
A3C for drone autonomous driving using Airsim

David Villota
davillot@unirioja.es

Montserrat Gil-Martínez, Javier Rico Azagra

montse.gil@unirioja.es, javier.rico@unirioja.es

Summary

In this work, we apply artificial intelligence to guide a
drone to a certain point autonomously. Unreal engine
creates a virtual environment where the drone can fly,
and the algorithm is trained simulating the drone
dynamics thanks to Airsim plugin. The implemented
algorithm is Asynchronous Actor-Critic Advantage
(A3C), which trains a neural network with less
computing resources than standard reinforcement
learning algorithms that normally needs costly GPUs.
To prove these advantages, several experiments are
run using a different number of parallel simulations
(threads). The drone should reach a point randomly
generated each episode. The reward, the value and the
advantage function are used to evaluate the
performance.
As expected, these experiments show that a higher
number of threads helps the leaning process improve
and become more stable. These learning results are of
interest to optimize the computing resources in future
applications.

Key words: A3C, Actor critic, Reinforcement
learning, Autonomous driving, Airsim, Multithread.

1 INTRODUCTION

Artificial intelligence nowadays is at the leading edge
in almost all the industry fields, from data analytics to
self-driving cars or drones [1][15]. It is evolving at a
breakneck speed and enterprises are more and more
interested in taking advantage of this technology,
which pretty means that more researching efforts are
being intended to develop new utilities.

In the framework of autonomously guiding a drone to
a specific point, the main objective of this work is the
use of reinforcement learning to achieve the best
guiding performance using the least possible
resources. We deem efficiency very important as it
yields flexibility to run different trainings at the same
time, easing the comparison of different algorithms as
well as it also optimizes the time to get final results.

Unreal Engine and Airsim [17][18] will be used to
simulate the drone’s behaviour due to the simplicity
and flexibility this API offers over other graphic
engines’ APIs (Gazebo, Unity) to be integrated in the
code along IA libraries. In addition, they are not as
user friendly, as they required a deep knowledge and
specialization in their software to achieve the same
results.

In this case, the control of the drone will be focused
on reaching a specific point, randomly generated each
episode of the training. The “brain” that will determine
the variation of the speed vector searching for the
objective point will be a traditional recurrent neural
network with one LSTM (Long Short-Term Memory)
cell to provide it with some memory. In the future,
more architectures will be explored such as some
variations of ResNet [24], kvCORE or DRNN (Deep
Recurrent Neural Network).

For the training strategy, we have deemed several
algorithms but selected A3C (Asynchronous Actor-
Critic Advantage) [20] as one of our biggest concerns
is the efficiency and the ability to run this code in a
low performance server. A3C algorithm does not need
GPUs and yields the opportunity of squeezing the
CPU’s performance to the max achieving great results.
Also it has a better relation simplicity/results over
others such as DQN (Deep Q Learning) [11], A2C
(Advantage Actor Critic), PPO (Proximal Policy
Optimization)[8], ACKTR (Actor–Critic using
Kronecker–Factored Trust Region) [26], GAIL
(Generative Adversarial Imitation Learning) [9].

A3C algorithm needs several instances of neural
networks, also called models: those that will interact
with the environment at the same time (local models);
and another from where the local models will update
their own weights when starting the episode and also
to which the local models will update the weights
when the episode has finished (shared model). A3C
uses the leverage of multithreading to perform
asynchronous updates to the shared model. By
continuously updating the shared model, it is expected
that the more threads used the steadier and the faster
the model should learn. In our set up, we will
reproduce this algorithm being able to validate that the
learning performance improves when increasing the

XLII Jornadas de Automática Control Inteligente

203

https://doi.org/10.17979/spudc.9788497498043.203

number of threads applied to our specific purpose,
guiding the drone towards a random point.

In the following text, we will explain how we have
solved some of the difficulties faced. In the
methodology section, we will firstly sum up the
reinforcement learning algorithm that has been
implemented, defining the return function, actor,
critic, advantage and loss. Then, we will explain the
set up developed with the different functions such as
reward, actions codification, random point generation,
multithreading in Airsim and the structure of the
neural network. Finally, we will show our results and
state some conclusions and future work to do.

