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Abstract 

Self-Organizing Maps (SOM), are a type of neuronal network (Kohonen, 1982b) that 

has been used mainly in data clustering problems, using unsupervised learning. Among 

the multiple areas of application, SOM has been used in various problems of direct 

interest to the Navy (V. J. Lobo, 2009), including route planning and the location of 

critical infrastructures. The SOM has also been used to sample large databases. In this 

sort of application, they have a behaviour called the magnification effect (Bauer & Der, 

1996), which causes areas of the attribute space of data with less density to be over-

represented or magnified. 

This dissertation uses an experimental approach to mitigate the lack of theoretical 

explanation for this effect except for one-dimensional and quite simple cases. From 

experimental evidence obtained for carefully designed problems we infer a relationship 

between input data densities and output neuron densities that can be applied universally, 

or at least in a broad set of situations. A large number of experiments were conducted 

using one-dimensional to one-dimensional mappings followed by 2D to 2D, 3D to 1, 2 

and 3D. We derived an empirical relationship whereby the density in the output space 

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 is equal to a constant times the density of the input space 𝑑𝑑𝑖𝑖𝑖𝑖 raised to the power 

of 𝛼𝛼 (alpha) which although depending on a number of factors can be approximated by 

the root index n of 2/3 where n is the input space dimension, 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖
�2

3
𝑛𝑛

. 

The correlation that we found in our experiments, for both the well-known 1-

dimensional case and for more general 2 to 3-dimensional cases is a useful guide to 

predict the magnification effect in practical situations.Therefore, in chapter 4 we 

produce a populational cartogram of Angola and we prove that our relation can be used 

to correct the magnification effect on 2-dimensional cases. 

 

Keywords: Self-organized maps, neural networks, magnification effect, data 

science. 
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Resumo 
Os mapas auto-organizados ou SOM (Self Organizing Maps), são um tipo de rede 

neuronal (Kohonen, 1982) que tem sido utilizada sobretudo em problemas agrupamento 

de dados (clustering), usando aprendizagem não supervisionada. Entre as múltiplas 

áreas de aplicação, os SOM têm sido usados em vários problemas com interesse direto 

para a Marinha (Lobo, 2009), incluindo o planeamento de rotas e a localização de 

infraestruturas críticas. Os SOM também têm sido usados para fazer amostragem de 

grandes bases de dados, e nesse tipo de aplicações têm um comportamento, denominado 

efeito de magnificação (Bauer & R. Der, 1996), que faz com que zonas do espaço de 

atributos dos dados com menor densidade sejam sobre representadas, ou seja 

magnificadas. 

Esta dissertação traz uma abordagem experimental para mitigar a falta de explicação 

teórica para este efeito, com exceção de casos unidimensionais e bastante simples. A 

partir de provas experimentais obtidas para problemas cuidadosamente concebidos, 

inferimos uma relação entre densidades de dados de entrada e densidades de neuronios 

à saída que podem ser aplicadas universalmente, ou pelo menos num conjunto alargado 

de situações. Foram realizadas um grande numero de experiências usando mapeamentos 

unidimensionais para mapeamentos unidimensionais seguidos por 2D para 2D, 3D para 

1, 2 e 3D. Derivamos uma relação empírica em que a densidade no espaço de saída 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 

é igual a uma constante vezes a densidade do espaço de entrada 𝑑𝑑𝑖𝑖𝑖𝑖 elevada a 𝛼𝛼 (alpha) 

que, embora dependendo de uma série de fatores, pode ser aproximado pela raiz de 

índice n de 2/3 onde n é a dimensão do espaço de entrada, 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖
�2

3
𝑛𝑛

. 

A correlação que encontramos nas nossas experiências, tanto para o caso 

unidimensional bem como para casos mais gerais de 2 a 3 dimensões é um guia útil para 

prever o efeito de magnificação em situações práticas. No capítulo 4 produzimos um 

cartograma populacional de Angola e provamos que a nossa relação pode ser usada para 

corrigir o efeito de magnificação em casos bidimensionais. 

 

Palavras-chave: Mapas auto-organizados, Redes neuronais, Efeito de magnificação, 

Ciência de dados. 
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Chapter 1 

1. Introduction 

A Self-Organising Map (SOM) is an algorithm or mathematical tool created by 

Professor Teuvo Kohonen and first presented in 1982 (Kohonen, 1982b). It is generally 

used in applications such as cluster detection and defining partitions in feature spaces, 

where it can be a faithful substitute for k-means. We can also use it to visualise 

multidimensional data, which is particularly useful when you have many data and 

dimensions (e.g., (Gorricha, 2015)).  

SOM was conceived from an analogy with the way a human cerebral cortex 

works. In the beginning of the '80s, researchers discovered that this part of the brain 

selects specific regions for specific activities. For a given brain activation, the degree of 

activation of the neurons decreased as the distance from the initial activation region 

increased (Kohonen, 2001). After introducing SOM, specialists from different areas 

such as computer science, neurobiology, physics, geography, among others, began to 

adapt SOM in relevant applications (e.g., (Bação, Lobo, & Painho, 2008)).  

SOM represents the fruit of a lot of work and research done by Professor 

Kohonen (Kohonen, 1974, 1982a, 1982b) in the '80s, and his main inspiration was 

neurobiological systems. SOM is a type of neuronal network with several computational 

devices, called units, or neurons, arranged in a hexagonal or rectangular grid shape. Each 

of these units receives input data and does specific data processing, producing an output 

value. It has an N-dimensional input space, i.e., the original space of the data, which is 

the same space defined by the synaptic weights of the neurons. We can adjust the 

training algorithm according to some parameters, then apply to the input data, in the 

training phase, and get information in the output layer. SOM uses unsupervised learning, 

as we are not looking to classify data. But typically, we want to look at it and understand 
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what type of distribution it has or visualise it in a two-dimensional space (although other 

visualization can be made) (e.g.,(Gorricha, 2009)). 

1.1. Motivation 

Over the past few years, neuronal networks have been used to perform various 

tasks, because they: 

• Can extract the meaning of complex or even inaccurate data.(Calitoiu, Oommen, 

Nussbaum, & Cybernetics, 2007) 

• Model or detect patterns that are too complex for humans or conventional methods 

of computational analysis.(Krakovsky & Forgac, 2011) 

• Have adaptive learning. 

• Their operation can be done in real-time. 

• Solve complex mathematical problems.(Li & Li, 2013) 

• Perform complex tasks such as stock market prediction, climate behaviour study, 

etc.(Moghaddam, Moghaddam, Esfandyari, & Science, 2016; Poff, Tokar, 

Johnson, & Oceanography, 1996) 

• Can be used in many different applications, such as facial recognition, voice 

recognition, route planning, decision-making assistance for unmanned 

autonomous vehicle systems, or even writing tools. (Khashman, 2009) (Ma'Sum 

et al., 2013) 

• Can be used in a variety of military and naval applications, such as traffic 

monitoring, outlier detection for cybersecurity intrusion detection, etc. (Choraś & 

Pawlicki, 2020) 

The SOM algorithm is an efficient and easy-to-apply tool that has some 

advantages over conventional neuronal networks, especially for the following tasks: 

• Dimensionality reduction.(Campoy, 2009) 

• Multidimensional data visualization.(Nikkilä et al., 2002) 

• Cluster detection, outlier detection. 

• Data ordering (since it preserves topological relations). 
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1.2. The SOM Algorithm 

The main idea of Kohonen’s Self-Organising algorithm is to map data patterns, 

in the input layer X ∈ Rn into an N-dimensional grid in the output space. The mapping 

attempts to preserve the neurons topological relationships, i.e., data points that are 

nearby at the input will be mapped to nearby units in the output space.  

In this thesis, while recognising that the computational units (or neurons) of a 

SOM are usually referred to as “units”, thus stressing that they are computational 

constructs and not imitations of biological neurons, we will refer to them as “neurons”. 

We choose to do this because when we compute densities and do experimental work, 

we will use the term “unit” very often, usually referring to “unit length” or “unit area”. 

Thus, we avoid possible confusion by using “neuron” to refer to the SOM units.  

The SOM is based on two principles, competitive learning and cooperative 

learning. On competitive learning, the neuron vector most similar to a data vector is 

modified to be even more similar to it. This way the map learns the position of the data 

cloud. On the other hand, cooperative learning means that the most similar neuron vector 

and its neighbours are moved towards the data vector. 

Generally, the neurons are in a grid shape lattice, but they can be configured with 

a hexagonal shape. First, all neurons are connected to the input pattern and receive 

information from that layer. Then the algorithm calculates the Euclidean distance 

between the neurons and the input stimuli. The neuron that is closest to the input stimuli 

is called the “Best Matching Unit”.  

After finding the nearest neuron to the input all the neighbour neurons are 

updated according to a neighbourhood function usually with a gaussian-type distribution 

centred in the selected neuron. 
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Figure 1 Basic Structure of a Self-Organising Map (SOM) (Lobo, 2002) 

 

The algorithm has three main phases, the calculation phase, the voting phase, and 

updating phase. For each input signal, the algorithm will, 

1. Calculate the distance between the input signal, 𝑥𝑥𝑖𝑖, X ∈ Rn, and all SOM 

units 𝑟𝑟𝑖𝑖.  

2. Select the nearest neuron as the winning neuron (or unit) or best matching 

unit (BMU). 

3. Update each neuron according to the update function. 

4. Repeat all the steps and update the learning parameters until a stop 

criterion is met. 

1.2.1. Variables 

Let the input space be X ∈ Rn; The weight vectors of the neurons  𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, …, 

𝒘𝒘𝑴𝑴  are initialized to random values, where 𝒘𝒘𝒊𝒊 is the weight vector associated to neuron 

i and is a vector of the same dimension as the input. M is the total number of neurons 

and let 𝒓𝒓𝒊𝒊 be the location vector of neuron i in the grid. The SOM training algorithm 

repeats the steps shown in Algorithm 1, where 𝜂𝜂(𝜈𝜈, 𝑘𝑘, 𝑡𝑡) is the neighbourhood function, 

and Ω is the set of neuron indexes.  
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Figure 2 The SOM Algorithm (Yin, 2008) 

1.3. Why study the magnification effect? 

Like all Artificial Intelligence tools, self-organised maps are helpful. For 

example, SOM is often used when analysing large volumes of multidimensional data 

(what we call "Big Data"). Thus, all the progress made in understanding these tools 

contributes directly to improvements in society. 

Studying the magnification effect is essential to understand how we can control 

it in the general case (i.e., with any dimension of the input and output space and any 

data distribution). The magnification effect is a problem that influences the reliability 

of SOM essentially for the multidimensional case. Given that the world has seen 

exponential growth in data generation lately, a better understanding of the magnification 

effect on SOM may lead to better future implementations of this tool.  

1.4. Purpose of the dissertation 

The study of the magnification effect is a task that several authors have long 

done. It has been possible to obtain good results for the one-dimensional case. Until 

now, it has been concluded that the density of neurons in the output layer is proportional 

to the density of the data in the input layer raised to 2/3 (Ritter & Schulten, 1986).  

The purpose of the dissertation will be the formulation, of a mathematical law 

that can help to describe with reasonable precision the variation of density in the 

entrance space and the exit space of SOM, as well as a consolidation of theoretical 

concepts acquired during the naval engineering course – Weapons and Electronics. 
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Based on the study’s success, it is expected to be able to contribute to improving 

the quality of future SOM implementations, which is an advance for science and for its 

use in matters relevant to the Navy. 

1.5. Structure of the dissertation 

The organization of the document seeks to reflect all phases of the development 

of the work carried out. After the introduction, an analysis of the State of the Art (chapter 

2) studies focused on Self-Organized Maps are elaborated, mainly on the magnification 

effect. In this chapter, we still define concepts relating to Kohonen maps. 

We explain the design of experiments in chapter 3 by how the MATLAB 

experiments were carried out, based on the SOM toolbox, made available with a free-

use license by the University of Helsinki. Later in chapter 4, we use SOM to produce a 

cartogram and prove the occurrence of the magnification effect. Consequently, we 

compensate it basing on the results of the investigation done in chapter 3. 

Finally, in chapter 5, we present the conclusions of the project and suggestions 

for future studies in the area and a future implementation. 
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Chapter 2 

2. State of the Art 

In his articles, Teuvo Kohonen first presented the Self-Organising Maps in 

1981 (Kohonen, 1981) (Kohonen, 1982). The self-organising feature of this 

unsupervised learning algorithm drew the attention of many researchers, who began to 

support its development. This neuronal network model could recognize patterns in the 

data without suffering external influences from potentially biased agents. Various 

researchers have contributed to the advance of SOM, with several studies being done 

on the algorithm, solving many of its problems, and improving the basic algorithm. 

However, there are still some unsolved problems and cross-cutting issues not only to 

SOM but also to various other types of similar neuronal network models.  

2.1. SOM Applications 

Since its inception, SOM has shown encouraging results in various applications, 

from route planning and study of critical infrastructures to Blockchain monitoring 

(Lobo, 2009), (Chawathe, 2018). It can also be used in data mining and data 

compression (e.g., (Ong & Abidi, 1999)). In addition to the applications mentioned 

above, the SOM can also be used for numerous other purposes (V. Lobo, 2009) 

(Affonso, 2011). 

An example of the application of Kohonen’s self-organized maps, illustrated in 

the figure below, is the analysis of poverty in the world, using as input socioeconomic 

indicators provided by the United Nations (Kaski, 1997). 
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Figure 3 World Poverty Map (Kaski, 1997) 

In the figure above we can see a SOM mapping of different countries (identified 

by a three-letter county code) where the relative position and color of each country 

depends on correlations in statistical data of those countries. The data consisted of 

World Bank statistics of countries in 1992. Overall, 39 indicators describing various 

quality-of-life factors, such as state of health, nutrition, etc., were used.  

