

Edson Giovanni Gonçalves da Cunha Moreira Bastos

Study of the magnification effect on self-organizing maps

Dissertação para obtenção do Grau de Mestre em Ciências

Militares Navais, na especialidade de Engenharia Naval Ramo de

Armas e Eletrónica

Alfeite

2021

Edson Giovanni Gonçalves da Cunha Moreira Bastos

Study of the magnification effect on self-organizing maps

Dissertação para obtenção do Grau de Mestre em Ciências
Militares Navais, na especialidade de Engenharia Naval Ramo de

Armas e Eletrónica

Orientação de: Professor Doutor Victor Sousa Lobo

Coorientação de: CFR M Lourenço Gorricha

O Aluno Mestrando, O Orientador,

________________ ______________

Edson Bastos Victor Lobo

Alfeite

2021

iii

 “Do not go where the path may lead, go instead

where there is no path and leave a trail.”

Ralph Waldo Emerson

iv

v

 I dedicate this dissertation to my family and friends who

have always supported me in this long journey.

vi

vii

Acknowledgements

First of all, I would like to thank God for giving me the grace of life.

Subsequently, I would like to express my most profound admiration to my master

thesis supervisor, Professor Victor Lobo, who spared no effort to help me walking on

this beautiful journey. And Lieutenant Commander Lourenço Gorricha for all the

attention and help given to my person whenever I needed it.

I want to thank my father, Professor Moreira Bastos, and my mother, Silvana da

Cunha, for all the dedication and knowledge transferred from my childhood to adulthood

that has contributed to becoming what I am. My thanks to my siblings, Eliana, Érica and

Pedro. Thank you to my dear girlfriend Elizângela Kafina for all love and support.

I also want to express my gratitude to all my classmates, especially to the Class of

Naval Engineers – Weapons and Electronics, for the friendship, camaraderie, and spirit

of mutual help that we nurtured during the five years in the Naval School. Without

forgetting my friends from Angola.

I want to thank all my classmates from the Portuguese-speaking African countries

community for all the good times we have spent together throughout the course.

Furthermore, I would like to thank the Portuguese Army’s Coronel Bruno Brito and my

English teacher Isabel Caetano at the Portuguese Army’s Academy and all the other

professors. For treating me like a son, showing the right path to follow whenever they

could, and despite being far away, always keeping an eye on my school achievement

and giving me advice on diverse matters.

Thank you to all the professors at the Portuguese Naval School, especially to the

Department of Science and Technology, for the knowledge given to me and for having

prepared me to have a self-critical spirit that was undoubtedly extremely useful to me

during school and my personal life. And thank you to everyone who, at some point in

my life, helped me become a better person. This thesis’ is yours too!

Thank you very much!

viii

ix

Abstract

Self-Organizing Maps (SOM), are a type of neuronal network (Kohonen, 1982b) that

has been used mainly in data clustering problems, using unsupervised learning. Among

the multiple areas of application, SOM has been used in various problems of direct

interest to the Navy (V. J. Lobo, 2009), including route planning and the location of

critical infrastructures. The SOM has also been used to sample large databases. In this

sort of application, they have a behaviour called the magnification effect (Bauer & Der,

1996), which causes areas of the attribute space of data with less density to be over-

represented or magnified.

This dissertation uses an experimental approach to mitigate the lack of theoretical

explanation for this effect except for one-dimensional and quite simple cases. From

experimental evidence obtained for carefully designed problems we infer a relationship

between input data densities and output neuron densities that can be applied universally,

or at least in a broad set of situations. A large number of experiments were conducted

using one-dimensional to one-dimensional mappings followed by 2D to 2D, 3D to 1, 2

and 3D. We derived an empirical relationship whereby the density in the output space

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 is equal to a constant times the density of the input space 𝑑𝑑𝑖𝑖𝑖𝑖 raised to the power

of 𝛼𝛼 (alpha) which although depending on a number of factors can be approximated by

the root index n of 2/3 where n is the input space dimension, 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖
�2

3
𝑛𝑛

.

The correlation that we found in our experiments, for both the well-known 1-

dimensional case and for more general 2 to 3-dimensional cases is a useful guide to

predict the magnification effect in practical situations.Therefore, in chapter 4 we

produce a populational cartogram of Angola and we prove that our relation can be used

to correct the magnification effect on 2-dimensional cases.

Keywords: Self-organized maps, neural networks, magnification effect, data

science.

x

xi

Resumo
Os mapas auto-organizados ou SOM (Self Organizing Maps), são um tipo de rede

neuronal (Kohonen, 1982) que tem sido utilizada sobretudo em problemas agrupamento

de dados (clustering), usando aprendizagem não supervisionada. Entre as múltiplas

áreas de aplicação, os SOM têm sido usados em vários problemas com interesse direto

para a Marinha (Lobo, 2009), incluindo o planeamento de rotas e a localização de

infraestruturas críticas. Os SOM também têm sido usados para fazer amostragem de

grandes bases de dados, e nesse tipo de aplicações têm um comportamento, denominado

efeito de magnificação (Bauer & R. Der, 1996), que faz com que zonas do espaço de

atributos dos dados com menor densidade sejam sobre representadas, ou seja

magnificadas.

Esta dissertação traz uma abordagem experimental para mitigar a falta de explicação

teórica para este efeito, com exceção de casos unidimensionais e bastante simples. A

partir de provas experimentais obtidas para problemas cuidadosamente concebidos,

inferimos uma relação entre densidades de dados de entrada e densidades de neuronios

à saída que podem ser aplicadas universalmente, ou pelo menos num conjunto alargado

de situações. Foram realizadas um grande numero de experiências usando mapeamentos

unidimensionais para mapeamentos unidimensionais seguidos por 2D para 2D, 3D para

1, 2 e 3D. Derivamos uma relação empírica em que a densidade no espaço de saída 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜

é igual a uma constante vezes a densidade do espaço de entrada 𝑑𝑑𝑖𝑖𝑖𝑖 elevada a 𝛼𝛼 (alpha)

que, embora dependendo de uma série de fatores, pode ser aproximado pela raiz de

índice n de 2/3 onde n é a dimensão do espaço de entrada, 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖
�2

3
𝑛𝑛

.

A correlação que encontramos nas nossas experiências, tanto para o caso

unidimensional bem como para casos mais gerais de 2 a 3 dimensões é um guia útil para

prever o efeito de magnificação em situações práticas. No capítulo 4 produzimos um

cartograma populacional de Angola e provamos que a nossa relação pode ser usada para

corrigir o efeito de magnificação em casos bidimensionais.

Palavras-chave: Mapas auto-organizados, Redes neuronais, Efeito de magnificação,

Ciência de dados.

xii

xiii

Contents
Chapter 1 .. 1

1. Introduction ... 1

1.1. Motivation .. 2

1.2. The SOM Algorithm .. 3

1.2.1. Variables .. 4

1.3. Why study the magnification effect?.. 5

1.4. Purpose of the dissertation ... 5

1.5. Structure of the dissertation .. 6

Chapter 2 .. 7

2. State of the Art .. 7

2.1. SOM Applications .. 7

2.1.1. Studies on the Magnification Effect of SOM .. 9

Chapter 3 .. 11

3. Design of experiments... 11

3.1. The one-dimensional case .. 11

3.1.1. Uniform probability distribution function ... 12

3.1.2. Heaviside probability distribution function ... 15

3.1.3. Multiple Step probability distribution function 27

3.2. Two-dimensional input data ... 31

3.2.1. Two Different Density Areas .. 31

3.2.2. Four Different Density Areas .. 39

3.3. Three-dimensional input data ... 43

3.3.1. Calculating the magnification factor ... 43

Chapter 4 .. 45

4. Testing the new magnification factor rule in a SOM based Cartogram 45

4.1. Angola Cartogram using Carto-SOM... 45

Chapter 5 .. 51

5. Conclusions ... 51

Bibliography .. 55

A. Appendix A – Matlab routines .. 1

xiv

A.1. One-dimensional SOM algorithm with Uniform distribution 1

A.2. One-dimensional SOM algorithm with Heaviside distribution 4

A.3. One-dimensional SOM algorithm with multiple Heaviside distribution 7

A.4. Two-dimensional SOM algorithm with two different density areas 10

A.5. Two-dimensional SOM algorithm with four different density areas 18

A.6. Three-dimensional SOM algorithm with two different density areas 22

A.7. Calculating the magnification factor for a 1-D SOM 24

A.8. Calculating the magnification factor for a 2-D SOM 25

A.9. Calculating the magnification factor for a 3-D SOM 26

B. Appendix B – Relationship between the neighbourhood function initial radius
and the number of neurons for the one-dimensional case 1

C. Appendix C – Angola’s demographic information ... 1

xv

List of Figures

Figure 1 Basic Structure of a Self-Organising Map (SOM) (Lobo, 2002) .. 4

Figure 2 The SOM Algorithm (Yin, 2008) .. 5

Figure 3 World Poverty Map (Kaski, 1997) .. 8

Figure 4 Offshore West Africa 2D seismic line processed by SOM analysis (Roden et al., 2015) 9

Figure 5 Input vs Output distributions with a random uniform distribution of 1000 data points in the

interval [0,1]. ... 12

Figure 6 Input vs. Output... 13

Figure 7 Neuron map initialized with toroid shape. .. 14

Figure 8 Heaviside or step distribution .. 15

Figure 9 Density of neurons in each of the areas, for different initializations, each with a different (and

increasing) number of epochs. In the vertical axis, the density values presented should be multiplied by

1000 to obtain the true value. .. 16

Figure 10 Behaviour of magnification factor for different Heaviside input amplitudes 19

Figure 11 Behaviour of magnification constant for different Heaviside input amplitudes 20

Figure 12 Magnification factor with respect of the ratio between different density levels 21

Figure 13 Magnification constant with respect of the ratio between different density levels 21

Figure 14 Several experiments each with different initial radius. Analysing the behaviour of magnification

factor for different Heaviside input amplitudes. .. 22

Figure 15 Several experiments each with different initial radius. Behaviour of magnification constant for

different Heaviside input amplitudes ... 22

Figure 16 Neuron density (measured in relative frequency) vs. number of neurons, in both areas of the

Heaviside function. .. 23

Figure 17 Magnification factor vs. number of SOM Neurons, the magnification factor did not vary too

much with the increase of neurons, and since this we can assume that it is independent of the quantity of

neurons for values greater than 100. .. 24

Figure 18 Magnification constant vs. Number of SOM Neurons .. 25

Figure 19 Magnification constant vs. Number of SOM Neurons .. 26

Figure 20 Multiple Step Distribution ... 27

xvi

Figure 21 Magnification factors for multiple input step distribution considering the increase of training

epochs. ... 28

Figure 22 Magnification factors for each experiment vs. the increase of neurons 30

Figure 23 2D Input data ... 31

Figure 24 SOM neurons (represented in black dots) adjusting to input data. The black dots show positions

of map units, and the grey lines show connections between neighbouring map units. 32

Figure 25 Variations on average density on the input (blue line) to the output (orange line). 33

Figure 26 Magnification factors for 2-D (10x10 neurons grid) ... 33

Figure 27 Magnification factors for 2-D SOM (25x40 neurons grid) ... 34

Figure 28 Magnification constant on each experiment. ... 35

Figure 29 First run, with 35 neurons and 100 data points. .. 36

Figure 30 Last experiment, with 1024 neurons. .. 36

Figure 31 2D Input data distributed on 4 areas. ... 39

Figure 32 SOM neurons (represented in black dots) adjusting to input data. .. 40

Figure 33 Variations on average density on the input (blue line) to the output (orange line). 41