2 METHODOLOGY

2.1 REINFORCEMENT LEARNING

This work will follow the standards reinforcement
learning [19][20][21][11] settings where we have an
agent interacting with an environment. In this case, the
agent will be the NN and the environment will be the
Unreal engine graphic engine alongside Airsim.

Each discrete step will have its own state 𝑠 and for

this state, the agent will output a policy 𝜋 that will
indicate which action is best to take. Once the action
has been carried out, the reward 𝑟 will measure how
good the performance has been. This process is
repeated continuously until a final state is achieved,
for example a collision or distance too large to the
objective point.

The process just mentioned only measures the
behaviour in a single discrete point. As the drone is
moving in a continuous state, it is also important to
consider other discrete points. For this, we use the
Return function, defined as in (1)

(1)

, which allows considering several discrete points with
a discount factor 𝛾 ∈ (0,1].
The goal of the NN will be to maximize 𝑅 . The

neural network will output the policy 𝜋; the policy, as
mentioned above, will tell us the expected return
for 𝑅 when applying that specific action in that
specific state. This is also called the Action Value or
the Actor, defined as in (2),

 (2)

Thus, given a state st, the neural network outputs a
policy 𝜋 that tell us the expected returns to choose an

action a (2). With this action, the reward is calculated
to tell us how good the performance has been in this
specific discrete point. The fact of evaluating only a
discrete point is that sometimes, some reward must be
sacrificed to achieve a major reward in the future. For
this, we use the Value function, also called Critic and
defined as in (3),

 (3)

This means, given a state and a policy, which return
should we expect. With this function, we are in
condition of evaluating how good is the state we are in
to achieve the best possible reward. Thus, this is a
reference to control whether the action-value function
(2) output by the NN is good or not.

While learning the model needs to be continuously
updating by backpropagating the loss. The loss
function will allow us to measure if the Critic is correct
or also if the Critic has the correct criteria to judge the
Actor. The Critic (3) asses the Actor (2) but it
somehow needs to be assessed as well, for this we
have the loss function, defined as in (4),

 (4)

,where A is the Advantage function. This is defined as
in (5).

 (5)

and means that, given a state 𝑠 whose Critic value is
V (3), what extra reward can be achieved if an action
at is taken.

2.2 MULTITHREADING IN AIRSIM

In this work, Unreal Engine and Airsim [17] will be
used to implement the simulation environment. For
A3C implementation, several Airsim instances will be
used at the same time; each one of them will be one of
the environments in which the agent will interact with.
As there will be several threads, several instances of
Airsim will have to be implemented at the same time.
This is one of the main difficulties, as the
configuration of Airsim does not allow multithreading
[18]. The only way we have figured out to solve that
is to configure different Local Host IPs to each Airsim
instance. This way, each thread will have its
environment with its single IP. The configured IPs are
from 127.0.0.1 to 127.0.0.n, being n the number of
threads used in the simulation (see Figure 1).

XLII Jornadas de Automática Control Inteligente

204

https://doi.org/10.17979/spudc.9788497498043.203

Figure 1: A3C Structure

2.3 RANDOM POINT GENERATION

The objective of the drone is to reach a specific point
in a 3D virtual environment. The random point will be
calculated using trigonometry in XY plane (𝛼), and a
random Z coordinate (z) in a constant spherical radius
d, as Figure 2 illustrates.

(6)

Figure 2: Parameters used for the objective point

calculation

Note that the virtual environment has objects in which
the drone could collide, preventing it from reaching
the objective point. For this work, the object
avoidance is not yet implemented, and the only drone
information used as input for the NN will be the
absolute drone´s coordinates. If the drone collides
with an object, the experiment will have finished, and
another episode will start. The object will have
reached the objective point when the distance between
the drone and the point is less than 1 meter.