“Countries that had similar values of the indicators found a place near each other 

on the map. The different clusters on the map were automatically encoded with different 

bright colors, so that colors change smoothly on the map display.” (Kaski,1997) 

As a result of this process, each country was in fact automatically assigned a 

color describing its poverty type in relation to other countries. 

“The poverty structures of the world can then be visualized in a straightforward 

manner: each country on the geographic map has been colored according to its poverty 

type.” (Kaski,1997) 

Another example of the application of SOM is depicted in the figure below, 

where a SOM was used to analyze seismic data (Roden, Smith, & Sacrey, 2015). 
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Figure 4 Offshore West Africa 2D seismic line processed by SOM analysis (Roden et al., 2015)  

In the figure, each neuron is shown as a unique colour in the 2D colour map. 

After training, each multi-attribute seismic sample was classified by finding the neuron 

closest to the sample using the Euclidean distance. The colour of the neuron relays on 

the seismic sample in the display. According to the authors of the research, SOM 

neurons yielded a detailed geologic classification. 

2.1.1. Studies on the Magnification Effect of SOM 

It is a well-known fact that when SOM maps input data, the density of the SOM 

neurons in the output space is not proportional to the density of the input patterns. Thus, 

while areas with higher input data density lead to higher density of SOM neurons, the 

neurons tend to underrepresent high-density areas and overrepresent lower density 

areas. This is called the “Magnification Effect”. In some cases, it is a desirable 

characteristic, while it is a drawback in other cases. 

(Ritter & Schulten, 1986) was the first relevant study about the magnification 

effect on Kohonen’s Self-Organizing Maps. Ritter and Schulten found that the density 

of neurons is proportional to a power of the input density and that power is a value lower 

than 1, as seen in the equation below. This power is known as the magnification factor, 

and Ritter determined that under certain theoretical conditions, that magnification factor 

𝛼𝛼 (alpha) is equal to 2
3
.  
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 𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 ∝ 𝐼𝐼𝑑𝑑𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 α  Equation 1 

It was believed to be an excellent one-dimensional approximation for the 

relationship between the density of input data and the density of neurons or output data. 

This statement was supported by an analytical study of the maps stationary state 

equation, for one dimension, and by a simple simulation. 

However, Ritter and Schulten found no general local expression regarding the 

probability density for the two-dimensional case (Ritter & Schulten, 1986). 

Later, the analytical results presented by (Der & Herrmann, 1992) for the 

"exponents of magnification" were studied in (Bauer & Der, 1996), concluding that 

these exponents would have to be modified to include the effects of the learning rate 

control. Bauer & Der intended to control the magnification properties of the self-

organized maps, by minimization of the mean squared error, only adjusting the local 

learning rate, while all other parts of the algorithm remained unchanged. To this end, 

they took advantage of node-dependent adaptabilities proposed by (Der & Herrmann, 

1992) and replaced them in the equation for updating the synaptic weights. The results 

of this approach were important, bringing a great analytical contribution to the 

understanding of the magnification effect. However, since they studied a modified Self-

Organizing Map which allowed them to control the magnification factor of the output 

map, they did not contribute to improve the understanding of the magnification effect 

of the “standard SOM” algorithm. 

In 2006, Fort developed  a mathematical point of view of SOM’s problems that 

until then had not been solved (Fort, 2006). Fort studied the magnification effect, but 

states that the problem could not be completely solved, and concludes his investigation 

presenting an expression to connect the input and output densities based on combining 

the results obtained by (Ritter & Schulten, 1986) and (Ritter, 1991).  

In 2007, the validity of the self-organizing map (SOM) magnification control 

scheme introduced by Bauer and  Der was analysed (Merényi, Jain, & Villmann, 2007). 

The study had a specific focus on analysing the magnification effect on data for which 

Bauer theory does not guarantee success, for instance data that are 2-dimensional. Using 

Bauer’s method, a magnification factor was found, but it was different from earlier 

assumptions. Merényi made several experiments and concluded that the magnification 

factor has an increasing offset on the 2-dimensional SOM. 
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Chapter 3 

3. Design of experiments 

In this chapter, we describe the development of the experiments with the help of 

the SOM toolbox (made available free of charge by the University of Helsinki). 

First, we show the hypothesis to be tested and present the fundamental ideas 

behind each experiment. Lastly, chapter 4 discusses the results of these experiments. 

For the experiments, we chose MATLAB over other software due to the ease of 

programming, which prevents from wasting time and effort performing programming 

tasks that are not directly related to the problem's solution. 

3.1. The one-dimensional case 

We want to experimentally test the claims (Ritter & Schulten, 1986) that the 

Kohonen’s map output is proportional to the input raised to a power of 2
3
.  

We generated different sets of input data with distinct probability distribution 

functions for the experiments to observe the magnification effect from various 

perspectives. Thus, from regression, we try to extract an exponent that relates the data 

input space to the output space of the SOMs. 

We performed tests for a uniform distribution and a Heaviside (or step) 

distribution. 
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3.1.1. Uniform probability distribution function 

In the first experiment, we generated an array of 1000 random values between 0 

and 1 with a uniform probability distribution function. Thus, the average density is 1000 

points per unit length. We then trained a SOM with 1000 units, using the batch 

algorithm, a final radius of 0, and 1000 epochs. 

The expected average density of the neurons in the SOM will also be 1000 

neurons per unit length. In Figure 5, we show the results obtained. This figure shows 

that slight random variation in the input density generates equivalent but attenuated 

variations in the output density. There is a subtle “boundary effect” on the edges of the 

SOM. 

Due to the random variations of the uniform distribution, the standard deviation 

amongst the ten bins of data is 0.2941, while the standard deviation amongst the bins of 

neurons is 0.2855, which is evidence of the smoothing effect of SOM, even when the 

number of neurons is equal to the number of points. 

 

Figure 5 Input vs Output distributions with a random uniform distribution of 1000 data points in the 

interval [0,1]. 

The SOM also has one thousand neurons, and thus the same average density 

Figure 5. For comparison, we also generated a rigorously uniform distribution 
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(i.e., uniformly spaced points) and trained a SOM with those points. As can be seen in 

the figure, if the input data points are rigorously equally spaced, the SOM units are also 

similarly spaced, save for the “boundary effect” at the borders of the SOM (Kohonen, 

1982b), and a few rounding effects at the bin’s edges. We could reduce the “boundary 

effect” by setting the map shape as toroid or cylinder, as seen in Figure 7. The rounding 

effects at the bins borders is because if by chance the coordinates of a neuron coincide 

with the edge, it will be included in the previous (if we use “ceiling”) or next (if we use 

“floor”) bin. This rounding effect will produce in certain places an increase or decrease 

of 1 unit, whatever the density or width of the bins. 

 

Figure 6 Input vs. Output 
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Figure 7 Neuron map initialized with toroid shape. 

In this part, we have experimentally shown that if the data points have a uniform 

distribution, the neurons will also have an approximately uniform distribution, disturbed 

only by the “boundary effect” and by minor rounding effects due to the discreet nature 

of the data. Furthermore, we showed that SOM reflects in the output density of the 

neurons slight variations made in the input.  
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3.1.2. Heaviside probability distribution function 

In this experiment, we generate an array of 1000 random values in the interval 

]0,100[ with Heaviside1 distribution (or step distribution), which has a discontinuity in 

the middle separating two equal-width zones, one with lower and the other with high 

data density. For the experiment, we used 100 bins. The first 50 bins had a lower density 

value, and the other bins had a high-density value. 

 

Figure 8 Heaviside or step distribution 

The lower density zone has 50 data inputs (i.e., 1 point per unit area), and the 

high-density one has 950 data inputs (i.e., 19 points per unit area). 

The density is expressed in the number of data points in a given length, divided 

by that length: 

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 =
𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑑𝑑𝑟𝑟 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 𝑂𝑂𝑜𝑜𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑑𝑑 𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑

𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑡𝑡ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑑𝑑 𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑
 

The lower density zone has a theoretical value of 1, and the high-density zone 

has a value of 19. 

 

1 A traditional Heaviside Function has values of 0 in one region and 1 in the other we admit it 

here in other values. 
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3.1.2.1. Increasing the training epochs 

To see how many training epochs the SOM need to achieve a stable map, we 

trained several maps from 1 to 1000 training epochs with the number of training epochs 

unitarily increasing. We expect that SOM approaches its equilibrium state long before 

reaching one thousand training epochs.  

Therefore, the map has linear initialization, 1000 neurons and a Gaussian type of 

neighbour function with an initial radius of 1/5 of SOM neurons, i.e., on the first 

iteration, SOM updates 200 neighbour neurons, and that number decreases to 0 at the 

end of the training epochs. After the experiment, we collected density datasets and used 

them to find relationships between the two spaces. We show the results on the graphs 

below, 

 

Figure 9 Density of neurons in each of the areas, for different initializations, each with a different (and 

increasing) number of epochs. In the vertical axis, the density values presented should be multiplied by 

1000 to obtain the true value. 

The results vary widely for a few epochs, but for more than 100 epochs, the 

results are stable, and thus we used the average of all tests with more than 100 epochs 

to compute the final densities. It is utterly reasonable that SOM with fewer training 

epochs does not have the necessary “time” to correctly map all the input data. The output 

density presented lower values on the higher density zone and higher on the least dense 

zone as expected and discussed hereinafter. 
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3.1.2.2. Variations in data and neuron densities. 

To establish relationships between input data density and output neuron density, 

we analysed the results obtained in the previous subchapter and compared them with 

those obtained with different densities. In particular, while still using Heaviside 

distributions, we used input densities of 1 versus 19, then 2 versus 18, and finally 7 

versus 13. We show the results obtained for these three experiments in tables 1 to 3.  

 

Table 1 Density of data and neurons in the experiments with a Heaviside distribution of data with 50 

points in one area and 950 in the other (1 and 19 data points/unit length). The values presented are 

averages over 2000 training runs. 

 Original Data 
Density Probability 
Function (Low 
density) 

Neurons Density 
Probability Function 
(Low density) 

Original Data Density 
Probability Function 
(High density) 

Neurons Density 
Probability Function 
(High density) 

Min 1 1.4 19 17.3 

Mean/Std 1  2.0 ± 0.1871 19  17.8 ± 0.1835 

Max 1 2.4 19 18.4 

 

Since previous experiments established the convergence properties, for the 

remaining experiments we trained only 400 SOMs, with training epochs increasing from 

100 to 500. 

 

Table 2 Density of data and neurons in the experiments with a Heaviside distribution of data with 100 

points in one area and 900 in the other (2 and 18 data points/unit length). The values presented are 

averages over 400 training runs. 

 Original Data Density 
Probability Function 
(Low density) 

Neurons Density 
Probability Function 
(Low density) 

Original Data Density 
Probability Function 
(High density) 

Neurons Density 
Probability Function 
(High density) 

Min 2 3.3 18 16.1 

Mean 2 3.5 ± 0.1574 18 16.3 ± 0.1545 

Max 2 3.6 18 16.5 
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Table 3 Density of data and neurons in the experiments with a Heaviside distribution of data with 350 

points in one area and 650 in the other (7 and 13 data points/unit length). The values presented are 

averages over 400 training runs. 

 Original Data Density 
Probability Function 
(Low density) 

Neurons Density 
Probability Function 
(Low density) 

Original Data Density 
Probability Function 
(High density) 

Neurons Density 
Probability Function 
(High density) 

Min 7 7.8 13 11.9 

Mean 7 7.86 ± 0.0712 13 12.1 ± 0.0799 

Max 7 7.9 13 12.2 

As we can see, the standard deviation is relatively low, and the extreme values 

are not significantly different. Therefore, we will use only the mean value of density 

obtained in further calculations. 

If Ritter’s relation (Ritter & Schulten, 1986) holds, then we would have in all 

cases: 

 𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 = 𝐾𝐾 ∗ 𝐼𝐼𝑑𝑑𝑂𝑂𝑂𝑂𝑡𝑡 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝛼𝛼  Equation 2 

If for each case we solve for 𝐾𝐾 and 𝛼𝛼, we obtain the results presented in table 4, 

where we can see that Alpha varies between 0.67 and 0.69, which is relatively close to 

Ritter’s value of 0.667. 

 

Table 4 Average magnification constants and exponents for each SOM aforementioned 

Experiments with 
Heaviside Distribution 

INPUT 
(Low 

density) 

INPUT 
(High 

density) 

OUTPUT 
(Low 

density) 

OUTPUT 
(High 

density) 

𝐾𝐾 𝛼𝛼 

50 points in one area and 950 
in the other 

1 19 2 17.8 2.411 0.6759 

100 points in one area and 900 
in the other 

2 18 3.5 16.3 2.336 0.6733 

350 points in one area and 650 
in the other 

7 13 7.86 12.1 2.073 0.6913 
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To investigate the influence of the difference between the zone’s densities of the 

Heaviside distribution, we calculated the magnification factor and magnification 

constant from several experiments. First, starting with a step distribution with a ratio of 

1/50 in the first zone and 950/50 in the other, bringing the two densities unitarily closer 

on each run until reaching the limit case, which is equivalent to the uniform distribution, 

i.e., 499/50 in the first zone and 500/50 in the second. Subsequently, we plotted the 

relationship between the difference of the two density zones versus the 𝛼𝛼 and versus K,  

 

Figure 10 Behaviour of magnification factor for different Heaviside input amplitudes 
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Figure 11 Behaviour of magnification constant for different Heaviside input amplitudes 

In the figure above it is important to note that the difference between density 

zones is represented by the quantity of data in the given length, and we make it unitarily 

vary on each experiment, also the Y-axis is in logarithmic scale, i.e., log(K), due to 

extremely high values when the Heaviside is closer to the Uniform distribution. 