Figure 34 Magnification factors for 2-D SOM (4 areas) ... 41

Figure 35 Magnification constants for 2-D SOM (4 areas) ... 42

Figure 36 - Map of Angola used to produce the cartogram ... 46

Figure 37 - Angola Cartogram using Self-organizing Map ... 47

Figure 38 Angola's corrected cartogram using the magnification law .. 48

xvii

List of Tables
Table 1 Density of data and neurons in the experiments with a Heaviside distribution of data with 50

points in one area and 950 in the other (1 and 19 data points/unit length). The values presented are

averages over 2000 training runs. .. 17

Table 2 Density of data and neurons in the experiments with a Heaviside distribution of data with 100

points in one area and 900 in the other (2 and 18 data points/unit length). The values presented are

averages over 400 training runs. .. 17

Table 3 Density of data and neurons in the experiments with a Heaviside distribution of data with 350

points in one area and 650 in the other (7 and 13 data points/unit length). The values presented are

averages over 400 training runs. .. 18

Table 4 Average magnification constants and exponents for each SOM aforementioned 18

Table 5 α and K Values ... 26

Table 6 α values ... 29

Table 7 2-D Experiment Average Densities .. 32

Table 8 Average α and K ... 34

Table 9 Average α and K ... 37

Table 10 Average Density ... 40

Table 11 Average αand K .. 42

Table 12 Average α and K for the three-dimensional set of experiments .. 43

Table 13 - Angola's Demographic data collected from Angolan 2014 Census ... 1

xviii

xix

Glossary

SOM Self-Organizing Map

ANN Artificial Neural Network

AI Artificial Intelligence

BMU Best Matching Unit

PDF Probability Density Function

VQ Vector Quantization

IBM International Business Machines Corporation

INE Instituto Nacional de Estatística

IOGP International Association of Oil and Gas Producers

GIS Geographic Information System

xxi

1

Chapter 1

1. Introduction

A Self-Organising Map (SOM) is an algorithm or mathematical tool created by

Professor Teuvo Kohonen and first presented in 1982 (Kohonen, 1982b). It is generally

used in applications such as cluster detection and defining partitions in feature spaces,

where it can be a faithful substitute for k-means. We can also use it to visualise

multidimensional data, which is particularly useful when you have many data and

dimensions (e.g., (Gorricha, 2015)).

SOM was conceived from an analogy with the way a human cerebral cortex

works. In the beginning of the '80s, researchers discovered that this part of the brain

selects specific regions for specific activities. For a given brain activation, the degree of

activation of the neurons decreased as the distance from the initial activation region

increased (Kohonen, 2001). After introducing SOM, specialists from different areas

such as computer science, neurobiology, physics, geography, among others, began to

adapt SOM in relevant applications (e.g., (Bação, Lobo, & Painho, 2008)).

SOM represents the fruit of a lot of work and research done by Professor

Kohonen (Kohonen, 1974, 1982a, 1982b) in the '80s, and his main inspiration was

neurobiological systems. SOM is a type of neuronal network with several computational

devices, called units, or neurons, arranged in a hexagonal or rectangular grid shape. Each

of these units receives input data and does specific data processing, producing an output

value. It has an N-dimensional input space, i.e., the original space of the data, which is

the same space defined by the synaptic weights of the neurons. We can adjust the

training algorithm according to some parameters, then apply to the input data, in the

training phase, and get information in the output layer. SOM uses unsupervised learning,

as we are not looking to classify data. But typically, we want to look at it and understand

2

what type of distribution it has or visualise it in a two-dimensional space (although other

visualization can be made) (e.g.,(Gorricha, 2009)).

1.1. Motivation

Over the past few years, neuronal networks have been used to perform various

tasks, because they:

• Can extract the meaning of complex or even inaccurate data.(Calitoiu, Oommen,

Nussbaum, & Cybernetics, 2007)

• Model or detect patterns that are too complex for humans or conventional methods

of computational analysis.(Krakovsky & Forgac, 2011)

• Have adaptive learning.

• Their operation can be done in real-time.

• Solve complex mathematical problems.(Li & Li, 2013)

• Perform complex tasks such as stock market prediction, climate behaviour study,

etc.(Moghaddam, Moghaddam, Esfandyari, & Science, 2016; Poff, Tokar,

Johnson, & Oceanography, 1996)

• Can be used in many different applications, such as facial recognition, voice

recognition, route planning, decision-making assistance for unmanned

autonomous vehicle systems, or even writing tools. (Khashman, 2009) (Ma'Sum

et al., 2013)

• Can be used in a variety of military and naval applications, such as traffic

monitoring, outlier detection for cybersecurity intrusion detection, etc. (Choraś &

Pawlicki, 2020)

The SOM algorithm is an efficient and easy-to-apply tool that has some

advantages over conventional neuronal networks, especially for the following tasks:

• Dimensionality reduction.(Campoy, 2009)

• Multidimensional data visualization.(Nikkilä et al., 2002)

• Cluster detection, outlier detection.

• Data ordering (since it preserves topological relations).

3

1.2. The SOM Algorithm

The main idea of Kohonen’s Self-Organising algorithm is to map data patterns,

in the input layer X ∈ Rn into an N-dimensional grid in the output space. The mapping

attempts to preserve the neurons topological relationships, i.e., data points that are

nearby at the input will be mapped to nearby units in the output space.

In this thesis, while recognising that the computational units (or neurons) of a

SOM are usually referred to as “units”, thus stressing that they are computational

constructs and not imitations of biological neurons, we will refer to them as “neurons”.

We choose to do this because when we compute densities and do experimental work,

we will use the term “unit” very often, usually referring to “unit length” or “unit area”.

Thus, we avoid possible confusion by using “neuron” to refer to the SOM units.

The SOM is based on two principles, competitive learning and cooperative

learning. On competitive learning, the neuron vector most similar to a data vector is

modified to be even more similar to it. This way the map learns the position of the data

cloud. On the other hand, cooperative learning means that the most similar neuron vector

and its neighbours are moved towards the data vector.

Generally, the neurons are in a grid shape lattice, but they can be configured with

a hexagonal shape. First, all neurons are connected to the input pattern and receive

information from that layer. Then the algorithm calculates the Euclidean distance

between the neurons and the input stimuli. The neuron that is closest to the input stimuli

is called the “Best Matching Unit”.

After finding the nearest neuron to the input all the neighbour neurons are

updated according to a neighbourhood function usually with a gaussian-type distribution

centred in the selected neuron.

4

Figure 1 Basic Structure of a Self-Organising Map (SOM) (Lobo, 2002)

The algorithm has three main phases, the calculation phase, the voting phase, and

updating phase. For each input signal, the algorithm will,

1. Calculate the distance between the input signal, 𝑥𝑥𝑖𝑖, X ∈ Rn, and all SOM

units 𝑟𝑟𝑖𝑖.

2. Select the nearest neuron as the winning neuron (or unit) or best matching

unit (BMU).

3. Update each neuron according to the update function.

4. Repeat all the steps and update the learning parameters until a stop

criterion is met.

1.2.1. Variables

Let the input space be X ∈ Rn; The weight vectors of the neurons 𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, …,

𝒘𝒘𝑴𝑴 are initialized to random values, where 𝒘𝒘𝒊𝒊 is the weight vector associated to neuron

i and is a vector of the same dimension as the input. M is the total number of neurons

and let 𝒓𝒓𝒊𝒊 be the location vector of neuron i in the grid. The SOM training algorithm

repeats the steps shown in Algorithm 1, where 𝜂𝜂(𝜈𝜈, 𝑘𝑘, 𝑡𝑡) is the neighbourhood function,

and Ω is the set of neuron indexes.

5

Figure 2 The SOM Algorithm (Yin, 2008)

1.3. Why study the magnification effect?

Like all Artificial Intelligence tools, self-organised maps are helpful. For

example, SOM is often used when analysing large volumes of multidimensional data

(what we call "Big Data"). Thus, all the progress made in understanding these tools

contributes directly to improvements in society.

Studying the magnification effect is essential to understand how we can control

it in the general case (i.e., with any dimension of the input and output space and any

data distribution). The magnification effect is a problem that influences the reliability

of SOM essentially for the multidimensional case. Given that the world has seen

exponential growth in data generation lately, a better understanding of the magnification

effect on SOM may lead to better future implementations of this tool.

1.4. Purpose of the dissertation

The study of the magnification effect is a task that several authors have long

done. It has been possible to obtain good results for the one-dimensional case. Until

now, it has been concluded that the density of neurons in the output layer is proportional

to the density of the data in the input layer raised to 2/3 (Ritter & Schulten, 1986).

The purpose of the dissertation will be the formulation, of a mathematical law

that can help to describe with reasonable precision the variation of density in the

entrance space and the exit space of SOM, as well as a consolidation of theoretical

concepts acquired during the naval engineering course – Weapons and Electronics.

6

Based on the study’s success, it is expected to be able to contribute to improving

the quality of future SOM implementations, which is an advance for science and for its

use in matters relevant to the Navy.

1.5. Structure of the dissertation

The organization of the document seeks to reflect all phases of the development

of the work carried out. After the introduction, an analysis of the State of the Art (chapter

2) studies focused on Self-Organized Maps are elaborated, mainly on the magnification

effect. In this chapter, we still define concepts relating to Kohonen maps.

We explain the design of experiments in chapter 3 by how the MATLAB

experiments were carried out, based on the SOM toolbox, made available with a free-

use license by the University of Helsinki. Later in chapter 4, we use SOM to produce a

cartogram and prove the occurrence of the magnification effect. Consequently, we

compensate it basing on the results of the investigation done in chapter 3.

Finally, in chapter 5, we present the conclusions of the project and suggestions

for future studies in the area and a future implementation.

7

Chapter 2

2. State of the Art

In his articles, Teuvo Kohonen first presented the Self-Organising Maps in

1981 (Kohonen, 1981) (Kohonen, 1982). The self-organising feature of this

unsupervised learning algorithm drew the attention of many researchers, who began to

support its development. This neuronal network model could recognize patterns in the

data without suffering external influences from potentially biased agents. Various

researchers have contributed to the advance of SOM, with several studies being done

on the algorithm, solving many of its problems, and improving the basic algorithm.

However, there are still some unsolved problems and cross-cutting issues not only to

SOM but also to various other types of similar neuronal network models.

2.1. SOM Applications

Since its inception, SOM has shown encouraging results in various applications,

from route planning and study of critical infrastructures to Blockchain monitoring

(Lobo, 2009), (Chawathe, 2018). It can also be used in data mining and data

compression (e.g., (Ong & Abidi, 1999)). In addition to the applications mentioned

above, the SOM can also be used for numerous other purposes (V. Lobo, 2009)

(Affonso, 2011).

An example of the application of Kohonen’s self-organized maps, illustrated in

the figure below, is the analysis of poverty in the world, using as input socioeconomic

indicators provided by the United Nations (Kaski, 1997).

8

Figure 3 World Poverty Map (Kaski, 1997)

In the figure above we can see a SOM mapping of different countries (identified

by a three-letter county code) where the relative position and color of each country

depends on correlations in statistical data of those countries. The data consisted of

World Bank statistics of countries in 1992. Overall, 39 indicators describing various

quality-of-life factors, such as state of health, nutrition, etc., were used.

“Countries that had similar values of the indicators found a place near each other

on the map. The different clusters on the map were automatically encoded with different

bright colors, so that colors change smoothly on the map display.” (Kaski,1997)

As a result of this process, each country was in fact automatically assigned a

color describing its poverty type in relation to other countries.