2.4 NEURAL NETWORK ARCHITECTURE

The Neural Network for the A3C algorithm is in
Figure 3. It receives the relative distance to the
objective point [∆𝑥, ∆𝑦, ∆𝑧] as well as the hidden state
[ℎ] and the cell state [𝑐][21]. On the other side,
it outputs the Actor [𝑄(𝑠, 𝑎)], the Critic [𝑉(𝑠)], the
hidden state [ℎ] and the cell state [𝑐]. The internal
structure is very simple. The network has an initial
linear transformation with its linear rectification
function (ReLU). Afterwards, the LSTM cell, whose
hidden cell [ℎ] will be used as input for both the Actor
and Critic linear transformations. Matrix dimensions
are detailed in Figure 3; let us remind that the Actor
dimension n refers to the number of threads.

Figure 3: Neural Network Architecture

2.5 ACTION CODIFICATION

The action will define how the drone interacts with the
environment. In this case, the actions will modify
linear velocities. Taking into account the output of the
NN, the current linear velocity will be increased or
decreased by a certain constant value that is previously
defined. The constant value is set to 0.6 m/s, i.e. the
linear velocity of the axe will be incremented or
decremented by 0.6 m/s. The image in Figure 4 tries
to clarify the concept.
Thus, for a given Action 𝑎 and a constant value 𝑘 ,
the speed velocity will be incremented or decremented
as

(7)

The action will be gotten after selecting a random
sample of a multinomial distribution created using as
input:

 (8)

After that, the action will be decodified as shown in
Figure 4 obtaining the variation of linear velocity in
the chosen axe, also called 𝑘 , 𝑘 , 𝑘 . Note that in

XLII Jornadas de Automática Control Inteligente

205

https://doi.org/10.17979/spudc.9788497498043.203

each episode only one of them will have a deviation
value, the rest of them will be zero.

Figure 4: Codification of the actions

3.5 REWARD FUNCTION

The reward function will determine how good is the
action yielded by the neural network once it is carried
out. In other words, it is the way we can tell the
algorithm how good it is performing.

The objective of the drone is to reach a given point in
the environment. Thus, the variable used to compute
the reward function will be the distance between the
absolute position of the drone [𝑥 , 𝑦 , 𝑧] and the
absolute coordinates [𝑥 , 𝑦 , 𝑧] of the objective point
(6)

(9)

Then, the reward function

(10)

, which is represented in Figure 5, has been created
following the tips in [6]. It is constrained between (-
1,1) to prevent the appearance of large numbers when
backpropagating. For the intermediate values, an
exponential function has been chosen to clarify that
the desired behaviour is to minimize variable L.

Figure 5: Reward function

3.5 EXPERIMENT SET UP

The experiments have been carried out in a Windows
10 Server with Visual Studio 2019, Unreal Engine 21,
Airsim 1.5.0 and python 3.7.

To compare the impact the number of threads have in
the learning process, several simulations will be
carried out with different number of threads. We will
simulate with 1,2,3,6 threads [2].

Each simulation will have 3000 episodes and each
episode will last 15 seconds maximum, though it can
finish before in case the point has been reached, there
is a collision, or the drone gets stuck in the same
position for three steps.

4 RESULTS

4.1 INITIAL EPISODE

In the initial episodes we can observe (Figure 6) that
the relation between the Remaining Length and the
Reward is the one stated in 3.5 while the value shows
a behaviour that is not yet properly defined. We can
see that in the first steps, the value grows rapidly but
then it starts decreasing and never reverts this
tendency even though the Remaining Length is
decreasing.

A good behaviour would be that while the Remaining
Length decreases, the Value function grows, as each
step we are nearer to achieve our objective.

In the first epochs, weights are not yet properly
updated. The Loss is too large and if the
backpropagation of the Loss function is done, it could
cause exploding gradients. To avoid this the gradients
will be clipped to ±20. This is a reason it takes several
epochs to be able to see a proper behaviour

Figure 6: Parameters of an initial episode

XLII Jornadas de Automática Control Inteligente

206

https://doi.org/10.17979/spudc.9788497498043.203

4.2 FINAL EPISODE

If we pay attention to the behaviour in the final
episodes (2400), we can see (Figure 7) that it behaves
properly.
In the initial steps the Value function increases as the
remaining length decreases. This means that at the
time we are getting nearer to the objective point, the
state we are in is better than before, and given the
policy output by the network and the state, the
expected Reward is larger. When the Remaining
length starts growing in the middle steps, the Value
function stops increasing and starts decreasing as the
drone is getting further to the objective point.