As we can see, the average Alpha was about 0.6468 ± 0.0229 and the average 

𝐾𝐾 = 2.4353 ± 0.2374. These values were obtained not considering the fifty first 

experiments because the distribution is quite similar to the uniform distribution, and the 

relationship does not hold. It happens because the neuron density zones tend to flip on 

the output when the density zones are quite the same, causing very often for the low-

density zone to turn onto high-density or vice-versa. It disrupts the equation modelled 

for the cases when the magnification effect does not turn low-density zones more 

accentuated than the higher ones on the output and vice-versa. 

From these experiments, we conclude that the relation of densities stated in 

Equation 1 will only produce reliable results when the ratio between the densities is 

between 1.4 to 17 times higher or lower than the other in comparison. 
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Figure 12 Magnification factor with respect of the ratio between different density levels 

 
Figure 13 Magnification constant with respect of the ratio between different density levels 
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Following the investigation, we now calculate the initial radius. 

 

Figure 14 Several experiments each with different initial radius. Analysing the behaviour of 

magnification factor for different Heaviside input amplitudes. 

 

Figure 15 Several experiments each with different initial radius. Behaviour of magnification constant 

for different Heaviside input amplitudes 

From the experiments, we can confirm that 𝛼𝛼 varies along with the initial radius. 

It is possible to perceive that the more significant the difference between the amplitudes 

of the zones of the Heaviside distribution, then the more considerable influence the 

radius will have on the 𝛼𝛼 regardless of the other parameters, and for the cases in which 



 

23 

the initial radius is too small the effect is powerful causing it to converge by force. We 

suspect that this may occur because when the initial radius is too small and the difference 

between densities is high on the lower density zone it may do not even have a single 

neuron or very few. However, we opt to let this for further investigation. 

For the extreme case in which the initial radius is equal to 1/500 of the total 

number of neurons, we have a neighbourhood of only two neurons (in a total of 1000 

neurons), so, naturally, SOM cannot converge (or it takes a long time). On the other 

hand, we verify that 𝛼𝛼 is almost independent of the initial radius when we consider large 

values, i.e., equal or greater than 1/5 of the total number of neurons. 

3.1.2.3. Increasing the neurons 

The next experiment was to find a relationship between the number of neurons 

and the density variation between the input layer and the output fixing all the parameters 

and varying the total number of neurons. For this experiment, we used an array of 1000 

random values in ]0,100[ , linear initialization, an initial radius of 1/5 of neurons, final 

radius 0 and 1000 epochs. We increased the number of neurons linearly from 1 to 2000 

with a step of 1. Then, we computed the density of neurons in both areas of the Heaviside 

function. 

We show the results in the graphs below, 

 

Figure 16 Neuron density (measured in relative frequency) vs. number of neurons, in both areas of the 

Heaviside function. 
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From the figures above, it is clear that there are three distinct behaviours: 

1) If the number of neurons is less than 100 (10% of the data), the results are 

unreliable. The “winner takes (almost) all” characteristic of the SOM leads to the higher 

density area having almost all the neurons. 

2) If the number of neurons is more than 100 (10% of the data), but less than 400 

(40% of the data), the density of neurons in all input space is more or less uniform, 

irrespective of the input data density. 

3) If the number of neurons is higher than 400 (40% of the data), the neuron 

density converges rapidly (and exponentially) to the values predicted in our 

approximations. 

Although increasing the number of neurons makes SOM converge to the 

theoretical density, it does seem that the magnification factor is inversely proportional 

to the number of neurons. However, we chose not to explore this relationship. Also, the 

output density function appears to converge exponentially, but a more rigorous analysis 

would be necessary to confirm this hypothesis. 

 

Figure 17 Magnification factor vs. number of SOM Neurons, the magnification factor did not vary too 

much with the increase of neurons, and since this we can assume that it is independent of the quantity of 

neurons for values greater than 100. 
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Figure 18 Magnification constant vs. Number of SOM Neurons 

From the experiments above, it is possible to verify that the increasing of neurons 

did not influence the magnification factor. This fact can bring light to a possible non-

relation between these two parameters. 

Also, we could experimentally verify that K and the total number of neurons have 

a linear relationship, as expected. 

𝐾𝐾 = 𝑡𝑡𝑜𝑜𝑡𝑡𝑑𝑑𝑙𝑙 𝑑𝑑𝑂𝑂𝑁𝑁𝑁𝑁𝑑𝑑𝑟𝑟 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑂𝑂𝑟𝑟𝑜𝑜𝑑𝑑𝑑𝑑 ∗ 0.0026. 

In this case, 0.0026 stands for the derivative (or the slope) of K with respect to 

the number of neurons. In the figure below, we can see the linear function that best fits 

the data. 
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Figure 19 Magnification constant vs. Number of SOM Neurons 

We show below, in a table, the alpha and K values for the different amounts of 

neurons. 

Table 5 α and K Values 

Experiments with Heaviside 
Distribution 

Average 𝐾𝐾and 𝛼𝛼 values 

𝐾𝐾 𝛼𝛼 
From 50 to 500 neurons 0.726 0.6449 

From 500 to 1000 neurons 1.9739 0.6482 

From 1000 to 1500 neurons 3.291 0.6483 

From 1500 to 2000 neurons 4.6022 0.6485 
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3.1.3. Multiple Step probability distribution function 

Very analogous to the previous subchapter, here we want to estimate the value 

for the magnification factor, but for the case where there are multiple areas with different 

densities. It is reasonable to expect that the results do not differ much from those 

previously obtained. For this, in this experiment, we generate an array of 1000 random 

values in the interval ]0,100[ with multiple-step distribution, which has discontinuities 

separating four equal-width zones, ones with lower and the others with high data 

density. For the experiment, we used 100 bins; we divide the space into four zones and 

randomly distribute the lower density values and the high-density ones.  

 

Figure 20 Multiple Step Distribution 

We express the density as the number of data points in each length, divided by 

that length as follows the equation: 

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 =
𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑑𝑑𝑟𝑟 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 𝑂𝑂𝑜𝑜𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑑𝑑 𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑

𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑡𝑡ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑑𝑑 𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑
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3.1.3.1. Increasing the training epochs 

For further experiments, let us consider the following system of equations, 

�

𝑑𝑑1 = 𝐾𝐾 ∗ 𝑤𝑤1
𝛼𝛼

𝑑𝑑2 = 𝐾𝐾 ∗ 𝑤𝑤2
𝛼𝛼

𝑑𝑑3 = 𝐾𝐾 ∗ 𝑤𝑤3
𝛼𝛼

𝑑𝑑4 = 𝐾𝐾 ∗ 𝑤𝑤4
𝛼𝛼

  

Where 𝑑𝑑𝑖𝑖 is the output density on area i, 𝐾𝐾is the magnification constant and 𝑤𝑤𝑖𝑖 

the input density on area i. After solving the equations for 𝛼𝛼 and 𝐾𝐾, we get the following 

expressions: 

⎩
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log �𝑑𝑑2
𝑑𝑑4
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𝑤𝑤4

�
∨  𝛼𝛼6 =

log �𝑑𝑑3
𝑑𝑑4
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log �𝑤𝑤3
𝑤𝑤4

�
𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼3 = 𝛼𝛼4 = 𝛼𝛼5 = 𝛼𝛼6

 𝐾𝐾𝑖𝑖 =
𝑑𝑑𝑖𝑖

𝑤𝑤𝑖𝑖
𝛼𝛼

 

 

Figure 21 Magnification factors for multiple input step distribution considering the increase of training 

epochs. 

From the experiment above, it is possible to perceive that the values of 𝛼𝛼3 

(represented in yellow) have a large dispersion; this happens since we calculate the 

magnification factor considering two similar average densities (𝑑𝑑1 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑4). Also, 
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according to the resulting graph, we can say that alpha does not vary with the increase 

of training epochs since all 𝛼𝛼𝑖𝑖 approximately converge to the same value. 

Table 6 α values 

Experiments with multiple step 
Distribution 

𝜶𝜶𝟏𝟏 0.6955±0.0194 

𝜶𝜶𝟐𝟐 0.6123±0.0352 

𝜶𝜶𝟑𝟑 0.7256±0.0858 

𝜶𝜶𝟒𝟒 0.6454±0.0197 

𝜶𝜶𝟓𝟓 0.6858±0.02439 

𝜶𝜶𝟔𝟔 0.6208±0.0297 

 

Considering the equations above, we calculated the alpha in each of the one 

thousand experiments generated for the one-dimensional case. Therefore, we conclude 

that the value for the magnification factor is 𝛼𝛼 = 2
3
, or more precisely 0.6654 ± 0.0357, 

which is the same as Ritter’s assumptions for 1D SOM.  
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3.1.3.2. Increasing the number of neurons 

In this subchapter, we want to explore the influence in the magnification factor 

by increasing the total number of SOM neurons and extract the average magnification 

factor that is a solution to the equations stated in the previous subchapter. For this 

experiment, we fix all parameters, we set the training epochs at 500, and on each run, 

we increase the number of SOM neurons by one. Further, we analyse the behaviour of 

𝛼𝛼 with respect to the number of neurons. We expect a similar behaviour as in the earlier 

subchapter.  

 

Figure 22 Magnification factors for each experiment vs. the increase of neurons 

In the figure, it is possible to note that 𝛼𝛼3(the yellow dots) has high dispersion, 

when related to the other magnification factors; this happens because we calculate this 

parameter considering two similar average densities (𝑑𝑑1 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑4).  

As it is possible to see, the magnification factor tends to converge to the same 

value aforementioned  0.6654 ± 0.0357. As a result, this set of experiments confirmed 

that for the one-dimensional case, the magnification factor is in fact equal to 2
3
. 
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3.2. Two-dimensional input data 

In subchapter 3.1 we experimentally showed the magnification effect on 1-D 

data. We want to verify a similar behaviour for two-dimensional data using a similar 

method; we initialise SOM and train it, insert the input data, and correlate the density of 

input data with the SOM neurons density to generate an “exponent” magnification factor 

𝛼𝛼. In this experiment, we additionally expect to find a relationship between 

unidimensional and two-dimensional magnification factors. 

We generate two sets of experiments, one with two different density areas and 

the other with four distinct density areas. Once again, we fixed most of the parameters 

and analysed them one case at a time.  

3.2.1. Two Different Density Areas 

We opt to generate a rectangular input data map with two equally-width areas, 

each with a different input data density. The first zone (on the left) has 85 blue dots and 

the second zone with 15 dots in magenta, totalling 100 input data points, as illustrated 

in Figure 23.  

 

Figure 23 2D Input data 
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We calculated the density values according to the following expression 
𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑝𝑝 𝑖𝑖𝑖𝑖 𝑜𝑜ℎ𝑁𝑁 𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎

𝐴𝐴𝑁𝑁𝑁𝑁𝑎𝑎 (𝑝𝑝𝑠𝑠𝑜𝑜𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠 𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜 𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎)
 , and we present in the next table, 

 

Table 7 2-D Experiment Average Densities 

Average Density 

Data Area 1 Area 2 

Input  0.034 0.006 

Output (neurons) 0.0316 0.0084 

 

We initialise SOM on sequential training with 100 neurons in a 10 ∗ 10 lattice.  

 

Figure 24 SOM neurons (represented in black dots) adjusting to input data. The black dots show 

positions of map units, and the grey lines show connections between neighbouring map units. 
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In this experiment, we realised that the SOM magnification factor on 2-D 

behaves slightly differently compared to the one-dimensional case.  

We show in the figure below the variations of density on the input to the output., 

 

Figure 25 Variations on average density on the input (blue line) to the output (orange line). 

As shown in the figure above, the magnification effect is still present in the 2-D 

case (magnifying the low-density areas and "demagnifying" high-density areas), the 

same as in the 1-D case. We follow the method used in the previous chapter to calculate 

the magnification factor, i.e., calculating the solutions for the equations mentioned 

above to find 𝐾𝐾 and 𝛼𝛼 in each of a total of one thousand experiments. 

 

Figure 26 Magnification factors for 2-D (10x10 neurons grid) 
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Table 8 Average α and K 

Average 𝜶𝜶 and 𝑲𝑲 from the 
experiment 

𝜶𝜶 𝑲𝑲 

0.7875 0.4724 

However, we believe that these results may suffer from the curse of 

dimensionality (Bellman, 2015). Due to this, we understand that having more input data 

and neurons will bring better results. 

To avoid the dimensionality curse, we increase the input data points and initialise 

SOM with a 25x40 neurons grid. We trained SOM with the same parameters 

abovementioned and depict the results in the figure below, 

 

Figure 27 Magnification factors for 2-D SOM (25x40 neurons grid) 

The figure above shows that the magnification factor rounds around 0.8166 with 

a standard deviation of 0.043. We notice that the standard deviation is lower for this 

case, a variation of 5.26% in the average value found for the magnification factor. 
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The magnification constant were as follows, 

 

Figure 28 Magnification constant on each experiment. 

Resulting on an average 𝐾𝐾 = 0.778 with standard deviation of 0.0483, 

representing 6% of average 𝐾𝐾 value variation.  

With these results we can say that for this specific case the magnification factor 

is around 0.8166 ± 0.043 which is equal to �2
3
. 