“The poverty structures of the world can then be visualized in a straightforward

manner: each country on the geographic map has been colored according to its poverty

type.” (Kaski,1997)

Another example of the application of SOM is depicted in the figure below,

where a SOM was used to analyze seismic data (Roden, Smith, & Sacrey, 2015).

9

Figure 4 Offshore West Africa 2D seismic line processed by SOM analysis (Roden et al., 2015)

In the figure, each neuron is shown as a unique colour in the 2D colour map.

After training, each multi-attribute seismic sample was classified by finding the neuron

closest to the sample using the Euclidean distance. The colour of the neuron relays on

the seismic sample in the display. According to the authors of the research, SOM

neurons yielded a detailed geologic classification.

2.1.1. Studies on the Magnification Effect of SOM

It is a well-known fact that when SOM maps input data, the density of the SOM

neurons in the output space is not proportional to the density of the input patterns. Thus,

while areas with higher input data density lead to higher density of SOM neurons, the

neurons tend to underrepresent high-density areas and overrepresent lower density

areas. This is called the “Magnification Effect”. In some cases, it is a desirable

characteristic, while it is a drawback in other cases.

(Ritter & Schulten, 1986) was the first relevant study about the magnification

effect on Kohonen’s Self-Organizing Maps. Ritter and Schulten found that the density

of neurons is proportional to a power of the input density and that power is a value lower

than 1, as seen in the equation below. This power is known as the magnification factor,

and Ritter determined that under certain theoretical conditions, that magnification factor

𝛼𝛼 (alpha) is equal to 2
3
.

10

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∝ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 α Equation 1

It was believed to be an excellent one-dimensional approximation for the

relationship between the density of input data and the density of neurons or output data.

This statement was supported by an analytical study of the maps stationary state

equation, for one dimension, and by a simple simulation.

However, Ritter and Schulten found no general local expression regarding the

probability density for the two-dimensional case (Ritter & Schulten, 1986).

Later, the analytical results presented by (Der & Herrmann, 1992) for the

"exponents of magnification" were studied in (Bauer & Der, 1996), concluding that

these exponents would have to be modified to include the effects of the learning rate

control. Bauer & Der intended to control the magnification properties of the self-

organized maps, by minimization of the mean squared error, only adjusting the local

learning rate, while all other parts of the algorithm remained unchanged. To this end,

they took advantage of node-dependent adaptabilities proposed by (Der & Herrmann,

1992) and replaced them in the equation for updating the synaptic weights. The results

of this approach were important, bringing a great analytical contribution to the

understanding of the magnification effect. However, since they studied a modified Self-

Organizing Map which allowed them to control the magnification factor of the output

map, they did not contribute to improve the understanding of the magnification effect

of the “standard SOM” algorithm.

In 2006, Fort developed a mathematical point of view of SOM’s problems that

until then had not been solved (Fort, 2006). Fort studied the magnification effect, but

states that the problem could not be completely solved, and concludes his investigation

presenting an expression to connect the input and output densities based on combining

the results obtained by (Ritter & Schulten, 1986) and (Ritter, 1991).

In 2007, the validity of the self-organizing map (SOM) magnification control

scheme introduced by Bauer and Der was analysed (Merényi, Jain, & Villmann, 2007).

The study had a specific focus on analysing the magnification effect on data for which

Bauer theory does not guarantee success, for instance data that are 2-dimensional. Using

Bauer’s method, a magnification factor was found, but it was different from earlier

assumptions. Merényi made several experiments and concluded that the magnification

factor has an increasing offset on the 2-dimensional SOM.

11

Chapter 3

3. Design of experiments

In this chapter, we describe the development of the experiments with the help of

the SOM toolbox (made available free of charge by the University of Helsinki).

First, we show the hypothesis to be tested and present the fundamental ideas

behind each experiment. Lastly, chapter 4 discusses the results of these experiments.

For the experiments, we chose MATLAB over other software due to the ease of

programming, which prevents from wasting time and effort performing programming

tasks that are not directly related to the problem's solution.

3.1. The one-dimensional case

We want to experimentally test the claims (Ritter & Schulten, 1986) that the

Kohonen’s map output is proportional to the input raised to a power of 2
3
.

We generated different sets of input data with distinct probability distribution

functions for the experiments to observe the magnification effect from various

perspectives. Thus, from regression, we try to extract an exponent that relates the data

input space to the output space of the SOMs.

We performed tests for a uniform distribution and a Heaviside (or step)

distribution.

12

3.1.1. Uniform probability distribution function

In the first experiment, we generated an array of 1000 random values between 0

and 1 with a uniform probability distribution function. Thus, the average density is 1000

points per unit length. We then trained a SOM with 1000 units, using the batch

algorithm, a final radius of 0, and 1000 epochs.

The expected average density of the neurons in the SOM will also be 1000

neurons per unit length. In Figure 5, we show the results obtained. This figure shows

that slight random variation in the input density generates equivalent but attenuated

variations in the output density. There is a subtle “boundary effect” on the edges of the

SOM.

Due to the random variations of the uniform distribution, the standard deviation

amongst the ten bins of data is 0.2941, while the standard deviation amongst the bins of

neurons is 0.2855, which is evidence of the smoothing effect of SOM, even when the

number of neurons is equal to the number of points.

Figure 5 Input vs Output distributions with a random uniform distribution of 1000 data points in the

interval [0,1].

The SOM also has one thousand neurons, and thus the same average density

Figure 5. For comparison, we also generated a rigorously uniform distribution

13

(i.e., uniformly spaced points) and trained a SOM with those points. As can be seen in

the figure, if the input data points are rigorously equally spaced, the SOM units are also

similarly spaced, save for the “boundary effect” at the borders of the SOM (Kohonen,

1982b), and a few rounding effects at the bin’s edges. We could reduce the “boundary

effect” by setting the map shape as toroid or cylinder, as seen in Figure 7. The rounding

effects at the bins borders is because if by chance the coordinates of a neuron coincide

with the edge, it will be included in the previous (if we use “ceiling”) or next (if we use

“floor”) bin. This rounding effect will produce in certain places an increase or decrease

of 1 unit, whatever the density or width of the bins.

Figure 6 Input vs. Output

14

Figure 7 Neuron map initialized with toroid shape.

In this part, we have experimentally shown that if the data points have a uniform

distribution, the neurons will also have an approximately uniform distribution, disturbed

only by the “boundary effect” and by minor rounding effects due to the discreet nature

of the data. Furthermore, we showed that SOM reflects in the output density of the

neurons slight variations made in the input.

15

3.1.2. Heaviside probability distribution function

In this experiment, we generate an array of 1000 random values in the interval

]0,100[with Heaviside1 distribution (or step distribution), which has a discontinuity in

the middle separating two equal-width zones, one with lower and the other with high

data density. For the experiment, we used 100 bins. The first 50 bins had a lower density

value, and the other bins had a high-density value.

Figure 8 Heaviside or step distribution

The lower density zone has 50 data inputs (i.e., 1 point per unit area), and the

high-density one has 950 data inputs (i.e., 19 points per unit area).

The density is expressed in the number of data points in a given length, divided

by that length:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

The lower density zone has a theoretical value of 1, and the high-density zone

has a value of 19.

1 A traditional Heaviside Function has values of 0 in one region and 1 in the other we admit it

here in other values.

16

3.1.2.1. Increasing the training epochs

To see how many training epochs the SOM need to achieve a stable map, we

trained several maps from 1 to 1000 training epochs with the number of training epochs

unitarily increasing. We expect that SOM approaches its equilibrium state long before

reaching one thousand training epochs.

Therefore, the map has linear initialization, 1000 neurons and a Gaussian type of

neighbour function with an initial radius of 1/5 of SOM neurons, i.e., on the first

iteration, SOM updates 200 neighbour neurons, and that number decreases to 0 at the

end of the training epochs. After the experiment, we collected density datasets and used

them to find relationships between the two spaces. We show the results on the graphs

below,

Figure 9 Density of neurons in each of the areas, for different initializations, each with a different (and

increasing) number of epochs. In the vertical axis, the density values presented should be multiplied by

1000 to obtain the true value.

The results vary widely for a few epochs, but for more than 100 epochs, the

results are stable, and thus we used the average of all tests with more than 100 epochs

to compute the final densities. It is utterly reasonable that SOM with fewer training

epochs does not have the necessary “time” to correctly map all the input data. The output

density presented lower values on the higher density zone and higher on the least dense

zone as expected and discussed hereinafter.

17

3.1.2.2. Variations in data and neuron densities.

To establish relationships between input data density and output neuron density,

we analysed the results obtained in the previous subchapter and compared them with

those obtained with different densities. In particular, while still using Heaviside

distributions, we used input densities of 1 versus 19, then 2 versus 18, and finally 7

versus 13. We show the results obtained for these three experiments in tables 1 to 3.

Table 1 Density of data and neurons in the experiments with a Heaviside distribution of data with 50

points in one area and 950 in the other (1 and 19 data points/unit length). The values presented are

averages over 2000 training runs.

 Original Data
Density Probability
Function (Low
density)

Neurons Density
Probability Function
(Low density)

Original Data Density
Probability Function
(High density)

Neurons Density
Probability Function
(High density)

Min 1 1.4 19 17.3

Mean/Std 1 2.0 ± 0.1871 19 17.8 ± 0.1835

Max 1 2.4 19 18.4

Since previous experiments established the convergence properties, for the

remaining experiments we trained only 400 SOMs, with training epochs increasing from

100 to 500.

Table 2 Density of data and neurons in the experiments with a Heaviside distribution of data with 100

points in one area and 900 in the other (2 and 18 data points/unit length). The values presented are

averages over 400 training runs.

 Original Data Density
Probability Function
(Low density)

Neurons Density
Probability Function
(Low density)

Original Data Density
Probability Function
(High density)

Neurons Density
Probability Function
(High density)

Min 2 3.3 18 16.1

Mean 2 3.5 ± 0.1574 18 16.3 ± 0.1545

Max 2 3.6 18 16.5

18

Table 3 Density of data and neurons in the experiments with a Heaviside distribution of data with 350

points in one area and 650 in the other (7 and 13 data points/unit length). The values presented are

averages over 400 training runs.

 Original Data Density
Probability Function
(Low density)

Neurons Density
Probability Function
(Low density)

Original Data Density
Probability Function
(High density)

Neurons Density
Probability Function
(High density)

Min 7 7.8 13 11.9

Mean 7 7.86 ± 0.0712 13 12.1 ± 0.0799

Max 7 7.9 13 12.2

As we can see, the standard deviation is relatively low, and the extreme values

are not significantly different. Therefore, we will use only the mean value of density

obtained in further calculations.

If Ritter’s relation (Ritter & Schulten, 1986) holds, then we would have in all

cases:

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐾𝐾 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝛼𝛼 Equation 2

If for each case we solve for 𝐾𝐾 and 𝛼𝛼, we obtain the results presented in table 4,

where we can see that Alpha varies between 0.67 and 0.69, which is relatively close to

Ritter’s value of 0.667.