Figure 7: Parameters of a final episode

4.3 SUCCESSFUL EPISODE

Finally, as an example, we show the behaviour of a
successful episode (Figure 8) where we can see the
synchronized fluctuation of the Remaining length and
the Reward as well as the Value function continuously
growing until the last steps.

Figure 8: Parameters of a successful episode

In Figure 9, we show the 3D trajectory of the different
threads in the same episode (2822). Only Thread
number 1 reaches the objective point. Note that since
the update to the global network is asynchronous, it is

not certain that all the local networks have the same
weights, indeed it is highly improbable.

Figure 9: Behaviour of different threads in the same

episode

4.4 LEARNING RESULTS

To evaluate how a simulation has learned, we will use
the Value function as it is the one that tells us how
good the states along the simulation have been. Since
each single step of each episode has its own value, we
will calculate the mean function of each episode and
afterwards a line will be fitted in the points to ease the
understanding. The graphs in Figure 10 contains the
values for the different simulations with different
number of threads.

Figure 10: Values comparation for different

simulations

The simulation with one single thread presents a stable
behaviour during the training and it also reaches the
lowest values. However, the simulation with 6 threads
is the fastest one to reach the highest values. It only
needs some hundreds of episodes to reach the same
value than the while simulation with 2 threads.
For the simulations with 2, 3 and 5 threads, we can see
that each one surpasses the values of the previous one.
This is the expected behaviour as mentioned in [20].
Thus, for our implementation, we can also conclude

XLII Jornadas de Automática Control Inteligente

207

https://doi.org/10.17979/spudc.9788497498043.203

that to have many threads directly affects the learning
stability. The simulation with one single thread
behaves significantly worse than those with more than
one thread. The value oscillates in the first two
thousand steps. Also, the more threads used the bigger
values attained in the simulation and it also learns
faster in the initial epochs.

5 CONCLUSIONS

In this work, we have successfully implemented the
graphic engine and the A3C algorithm applied to the
UAV field in a low performance server. This allows to
launch simulations with great flexibility without the
need of costly GPUs that sometimes are hard to set up.
With these simulations, we have been able to
demonstrate the influence of different number of
threads in the training, observing that the behaviour is
more stable and achieve better values with more
threads. This sets the basis for starting a research line
in which Asynchronous Actor-Critic Advantage will
be the main training strategy for future experiments.

We are aware that the control carried out is very
limited, since it only uses absolute positions. In future
works, we will put more effort in implementing a more
robust control of the drone. Our intention is to perform
a control receiving as input the image, GPS
coordinates and current angular and linear velocity.
For the image processing we intend to use depth
estimation as in [13][10] integrated in the neural
network along with the sensors data as in [12]. Also
we will study different modifications on the training
strategy such as the adaptative reward described in [5].

References

[1] Antonio Loquercio, Ana I. Maqueda, Carlos R.

del-Blanco, and Davide Scaramuzza (2018).
DroNet: Learning to Fly by Driving. IEEE
Robotics and Automation Letters, 3(2).

[2] Arun Nair, Praveen Srinivasan, Sam Blackwell,

Cagdas Alcicek, Rory Fearon, Alessandro De
Maria, Vedavyas Panneershelvam, Mustafa
Suleyman, Charles Beattie, Stig Petersen, Shane
Legg, Volodymyr Mnih, Koray Kavukcuoglu,
David Silver (2015) Massively Parallel Methods
for Deep Reinforcement Learning
arXiv:1507.04296v2

[3] David Silver (2015) Introduction to

Reinforcement Learning with David Silver,
DeepMind x UCL.

[4] Danijar Hafner, Timothy Lillicrap, Jummy Ba,

Mohammad Norouzi (2020) Dream to
Control:Learning Behaviors by latent
imagination.