3.2.1.1. Increasing the amount of neurons 

We want to realize whether increasing the neurons on the two-dimensional SOM 

will influence the convergence of the original density value, comparable to the earlier 

chapter. To do this, we took advantage of the two equally-width areas data distribution 

generated in the previous subchapter. We fixed all remaining values, except for the 

number of neurons on the SOM grid. 

We used a rectangular-shaped grid with 𝑁𝑁𝑥𝑥𝑁𝑁 neurons; initially, we generated a 

grid with thirty-five neurons, i.e., 7 x 5, then we increased the number of neurons in 

each next experiment. In this set of experiments, we expect SOM to converge rapidly. 
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Figure 29 First run, with 35 neurons and 100 data points. 

 

Figure 30 Last experiment, with 1024 neurons. 

Looking at the resulting data, we find that the magnification factor is around 

0.8833 ± 0.057, slightly higher than the one found for 1-D. Although this value is not 
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precise, and it is a mean value from all the sets of experiments with the number of 

neurons increasing, we observed the influence of increasing neurons. From these results, 

we can verify that the SOM does not converge asymptotically with the increase of 

neurons as 1-D does.  

Surprisingly, the density values at the output are very discrepant each time the 

number of neurons increases, which can mean that at 2-D, the number of neurons will 

take considerable influence on magnification factor or (SOM’s output representation), 

and it is more significant than on 1-D. 

Table 9 Average α and K 

Average 𝜶𝜶 and 𝑲𝑲 from the 
experiment 

𝜶𝜶 𝑲𝑲 

0.8833 3.6274 
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3.2.1.2. Increasing the training epochs 

In the previous subchapter, we fixed all parameters and changed only the SOM 

neurons to understand that parameter’s influence. Although we used the sequential 

algorithm to train SOM during these experiments, we did not work with epochs but with 

single sample iterations. Therefore, to compare with previous results, the number of 

iterations has to be (a previous number of epochs) * (the number of data points). 

Here, we trained the SOM in batch mode; the input data varies on each 

experiment but not the density. Thus, we increase the number of epochs in each 

experiment. We present the results afterwards and compare them to the ones analysed 

before. 

We want to verify for how many training epochs the map converges to its 

equilibrium state. For this, we fixed all the remaining parameters and unitarily increased 

the training epochs on each experiment. Subsequently, from the experiments, we can 

extract the magnification factor.  

 

Considering the average value of all of the 1500 resulting magnification factors 𝛼𝛼 

calculated, starting from 500 training epochs (which in this experiment we ponder on 
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being a fair minimum value for this training parameter) to 2000 training epochs, we can 

verify that 𝛼𝛼 = 0.8316 ± 0.05 which is approximately equal to �2
3
. 

3.2.2. Four Different Density Areas 

In this experiment, we generate a rectangular shaped 2-D data point distribution 

with four different density areas. We opt to generate a rectangular input data map with 

four equally-width areas, each with a different input data density. In the figure below, 

we show 20 blue dots in the first area (in the top left corner), the second (in the top right 

corner) with 210 dots in magenta, the third (in the bottom left corner) with 70 red points 

and the fourth area (in the bottom right corner) with 700 green points totalling 1000 

input data points. 

 

Figure 31 2D Input data distributed on 4 areas. 
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We calculated the density values according to the following expression 
𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑝𝑝 𝑖𝑖𝑖𝑖 𝑜𝑜ℎ𝑁𝑁 𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎

𝐴𝐴𝑁𝑁𝑁𝑁𝑎𝑎 (𝑝𝑝𝑠𝑠𝑜𝑜𝑎𝑎𝑁𝑁𝑁𝑁𝑠𝑠 𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜 𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎)
 , and we presented the values in Table 10, 

Table 10 Average Density 

Area 1 Area 2 Area 3 Area 4 

0.008 0.084 0.028 0.28 

 

The SOM is initialised on sequential training with 1000 neurons in a 25 ∗ 40 

lattice. 

  

Figure 32 SOM neurons (represented in black dots) adjusting to input data. 

The black dots show positions of map neurons, and the grey lines show 

connections between neighbouring map neurons. 
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In the figure below we show the variations of density in the input to the output, 

 

Figure 33 Variations on average density on the input (blue line) to the output (orange line). 

Now we write a system of four equations to find, 𝐾𝐾 and 𝛼𝛼, the solution to each 

experiment. 

 

Figure 34 Magnification factors for 2-D SOM (4 areas) 
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Since we fixed the input data values, we consider that increasing the number of 

experiments would only prove what we already demonstrated earlier. Furthermore, it is 

possible to see in Figure 35 that the 𝛼𝛼4 had dispersed values; this happens since the two 

density differences are not significant to verify the effect, and consequently, we discard 

these values when calculating the magnification factor on this case.. 

 

Figure 35 Magnification constants for 2-D SOM (4 areas) 

Table 11 Average αand K 

Average 𝜶𝜶 and 𝑲𝑲 from the 
experiment 

𝜶𝜶 𝑲𝑲 

0.827±0.0506 0.9767 ±0.148 

 

We can perceive from the results above that the magnification factor rounds 

around 0.827 with a standard deviation of 0.0506. We can see that the standard deviation 

is lower for this case, representing a variation of only 6.11%. The experiment also 

resulted in an average K=0.97 with a standard deviation of 0.148, representing 15.25% 

of the average K value variation. 

Once more, with these results, we can say that for this specific case, the 

magnification factor is approximately �2
3
.  
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3.3. Three-dimensional input data  

In this subchapter we calculate the magnification factor on three different sets of 

experiments, all with 3-dimensional input data. The input data has a random uniform 

distribution with different densities in two distinct areas in all three experiments. The 

output representation of SOM will vary according to the experiment. The first 

experiments will train a 3D SOM, the second a 2D SOM and the last a 1D SOM. The 

magnification factor calculations will proceed using the same method as in the previous 

subchapters. 

3.3.1. Calculating the magnification factor 

In this set of experiments, we generated a three-dimensional random uniform 

distribution data with two different area densities. Then, we trained a SOM and 

calculated the magnification factor according to Equation 1. 

In the experiments, we set the input data points to 9950 on the higher density 

zone vs 50 on the lower density zone. Therefore, we fixed the training epochs at 500 

and the neighbourhood radius went from 1/5th of the number of neurons to 0. 

We show the results of the set of experiments in the following table, 

Table 12 Average α and K for the three-dimensional set of experiments 

Input dimension/Output dimension 𝜶𝜶 𝑲𝑲 

3D to 3D 0.9391 ± 0.0253 0.4286 ± 0.0278 

3D to 2D 0.8793 ± 0.0279 0.5956 ± 0.0436 

3D to 1D 0.8315 ± 0.0157 0.3243 ± 0.0134 

We can realise that for the 3D to the 2D case, we have 𝛼𝛼 ≅ �2
3

3 .  

Thus far, we have found evidence that 𝛼𝛼 has a value that is around �2
3

𝑓𝑓(·)
, 𝑤𝑤𝑑𝑑𝑡𝑡ℎ 𝑜𝑜(·

) being a function of the dimension of the SOM grid, the dimension of the input data 

and output neurons grid. Although 𝑜𝑜(·) depends on many variables, the most important 

one is the dimension of the input data 𝑑𝑑 so in many expressions we may approximate 

𝑜𝑜(·) by n. Consequently, considering the previous expression, we can present the 

following law, which is a small adjustment to Ritter’s assumptions, 
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𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 ∝ 𝐼𝐼𝑑𝑑𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 �2
3

𝑛𝑛

 

We should note that for 1D data and 1D SOM, 𝑜𝑜(·) ≈ n = 1 and the equation is 

exactly what Ritter proposed. 

Notwithstanding, the expression above has shown promising results. 

Nevertheless, we have proved that alpha varies with the input data dimensionality and 

varies according to the SOM grid dimension, the number of neurons, the training 

epochs, and the initial and final neighbourhood radius. Hence, to achieve better results, 

is important to consider all those abovementioned parameters.  

Therefore, 𝑜𝑜(·) must be a multivariable function which depends on each of the 

stated parameters.  

𝑑𝑑 = 𝑜𝑜(𝑡𝑡𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙 𝑑𝑑𝑂𝑂𝑜𝑜𝑒𝑒ℎ𝑑𝑑, 𝑟𝑟𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝑎𝑎𝑖𝑖, 𝑟𝑟𝑑𝑑𝑑𝑑𝑜𝑜𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖 , 𝑑𝑑𝑂𝑂𝑁𝑁 𝑑𝑑𝑑𝑑𝑂𝑂𝑟𝑟𝑜𝑜𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆) 

We propose three methods to find a solution: 

• First: To train an ANN to find the function 𝑜𝑜(·) that interpolate the 

experiment evidence for all the dimensions, or at least for a substantial 

number of dimensions. 

• Second: To calculate the function 𝑜𝑜(·) using non-linear regression 

algorithms. 

• Third: To try to derive analytically (or guess) the right expression for 

𝑜𝑜(·), and in this case, we believe that a set of assumptions will need to be 

made in order to extract a feasible solution. 

However, we will let this problem for a future investigation, and settle with the 

empirical equation of �2
3

𝑛𝑛  that we postulated and verified in our experiments. 
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Chapter 4 

4. Testing the new magnification factor rule in a 

SOM based Cartogram 

To ascertain the validity of the magnification law derived from our experiments, 

we opt to show an example of SOM implementation that could be corrected if using the 

magnification factor found.  

4.1. Angola Cartogram using Carto-SOM  

In this experiment, we generated cartograms based on the Carto-SOM algorithm 

(R. Henriques, 2009) to produce a 2-D cartogram of Angola’s population.  

First, we applied the Carto-SOM using the real population density. Afterwards 

we corrected the population to be used in the Carto-SOM algorithm, using our law, in 

an attempt to obtain a better cartogram. 

We compensate the magnification effect using the magnification law derived 

earlier in this work. For the experiment, we collected Angola’s administrative 

boundaries data from Data Catalog Website (Admin, 2019). The geodetic data of the 

administrative boundaries are in a cartesian system (EPSG:32733) (Wikipedia, 2021). 

The EPSG is a Geodetic Parameter Dataset created by the International Association of 

Oil and Gas Producers (IOGP). It is a public archive of geodetic datums which is 

basically used to define coordinate reference systems and transformations for mapping. 

For this experiment we generated and randomly distributed uniform data points, 

proportional to the population in a given region, across all the Angolan map. Since the 

population numbers in each region are vast, and to spare unnecessary computational 

effort we use just a percentage of the real population dataset as input data. We know 

that the number of neurons is by far one of the parameters that most influences the 

magnification on SOM, as shown in the previous chapters, and thus we concluded that 

using several neurons equivalent to more than 40% of the total data points should be 

sufficient to bring satisfactory results. 

http://riskprofilesundrr.org/layers/geonode:ago_administrative_boundaries_level_1_1/metadata_detail
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To see the magnification effect, we will look to the data densities of each region 

and then, after training the SOM, we will compare input data density to the density of 

neurons. Since for this case we will work with 2-D input data to 2-D neuron grid, 

according to our expression found in chapter 3, it is expected to find a magnification 

factor of 𝛼𝛼 ≅ �2
3
. We will first run some experiments to investigate this assumption and 

then use the relation that was found earlier to correct the population thus obtaining a 

better cartogram. 

Angola has 18 regions, but as a matter of computational simplification we will 

consider only 17 of them (we excluded Cabinda because it is an enclave in the Congo 

and separated from the main territory) plus 3 new regions which we called “South 

Atlantic, Congo and Zambia” (see Figure 36). These 3 new regions have density that is 

equal to the country average demographic density. They are important in order to 

generate a rectangular map and let the original map of Angola be identifiable as usually 

happens when creating cartograms. 

  

Figure 36 - Map of Angola used to produce the cartogram 
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Angola’s demographic data was collected from the 2014 census published by 

Instituto Nacional de Estatística (INE) and can be obtained in https://bit.ly/3kBQP8m. 

The capital Luanda is by far the most densely populated city in Angola so the map will 

distort, and the city of Luanda will be the most prominent of all. In the table of appendix 

C we show all Angola regions as well as their population and population density. 

Using this data we used the Carto-SOM algorithm and obtained the cartogram 

showed in Figure 37.  

 

Figure 37 - Angola Cartogram using Self-organizing Map 

This cartogram is a reasonable depiction of the Angola’s population but there are 

some inaccuracies. In the figure above we can see that Cunene was split in two. That 

happens because that province has one of the lowest demographic densities and it was 

“smacked” by his neighbour Huíla that its far denser. It is also evident for who knows 

Angola that while Luanda and Benguela have a large area it is not proportional to their 

true and very large population. 

https://bit.ly/3kBQP8m
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After this first cartogram, we set up our way to compensate the magnification 

factor and try to build a perfect cartogram of Angola based on the law that we derived. 

The idea is to correct the provinces original densities so that when the SOM is trained 

the magnification would help give a more realistic representation of the map. To this 

end we postulate the following relation, 

 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 ∗ 𝑑𝑑𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑜𝑜𝑁𝑁𝑠𝑠
𝛼𝛼 = 𝑑𝑑𝑖𝑖𝑖𝑖 Equation 3 

Where, 𝑑𝑑𝑖𝑖𝑖𝑖 is the province original input density and 𝑑𝑑𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑜𝑜𝑁𝑁𝑠𝑠 is the density 

desired to compensate the magnification on the map. As we know from our earlier 

experiments, in this case 𝛼𝛼 should be equal to �2
3
 and K is approximately 0.91. We 

manipulate the equation above and calculate the corrected densities for each region, 

 𝑑𝑑𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑁𝑁𝑁𝑁𝑠𝑠 = �𝑠𝑠𝑖𝑖𝑛𝑛
𝐾𝐾

𝛼𝛼
    Equation 4 

Finally, we produce the corrected Angola cartogram as shown in the projection below, 

 

Figure 38 Angola's corrected cartogram using the magnification law 

As we can see, the capital city Luanda holds the most space in the map due to its 

populational density and caused the northern provinces Bengo and Zaire to compress. 