Table 4 Average magnification constants and exponents for each SOM aforementioned

Experiments with
Heaviside Distribution

INPUT
(Low

density)

INPUT
(High

density)

OUTPUT
(Low

density)

OUTPUT
(High

density)

𝐾𝐾 𝛼𝛼

50 points in one area and 950
in the other

1 19 2 17.8 2.411 0.6759

100 points in one area and 900
in the other

2 18 3.5 16.3 2.336 0.6733

350 points in one area and 650
in the other

7 13 7.86 12.1 2.073 0.6913

19

To investigate the influence of the difference between the zone’s densities of the

Heaviside distribution, we calculated the magnification factor and magnification

constant from several experiments. First, starting with a step distribution with a ratio of

1/50 in the first zone and 950/50 in the other, bringing the two densities unitarily closer

on each run until reaching the limit case, which is equivalent to the uniform distribution,

i.e., 499/50 in the first zone and 500/50 in the second. Subsequently, we plotted the

relationship between the difference of the two density zones versus the 𝛼𝛼 and versus K,

Figure 10 Behaviour of magnification factor for different Heaviside input amplitudes

20

Figure 11 Behaviour of magnification constant for different Heaviside input amplitudes

In the figure above it is important to note that the difference between density

zones is represented by the quantity of data in the given length, and we make it unitarily

vary on each experiment, also the Y-axis is in logarithmic scale, i.e., log(K), due to

extremely high values when the Heaviside is closer to the Uniform distribution.

As we can see, the average Alpha was about 0.6468 ± 0.0229 and the average

𝐾𝐾 = 2.4353 ± 0.2374. These values were obtained not considering the fifty first

experiments because the distribution is quite similar to the uniform distribution, and the

relationship does not hold. It happens because the neuron density zones tend to flip on

the output when the density zones are quite the same, causing very often for the low-

density zone to turn onto high-density or vice-versa. It disrupts the equation modelled

for the cases when the magnification effect does not turn low-density zones more

accentuated than the higher ones on the output and vice-versa.

From these experiments, we conclude that the relation of densities stated in

Equation 1 will only produce reliable results when the ratio between the densities is

between 1.4 to 17 times higher or lower than the other in comparison.

21

Figure 12 Magnification factor with respect of the ratio between different density levels

Figure 13 Magnification constant with respect of the ratio between different density levels

22

Following the investigation, we now calculate the initial radius.

Figure 14 Several experiments each with different initial radius. Analysing the behaviour of

magnification factor for different Heaviside input amplitudes.

Figure 15 Several experiments each with different initial radius. Behaviour of magnification constant

for different Heaviside input amplitudes

From the experiments, we can confirm that 𝛼𝛼 varies along with the initial radius.

It is possible to perceive that the more significant the difference between the amplitudes

of the zones of the Heaviside distribution, then the more considerable influence the

radius will have on the 𝛼𝛼 regardless of the other parameters, and for the cases in which

23

the initial radius is too small the effect is powerful causing it to converge by force. We

suspect that this may occur because when the initial radius is too small and the difference

between densities is high on the lower density zone it may do not even have a single

neuron or very few. However, we opt to let this for further investigation.

For the extreme case in which the initial radius is equal to 1/500 of the total

number of neurons, we have a neighbourhood of only two neurons (in a total of 1000

neurons), so, naturally, SOM cannot converge (or it takes a long time). On the other

hand, we verify that 𝛼𝛼 is almost independent of the initial radius when we consider large

values, i.e., equal or greater than 1/5 of the total number of neurons.

3.1.2.3. Increasing the neurons

The next experiment was to find a relationship between the number of neurons

and the density variation between the input layer and the output fixing all the parameters

and varying the total number of neurons. For this experiment, we used an array of 1000

random values in]0,100[, linear initialization, an initial radius of 1/5 of neurons, final

radius 0 and 1000 epochs. We increased the number of neurons linearly from 1 to 2000

with a step of 1. Then, we computed the density of neurons in both areas of the Heaviside

function.

We show the results in the graphs below,

Figure 16 Neuron density (measured in relative frequency) vs. number of neurons, in both areas of the

Heaviside function.

24

From the figures above, it is clear that there are three distinct behaviours:

1) If the number of neurons is less than 100 (10% of the data), the results are

unreliable. The “winner takes (almost) all” characteristic of the SOM leads to the higher

density area having almost all the neurons.

2) If the number of neurons is more than 100 (10% of the data), but less than 400

(40% of the data), the density of neurons in all input space is more or less uniform,

irrespective of the input data density.

3) If the number of neurons is higher than 400 (40% of the data), the neuron

density converges rapidly (and exponentially) to the values predicted in our

approximations.

Although increasing the number of neurons makes SOM converge to the

theoretical density, it does seem that the magnification factor is inversely proportional

to the number of neurons. However, we chose not to explore this relationship. Also, the

output density function appears to converge exponentially, but a more rigorous analysis

would be necessary to confirm this hypothesis.

Figure 17 Magnification factor vs. number of SOM Neurons, the magnification factor did not vary too

much with the increase of neurons, and since this we can assume that it is independent of the quantity of

neurons for values greater than 100.

25

Figure 18 Magnification constant vs. Number of SOM Neurons

From the experiments above, it is possible to verify that the increasing of neurons

did not influence the magnification factor. This fact can bring light to a possible non-

relation between these two parameters.

Also, we could experimentally verify that K and the total number of neurons have

a linear relationship, as expected.

𝐾𝐾 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 0.0026.

In this case, 0.0026 stands for the derivative (or the slope) of K with respect to

the number of neurons. In the figure below, we can see the linear function that best fits

the data.

26

Figure 19 Magnification constant vs. Number of SOM Neurons

We show below, in a table, the alpha and K values for the different amounts of

neurons.

Table 5 α and K Values

Experiments with Heaviside
Distribution

Average 𝐾𝐾and 𝛼𝛼 values

𝐾𝐾 𝛼𝛼
From 50 to 500 neurons 0.726 0.6449

From 500 to 1000 neurons 1.9739 0.6482

From 1000 to 1500 neurons 3.291 0.6483

From 1500 to 2000 neurons 4.6022 0.6485

27

3.1.3. Multiple Step probability distribution function

Very analogous to the previous subchapter, here we want to estimate the value

for the magnification factor, but for the case where there are multiple areas with different

densities. It is reasonable to expect that the results do not differ much from those

previously obtained. For this, in this experiment, we generate an array of 1000 random

values in the interval]0,100[with multiple-step distribution, which has discontinuities

separating four equal-width zones, ones with lower and the others with high data

density. For the experiment, we used 100 bins; we divide the space into four zones and

randomly distribute the lower density values and the high-density ones.

Figure 20 Multiple Step Distribution

We express the density as the number of data points in each length, divided by

that length as follows the equation:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

28

3.1.3.1. Increasing the training epochs

For further experiments, let us consider the following system of equations,

�

𝑑𝑑1 = 𝐾𝐾 ∗ 𝑤𝑤1
𝛼𝛼

𝑑𝑑2 = 𝐾𝐾 ∗ 𝑤𝑤2
𝛼𝛼

𝑑𝑑3 = 𝐾𝐾 ∗ 𝑤𝑤3
𝛼𝛼

𝑑𝑑4 = 𝐾𝐾 ∗ 𝑤𝑤4
𝛼𝛼

Where 𝑑𝑑𝑖𝑖 is the output density on area i, 𝐾𝐾is the magnification constant and 𝑤𝑤𝑖𝑖

the input density on area i. After solving the equations for 𝛼𝛼 and 𝐾𝐾, we get the following

expressions:

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛼𝛼1 =
log �𝑑𝑑1

𝑑𝑑2
�

log �𝑤𝑤1
𝑤𝑤2

�
 ∨ 𝛼𝛼2 =

log �𝑑𝑑1
𝑑𝑑3

�

log �𝑤𝑤1
𝑤𝑤3

�
∨ 𝛼𝛼3 =

log �𝑑𝑑1
𝑑𝑑4

�

log �𝑤𝑤1
𝑤𝑤4

�
∨ 𝛼𝛼4 =

log �𝑑𝑑2
𝑑𝑑3

�

log �𝑤𝑤2
𝑤𝑤3

�
∨ 𝛼𝛼5 =

log �𝑑𝑑2
𝑑𝑑4

�

log �𝑤𝑤2
𝑤𝑤4

�
∨ 𝛼𝛼6 =

log �𝑑𝑑3
𝑑𝑑4

�

log �𝑤𝑤3
𝑤𝑤4

�
𝛼𝛼1 = 𝛼𝛼2 = 𝛼𝛼3 = 𝛼𝛼4 = 𝛼𝛼5 = 𝛼𝛼6

 𝐾𝐾𝑖𝑖 =
𝑑𝑑𝑖𝑖

𝑤𝑤𝑖𝑖
𝛼𝛼

Figure 21 Magnification factors for multiple input step distribution considering the increase of training

epochs.

From the experiment above, it is possible to perceive that the values of 𝛼𝛼3

(represented in yellow) have a large dispersion; this happens since we calculate the

magnification factor considering two similar average densities (𝑑𝑑1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑4). Also,

29

according to the resulting graph, we can say that alpha does not vary with the increase

of training epochs since all 𝛼𝛼𝑖𝑖 approximately converge to the same value.

Table 6 α values

Experiments with multiple step
Distribution

𝜶𝜶𝟏𝟏 0.6955±0.0194

𝜶𝜶𝟐𝟐 0.6123±0.0352

𝜶𝜶𝟑𝟑 0.7256±0.0858

𝜶𝜶𝟒𝟒 0.6454±0.0197

𝜶𝜶𝟓𝟓 0.6858±0.02439

𝜶𝜶𝟔𝟔 0.6208±0.0297

Considering the equations above, we calculated the alpha in each of the one

thousand experiments generated for the one-dimensional case. Therefore, we conclude

that the value for the magnification factor is 𝛼𝛼 = 2
3
, or more precisely 0.6654 ± 0.0357,

which is the same as Ritter’s assumptions for 1D SOM.

30

3.1.3.2. Increasing the number of neurons

In this subchapter, we want to explore the influence in the magnification factor

by increasing the total number of SOM neurons and extract the average magnification

factor that is a solution to the equations stated in the previous subchapter. For this

experiment, we fix all parameters, we set the training epochs at 500, and on each run,

we increase the number of SOM neurons by one. Further, we analyse the behaviour of

𝛼𝛼 with respect to the number of neurons. We expect a similar behaviour as in the earlier

subchapter.

Figure 22 Magnification factors for each experiment vs. the increase of neurons

In the figure, it is possible to note that 𝛼𝛼3(the yellow dots) has high dispersion,

when related to the other magnification factors; this happens because we calculate this

parameter considering two similar average densities (𝑑𝑑1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑4).

As it is possible to see, the magnification factor tends to converge to the same

value aforementioned 0.6654 ± 0.0357. As a result, this set of experiments confirmed

that for the one-dimensional case, the magnification factor is in fact equal to 2
3
.

31

3.2. Two-dimensional input data

In subchapter 3.1 we experimentally showed the magnification effect on 1-D

data. We want to verify a similar behaviour for two-dimensional data using a similar

method; we initialise SOM and train it, insert the input data, and correlate the density of

input data with the SOM neurons density to generate an “exponent” magnification factor

𝛼𝛼. In this experiment, we additionally expect to find a relationship between

unidimensional and two-dimensional magnification factors.

We generate two sets of experiments, one with two different density areas and

the other with four distinct density areas. Once again, we fixed most of the parameters

and analysed them one case at a time.

3.2.1. Two Different Density Areas

We opt to generate a rectangular input data map with two equally-width areas,

each with a different input data density. The first zone (on the left) has 85 blue dots and

the second zone with 15 dots in magenta, totalling 100 input data points, as illustrated

in Figure 23.

Figure 23 2D Input data

32

We calculated the density values according to the following expression
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
 , and we present in the next table,

Table 7 2-D Experiment Average Densities

Average Density

Data Area 1 Area 2

Input 0.034 0.006

Output (neurons) 0.0316 0.0084

We initialise SOM on sequential training with 100 neurons in a 10 ∗ 10 lattice.

Figure 24 SOM neurons (represented in black dots) adjusting to input data. The black dots show

positions of map units, and the grey lines show connections between neighbouring map units.