[5] Emilie Kaufmann , Pierre Ménard , Omar

Darwiche Domingues, Anders Jonsson, Edouard
Leurent, Michal Valko (2021) Adaptive Reward-
Free Exploration

[6] Felix Gers (2001) Long Short-Term Memory in

Recurrent Neural Networks Thesis nº 2366

[7] Jean-Bastien Grill, Florent Altche, Yunhao

Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, Remi Munos (2020) Monte-Carlo
tree search as regularized policy optimization.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal,

Alec Radford, Oleg Klimov (2017) Proximal
Policy Optimization Algorithms

[9] Jonathan Ho, Stefano Ermon (2016) Generative

Adversarial Imitation Learning

[10] Ke Xian, Chunhua Shen , Zhiguo Cao, Hao Lu ,

Yang Xiao , Ruibo Li , Zhenbo Luo, Huazhong
University of Science and Technology, China
The University of Adelaide, Australia Samsung
Research Beijing, China (2018) Monocular
Relative Depth Perception with Web Stereo Data
Supervision

[11] Matteo Hessel, Joseph Modayil, Hado van

Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad
Azar, David Silver (2017) Rainbow: Combining
Improvements in Deep Reinforcement Learning

[12] Ratnesh Madaan, Nicholas Gyde, Sai Vemprala,

Matthew Brown, Keiko Nagami, Tim Taubner,
Eric Cristofalo, Davide Scaramuzza, Mac
Schwager, Ashish Kapoor (2020) AirSim Drone
Racing Lab. Proceedings of the NeurIPS 2019
Competition and Demonstration Track, PMLR
123:177-191, 2020

[13]Rene Ranftl, Katrin Lasinger, David Hafner,

Konrad Schindler, and Vladlen Koltun (2020)
Towards Robust Monocular Depth Estimation:
Mixing Datasets for Zero-shot Cross-dataset
Transfer

[14] Richard S. Sutton and Andrew G. Barto (2018)

Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA, 2018

[15] Shantanu Ingle, Madhuri Phute (2016) Tesla

Autopilot : Semi Autonomous Driving, an
Uptick for Future Autonomy

XLII Jornadas de Automática Control Inteligente

208

https://doi.org/10.17979/spudc.9788497498043.203

[16] Sorg, Jonathan Daniel (2011) The Optimal
Reward Problem: Designing Effective Reward
for Bounded Agents

[17] Shital Shah and Debadeepta Dey and Chris
Lovett and Ashish Kapoor (2017). Field and
Service Robotics, AirSim: High-Fidelity Visual
and Physical Simulation for Autonomous
Vehicles. arXiv:1705.05065

[18] Shital Shah (2018). Airsim Documentation

[19] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Andrei A. Rusu , Joel Veness , Marc G.
Bellemare , Alex Graves , Martin Riedmiller ,
Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen , Charles Beattie , Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumara ,
Daan Wierstra, Shane Legg & Demis Hassabis
(2015) Human-level control through deep
reinforcement learning, Macmillan Publishers
Limited

[20] Volodymyr Mnih1, Adriá Puigdom`enech
Badia1, Mehdi Mirza, Alex Grave, Tim Harley,
Timothy P. Lillicrap, David Silver, Koray
Kavukcuoglu1 (2016) Asynchronous Methods
for Deep Reinforcement Learning

[21] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, Martin Riedmiller (2013) Playing Atari
with Deep Reinforcement Learning
arXiv:1312.5602v1

[22] Xingyu Sha, Jiaqi Zhang, Keyou You, Kaiqing
Zhang , Tamer Başar (2015) Fully Asynchronous
Policy Evaluation in Distributed Reinforcement
Learning over Networks, arXiv:2003.00433v3

[23] Yuhuai Wu, Elman Mansimov, Shun Liao,
Roger Grosse, Jimmy Ba (2017)Scalable trust-
region method for deep reinforcement learning
using Kronecker-factored approximation.

[24] Zifeng Wu, Chunhua Shen, Antonvan den
Hengel (2019). Wider or Deeper: Revisiting the
ResNet Model for Visual Recognition.
ELSEVIER Pattern Recognition,Pages 119-133.

© 2021 by the authors.
Submitted for possible
open access publication

under the terms and conditions of the Creative
Commons Attribution CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-
ncsa/4.0/deed.es).

XLII Jornadas de Automática Control Inteligente

209

https://doi.org/10.17979/spudc.9788497498043.203