Also, now despite Huíla being denser than Cunene it is not sufficient to make that region 
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split. The topographic appearance of the map is perfectly recognizable, but it has a 

strong distortion due to variations in the true population density. The borders would be 

smoother and “nicer” if we used a Geographic Information System (GIS) program such 

as ArcGIS to obtain a better tessellation. 

  



 

50 
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Chapter 5 

5. Conclusions 

The study of the magnification effect is a very complex matter because of the 

number of parameters to be analysed simultaneously. Due to this, we chose to fix the 

maximum number of parameters and observe a given parameter's influence on the 

magnification factor. It was possible to experimentally verify the value that until now 

had only been demonstrated analytically by Ritter & Schulten with many 

approximations and assumptions. 

The expression 𝑑𝑑𝑖𝑖 = 𝐾𝐾 ∗ 𝑤𝑤𝛼𝛼 proved to be powerful enough to study the 

magnification effect on one dimension. However, the self-organising feature of the 

algorithm produced a statistical standard deviation on the set of experiments. 

Unfortunately, we could not eliminate this statistical variation, but it had small values 

in practice. Nevertheless, these variations make the exact calculation of the 

magnification factor impossible (it only has a statistical value). 

For small numbers of neurons, the numerical computation of 𝛼𝛼 is very unstable 

but converges rapidly as the number of neurons increases. Above a specific value (in 

our case, 100 neurons for the Heaviside distribution), the magnification factor converges 

and does not vary with increasing the number of neurons. 

As expected, we verified that the number of neurons is directly proportional to 

the constant K. However, some questions are still unexamined as the influence of the 

increase of neurons to one dimension has a moment where magnification stabilises 

regardless of the increase in neurons.  

Several experiments done and depicted in appendix B evidenced that there must 

be a relationship between the neighbourhood function initial radius and the number of 

neurons for the one-dimensional case. Therefore, we conclude that the value for the 

initial radius should be approximately equal to 20% of neurons for better results. 

We consider the study of the magnification effect on one-dimension only didactic 

since it is better to study the effect on multidimensional cases where a precise analysis 
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is very needed. The results for 1-D were good to the extent that it was approximately 

equal to the value found analytically by Ritter. 

As expected, the two-dimensional SOM brought more difficulties, due not only 

to the increase of one dimension but also because of the coding complexity. However, 

a magnification factor of �2
3
 was found and tested, giving reliable results for the two-

dimensional experiments. 

The three-dimensional SOM analysis brought light to a magnification factor 

convergence law. After various experiments were analysed and several calculations 

done, 𝛼𝛼 was found to be approximately equal to �2
3

𝑓𝑓(·)
 , i.e., there is evidence that the 

magnification factor is proportional to 2
3
 raised to the power of 1

𝑜𝑜(·)
 , where 𝑜𝑜(·)“  is the 

function of multiple parameters such as the number of neurons, training epochs, initial 

radius, final radius, input data dimension, output representation dimensions, etc. 

Fortunately, 𝑜𝑜(·) can be approximated reasonably well by simply the dimension of the 

input space (n). 

For the more useful multidimensional cases, i.e., when the input space is n-

dimensional, where no analytical derivation is known, we showed that the magnification 

rule derived by Ritter still holds, but with a magnification factor that instead of being 2
3
 

is approximately the n-root of 2/3, where n is the dimension of the input data: 

𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 ∝ 𝐼𝐼𝑑𝑑𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 �2
3

𝑛𝑛

 

This result holds quite well when the output space has dimension 2 and can be 

used with relative certainty. If the output space is the same as the input space (in 3D and 

4D mappings), there is a slight deviation, and the magnification factor is higher. 

In future work we intend to perform more experiments and derive an empirical 

function that considers factors such as dimensions of both spaces, the number of neurons 

and training parameters, and asymmetries in the input densities, to derive a 

magnification law similar to: 

𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 ∝ 𝐼𝐼𝑑𝑑𝑂𝑂𝑂𝑂𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 �2
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In chapter 4 we created a version of the Angola’s population cartogram with 

SOM, and afterwards corrected the cartogram. We showed that the magnification effect 

can be compensated using the relationship found in this work. As far as we know this is 

the first SOM based cartogram of Angola, and one of the very few ever made using any 

algorithm. 

We have sent an article based on this discovery to the International Conference 

on Intelligent Data Engineering and Automated Learning (IDEAL) in Manchester, and 

we wait for acceptance. 

All the code developed as well as the files created are placed in my GitHub 

repository Edson Bastos (2021). https://github.com/MoreiraBastos/Study-of-the-

Magnification-Effect-on-Kohonen-s-Self-Organizing-Map- 

With these results, we have shown that the magnification effect exists in all SOM 

and can be predicted (and thus considered or corrected) in more general practical cases. 

 

https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-
https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-
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A. Appendix A – Matlab routines 

Here, most of the developed matlab routines, and those that are more important, 

are presented. All the code developed as well as the files created are placed in my 

GitHub repository Edson Bastos (2021). https://github.com/MoreiraBastos/Study-of-

the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map- 

A.1. One-dimensional SOM algorithm with Uniform distribution 

 
    % Initialize all variables % 
 
bins=10; %number of bins 
neurons=1000; %SOM neurons 
initialradius=neurons/5; %Initial radius 
finalradius=0; %Final radius 
iterations=1000; %Number of iterations 
 
for j=4:4 
 
z1=10^4; %data points 
 
    for i=1000:iterations 
 
epochs=i; %On each iteration the training epochs will 
unitarily increase 
 
%% Generate random data % 
 
% dados=rand(z1,1); %Generate data 
 
dados=0:0.001:0.999; dados=dados+0.0005; dados=dados'; 
 
qtd=zeros(bins,1); %initialize a variable to store the 
quantity of data in each bin 
 
for x=1:length(dados) 
    qtd(ceil(dados(x)*bins)) = qtd(ceil(dados(x)*bins))+1; 
%storing the quantity of data in each bin 
end 
 
dens=qtd/(1/bins); % copy the density of input data in 
each bin to a variable 
 

https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-
https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-
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%% TRAINING THE SOM %   
 

 

  

sMap = 
som_lininit(dados,'munits',neurons,'shape','toroid'); % 
%Initialize linearly the SOM Map 
 
sMap2= 
som_batchtrain(sMap,dados,'radius_ini',initialradius,'radi
us_fin',finalradius,'trainlen',epochs); %Training the SOM 
 
SOM_data= sMap2.codebook; %Copy the neurons to SOM_data 
 
qtdn=zeros(bins,1); %initialize a variable to store the 
quantity of neurons in each bin 
 
for x=1:length(sMap2.codebook) 
    qtdn(ceil(SOM_data(x)*bins)) = 
qtdn(ceil(SOM_data(x)*bins))+1;    %storing the quantity 
of neurons in each bin 
end 
 
neurons_density=qtdn/(1/bins); % copy the density of 
neurons in each bin to a variable 
 
tiledlayout(2,1) % Create a tiled chart layout 
 
nexttile % Top plot 
 
title('Step distribution'); %figure title 
grid on; 
hold on; 
 
bar(dens); %Show the results in a bars graph  
ylim([0 1200]); 
xlabel('Bins') , ylabel('Density'); 
yline(1000,'-','Average Density'); 
hold off; 
title(sprintf('%d input data with uniform 
distribution',z1));%figure title 
 
nexttile % Bottom plot 
 
hold on 
bar(neurons_density,'r'); %Show the results in a bars 
graph 
xlabel('Bins') , ylabel('Density'); 
yline(neurons,'-','Average Unit Density'); 
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hold off 
texto=sprintf('SOM Output after %d training 
epochs',epochs); 
title(texto); 
grid on 
 
 
    end 
 
save(sprintf('distribuicaouniforme_toroid.mat')); %Saving 
all the experiment 
 
end 
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Appendix A – Matlab routines 

A.2. One-dimensional SOM algorithm with Heaviside 

distribution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% 
% Name: Heaviside 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine will generate data 
with Heaviside or step 
% distribution and subsequently train a Self-
Organizing Map.  
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
  
%% Initialize all variables 
  
  
bins=100; % Number of data bins 
neurons=1000; % Number of SOM units or neurons 
initialradius=neurons/5; % SOM initial 
neighbourhood function radius 
finalradius=0; % SOM final neighbourhood function 
radius 
limiteinferior=50; % Length of first zone 
limitesuperior=50; % Displacement of second zone 
iterations=1;% How many times SOM is trained with 
specific input parameters 
totalpoints=1000; % Total input data points 
experiments=499; % Total number of experiments 
  
%% Code 
for j=1:experiments 
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    z1= j; % Data points in the first zone (Low 
density) 
    % For the variations in data density 
experiment let z1=j; 
    % It is also possible to compare the 
algorithm behaviour  
    % in function of data density zones 
difference 
     
    z2=totalpoints-z1; % Data points in the 
second zone (High density) 
  
    % neurons=j; % For the increasing neurons 
experiment uncomment this line 
    % epochs=j; % For the increasing epochs 
experiment uncomment this line 
    % initialradius=neurons/(0.5*j); % For the 
increasing initial radius experiment uncomment 
this line 
  
        for i=1:iterations % This loop will 
specify how many times the routine will train SOM 
with a fixed step input data distribution 
  
epochs=500; % Number of training epochs 
  
randomdata1=rand(z1,1)*limiteinferior; %Generate 
data in the first zone 
  
randomdata2=(rand(z2,1)*limiteinferior)+limitesup
erior; % Generate data in the second zone 
  
dados=[randomdata1;randomdata2]; % Put all data 
in one matrix 
  
qtd=zeros(bins,1); % Initialize a variable to 
store the quantity of data in each bin 
  
for x=1:length(dados) 
    qtd(ceil(dados(x))) = qtd(ceil(dados(x)))+1; 
end 
  
dens=qtd/(sum(qtd)); % Copy the density of input 
data in each bin to a variable 
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%% TRAINING THE SOM 
  
sMap=som_lininit(dados,'munits',neurons); % 
Initialize linearly the SOM Map 
  
sMap2=som_batchtrain(sMap,dados,'radius_ini',init
ialradius,'radius_fin',... 
    finalradius,'trainlen',epochs); %TRAINING THE 
SOM 
  
SOM_data=sMap2.codebook; % Copy the neurons to 
SOM_data 
  
qtdn=zeros(bins,1); % Initialize a variable to 
store the number of neurons in each bin 
  
for x=1:length(sMap2.codebook) 
     qtdn(ceil(SOM_data(x))) = 
qtdn(ceil(SOM_data(x)))+1;     
end 
  
%% PLOTTING THE RESULTS 
  
densidade_inputx=[0 50 51 100]; % Data density 
zone boundaries 
densidade_input=[z1/50 z1/50 z2/50 z2/50]; % 
Theoretical density in each zone from (0 to 50) 
and (50 to 100) 
  
densidade_outputx=[0 50 51 100]; % Neurons 
density zone boundaries 
densidade_output=[sum(qtdn(1:51))/50 
sum(qtdn(1:51))/50 ... 
    sum(qtdn(51:100))/50 sum(qtdn(51:100))/50]; % 
Theoretical density in each zone from (0 to 50) 
and (50 to 100) 
  
save(sprintf('heaviside%d.mat',j)); % Save all 
the experiment 
  
        end 
  
end 
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A.3. One-dimensional SOM algorithm with multiple Heaviside 

distribution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% 
% Name: degraus 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine will generate data 
with multiple Heaviside or step 
% distribution and subsequently train a Self-
Organizing Map.  
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
%% Initialize all variables % 
z1=200; 
z2=500; 
z3=50; 
z4=250; 
  
bins=100;% Number of data bins 
neurons=1000; % Number of SOM units or neurons 
initialradius=neurons/5; % SOM initial 
neighbourhood function radius 
finalradius=0; % SOM final neighbourhood function 
radius 
limite1=25; % Displacement of first zone 
limite2=50; % Displacement of second zone 
limite3=75; % Displacement of third zone 
limite4=100; % Displacement of fourth zone 
  
% epochs=500; 
     
    for i=1:500 
%% Generate the data 
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% epochs=i; % For the increasing epochs 
experiment uncomment this line 
% neurons=i; % For the increasing neurons 
experiment uncomment this line 
% initialradius=neurons/(0.5*j); % For the 
increasing initial radius experiment uncomment 
this line 
  
  
randomdata1=rand(z1,1)*limite1; %Generate random 
uniform data in the first zone 
  
randomdata2=(rand(z2,1)*25+limite1); %Generate 
random uniform data in the second zone 
  
randomdata3=(rand(z3,1)*25+limite2); %Generate 
random uniform data in the third zone 
  
randomdata4=(rand(z4,1)*25+limite3); %Generate 
random uniform data in the fourth zone 
  
dados=[randomdata1;randomdata2;randomdata3;random
data4]; % Put all data in one matrix 
  
qtd=zeros(bins,1); % initialize a variable to 
store the quantity of data in each bin 
  
for x=1:length(dados) 
    qtd(ceil(dados(x))) = qtd(ceil(dados(x)))+1; 
end 
  
dens=[z1/25 z2/25 z3/25 z4/25]; % copy the 
density of input data in each bin to a variable 
verticd=[z1/25 z1/25 z2/25 z2/25 z3/25 z3/25 
z4/25 z4/25]; %calculate zone densities for 
plotting 
horizd=[1 25 25 50 50 75 75 100]; % different 
zones 
plot(horizd,verticd); % Plotting the input data 
density 
grid on, hold on; 
  
