves 
properly. 
In the initial steps the Value function increases as the 
remaining length decreases. This means that at the 
time we are getting nearer to the objective point, the 
state we are in is better than before, and given the 
policy output by the network and the state, the 
expected Reward is larger. When the Remaining 
length starts growing in the middle steps, the Value 
function stops increasing and starts decreasing as the 
drone is getting further to the objective point. 
 

 
Figure 7: Parameters of a final episode 

 
4.3 SUCCESSFUL EPISODE 
 
Finally, as an example, we show the behaviour of a 
successful episode (Figure 8) where we can see the 
synchronized fluctuation of the Remaining length and 
the Reward as well as the Value function continuously 
growing until the last steps.  
 

 
 

Figure 8: Parameters of a successful episode 
 
In Figure 9, we show the 3D trajectory of the different 
threads in the same episode (2822). Only Thread 
number 1 reaches the objective point. Note that since 
the update to the global network is asynchronous, it is 

not certain that all the local networks have the same 
weights, indeed it is highly improbable. 
 

 
Figure  9: Behaviour of different threads in the same 

episode 
 
 
4.4 LEARNING RESULTS 
 
To evaluate how a simulation has learned, we will use 
the Value function as it is the one that tells us how 
good the states along the simulation have been. Since 
each single step of each episode has its own value, we 
will calculate the mean function of each episode and 
afterwards a line will be fitted in the points to ease the 
understanding. The graphs in Figure  10 contains the 
values for the different simulations with different 
number of threads. 
 

 
Figure  10: Values comparation for different 

simulations 
 

The simulation with one single thread presents a stable 
behaviour during the training and it also reaches the 
lowest values. However, the simulation with 6 threads 
is the fastest one to reach the highest values. It only 
needs some hundreds of episodes to reach the same 
value than the while simulation with 2 threads.  
For the simulations with 2, 3 and 5 threads, we can see 
that each one surpasses the values of the previous one. 
This is the expected behaviour as mentioned in [20]. 
Thus, for our implementation, we can also conclude 
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that to have many threads directly affects the learning 
stability. The simulation with one single thread 
behaves significantly worse than those with more than 
one thread. The value oscillates in the first two 
thousand steps. Also, the more threads used the bigger 
values attained in the simulation and it also learns 
faster in the initial epochs. 
 
5 CONCLUSIONS 
 
In this work, we have successfully implemented the 
graphic engine and the A3C algorithm applied to the 
UAV field in a low performance server. This allows to 
launch simulations with great flexibility without the 
need of costly GPUs that sometimes are hard to set up. 
With these simulations, we have been able to 
demonstrate the influence of different number of 
threads in the training, observing that the behaviour is 
more stable and achieve better values with more 
threads. This sets the basis for starting a research line 
in which Asynchronous Actor-Critic Advantage will 
be the main training strategy for future experiments. 
 
We are aware that the control carried out is very 
limited, since it only uses absolute positions. In future 
works, we will put more effort in implementing a more 
robust control of the drone. Our intention is to perform 
a control receiving as input the image, GPS 
coordinates and current angular and linear velocity. 
For the image processing we intend to use depth 
estimation as in [13][10] integrated in the neural 
network along with the sensors data as in [12]. Also 
we will study different modifications on the training 
strategy such as the adaptative reward described in [5]. 
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XLII Jornadas de Automática Control Inteligente

208

https://doi.org/10.17979/spudc.9788497498043.203 



[16] Sorg, Jonathan Daniel (2011) The Optimal 
Reward Problem: Designing Effective Reward 
for Bounded Agents 

[17] Shital Shah and Debadeepta Dey and Chris 
Lovett and Ashish Kapoor (2017). Field and 
Service Robotics, AirSim: High-Fidelity Visual 
and Physical Simulation for Autonomous 
Vehicles. arXiv:1705.05065 

[18] Shital Shah (2018). Airsim Documentation 

[19] Volodymyr Mnih, Koray Kavukcuoglu, David 
Silver, Andrei A. Rusu , Joel Veness , Marc G. 
Bellemare , Alex Graves , Martin Riedmiller , 
Andreas K. Fidjeland, Georg Ostrovski, Stig 
Petersen , Charles Beattie , Amir Sadik, Ioannis 
Antonoglou, Helen King, Dharshan Kumara , 
Daan Wierstra, Shane Legg & Demis Hassabis 
(2015) Human-level control through deep 
reinforcement learning, Macmillan Publishers 
Limited 

[20] Volodymyr Mnih1, Adriá Puigdom`enech 
Badia1, Mehdi Mirza, Alex Grave, Tim Harley, 
Timothy P. Lillicrap, David Silver, Koray 
Kavukcuoglu1 (2016) Asynchronous Methods 
for Deep Reinforcement Learning  

[21] Volodymyr Mnih, Koray Kavukcuoglu, David 
Silver, Alex Graves, Ioannis Antonoglou, Daan 
Wierstra, Martin Riedmiller (2013) Playing Atari 
with Deep Reinforcement Learning 
arXiv:1312.5602v1 

[22] Xingyu Sha, Jiaqi Zhang, Keyou You, Kaiqing 
Zhang , Tamer Başar (2015) Fully Asynchronous 
Policy Evaluation in Distributed Reinforcement 
Learning over Networks, arXiv:2003.00433v3 

[23] Yuhuai Wu, Elman Mansimov, Shun Liao, 
Roger Grosse, Jimmy Ba (2017)Scalable trust-
region method for deep reinforcement learning 
using Kronecker-factored approximation. 

[24] Zifeng Wu, Chunhua Shen, Antonvan den 
Hengel (2019). Wider or Deeper: Revisiting the 
ResNet Model for Visual Recognition. 
ELSEVIER Pattern Recognition,Pages 119-133. 

© 2021 by the authors. 
Submitted for possible 
open access publication 

under the terms and conditions of the Creative 
Commons Attribution CC BY-NC-SA 4.0 license 
(https://creativecommons.org/licenses/by-
ncsa/4.0/deed.es). 
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