33

In this experiment, we realised that the SOM magnification factor on 2-D

behaves slightly differently compared to the one-dimensional case.

We show in the figure below the variations of density on the input to the output.,

Figure 25 Variations on average density on the input (blue line) to the output (orange line).

As shown in the figure above, the magnification effect is still present in the 2-D

case (magnifying the low-density areas and "demagnifying" high-density areas), the

same as in the 1-D case. We follow the method used in the previous chapter to calculate

the magnification factor, i.e., calculating the solutions for the equations mentioned

above to find 𝐾𝐾 and 𝛼𝛼 in each of a total of one thousand experiments.

Figure 26 Magnification factors for 2-D (10x10 neurons grid)

34

Table 8 Average α and K

Average 𝜶𝜶 and 𝑲𝑲 from the
experiment

𝜶𝜶 𝑲𝑲

0.7875 0.4724

However, we believe that these results may suffer from the curse of

dimensionality (Bellman, 2015). Due to this, we understand that having more input data

and neurons will bring better results.

To avoid the dimensionality curse, we increase the input data points and initialise

SOM with a 25x40 neurons grid. We trained SOM with the same parameters

abovementioned and depict the results in the figure below,

Figure 27 Magnification factors for 2-D SOM (25x40 neurons grid)

The figure above shows that the magnification factor rounds around 0.8166 with

a standard deviation of 0.043. We notice that the standard deviation is lower for this

case, a variation of 5.26% in the average value found for the magnification factor.

35

The magnification constant were as follows,

Figure 28 Magnification constant on each experiment.

Resulting on an average 𝐾𝐾 = 0.778 with standard deviation of 0.0483,

representing 6% of average 𝐾𝐾 value variation.

With these results we can say that for this specific case the magnification factor

is around 0.8166 ± 0.043 which is equal to �2
3
.

3.2.1.1. Increasing the amount of neurons

We want to realize whether increasing the neurons on the two-dimensional SOM

will influence the convergence of the original density value, comparable to the earlier

chapter. To do this, we took advantage of the two equally-width areas data distribution

generated in the previous subchapter. We fixed all remaining values, except for the

number of neurons on the SOM grid.

We used a rectangular-shaped grid with 𝑁𝑁𝑁𝑁𝑁𝑁 neurons; initially, we generated a

grid with thirty-five neurons, i.e., 7 x 5, then we increased the number of neurons in

each next experiment. In this set of experiments, we expect SOM to converge rapidly.

36

Figure 29 First run, with 35 neurons and 100 data points.

Figure 30 Last experiment, with 1024 neurons.

Looking at the resulting data, we find that the magnification factor is around

0.8833 ± 0.057, slightly higher than the one found for 1-D. Although this value is not

37

precise, and it is a mean value from all the sets of experiments with the number of

neurons increasing, we observed the influence of increasing neurons. From these results,

we can verify that the SOM does not converge asymptotically with the increase of

neurons as 1-D does.

Surprisingly, the density values at the output are very discrepant each time the

number of neurons increases, which can mean that at 2-D, the number of neurons will

take considerable influence on magnification factor or (SOM’s output representation),

and it is more significant than on 1-D.

Table 9 Average α and K

Average 𝜶𝜶 and 𝑲𝑲 from the
experiment

𝜶𝜶 𝑲𝑲

0.8833 3.6274

38

3.2.1.2. Increasing the training epochs

In the previous subchapter, we fixed all parameters and changed only the SOM

neurons to understand that parameter’s influence. Although we used the sequential

algorithm to train SOM during these experiments, we did not work with epochs but with

single sample iterations. Therefore, to compare with previous results, the number of

iterations has to be (a previous number of epochs) * (the number of data points).

Here, we trained the SOM in batch mode; the input data varies on each

experiment but not the density. Thus, we increase the number of epochs in each

experiment. We present the results afterwards and compare them to the ones analysed

before.

We want to verify for how many training epochs the map converges to its

equilibrium state. For this, we fixed all the remaining parameters and unitarily increased

the training epochs on each experiment. Subsequently, from the experiments, we can

extract the magnification factor.

Considering the average value of all of the 1500 resulting magnification factors 𝛼𝛼

calculated, starting from 500 training epochs (which in this experiment we ponder on

39

being a fair minimum value for this training parameter) to 2000 training epochs, we can

verify that 𝛼𝛼 = 0.8316 ± 0.05 which is approximately equal to �2
3
.

3.2.2. Four Different Density Areas

In this experiment, we generate a rectangular shaped 2-D data point distribution

with four different density areas. We opt to generate a rectangular input data map with

four equally-width areas, each with a different input data density. In the figure below,

we show 20 blue dots in the first area (in the top left corner), the second (in the top right

corner) with 210 dots in magenta, the third (in the bottom left corner) with 70 red points

and the fourth area (in the bottom right corner) with 700 green points totalling 1000

input data points.

Figure 31 2D Input data distributed on 4 areas.

40

We calculated the density values according to the following expression
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
 , and we presented the values in Table 10,

Table 10 Average Density

Area 1 Area 2 Area 3 Area 4

0.008 0.084 0.028 0.28

The SOM is initialised on sequential training with 1000 neurons in a 25 ∗ 40

lattice.

Figure 32 SOM neurons (represented in black dots) adjusting to input data.

The black dots show positions of map neurons, and the grey lines show

connections between neighbouring map neurons.

41

In the figure below we show the variations of density in the input to the output,

Figure 33 Variations on average density on the input (blue line) to the output (orange line).

Now we write a system of four equations to find, 𝐾𝐾 and 𝛼𝛼, the solution to each

experiment.

Figure 34 Magnification factors for 2-D SOM (4 areas)

42

Since we fixed the input data values, we consider that increasing the number of

experiments would only prove what we already demonstrated earlier. Furthermore, it is

possible to see in Figure 35 that the 𝛼𝛼4 had dispersed values; this happens since the two

density differences are not significant to verify the effect, and consequently, we discard

these values when calculating the magnification factor on this case..

Figure 35 Magnification constants for 2-D SOM (4 areas)

Table 11 Average αand K

Average 𝜶𝜶 and 𝑲𝑲 from the
experiment

𝜶𝜶 𝑲𝑲

0.827±0.0506 0.9767 ±0.148

We can perceive from the results above that the magnification factor rounds

around 0.827 with a standard deviation of 0.0506. We can see that the standard deviation

is lower for this case, representing a variation of only 6.11%. The experiment also

resulted in an average K=0.97 with a standard deviation of 0.148, representing 15.25%

of the average K value variation.

Once more, with these results, we can say that for this specific case, the

magnification factor is approximately �2
3
.

43

3.3. Three-dimensional input data

In this subchapter we calculate the magnification factor on three different sets of

experiments, all with 3-dimensional input data. The input data has a random uniform

distribution with different densities in two distinct areas in all three experiments. The

output representation of SOM will vary according to the experiment. The first

experiments will train a 3D SOM, the second a 2D SOM and the last a 1D SOM. The

magnification factor calculations will proceed using the same method as in the previous

subchapters.

3.3.1. Calculating the magnification factor

In this set of experiments, we generated a three-dimensional random uniform

distribution data with two different area densities. Then, we trained a SOM and

calculated the magnification factor according to Equation 1.

In the experiments, we set the input data points to 9950 on the higher density

zone vs 50 on the lower density zone. Therefore, we fixed the training epochs at 500

and the neighbourhood radius went from 1/5th of the number of neurons to 0.

We show the results of the set of experiments in the following table,

Table 12 Average α and K for the three-dimensional set of experiments

Input dimension/Output dimension 𝜶𝜶 𝑲𝑲

3D to 3D 0.9391 ± 0.0253 0.4286 ± 0.0278

3D to 2D 0.8793 ± 0.0279 0.5956 ± 0.0436

3D to 1D 0.8315 ± 0.0157 0.3243 ± 0.0134

We can realise that for the 3D to the 2D case, we have 𝛼𝛼 ≅ �2
3

3 .

Thus far, we have found evidence that 𝛼𝛼 has a value that is around �2
3

𝑓𝑓(·)
, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓(·

) being a function of the dimension of the SOM grid, the dimension of the input data

and output neurons grid. Although 𝑓𝑓(·) depends on many variables, the most important

one is the dimension of the input data 𝑛𝑛 so in many expressions we may approximate

𝑓𝑓(·) by n. Consequently, considering the previous expression, we can present the

following law, which is a small adjustment to Ritter’s assumptions,

44

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∝ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �2
3

𝑛𝑛

We should note that for 1D data and 1D SOM, 𝑓𝑓(·) ≈ n = 1 and the equation is

exactly what Ritter proposed.

Notwithstanding, the expression above has shown promising results.

Nevertheless, we have proved that alpha varies with the input data dimensionality and

varies according to the SOM grid dimension, the number of neurons, the training

epochs, and the initial and final neighbourhood radius. Hence, to achieve better results,

is important to consider all those abovementioned parameters.

Therefore, 𝑓𝑓(·) must be a multivariable function which depends on each of the

stated parameters.

𝑛𝑛 = 𝑓𝑓(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠, 𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑖𝑖, 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆)

We propose three methods to find a solution:

• First: To train an ANN to find the function 𝑓𝑓(·) that interpolate the

experiment evidence for all the dimensions, or at least for a substantial

number of dimensions.

• Second: To calculate the function 𝑓𝑓(·) using non-linear regression

algorithms.

• Third: To try to derive analytically (or guess) the right expression for

𝑓𝑓(·), and in this case, we believe that a set of assumptions will need to be

made in order to extract a feasible solution.

However, we will let this problem for a future investigation, and settle with the

empirical equation of �2
3

𝑛𝑛 that we postulated and verified in our experiments.

45

Chapter 4

4. Testing the new magnification factor rule in a

SOM based Cartogram

To ascertain the validity of the magnification law derived from our experiments,

we opt to show an example of SOM implementation that could be corrected if using the

magnification factor found.

4.1. Angola Cartogram using Carto-SOM

In this experiment, we generated cartograms based on the Carto-SOM algorithm

(R. Henriques, 2009) to produce a 2-D cartogram of Angola’s population.

First, we applied the Carto-SOM using the real population density. Afterwards

we corrected the population to be used in the Carto-SOM algorithm, using our law, in

an attempt to obtain a better cartogram.

We compensate the magnification effect using the magnification law derived

earlier in this work. For the experiment, we collected Angola’s administrative

boundaries data from Data Catalog Website (Admin, 2019). The geodetic data of the

administrative boundaries are in a cartesian system (EPSG:32733) (Wikipedia, 2021).

The EPSG is a Geodetic Parameter Dataset created by the International Association of

Oil and Gas Producers (IOGP). It is a public archive of geodetic datums which is

basically used to define coordinate reference systems and transformations for mapping.

For this experiment we generated and randomly distributed uniform data points,

proportional to the population in a given region, across all the Angolan map. Since the

population numbers in each region are vast, and to spare unnecessary computational

effort we use just a percentage of the real population dataset as input data. We know

that the number of neurons is by far one of the parameters that most influences the

magnification on SOM, as shown in the previous chapters, and thus we concluded that

using several neurons equivalent to more than 40% of the total data points should be

sufficient to bring satisfactory results.

http://riskprofilesundrr.org/layers/geonode:ago_administrative_boundaries_level_1_1/metadata_detail

46

To see the magnification effect, we will look to the data densities of each region

and then, after training the SOM, we will compare input data density to the density of

neurons. Since for this case we will work with 2-D input data to 2-D neuron grid,

according to our expression found in chapter 3, it is expected to find a magnification

factor of 𝛼𝛼 ≅ �2
3
. We will first run some experiments to investigate this assumption and

then use the relation that was found earlier to correct the population thus obtaining a

better cartogram.