%% TRAINING THE SOM 
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sMap = 
som_lininit(dados,'munits',neurons,'shape','toroi
d'); % %Initialize linearly the SOM Map 
  
sMap2= 
som_batchtrain(sMap,dados,'radius_ini',initialrad
ius,'radius_fin',finalradius,'trainlen',epochs,'s
hape','toroid'); %TRAINING THE SOM 
  
SOM_data= sMap2.codebook; %Copy the neurons to 
SOM_data 
  
qtdn=zeros(bins,1); %initialize a variable to 
store the quantity of neurons in each bin 
  
for x=1:length(sMap2.codebook) 
    qtdn(ceil(SOM_data(x))) = 
qtdn(ceil(SOM_data(x)))+1;     
end 
  
densn=[sum(qtdn(1:25))/25 sum(qtdn(26:50))/25 
sum(qtdn(51:75))/25 sum(qtdn(76:100))/25]; % copy 
the density of neurons in each bin to a variable 
verticn=[sum(qtdn(1:25))/25 sum(qtdn(1:25))/25 
sum(qtdn(26:50))/25 sum(qtdn(26:50))/25 ... 
    sum(qtdn(51:75))/25 sum(qtdn(51:75))/25 
sum(qtdn(76:100))/25 sum(qtdn(76:100))/25]; 
%calculate zone neuron densities for plotting 
horizn=[1 25 25 50 50 75 75 100];  
plot(horizn,verticn); 
  
save(sprintf('experiencia_degraus%d',i)); % 
Saving all the experiment 
  
end 
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A.4. Two-dimensional SOM algorithm with two different density 

areas 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% 
% Name: main_rectangulo_2areas 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine will generate 2-D 
input data with two distinct  
% density areas and subsequently train a Self-
Organizing Map.  
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%  
area1 = 850; % Data points on the first area 
area2 = 150; % Data points on the second area 
  
%% Generating random input data 
xRandom1=zeros(1,area1); xRandom2=zeros(1,area2); 
yRandom1=zeros(1,area1); yRandom2=zeros(1,area2); 
  
for i=1:area1 % Distributing data on the first 
area 
xRandom1(i) = randi([0 49],1,1); 
yRandom1(i) = randi([0 49],1,1); 
end 
Dados1=[xRandom1;yRandom1]; % saving the data 
  
for i=1:area2 % Distributing data on the second 
area 
xRandom2(i) = randi([50 100],1,1); 
yRandom2(i) = randi([0 49],1,1); 
end 
Dados2=[xRandom2;yRandom2]; % saving the data 
  
Dados_entrada=[Dados1 Dados2]; % saving all the 
data 
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%% Uncomment for fixed input values area1=850 
points and area2=150 points 
% 
Dados_entrada=[6,17,26,22,43,40,41,37,13,27,3,24,
48,14,37,25,49,0,45,44,3,32,39,4,46,5,5,25,41,43,
2,47,39,38,28,49,7,42,0,32,44,20,12,21,11,17,2,2,
0,32,18,30,22,37,19,7,22,30,18,14,32,16,21,7,49,4
7,20,12,36,31,46,30,47,46,12,16,43,25,32,1,15,35,
40,14,5,32,32,14,11,15,25,15,16,23,0,8,16,48,38,1
1,24,11,48,40,42,44,36,39,11,40,19,0,6,49,8,32,14
,19,29,13,18,3,40,9,27,38,44,45,43,48,45,41,34,6,
37,22,48,24,44,30,17,4,31,17,17,9,43,20,35,36,49,
14,14,26,48,29,0,40,11,41,34,0,17,35,24,30,21,43,
29,47,32,43,12,39,39,36,19,1,37,36,4,41,23,10,48,
26,2,1,20,44,34,8,25,42,10,9,6,27,3,35,40,21,39,1
2,38,6,41,39,4,4,7,34,21,48,18,21,35,28,15,41,16,
48,44,35,39,26,2,27,29,35,27,46,49,19,3,27,44,26,
17,43,16,10,47,25,35,1,33,4,23,12,30,20,34,4,32,1
2,11,21,35,28,31,44,45,26,20,11,22,11,7,27,46,40,
49,41,29,13,10,12,25,2,21,25,7,42,26,23,2,37,36,3
8,32,38,45,18,33,9,38,46,36,38,1,10,48,15,12,47,3
8,37,24,47,2,45,23,19,3,2,44,47,2,33,33,32,8,9,47
,49,13,30,43,44,28,35,28,13,38,24,12,20,20,5,20,1
6,1,22,44,0,1,8,39,13,33,47,7,18,8,21,35,36,12,17
,44,37,26,7,41,49,49,45,14,26,46,43,42,1,25,46,42
,48,1,23,11,32,4,7,12,26,5,2,13,12,28,49,26,43,41
,44,24,30,37,18,44,20,40,48,49,36,12,46,16,30,43,
38,27,12,36,13,9,49,4,40,21,47,31,25,33,45,20,41,
7,17,40,29,3,3,21,16,5,25,38,41,8,19,0,27,1,10,16
,46,22,14,7,38,44,26,28,1,36,36,24,40,40,7,13,35,
0,8,24,33,23,3,13,47,20,20,37,40,42,14,35,35,47,3
3,16,20,14,35,11,45,10,33,47,28,42,33,47,45,29,41
,17,25,20,17,40,45,2,5,7,14,42,49,6,28,17,31,26,4
9,21,9,19,29,23,47,12,17,40,4,46,37,18,16,25,31,2
,26,31,35,42,18,14,40,12,16,15,10,33,26,1,24,32,2
2,39,0,0,7,31,28,40,8,33,32,24,12,48,14,19,10,31,
3,45,28,20,1,29,34,36,42,33,23,32,17,23,49,18,45,
19,33,1,19,2,0,41,18,47,48,40,3,42,14,40,9,24,40,
1,23,7,37,23,44,1,44,42,8,42,40,23,10,47,42,36,15
,35,20,11,44,7,2,21,9,14,15,29,35,31,11,46,40,21,
14,48,19,11,49,10,45,31,12,30,20,19,46,31,6,22,30
,37,18,20,11,0,18,17,2,20,33,37,48,16,48,13,22,22
,26,13,18,43,38,48,30,36,18,47,34,23,30,38,21,18,
0,7,32,7,10,40,42,47,24,41,17,22,46,45,33,41,7,3,
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5,7,24,28,17,26,36,40,41,28,26,36,4,46,2,2,48,38,
22,24,47,8,37,21,33,41,3,13,49,22,36,47,7,22,0,18
,10,21,12,16,1,11,41,29,44,30,19,45,28,37,5,35,13
,22,40,20,41,20,19,3,40,20,13,16,17,5,22,7,22,37,
11,5,42,15,8,16,18,6,8,2,6,37,11,43,48,2,12,24,5,
46,37,33,22,31,6,26,16,12,48,29,47,22,42,17,44,48
,6,22,12,36,7,31,47,41,22,43,19,42,25,15,41,48,17
,22,9,42,11,31,41,26,40,44,22,23,22,35,35,7,48,27
,28,28,6,3,23,82,86,77,99,69,87,99,67,90,63,54,91
,53,70,75,72,74,79,60,76,69,82,97,88,64,68,85,92,
85,66,98,52,57,83,76,86,67,86,63,85,72,87,68,54,6
4,93,52,76,95,94,73,73,100,52,50,56,96,82,81,72,8
8,54,97,63,78,50,97,83,83,69,86,51,51,92,72,59,65
,73,95,72,52,54,58,73,99,91,62,78,52,55,73,76,58,
55,65,79,70,94,63,80,99,72,92,81,90,93,100,52,51,
52,86,69,65,97,99,69,65,87,76,55,52,61,79,73,88,9
0,77,94,70,76,93,88,97,50,51,53,85,100,97,79,100,
63,51,59,96,86,65,80,67,66;39,25,4,18,44,17,21,9,
18,44,9,32,46,3,45,8,25,12,9,7,10,34,45,6,49,33,4
9,21,42,12,36,49,35,18,7,39,26,47,45,16,40,25,26,
46,37,21,30,45,2,29,22,14,3,47,47,24,0,10,41,31,4
3,23,6,25,9,46,47,49,29,16,18,24,20,17,35,1,8,20,
38,39,7,24,23,27,32,6,26,1,42,43,41,38,29,49,15,5
,18,42,42,44,5,27,40,32,26,14,49,29,42,7,36,39,39
,23,31,44,42,38,0,14,12,16,29,16,0,15,15,10,1,1,4
2,29,45,27,35,12,17,37,8,25,20,16,41,36,17,31,7,4
5,26,29,48,47,8,2,40,26,41,45,45,16,8,45,34,27,49
,33,33,9,0,30,30,25,2,39,49,23,7,22,12,24,1,40,24
,34,42,3,33,46,24,19,25,18,0,36,29,3,18,41,18,29,
30,49,35,0,3,2,34,37,40,25,16,33,16,42,11,5,11,18
,8,8,35,0,3,3,49,30,41,32,45,30,37,42,28,5,8,41,0
,40,28,0,49,34,24,3,4,11,5,35,30,47,40,45,15,14,2
2,44,46,8,21,30,18,33,17,35,3,28,16,43,0,18,27,47
,13,44,16,29,1,15,10,34,7,29,10,39,15,32,29,42,38
,44,3,33,15,24,10,16,17,40,8,22,15,36,38,3,23,48,
4,6,19,14,24,4,45,5,6,49,4,36,48,28,18,10,24,27,8
,9,5,3,15,3,34,5,19,10,20,26,16,19,30,44,49,48,32
,25,30,9,23,22,20,38,16,27,11,43,1,40,9,43,7,46,4
3,32,43,8,45,39,13,38,39,24,41,24,4,33,40,38,32,1
7,18,10,25,18,4,32,27,42,35,34,16,0,9,17,14,35,46
,44,44,12,12,20,16,13,47,28,49,39,38,28,44,14,9,4
3,12,35,23,15,14,45,8,17,34,48,15,12,43,16,21,30,
4,34,32,22,33,12,42,16,29,21,36,12,31,12,49,31,5,
4,36,47,11,43,21,31,21,49,38,44,25,15,5,12,49,22,
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24,19,20,48,5,30,21,31,28,11,20,11,6,36,36,7,8,40
,28,5,44,26,27,19,9,21,40,1,19,22,15,41,0,28,46,6
,26,34,16,13,38,41,8,28,24,39,5,46,47,26,49,11,30
,41,34,45,26,4,23,46,0,24,41,49,48,19,15,0,35,21,
11,31,35,38,10,35,1,7,49,17,37,43,23,8,14,40,6,30
,7,35,39,14,39,27,44,4,42,16,20,38,46,49,26,24,8,
33,35,38,28,32,11,14,6,37,19,16,4,36,6,46,33,32,5
,45,22,17,41,38,40,26,2,5,0,40,36,20,14,5,49,29,4
8,31,4,10,27,30,27,31,34,15,20,23,45,47,8,3,42,34
,16,33,16,25,40,27,31,4,13,35,1,6,20,15,37,41,3,4
0,16,39,43,21,45,42,23,12,16,22,49,41,3,23,11,9,1
,20,32,13,47,17,29,35,31,31,31,0,37,0,12,19,36,1,
49,31,10,29,41,3,35,19,23,15,16,48,6,1,37,42,31,7
,11,48,38,39,8,34,38,47,14,24,11,31,31,20,2,39,15
,27,9,43,45,25,36,1,19,43,17,20,42,34,0,0,6,31,7,
43,3,14,20,40,3,45,4,18,49,24,41,47,34,11,1,27,39
,46,18,40,12,13,21,9,8,18,9,10,5,41,42,4,3,29,17,
21,44,23,33,14,31,49,34,32,22,0,29,17,13,23,0,48,
9,2,47,7,28,45,49,26,21,10,14,28,31,44,8,45,45,49
,33,21,32,21,25,46,43,13,32,30,48,48,19,36,18,18,
16,8,1,26,47,32,43,41,18,23,33,46,25,8,11,33,41,4
6,34,19,44,46,3,10,30,3,2,21,32,32,49,31,41,15,8,
25,33,45,35,10,41,35,36,35,30,35,39,10,26,47,23,0
,2,22,40,13,39,1,45,38,15,11,48,34,16,11,2,34,31,
25,17,36,20,12,5,24,3,49,39,46,39,38,1,25,15,0,43
,23,6,20,49,41,12,1,3,40,27,36,22,10,13,40,23,31,
19,11,7,2,34,41,44,19,4,8,18,26,33,26,44,27,30,16
,27,42,30,10,42,42,43,45,7,6,38,33,6,7,14,5,2,39,
11,39,13,28,42,9,48,24,34,49,24,17,22,31,3,42,38,
41,22,44,5,5,19,24,17,49,26,40,42,36,14,42,48,30,
14,35,32,36,43,34,42,2,42,0,27,23,28,17]; 
% 
xRandom1=[6,17,26,22,43,40,41,37,13,27,3,24,48,14
,37,25,49,0,45,44,3,32,39,4,46,5,5,25,41,43,2,47,
39,38,28,49,7,42,0,32,44,20,12,21,11,17,2,2,0,32,
18,30,22,37,19,7,22,30,18,14,32,16,21,7,49,47,20,
12,36,31,46,30,47,46,12,16,43,25,32,1,15,35,40,14
,5,32,32,14,11,15,25,15,16,23,0,8,16,48,38,11,24,
11,48,40,42,44,36,39,11,40,19,0,6,49,8,32,14,19,2
9,13,18,3,40,9,27,38,44,45,43,48,45,41,34,6,37,22
,48,24,44,30,17,4,31,17,17,9,43,20,35,36,49,14,14
,26,48,29,0,40,11,41,34,0,17,35,24,30,21,43,29,47
,32,43,12,39,39,36,19,1,37,36,4,41,23,10,48,26,2,
1,20,44,34,8,25,42,10,9,6,27,3,35,40,21,39,12,38,
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6,41,39,4,4,7,34,21,48,18,21,35,28,15,41,16,48,44
,35,39,26,2,27,29,35,27,46,49,19,3,27,44,26,17,43
,16,10,47,25,35,1,33,4,23,12,30,20,34,4,32,12,11,
21,35,28,31,44,45,26,20,11,22,11,7,27,46,40,49,41
,29,13,10,12,25,2,21,25,7,42,26,23,2,37,36,38,32,
38,45,18,33,9,38,46,36,38,1,10,48,15,12,47,38,37,
24,47,2,45,23,19,3,2,44,47,2,33,33,32,8,9,47,49,1
3,30,43,44,28,35,28,13,38,24,12,20,20,5,20,16,1,2
2,44,0,1,8,39,13,33,47,7,18,8,21,35,36,12,17,44,3
7,26,7,41,49,49,45,14,26,46,43,42,1,25,46,42,48,1
,23,11,32,4,7,12,26,5,2,13,12,28,49,26,43,41,44,2
4,30,37,18,44,20,40,48,49,36,12,46,16,30,43,38,27
,12,36,13,9,49,4,40,21,47,31,25,33,45,20,41,7,17,
40,29,3,3,21,16,5,25,38,41,8,19,0,27,1,10,16,46,2
2,14,7,38,44,26,28,1,36,36,24,40,40,7,13,35,0,8,2
4,33,23,3,13,47,20,20,37,40,42,14,35,35,47,33,16,
20,14,35,11,45,10,33,47,28,42,33,47,45,29,41,17,2
5,20,17,40,45,2,5,7,14,42,49,6,28,17,31,26,49,21,
9,19,29,23,47,12,17,40,4,46,37,18,16,25,31,2,26,3
1,35,42,18,14,40,12,16,15,10,33,26,1,24,32,22,39,
0,0,7,31,28,40,8,33,32,24,12,48,14,19,10,31,3,45,
28,20,1,29,34,36,42,33,23,32,17,23,49,18,45,19,33
,1,19,2,0,41,18,47,48,40,3,42,14,40,9,24,40,1,23,
7,37,23,44,1,44,42,8,42,40,23,10,47,42,36,15,35,2
0,11,44,7,2,21,9,14,15,29,35,31,11,46,40,21,14,48
,19,11,49,10,45,31,12,30,20,19,46,31,6,22,30,37,1
8,20,11,0,18,17,2,20,33,37,48,16,48,13,22,22,26,1
3,18,43,38,48,30,36,18,47,34,23,30,38,21,18,0,7,3
2,7,10,40,42,47,24,41,17,22,46,45,33,41,7,3,5,7,2
4,28,17,26,36,40,41,28,26,36,4,46,2,2,48,38,22,24
,47,8,37,21,33,41,3,13,49,22,36,47,7,22,0,18,10,2
1,12,16,1,11,41,29,44,30,19,45,28,37,5,35,13,22,4
0,20,41,20,19,3,40,20,13,16,17,5,22,7,22,37,11,5,
42,15,8,16,18,6,8,2,6,37,11,43,48,2,12,24,5,46,37
,33,22,31,6,26,16,12,48,29,47,22,42,17,44,48,6,22
,12,36,7,31,47,41,22,43,19,42,25,15,41,48,17,22,9
,42,11,31,41,26,40,44,22,23,22,35,35,7,48,27,28,2
8,6,3,23]; 
% 
xRandom2=[82,86,77,99,69,87,99,67,90,63,54,91,53,
70,75,72,74,79,60,76,69,82,97,88,64,68,85,92,85,6
6,98,52,57,83,76,86,67,86,63,85,72,87,68,54,64,93
,52,76,95,94,73,73,100,52,50,56,96,82,81,72,88,54
,97,63,78,50,97,83,83,69,86,51,51,92,72,59,65,73,
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95,72,52,54,58,73,99,91,62,78,52,55,73,76,58,55,6
5,79,70,94,63,80,99,72,92,81,90,93,100,52,51,52,8
6,69,65,97,99,69,65,87,76,55,52,61,79,73,88,90,77
,94,70,76,93,88,97,50,51,53,85,100,97,79,100,63,5
1,59,96,86,65,80,67,66]; 
% 
yRandom1=[39,25,4,18,44,17,21,9,18,44,9,32,46,3,4
5,8,25,12,9,7,10,34,45,6,49,33,49,21,42,12,36,49,
35,18,7,39,26,47,45,16,40,25,26,46,37,21,30,45,2,
29,22,14,3,47,47,24,0,10,41,31,43,23,6,25,9,46,47
,49,29,16,18,24,20,17,35,1,8,20,38,39,7,24,23,27,
32,6,26,1,42,43,41,38,29,49,15,5,18,42,42,44,5,27
,40,32,26,14,49,29,42,7,36,39,39,23,31,44,42,38,0
,14,12,16,29,16,0,15,15,10,1,1,42,29,45,27,35,12,
17,37,8,25,20,16,41,36,17,31,7,45,26,29,48,47,8,2
,40,26,41,45,45,16,8,45,34,27,49,33,33,9,0,30,30,
25,2,39,49,23,7,22,12,24,1,40,24,34,42,3,33,46,24
,19,25,18,0,36,29,3,18,41,18,29,30,49,35,0,3,2,34
,37,40,25,16,33,16,42,11,5,11,18,8,8,35,0,3,3,49,
30,41,32,45,30,37,42,28,5,8,41,0,40,28,0,49,34,24
,3,4,11,5,35,30,47,40,45,15,14,22,44,46,8,21,30,1
8,33,17,35,3,28,16,43,0,18,27,47,13,44,16,29,1,15
,10,34,7,29,10,39,15,32,29,42,38,44,3,33,15,24,10
,16,17,40,8,22,15,36,38,3,23,48,4,6,19,14,24,4,45
,5,6,49,4,36,48,28,18,10,24,27,8,9,5,3,15,3,34,5,
19,10,20,26,16,19,30,44,49,48,32,25,30,9,23,22,20
,38,16,27,11,43,1,40,9,43,7,46,43,32,43,8,45,39,1
3,38,39,24,41,24,4,33,40,38,32,17,18,10,25,18,4,3
2,27,42,35,34,16,0,9,17,14,35,46,44,44,12,12,20,1
6,13,47,28,49,39,38,28,44,14,9,43,12,35,23,15,14,
45,8,17,34,48,15,12,43,16,21,30,4,34,32,22,33,12,
42,16,29,21,36,12,31,12,49,31,5,4,36,47,11,43,21,
31,21,49,38,44,25,15,5,12,49,22,24,19,20,48,5,30,
21,31,28,11,20,11,6,36,36,7,8,40,28,5,44,26,27,19
,9,21,40,1,19,22,15,41,0,28,46,6,26,34,16,13,38,4
1,8,28,24,39,5,46,47,26,49,11,30,41,34,45,26,4,23
,46,0,24,41,49,48,19,15,0,35,21,11,31,35,38,10,35
,1,7,49,17,37,43,23,8,14,40,6,30,7,35,39,14,39,27
,44,4,42,16,20,38,46,49,26,24,8,33,35,38,28,32,11
,14,6,37,19,16,4,36,6,46,33,32,5,45,22,17,41,38,4
0,26,2,5,0,40,36,20,14,5,49,29,48,31,4,10,27,30,2
7,31,34,15,20,23,45,47,8,3,42,34,16,33,16,25,40,2
7,31,4,13,35,1,6,20,15,37,41,3,40,16,39,43,21,45,
42,23,12,16,22,49,41,3,23,11,9,1,20,32,13,47,17,2
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9,35,31,31,31,0,37,0,12,19,36,1,49,31,10,29,41,3,
35,19,23,15,16,48,6,1,37,42,31,7,11,48,38,39,8,34
,38,47,14,24,11,31,31,20,2,39,15,27,9,43,45,25,36
,1,19,43,17,20,42,34,0,0,6,31,7,43,3,14,20,40,3,4
5,4,18,49,24,41,47,34,11,1,27,39,46,18,40,12,13,2
1,9,8,18,9,10,5,41,42,4,3,29,17,21,44,23,33,14,31
,49,34,32,22,0,29,17,13,23,0,48,9,2,47,7,28,45,49
,26,21,10,14,28,31,44,8,45,45,49,33,21,32,21,25,4
6,43,13,32,30,48,48,19,36,18,18,16,8,1,26,47,32,4
3,41,18,23,33,46,25,8,11,33,41,46,34,19,44,46,3,1
0,30,3,2,21,32,32,49,31,41,15,8,25,33,45]; 
% 
yRandom2=[35,10,41,35,36,35,30,35,39,10,26,47,23,
0,2,22,40,13,39,1,45,38,15,11,48,34,16,11,2,34,31
,25,17,36,20,12,5,24,3,49,39,46,39,38,1,25,15,0,4
3,23,6,20,49,41,12,1,3,40,27,36,22,10,13,40,23,31
,19,11,7,2,34,41,44,19,4,8,18,26,33,26,44,27,30,1
6,27,42,30,10,42,42,43,45,7,6,38,33,6,7,14,5,2,39
,11,39,13,28,42,9,48,24,34,49,24,17,22,31,3,42,38
,41,22,44,5,5,19,24,17,49,26,40,42,36,14,42,48,30
,14,35,32,36,43,34,42,2,42,0,27,23,28,17]; 
  
%% Uncomment to plot the input data distribution 
before training SOM 
%  
% plot(xRandom1,yRandom1,'b.','MarkerSize',12); 
hold on 
% plot(xRandom2,yRandom2,'m.','MarkerSize',12); 
hold on 
% rectangle('Position', [0, 0, 100, 
50],'LineWidth',0.5,'LineStyle','--'); 
% xline(50); txt = 'AREA 1'; text(20,51,txt) 
% txt = 'AREA 2'; text(70,51,txt)  
% pause 
% close all; 
%  
%% TRAINING THE SOM 
for u=1:1 
     
    %% Self-Organizing Map input parameters 
msize = [25 40]; 
  



 

17 

sMap = 
som_lininit(Dados_entrada','msize',msize,'hexa','
sheet','shape','toroid'); 
  
som_grid(sMap,'Coord',sMap.codebook); axis equal; 
neurons=msize(1)*msize(2); 
  
npstep=100; vstep=1000; o=ones(npstep,1); r=(1-
(1:vstep)/vstep); 
  
for i=1:vstep 
    radius_ini=neurons*(1/125); 
  
    %% Training the Self-Organizing Map 
  sMap = 
som_seqtrain(sMap,Dados_entrada','tracking',0,... 
              'trainlen',npstep,'samples',... 
              
'alpha',0.1*o,'radius',(radius_ini*r(i))*o); 
  
          %% Plot the data and the neurons grid 
mapping animation 
figure 
plot(xRandom1,yRandom1,'b.','MarkerSize',12); 
hold on 
plot(xRandom2,yRandom2,'m.','MarkerSize',12); 
hold on 
xline(50); txt = 'AREA 1'; text(20,52,txt) 
txt = 'AREA 2'; text(70,52,txt) 
rectangle('Position', [0, 0, 100, 
50],'LineWidth',0.5,'LineStyle','--');  
hold on 
title(sprintf('%d/%d training 
steps',npstep*i,npstep*vstep)); axis equal; 
hold on, som_grid(sMap,'Coord',sMap.codebook);  
hold off 
  
drawnow 
axis equal; 
  
end 
  
neuron1=sum(floor(sMap.codebook(:,1))<=49); % 
number of neurons on the first area 
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neuron2=sum(floor(sMap.codebook(:,1))>49); % 
number of neurons on the second area 
  
dens=[area1/(50^2) area2/(50^2)]; % Data density 
densn=[neuron1/(50^2) neuron2/(50^2)]; % Neurons 
density 
  
%% Uncomment to plot average input area densities 
vs. neuron area densities 
% figure 
% plot([1 50 50 100],[area1/(50^2) area1/(50^2) 
area2/(50^2) area2/(50^2) ]); hold on; 
% plot([1 50 50 100],[neuron1/(50^2) 
neuron1/(50^2) neuron2/(50^2) neuron2/(50^2)]); 
% txt = 'AREA 1'; 
% text(20,neuron2/(50^2),txt); 
% txt = 'AREA 2'; 
% text(70,neuron1/(50^2),txt); 
  
save(sprintf('2D_1000dados_1000neuronios_2areas_a
umentodeepocas%d.mat',u));% Saving all the 
experiment 
  
end 

A.5. Two-dimensional SOM algorithm with four different 

density areas 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% 
% Name: main_rectangulo_4areas 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine will generate 2-D 
input data with four distinct  
% density areas and subsequently train a Self-
Organizing Map.  
% 
% V1.0 - Moreira Bastos, Jun 2021 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%  
  
area1 = 20; % Data points on the first area 
area2 = 210; % Data points on the second area 
area3 = 70; % Data points on the third area 
area4 = 700; % Data points on the fourth area 
  
%% Generating random input data 
xRandom1=zeros(1,area1); xRandom2=zeros(1,area2); 
xRandom3=zeros(1,area3); xRandom4=zeros(1,area4); 
yRandom1=zeros(1,area1); yRandom2=zeros(1,area2); 
yRandom3=zeros(1,area3); yRandom4=zeros(1,area4); 
  
for i=1:area1 % Data on the first area 
xRandom1(i) = randi([0 49],1,1); 
yRandom1(i) = randi([50 100],1,1); 
end 
Dados1=[xRandom1;yRandom1]; 
  
for i=1:area2 % Data on the second area 
xRandom2(i) = randi([50 100],1,1); 
yRandom2(i) = randi([50 100],1,1); 
end 
Dados2=[xRandom2;yRandom2]; 
  
for i=1:area3 % Data on the third area 
xRandom3(i) = randi([0 49],1,1); 
yRandom3(i) = randi([0 49],1,1); 
end 
Dados3=[xRandom3;yRandom3]; 
  
for i=1:area4 % Data on the fourth area 
xRandom4(i) = randi([50 100],1,1); 
yRandom4(i) = randi([0 49],1,1); 
end 
Dados4=[xRandom4;yRandom4]; 
  
Dados_entrada=[Dados1 Dados2 Dados3 Dados4]; % 
Saving all the data 
  
%% TRAINING THE SOM 
for u=1:10 
     
msize = [5 5]; 
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sMap = 
som_lininit(Dados_entrada','msize',msize,'hexa','
sheet','shape','toroid'); 
  
som_grid(sMap,'Coord',sMap.codebook) 
axis equal; 
neurons=msize(1)*msize(2); 
  
npstep=10; vstep=900; o = ones(npstep,1); r=(1-
(1:vstep)/vstep); 
     
for i=1:vstep 
    radius_ini=neurons*(1/125); 
     
    %% Training the Self-Organizing Map 
  sMap = 
som_seqtrain(sMap,Dados_entrada','tracking',0,... 
              'trainlen',npstep,'samples',... 
              