Angola has 18 regions, but as a matter of computational simplification we will

consider only 17 of them (we excluded Cabinda because it is an enclave in the Congo

and separated from the main territory) plus 3 new regions which we called “South

Atlantic, Congo and Zambia” (see Figure 36). These 3 new regions have density that is

equal to the country average demographic density. They are important in order to

generate a rectangular map and let the original map of Angola be identifiable as usually

happens when creating cartograms.

Figure 36 - Map of Angola used to produce the cartogram

47

Angola’s demographic data was collected from the 2014 census published by

Instituto Nacional de Estatística (INE) and can be obtained in https://bit.ly/3kBQP8m.

The capital Luanda is by far the most densely populated city in Angola so the map will

distort, and the city of Luanda will be the most prominent of all. In the table of appendix

C we show all Angola regions as well as their population and population density.

Using this data we used the Carto-SOM algorithm and obtained the cartogram

showed in Figure 37.

Figure 37 - Angola Cartogram using Self-organizing Map

This cartogram is a reasonable depiction of the Angola’s population but there are

some inaccuracies. In the figure above we can see that Cunene was split in two. That

happens because that province has one of the lowest demographic densities and it was

“smacked” by his neighbour Huíla that its far denser. It is also evident for who knows

Angola that while Luanda and Benguela have a large area it is not proportional to their

true and very large population.

https://bit.ly/3kBQP8m

48

After this first cartogram, we set up our way to compensate the magnification

factor and try to build a perfect cartogram of Angola based on the law that we derived.

The idea is to correct the provinces original densities so that when the SOM is trained

the magnification would help give a more realistic representation of the map. To this

end we postulate the following relation,

 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 ∗ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝛼𝛼 = 𝑑𝑑𝑖𝑖𝑛𝑛 Equation 3

Where, 𝑑𝑑𝑖𝑖𝑖𝑖 is the province original input density and 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the density

desired to compensate the magnification on the map. As we know from our earlier

experiments, in this case 𝛼𝛼 should be equal to �2
3
 and K is approximately 0.91. We

manipulate the equation above and calculate the corrected densities for each region,

 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑑𝑑𝑖𝑖𝑖𝑖
𝐾𝐾

𝛼𝛼
 Equation 4

Finally, we produce the corrected Angola cartogram as shown in the projection below,

Figure 38 Angola's corrected cartogram using the magnification law

As we can see, the capital city Luanda holds the most space in the map due to its

populational density and caused the northern provinces Bengo and Zaire to compress.

Also, now despite Huíla being denser than Cunene it is not sufficient to make that region

49

split. The topographic appearance of the map is perfectly recognizable, but it has a

strong distortion due to variations in the true population density. The borders would be

smoother and “nicer” if we used a Geographic Information System (GIS) program such

as ArcGIS to obtain a better tessellation.

50

51

Chapter 5

5. Conclusions

The study of the magnification effect is a very complex matter because of the

number of parameters to be analysed simultaneously. Due to this, we chose to fix the

maximum number of parameters and observe a given parameter's influence on the

magnification factor. It was possible to experimentally verify the value that until now

had only been demonstrated analytically by Ritter & Schulten with many

approximations and assumptions.

The expression 𝑑𝑑𝑖𝑖 = 𝐾𝐾 ∗ 𝑤𝑤𝛼𝛼 proved to be powerful enough to study the

magnification effect on one dimension. However, the self-organising feature of the

algorithm produced a statistical standard deviation on the set of experiments.

Unfortunately, we could not eliminate this statistical variation, but it had small values

in practice. Nevertheless, these variations make the exact calculation of the

magnification factor impossible (it only has a statistical value).

For small numbers of neurons, the numerical computation of 𝛼𝛼 is very unstable

but converges rapidly as the number of neurons increases. Above a specific value (in

our case, 100 neurons for the Heaviside distribution), the magnification factor converges

and does not vary with increasing the number of neurons.

As expected, we verified that the number of neurons is directly proportional to

the constant K. However, some questions are still unexamined as the influence of the

increase of neurons to one dimension has a moment where magnification stabilises

regardless of the increase in neurons.

Several experiments done and depicted in appendix B evidenced that there must

be a relationship between the neighbourhood function initial radius and the number of

neurons for the one-dimensional case. Therefore, we conclude that the value for the

initial radius should be approximately equal to 20% of neurons for better results.

We consider the study of the magnification effect on one-dimension only didactic

since it is better to study the effect on multidimensional cases where a precise analysis

52

is very needed. The results for 1-D were good to the extent that it was approximately

equal to the value found analytically by Ritter.

As expected, the two-dimensional SOM brought more difficulties, due not only

to the increase of one dimension but also because of the coding complexity. However,

a magnification factor of �2
3
 was found and tested, giving reliable results for the two-

dimensional experiments.

The three-dimensional SOM analysis brought light to a magnification factor

convergence law. After various experiments were analysed and several calculations

done, 𝛼𝛼 was found to be approximately equal to �2
3

𝑓𝑓(·)
 , i.e., there is evidence that the

magnification factor is proportional to 2
3
 raised to the power of 1

𝑓𝑓(·)
 , where 𝑓𝑓(·)“ is the

function of multiple parameters such as the number of neurons, training epochs, initial

radius, final radius, input data dimension, output representation dimensions, etc.

Fortunately, 𝑓𝑓(·) can be approximated reasonably well by simply the dimension of the

input space (n).

For the more useful multidimensional cases, i.e., when the input space is n-

dimensional, where no analytical derivation is known, we showed that the magnification

rule derived by Ritter still holds, but with a magnification factor that instead of being 2
3

is approximately the n-root of 2/3, where n is the dimension of the input data:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∝ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �2
3

𝑛𝑛

This result holds quite well when the output space has dimension 2 and can be

used with relative certainty. If the output space is the same as the input space (in 3D and

4D mappings), there is a slight deviation, and the magnification factor is higher.

In future work we intend to perform more experiments and derive an empirical

function that considers factors such as dimensions of both spaces, the number of neurons

and training parameters, and asymmetries in the input densities, to derive a

magnification law similar to:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∝ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �2
3

𝑓𝑓�𝑡𝑡𝑒𝑒,𝑟𝑟𝑖𝑖,𝑟𝑟𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆�

53

In chapter 4 we created a version of the Angola’s population cartogram with

SOM, and afterwards corrected the cartogram. We showed that the magnification effect

can be compensated using the relationship found in this work. As far as we know this is

the first SOM based cartogram of Angola, and one of the very few ever made using any

algorithm.

We have sent an article based on this discovery to the International Conference

on Intelligent Data Engineering and Automated Learning (IDEAL) in Manchester, and

we wait for acceptance.

All the code developed as well as the files created are placed in my GitHub

repository Edson Bastos (2021). https://github.com/MoreiraBastos/Study-of-the-

Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-

With these results, we have shown that the magnification effect exists in all SOM

and can be predicted (and thus considered or corrected) in more general practical cases.

https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-
https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-

55

Bibliography

Admin, C. (2019). AGO Administrative Boundaries Level 1. Retrieved from
http://riskprofilesundrr.org/layers/geonode:ago_administrative_boundari
es_level_1_1/metadata_detail

Affonso, G. S. J. A. A. à. u. d. S. P. (2011). Mapas Auto-organizáveis de Kohonen
(SOM) aplicados na avaliação dos parâmetros da qualidade da água.

Bação, F., Lobo, V., & Painho, M. J. S.-O. M. a. i. g. i. s. (2008). Applications of
different self-organizing map variants to geographical information science
problems. 21-44.

Bauer, H.-U., & Der, R. J. N. c. (1996). Controlling the magnification factor of
self-organizing feature maps. 8(4), 757-771.

Bellman, R. E. (2015). Adaptive control processes: a guided tour: Princeton
university press.

Calitoiu, D., Oommen, B. J., Nussbaum, D. J. I. T. o. S., Man,, & Cybernetics, P.
B. (2007). Desynchronizing a chaotic pattern recognition neural network
to model inaccurate perception. 37(3), 692-704.

Campoy, P. (2009). Dimensionality reduction by self organizing maps that
preserve distances in output space. Paper presented at the 2009
International Joint Conference on Neural Networks.

Chawathe. (2018). Monitoring Blockchains with Self-Organizing Maps.
doi:10.1109/TrustCom/BigDataSE.2018.00283

Choraś, M., & Pawlicki, M. (2020). Intrusion detection approach based on
optimised artificial neural network.

Der, R., & Herrmann, M. (1992). Attention based partitioning.
Fort, J.-C. (2006). SOM’s mathematics. Neural Networks, 19.

doi:https://doi.org/10.1016/j.neunet.2006.05.025
Gorricha, L. (2009). Visualization of Clusters in Geo-referenced Data Using

Three-dimensional Self-Organizing Maps. (Master in Statistics and
Information Management), Universidade Nova de Lisboa,

Gorricha, L. (2015). Exploratory data analysis using self-organising maps
defined in up to three dimensions. (Doctor), Universidade Nova de Lisboa,

Kaski, S. (1997, September,1997). Example of application of the SOM: World
Poverty Map. Example of application of the SOM: World Poverty Map.
Retrieved from http://www.cis.hut.fi/research/som-
research/worldmap.html

Khashman, A. (2009). Application of an emotional neural network to facial
recognition. 18(4), 309-320.

http://riskprofilesundrr.org/layers/geonode:ago_administrative_boundaries_level_1_1/metadata_detail
http://riskprofilesundrr.org/layers/geonode:ago_administrative_boundaries_level_1_1/metadata_detail
https://doi.org/10.1016/j.neunet.2006.05.025
http://www.cis.hut.fi/research/som-research/worldmap.html
http://www.cis.hut.fi/research/som-research/worldmap.html

56

Kohonen, T. (1974). An adaptive associative memory principle. 100(4), 444-445.
Kohonen, T. (1982a). Analysis of a simple self-organizing process. 44(2), 135-

140.
Kohonen, T. (1982b). Self-Organized Formation of Topologically Correct

Feature Maps. Biological cybernetics, 43(1), 59-69. doi:Doi
10.1007/Bf00337288

Kohonen, T. (2001). Self-Organizing Maps (3 ed.): Springer-Verlag Berlin
Heidelberg.

Krakovsky, R., & Forgac, R. (2011). Neural network approach to
multidimensional data classification via clustering. Paper presented at the
2011 IEEE 9th International Symposium on Intelligent Systems and
Informatics.

Li, S., & Li, Y. J. I. t. o. c. (2013). Nonlinearly activated neural network for
solving time-varying complex Sylvester equation. 44(8), 1397-1407.

Lobo, V. (2002). Ship Noise Classification - A contribution to prototype based
classifier design.

Lobo, V. (2009). Application of Self-Organizing Maps to the Maritime
Environment.

Lobo, V. J. (2009). Application of self-organizing maps to the maritime
environment. In Information Fusion and Geographic Information Systems
(pp. 19-36): Springer.

Ma'Sum, M. A., Arrofi, M. K., Jati, G., Arifin, F., Kurniawan, M. N., Mursanto,
P., & Jatmiko, W. (2013). Simulation of intelligent unmanned aerial
vehicle (uav) for military surveillance. Paper presented at the 2013
international conference on advanced computer science and information
systems (ICACSIS).

Merényi, E., Jain, A., & Villmann, T. (2007). Explicit Magnification Control of
Self-Organizing Maps for “Forbidden” Data. IEEE Transactions On
Neural Networks, 18.