'alpha',0.1*o,'radius',(radius_ini*r(i))*o); 
    %% Plot the data and the neurons grid mapping 
animation 
  
% plot(xRandom1,yRandom1,'b.','MarkerSize',12); 
hold on 
% plot(xRandom2,yRandom2,'m.','MarkerSize',12); 
hold on 
% plot(xRandom3,yRandom3,'r.','MarkerSize',12); 
hold on 
% plot(xRandom4,yRandom4,'g.','MarkerSize',12); 
hold on 
% rectangle('Position', [0, 0, 100, 
100],'LineWidth',2,'LineStyle','--');  
% hold on, xline(50), yline(50); 
% title(sprintf('%d/%d training 
steps',npstep*i,npstep*vstep)); axis equal; 
% hold on, som_grid(sMap,'Coord',sMap.codebook);  
% hold off 
%  
% drawnow 
% axis equal; 
  
end 
  



 

21 

  
neuron1=0;neuron2=0;neuron3=0;neuron4=0; % 
Initializing variables 
  
%% Get the number of neurons on each area 
for p=1:neurons  
if sMap.codebook(p,1)<50 &&sMap.codebook(p,2)>49 
neuron1=neuron1+1; 
end 
if sMap.codebook(p,1)>49 &&sMap.codebook(p,2)>49 
neuron2=neuron2+1; 
end 
if sMap.codebook(p,1)<50 &&sMap.codebook(p,2)<50 
neuron3=neuron3+1; 
end 
if sMap.codebook(p,1)>49 &&sMap.codebook(p,2)<50 
neuron4=neuron4+1; 
end 
end 
  
dens=[area1/(50^2) area2/(50^2) area3/(50^2) 
area4/(50^2)]; % Data density 
densn=[neuron1/(50^2) neuron2/(50^2) 
neuron3/(50^2) neuron4/(50^2)]; % Neurons density 
  
%% Uncomment to plot average input area densities 
vs. neuron area densities 
% figure 
% plot([1 25 25 50 50 75 75 100],[area1/(50^2) 
area1/(50^2) area2/(50^2) area2/(50^2) 
area3/(50^2) area3/(50^2) area4/(50^2) 
area4/(50^2)]); hold on 
% plot([1 25 25 50 50 75 75 100],[neuron1/(50^2) 
neuron1/(50^2) neuron2/(50^2) neuron2/(50^2) 
neuron3/(50^2) neuron3/(50^2) neuron4/(50^2) 
neuron4/(50^2)]); 
% txt = 'AREA 1'; 
% text(5,neuron2/(50^2),txt) 
% txt = 'AREA 2'; 
% text(30,neuron1/(50^2),txt) 
% txt = 'AREA 3'; 
% text(55,neuron2/(50^2),txt) 
% txt = 'AREA 4'; 
% text(85,neuron1/(50^2),txt) 
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save(sprintf('experiencia_2D_1000dados_25x40neuro
nios%d.mat',u)); % Save all the experiment 
  
end 

 

 

A.6. Three-dimensional SOM algorithm with two different 

density areas 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
% 
% Name: main_3D 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine will generate 3-D input data 
with two distinct  
% density areas and subsequently train a Self-Organizing 
Map and generate 
% Output on 3-D neuron grid 
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%  
  
area1 = 9950; % Data points on the first area 
area2 = 50; % Data points on the second area 
  
%% INIITIALIZE INPUT DATA VARIABLES 
xRandom1=zeros(1,area1); xRandom2=zeros(1,area2); 
yRandom1=zeros(1,area1); yRandom2=zeros(1,area2); 
zRandom1=zeros(1,area1); zRandom2=zeros(1,area2); 
  
  
%% PLOT THE INPUT DATA 
% plot3(xRandom1,yRandom1,zRandom1,'b.','MarkerSize',12); 
hold on 
% plot3(xRandom2,yRandom2,zRandom2,'m.','MarkerSize',12); 
hold on 
  
  
for u=1:30 
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%% GENERATE RANDOM INPUT DATA 
for i=1:area1 % Distributing data on the first area 
xRandom1(i) = randi([0 49],1,1); 
yRandom1(i) = randi([0 49],1,1); 
zRandom1(i)=randi([0 49],1,1); 
end 
Dados1=[xRandom1;yRandom1;zRandom1]; % saving the data 
  
for i=1:area2 % Distributing data on the second area 
xRandom2(i) = randi([0 49],1,1); 
yRandom2(i) = randi([0 49],1,1); 
zRandom2(i)=randi([50 100],1,1); 
end 
  
Dados2=[xRandom2;yRandom2;zRandom2]; % saving the data 
  
Dados_entrada=[Dados1 Dados2]; % mixing and saving all the 
data (lower density vs. higher density) 
     
msize = [10 25 20]; % Initialize the neuron grid setup 
  
%% TRAINING THE SOM 
  
sMap = 
som_lininit(Dados_entrada','msize',msize,'rect','sheet'); 
% SOM linear initialization  
   
neurons=msize(1)*msize(2)*msize(3); % get the number of 
neurons 
  
epochs=500; % number of training epochs 
  
sMap= 
som_batchtrain(sMap,Dados_entrada','radius_ini',neurons/12
5,'radius_fin',0,'trainlen',epochs); %Training the SOM 
using the batch algorithm 
  
neuron1=sum(floor(sMap.codebook(:,3))<=49); % number of 
neurons on the first area  
neuron2=sum(floor(sMap.codebook(:,3))>49); % number of 
neurons on the second area 
  
dens=[area1/(50^3) area2/(50^3)]; % Data density 
densn=[neuron1/(50^3) neuron2/(50^3)]; % Neurons density 
  
%% Uncomment to plot average input densities vs. neuron 
densities 
% figure 
%  
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% plot([1 50 50 100],[area1/(50^3) area1/(50^3) 
area2/(50^3) area2/(50^3) ]); hold on; 
% plot([1 50 50 100],[neuron1/(50^3) neuron1/(50^3) 
neuron2/(50^3) neuron2/(50^3)]); 
% axis equal; 
%  
% txt = 'AREA 1'; 
% text(20,neuron2/(50^3),txt); 
% txt = 'AREA 2'; 
% text(70,neuron1/(50^3),txt); 
  
save(sprintf('Magnification 
Factor/experiencia_3D_%d.mat',u));% Saving all the 
experiment 
  
end 
 

A.7. Calculating the magnification factor for a 1-D SOM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
% 
% Name: calculomagnificacao 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine calculates the som 
magnification factor as well 
% as the magn. constant for a given heaviside 1D input 
data density. 
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%  
%% FORMULAES 
% d1=K*d1'^alfa; 
% d1=K*d2'^alfa; 
% alfa=log(d1/d2)/log(d1'/d2'); 
% K=d2/d2'^alfa ou K=d1/d1'^alfa; 
% 
% 
format long 
expoente_e_constante=zeros(2,2); 
  
for i=1:499 
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load(sprintf('heaviside%d.mat',i),'densidade_output','dens
idade_input','neurons'); 
  
alfa=log(densidade_output(1)/densidade_output(3))/log(dens
idade_input(1)/densidade_input(3)); 
K=densidade_output(3)/densidade_input(3)^alfa; 
  
expoente_e_constante(i,1)=alfa; 
expoente_e_constante(i,3)=K; 
  
end 
save('expoente_e_constante.mat','expoente_e_constante'); 
 
 

A.8. Calculating the magnification factor for a 2-D SOM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
% 
% Name: calculodemagnificacao 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine calculates the som 
magnification factor as well 
% as the magn. constant for a given 2D input data density. 
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%  
%% FORMULAES 
% d1=K*w1^alfa; 
% d2=K*w2^alfa; 
% alfa=log(d1/d2)/log(w1/w2); 
% K=d2/w2^alfa or K=d1/w1^alfa; 
% 
format long 
expoente_e_constante=zeros(2,2); 
  
for i=1:140 
     
load(sprintf('Magnification 
Factor/experiencia_2Dpara1D%d.mat',i),'dens','densn'); 
  
w=dens; d=densn; 
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alfa=log(d(1)/d(2))/log(w(1)/w(2)); % 
alfa=log(d1/d2)/log(w1/w2); 
K=d(1)/w(1)^alfa; % K=d2/w2^alfa or K=d1/w1^alfa; 
  
expoente_e_constante(i,1)=alfa; % Alfa 
  
expoente_e_constante(i,3)=K; %Constant K 
  
end 
save('expoente_e_constante.mat','expoente_e_constante'); 
 

A.9. Calculating the magnification factor for a 3-D SOM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
% 
% Name: main_3D 
%  
% Objective: 
% 
% Input/Output Parameters: 
% 
% Obs: This matlab routine calculates the som 
magnification factor as well 
% as the magn. constant for a given 3D input data density 
% 
% V1.0 - Moreira Bastos, Jun 2021 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%  
% 
% 
%  
%% FORMULAES 
% d1=K*w1^alfa; 
% d2=K*w2^alfa; 
% alfa=log(d1/d2)/log(w1/w2); 
% gamma=d1/n*w1 
% K=d2/w2^alfa or K=d1/w1^alfa; 
% 
%% 
% Search for magnification exponent and magnification 
constant for each SOM 
% experiment done 
% 
format long 
expoente_e_constante=zeros(2,2); 
  
for i=1:30 
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load(sprintf('Magnification 
Factor/experiencia_3D_%d.mat',i),'dens','densn'); % Load 
data from SOM (3D to 3D experiment) 
%load(sprintf('Magnification Factor 3D to 
2D/experiencia_3D_to_2D%d.mat',i),'dens','densn'); % Load 
data from SOM (3D to 2D experiment) 
%load(sprintf('Magnification Factor 3D to 
1D/experiencia_3D_to_1D%d.mat',i),'dens','densn'); % Load 
data from SOM (3D to 1D experiment) 
  
w=dens; % input data densities  
d=densn; % neuron densities 
  
alfa=log(d(1)/d(2))/log(w(1)/w(2)); % 
alfa=log(d1/d2)/log(w1/w2); 
K=d(1)/w(1)^alfa; % K=d2/w2^alfa or K=d1/w1^alfa; 
  
expoente_e_constante(i,1)=alfa; % Alfa 
expoente_e_constante(i,3)=K; %Constant K  
  
end 
 
save('expoente_e_constante_3D.mat','expoente_e_constante')
; 
% 
save('expoente_e_constante_3D_para_2D.mat','expoente_e_con
stante'); 
% 
save('expoente_e_constante_3D_para_1D.mat','expoente_e_con
stante'); 
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B.  Appendix B – Relationship between the 

neighbourhood function initial radius and the 

number of neurons for the one-dimensional case 

From the set of experiments, we conclude that the initial radius does not 

influence the magnification factor. However, since the magnification factor values are 

stable for lower initial radius, we opt to use 20% of the total number of neurons. 

 

Fig. 1 - Magnification factor vs neighbourhood function initial radius 

We believe that the essential matter to analyse is the training epochs since we proved 

that this parameter influences the magnification factor substantially. 
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C. Appendix C – Angola’s demographic information 

 

Table 13 - Angola's Demographic data collected from Angolan 2014 Census 

Province Population Area (𝒌𝒌𝒌𝒌𝟐𝟐) Population 
density 
(people/𝒌𝒌𝒌𝒌𝟐𝟐) 

Zaire 594428 37230 16 

Uige 1483118 62579 24 

Malanje 986363 86805 12 

Lunda Sul 537587 82827 7 

Lunda Norte 862566 99363 9 

Luanda 6945386 18826 369 

Benguela 2231385 39105 58 

Namibe 495326 57119 9 

Huambo 2019555 33296 61 

Huíla 2497422 78898 32 

Bié 1455255 70746 21 

Cunene 990087 77156 13 

Cuando 
Cubango 

534002 201247 3 

Moxico 758568 203203 4 

Cuanza Sul 1881873 55574 34 

Cabinda 716076 7235 99 

Cuanza 
Norte 

443386 20429 22 

Bengo 356641 20298 18 
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