Moghaddam, A. H., Moghaddam, M. H., Esfandyari, M. J. J. o. E., Finance, &
Science, A. (2016). Stock market index prediction using artificial neural
network. 21(41), 89-93.

Nikkilä, J., Törönen, P., Kaski, S., Venna, J., Castrén, E., & Wong, G. J. N. n.
(2002). Analysis and visualization of gene expression data using self-
organizing maps. 15(8-9), 953-966.

Ong, J., & Abidi, S. S. R. (1999). Data Mining Using Self-Organizing Kohonen
Maps: A Technique for Effective Data Clustering & Visualization. Paper
presented at the IC-AI.

Poff, N. L., Tokar, S., Johnson, P. J. L., & Oceanography. (1996). Stream
hydrological and ecological responses to climate change assessed with an
artificial neural network. 41(5), 857-863.

57

R. Henriques, F. B. V. L. (2009). Carto‐SOM: cartogram creation using self‐
organizing maps. International Journal of Geographical Information
Science, 23:4, 483-511. doi:10.1080/13658810801958885

Ritter, H. (1991). Asymptotic level for a class of vector quantization process. 2,
173-175. doi:10.1109/72.80310

Ritter, H., & Schulten, K. (1986). On the stationary state of Kohonen's self-
organizing sensory mapping. Biological cybernetics, 54(2), 99-106.

Roden, R., Smith, T., & Sacrey, D. J. I. (2015). Geologic pattern recognition from
seismic attributes: Principal component analysis and self-organizing
maps. 3(4), SAE59-SAE83.

Wikipedia. (2021). EPSG Geodetic Parameter Dataset. In Wikipedia. Wikipedia,
The Free Encyclopedia: Wikipedia, The Free Encyclopedia.

Yin, H. (2008). The Self-Organizing Maps: Background, Theories, Extensions
and Applications.

1

A. Appendix A – Matlab routines

Here, most of the developed matlab routines, and those that are more important,

are presented. All the code developed as well as the files created are placed in my

GitHub repository Edson Bastos (2021). https://github.com/MoreiraBastos/Study-of-

the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-

A.1. One-dimensional SOM algorithm with Uniform distribution

 % Initialize all variables %

bins=10; %number of bins
neurons=1000; %SOM neurons
initialradius=neurons/5; %Initial radius
finalradius=0; %Final radius
iterations=1000; %Number of iterations

for j=4:4

z1=10^4; %data points

 for i=1000:iterations

epochs=i; %On each iteration the training epochs will
unitarily increase

%% Generate random data %

% dados=rand(z1,1); %Generate data

dados=0:0.001:0.999; dados=dados+0.0005; dados=dados';

qtd=zeros(bins,1); %initialize a variable to store the
quantity of data in each bin

for x=1:length(dados)
 qtd(ceil(dados(x)*bins)) = qtd(ceil(dados(x)*bins))+1;
%storing the quantity of data in each bin
end

dens=qtd/(1/bins); % copy the density of input data in
each bin to a variable

https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-
https://github.com/MoreiraBastos/Study-of-the-Magnification-Effect-on-Kohonen-s-Self-Organizing-Map-

2

%% TRAINING THE SOM %

sMap =
som_lininit(dados,'munits',neurons,'shape','toroid'); %
%Initialize linearly the SOM Map

sMap2=
som_batchtrain(sMap,dados,'radius_ini',initialradius,'radi
us_fin',finalradius,'trainlen',epochs); %Training the SOM

SOM_data= sMap2.codebook; %Copy the neurons to SOM_data

qtdn=zeros(bins,1); %initialize a variable to store the
quantity of neurons in each bin

for x=1:length(sMap2.codebook)
 qtdn(ceil(SOM_data(x)*bins)) =
qtdn(ceil(SOM_data(x)*bins))+1; %storing the quantity
of neurons in each bin
end

neurons_density=qtdn/(1/bins); % copy the density of
neurons in each bin to a variable

tiledlayout(2,1) % Create a tiled chart layout

nexttile % Top plot

title('Step distribution'); %figure title
grid on;
hold on;

bar(dens); %Show the results in a bars graph
ylim([0 1200]);
xlabel('Bins') , ylabel('Density');
yline(1000,'-','Average Density');
hold off;
title(sprintf('%d input data with uniform
distribution',z1));%figure title

nexttile % Bottom plot

hold on
bar(neurons_density,'r'); %Show the results in a bars
graph
xlabel('Bins') , ylabel('Density');
yline(neurons,'-','Average Unit Density');

3

hold off
texto=sprintf('SOM Output after %d training
epochs',epochs);
title(texto);
grid on

 end

save(sprintf('distribuicaouniforme_toroid.mat')); %Saving
all the experiment

end

4

Appendix A – Matlab routines

A.2. One-dimensional SOM algorithm with Heaviside

distribution

%%%
%%%%%%%%%%%%%%%%%
%
% Name: Heaviside
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine will generate data
with Heaviside or step
% distribution and subsequently train a Self-
Organizing Map.
%
% V1.0 - Moreira Bastos, Jun 2021
%%%
%%%%%%%%%%%%%%%%

%% Initialize all variables

bins=100; % Number of data bins
neurons=1000; % Number of SOM units or neurons
initialradius=neurons/5; % SOM initial
neighbourhood function radius
finalradius=0; % SOM final neighbourhood function
radius
limiteinferior=50; % Length of first zone
limitesuperior=50; % Displacement of second zone
iterations=1;% How many times SOM is trained with
specific input parameters
totalpoints=1000; % Total input data points
experiments=499; % Total number of experiments

%% Code
for j=1:experiments

5

 z1= j; % Data points in the first zone (Low
density)
 % For the variations in data density
experiment let z1=j;
 % It is also possible to compare the
algorithm behaviour
 % in function of data density zones
difference

 z2=totalpoints-z1; % Data points in the
second zone (High density)

 % neurons=j; % For the increasing neurons
experiment uncomment this line
 % epochs=j; % For the increasing epochs
experiment uncomment this line
 % initialradius=neurons/(0.5*j); % For the
increasing initial radius experiment uncomment
this line

 for i=1:iterations % This loop will
specify how many times the routine will train SOM
with a fixed step input data distribution

epochs=500; % Number of training epochs

randomdata1=rand(z1,1)*limiteinferior; %Generate
data in the first zone

randomdata2=(rand(z2,1)*limiteinferior)+limitesup
erior; % Generate data in the second zone

dados=[randomdata1;randomdata2]; % Put all data
in one matrix

qtd=zeros(bins,1); % Initialize a variable to
store the quantity of data in each bin

for x=1:length(dados)
 qtd(ceil(dados(x))) = qtd(ceil(dados(x)))+1;
end

dens=qtd/(sum(qtd)); % Copy the density of input
data in each bin to a variable

6

%% TRAINING THE SOM

sMap=som_lininit(dados,'munits',neurons); %
Initialize linearly the SOM Map

sMap2=som_batchtrain(sMap,dados,'radius_ini',init
ialradius,'radius_fin',...
 finalradius,'trainlen',epochs); %TRAINING THE
SOM

SOM_data=sMap2.codebook; % Copy the neurons to
SOM_data

qtdn=zeros(bins,1); % Initialize a variable to
store the number of neurons in each bin

for x=1:length(sMap2.codebook)
 qtdn(ceil(SOM_data(x))) =
qtdn(ceil(SOM_data(x)))+1;
end

%% PLOTTING THE RESULTS

densidade_inputx=[0 50 51 100]; % Data density
zone boundaries
densidade_input=[z1/50 z1/50 z2/50 z2/50]; %
Theoretical density in each zone from (0 to 50)
and (50 to 100)

densidade_outputx=[0 50 51 100]; % Neurons
density zone boundaries
densidade_output=[sum(qtdn(1:51))/50
sum(qtdn(1:51))/50 ...
 sum(qtdn(51:100))/50 sum(qtdn(51:100))/50]; %
Theoretical density in each zone from (0 to 50)
and (50 to 100)

save(sprintf('heaviside%d.mat',j)); % Save all
the experiment

 end

end

7

A.3. One-dimensional SOM algorithm with multiple Heaviside

distribution

%%%
%%%%%%%%%%%%%%%%%
%
% Name: degraus
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine will generate data
with multiple Heaviside or step
% distribution and subsequently train a Self-
Organizing Map.
%
% V1.0 - Moreira Bastos, Jun 2021
%%%
%%%%%%%%%%%%%%%%
%% Initialize all variables %
z1=200;
z2=500;
z3=50;
z4=250;

bins=100;% Number of data bins
neurons=1000; % Number of SOM units or neurons
initialradius=neurons/5; % SOM initial
neighbourhood function radius
finalradius=0; % SOM final neighbourhood function
radius
limite1=25; % Displacement of first zone
limite2=50; % Displacement of second zone
limite3=75; % Displacement of third zone
limite4=100; % Displacement of fourth zone

% epochs=500;

 for i=1:500
%% Generate the data

8

% epochs=i; % For the increasing epochs
experiment uncomment this line
% neurons=i; % For the increasing neurons
experiment uncomment this line
% initialradius=neurons/(0.5*j); % For the
increasing initial radius experiment uncomment
this line

randomdata1=rand(z1,1)*limite1; %Generate random
uniform data in the first zone

randomdata2=(rand(z2,1)*25+limite1); %Generate
random uniform data in the second zone

randomdata3=(rand(z3,1)*25+limite2); %Generate
random uniform data in the third zone

randomdata4=(rand(z4,1)*25+limite3); %Generate
random uniform data in the fourth zone

dados=[randomdata1;randomdata2;randomdata3;random
data4]; % Put all data in one matrix

qtd=zeros(bins,1); % initialize a variable to
store the quantity of data in each bin

for x=1:length(dados)
 qtd(ceil(dados(x))) = qtd(ceil(dados(x)))+1;
end

dens=[z1/25 z2/25 z3/25 z4/25]; % copy the
density of input data in each bin to a variable
verticd=[z1/25 z1/25 z2/25 z2/25 z3/25 z3/25
z4/25 z4/25]; %calculate zone densities for
plotting
horizd=[1 25 25 50 50 75 75 100]; % different
zones
plot(horizd,verticd); % Plotting the input data
density
grid on, hold on;

%% TRAINING THE SOM

9

sMap =
som_lininit(dados,'munits',neurons,'shape','toroi
d'); % %Initialize linearly the SOM Map

sMap2=
som_batchtrain(sMap,dados,'radius_ini',initialrad
ius,'radius_fin',finalradius,'trainlen',epochs,'s
hape','toroid'); %TRAINING THE SOM

SOM_data= sMap2.codebook; %Copy the neurons to
SOM_data

qtdn=zeros(bins,1); %initialize a variable to
store the quantity of neurons in each bin

for x=1:length(sMap2.codebook)
 qtdn(ceil(SOM_data(x))) =
qtdn(ceil(SOM_data(x)))+1;
end

densn=[sum(qtdn(1:25))/25 sum(qtdn(26:50))/25
sum(qtdn(51:75))/25 sum(qtdn(76:100))/25]; % copy
the density of neurons in each bin to a variable
verticn=[sum(qtdn(1:25))/25 sum(qtdn(1:25))/25
sum(qtdn(26:50))/25 sum(qtdn(26:50))/25 ...
 sum(qtdn(51:75))/25 sum(qtdn(51:75))/25
sum(qtdn(76:100))/25 sum(qtdn(76:100))/25];
%calculate zone neuron densities for plotting
horizn=[1 25 25 50 50 75 75 100];
plot(horizn,verticn);

save(sprintf('experiencia_degraus%d',i)); %
Saving all the experiment

end

10

A.4. Two-dimensional SOM algorithm with two different density

areas

%%%
%%%%%%%%%%%%%%%%%
%
% Name: main_rectangulo_2areas
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine will generate 2-D
input data with two distinct
% density areas and subsequently train a Self-
Organizing Map.
%
% V1.0 - Moreira Bastos, Jun 2021
%%%
%%%%%%%%%%%%%%%%%
area1 = 850; % Data points on the first area
area2 = 150; % Data points on the second area

%% Generating random input data
xRandom1=zeros(1,area1); xRandom2=zeros(1,area2);
yRandom1=zeros(1,area1); yRandom2=zeros(1,area2);

for i=1:area1 % Distributing data on the first
area
xRandom1(i) = randi([0 49],1,1);
yRandom1(i) = randi([0 49],1,1);
end
Dados1=[xRandom1;yRandom1]; % saving the data

for i=1:area2 % Distributing data on the second
area
xRandom2(i) = randi([50 100],1,1);
yRandom2(i) = randi([0 49],1,1);
end
Dados2=[xRandom2;yRandom2]; % saving the data

Dados_entrada=[Dados1 Dados2]; % saving all the
data

11

%% Uncomment for fixed input values area1=850
points and area2=150 points
%
Dados_entrada=[6,17,26,22,43,40,41,37,13,27,3,24,
48,14,37,25,49,0,45,44,3,32,39,4,46,5,5,25,41,43,
2,47,39,38,28,49,7,42,0,32,44,20,12,21,11,17,2,2,
0,32,18,30,22,37,19,7,22,30,18,14,32,16,21,7,49,4
7,20,12,36,31,46,30,47,46,12,16,43,25,32,1,15,35,
40,14,5,32,32,14,11,15,25,15,16,23,0,8,16,48,38,1
1,24,11,48,40,42,44,36,39,11,40,19,0,6,49,8,32,14
,19,29,13,18,3,40,9,27,38,44,45,43,48,45,41,34,6,
37,22,48,24,44,30,17,4,31,17,17,9,43,20,35,36,49,
14,14,26,48,29,0,40,11,41,34,0,17,35,24,30,21,43,
29,47,32,43,12,39,39,36,19,1,37,36,4,41,23,10,48,
26,2,1,20,44,34,8,25,42,10,9,6,27,3,35,40,21,39,1
2,38,6,41,39,4,4,7,34,21,48,18,21,35,28,15,41,16,
48,44,35,39,26,2,27,29,35,27,46,49,19,3,27,44,26,
17,43,16,10,47,25,35,1,33,4,23,12,30,20,34,4,32,1
2,11,21,35,28,31,44,45,26,20,11,22,11,7,27,46,40,
49,41,29,13,10,12,25,2,21,25,7,42,26,23,2,37,36,3
8,32,38,45,18,33,9,38,46,36,38,1,10,48,15,12,47,3
8,37,24,47,2,45,23,19,3,2,44,47,2,33,33,32,8,9,47
,49,13,30,43,44,28,35,28,13,38,24,12,20,20,5,20,1
6,1,22,44,0,1,8,39,13,33,47,7,18,8,21,35,36,12,17
,44,37,26,7,41,49,49,45,14,26,46,43,42,1,25,46,42
,48,1,23,11,32,4,7,12,26,5,2,13,12,28,49,26,43,41
,44,24,30,37,18,44,20,40,48,49,36,12,46,16,30,43,
38,27,12,36,13,9,49,4,40,21,47,31,25,33,45,20,41,
7,17,40,29,3,3,21,16,5,25,38,41,8,19,0,27,1,10,16
,46,22,14,7,38,44,26,28,1,36,36,24,40,40,7,13,35,
0,8,24,33,23,3,13,47,20,20,37,40,42,14,35,35,47,3
3,16,20,14,35,11,45,10,33,47,28,42,33,47,45,29,41
,17,25,20,17,40,45,2,5,7,14,42,49,6,28,17,31,26,4
9,21,9,19,29,23,47,12,17,40,4,46,37,18,16,25,31,2
,26,31,35,42,18,14,40,12,16,15,10,33,26,1,24,32,2
2,39,0,0,7,31,28,40,8,33,32,24,12,48,14,19,10,31,
3,45,28,20,1,29,34,36,42,33,23,32,17,23,49,18,45,
19,33,1,19,2,0,41,18,47,48,40,3,42,14,40,9,24,40,
1,23,7,37,23,44,1,44,42,8,42,40,23,10,47,42,36,15
,35,20,11,44,7,2,21,9,14,15,29,35,31,11,46,40,21,
14,48,19,11,49,10,45,31,12,30,20,19,46,31,6,22,30
,37,18,20,11,0,18,17,2,20,33,37,48,16,48,13,22,22
,26,13,18,43,38,48,30,36,18,47,34,23,30,38,21,18,
0,7,32,7,10,40,42,47,24,41,17,22,46,45,33,41,7,3,

12

5,7,24,28,17,26,36,40,41,28,26,36,4,46,2,2,48,38,
22,24,47,8,37,21,33,41,3,13,49,22,36,47,7,22,0,18
,10,21,12,16,1,11,41,29,44,30,19,45,28,37,5,35,13
,22,40,20,41,20,19,3,40,20,13,16,17,5,22,7,22,37,
11,5,42,15,8,16,18,6,8,2,6,37,11,43,48,2,12,24,5,
46,37,33,22,31,6,26,16,12,48,29,47,22,42,17,44,48
,6,22,12,36,7,31,47,41,22,43,19,42,25,15,41,48,17
,22,9,42,11,31,41,26,40,44,22,23,22,35,35,7,48,27
,28,28,6,3,23,82,86,77,99,69,87,99,67,90,63,54,91
,53,70,75,72,74,79,60,76,69,82,97,88,64,68,85,92,
85,66,98,52,57,83,76,86,67,86,63,85,72,87,68,54,6
4,93,52,76,95,94,73,73,100,52,50,56,96,82,81,72,8
8,54,97,63,78,50,97,83,83,69,86,51,51,92,72,59,65
,73,95,72,52,54,58,73,99,91,62,78,52,55,73,76,58,
55,65,79,70,94,63,80,99,72,92,81,90,93,100,52,51,
52,86,69,65,97,99,69,65,87,76,55,52,61,79,73,88,9
0,77,94,70,76,93,88,97,50,51,53,85,100,97,79,100,
63,51,59,96,86,65,80,67,66;39,25,4,18,44,17,21,9,
18,44,9,32,46,3,45,8,25,12,9,7,10,34,45,6,49,33,4
9,21,42,12,36,49,35,18,7,39,26,47,45,16,40,25,26,
46,37,21,30,45,2,29,22,14,3,47,47,24,0,10,41,31,4
3,23,6,25,9,46,47,49,29,16,18,24,20,17,35,1,8,20,
38,39,7,24,23,27,32,6,26,1,42,43,41,38,29,49,15,5
,18,42,42,44,5,27,40,32,26,14,49,29,42,7,36,39,39
,23,31,44,42,38,0,14,12,16,29,16,0,15,15,10,1,1,4
2,29,45,27,35,12,17,37,8,25,20,16,41,36,17,31,7,4
5,26,29,48,47,8,2,40,26,41,45,45,16,8,45,34,27,49
,33,33,9,0,30,30,25,2,39,49,23,7,22,12,24,1,40,24
,34,42,3,33,46,24,19,25,18,0,36,29,3,18,41,18,29,
30,49,35,0,3,2,34,37,40,25,16,33,16,42,11,5,11,18
,8,8,35,0,3,3,49,30,41,32,45,30,37,42,28,5,8,41,0
,40,28,0,49,34,24,3,4,11,5,35,30,47,40,45,15,14,2
2,44,46,8,21,30,18,33,17,35,3,28,16,43,0,18,27,47
,13,44,16,29,1,15,10,34,7,29,10,39,15,32,29,42,38
,44,3,33,15,24,10,16,17,40,8,22,15,36,38,3,23,48,
4,6,19,14,24,4,45,5,6,49,4,36,48,28,18,10,24,27,8
,9,5,3,15,3,34,5,19,10,20,26,16,19,30,44,49,48,32
,25,30,9,23,22,20,38,16,27,11,43,1,40,9,43,7,46,4
3,32,43,8,45,39,13,38,39,24,41,24,4,33,40,38,32,1
7,18,10,25,18,4,32,27,42,35,34,16,0,9,17,14,35,46
,44,44,12,12,20,16,13,47,28,49,39,38,28,44,14,9,4
3,12,35,23,15,14,45,8,17,34,48,15,12,43,16,21,30,
4,34,32,22,33,12,42,16,29,21,36,12,31,12,49,31,5,
4,36,47,11,43,21,31,21,49,38,44,25,15,5,12,49,22,

13

24,19,20,48,5,30,21,31,28,11,20,11,6,36,36,7,8,40
,28,5,44,26,27,19,9,21,40,1,19,22,15,41,0,28,46,6
,26,34,16,13,38,41,8,28,24,39,5,46,47,26,49,11,30
,41,34,45,26,4,23,46,0,24,41,49,48,19,15,0,35,21,
11,31,35,38,10,35,1,7,49,17,37,43,23,8,14,40,6,30
,7,35,39,14,39,27,44,4,42,16,20,38,46,49,26,24,8,
33,35,38,28,32,11,14,6,37,19,16,4,36,6,46,33,32,5
,45,22,17,41,38,40,26,2,5,0,40,36,20,14,5,49,29,4
8,31,4,10,27,30,27,31,34,15,20,23,45,47,8,3,42,34
,16,33,16,25,40,27,31,4,13,35,1,6,20,15,37,41,3,4
0,16,39,43,21,45,42,23,12,16,22,49,41,3,23,11,9,1
,20,32,13,47,17,29,35,31,31,31,0,37,0,12,19,36,1,
49,31,10,29,41,3,35,19,23,15,16,48,6,1,37,42,31,7
,11,48,38,39,8,34,38,47,14,24,11,31,31,20,2,39,15
,27,9,43,45,25,36,1,19,43,17,20,42,34,0,0,6,31,7,
43,3,14,20,40,3,45,4,18,49,24,41,47,34,11,1,27,39
,46,18,40,12,13,21,9,8,18,9,10,5,41,42,4,3,29,17,
21,44,23,33,14,31,49,34,32,22,0,29,17,13,23,0,48,
9,2,47,7,28,45,49,26,21,10,14,28,31,44,8,45,45,49
,33,21,32,21,25,46,43,13,32,30,48,48,19,36,18,18,
16,8,1,26,47,32,43,41,18,23,33,46,25,8,11,33,41,4
6,34,19,44,46,3,10,30,3,2,21,32,32,49,31,41,15,8,
25,33,45,35,10,41,35,36,35,30,35,39,10,26,47,23,0
,2,22,40,13,39,1,45,38,15,11,48,34,16,11,2,34,31,
25,17,36,20,12,5,24,3,49,39,46,39,38,1,25,15,0,43
,23,6,20,49,41,12,1,3,40,27,36,22,10,13,40,23,31,
19,11,7,2,34,41,44,19,4,8,18,26,33,26,44,27,30,16
,27,42,30,10,42,42,43,45,7,6,38,33,6,7,14,5,2,39,
11,39,13,28,42,9,48,24,34,49,24,17,22,31,3,42,38,
41,22,44,5,5,19,24,17,49,26,40,42,36,14,42,48,30,
14,35,32,36,43,34,42,2,42,0,27,23,28,17];
%
xRandom1=[6,17,26,22,43,40,41,37,13,27,3,24,48,14
,37,25,49,0,45,44,3,32,39,4,46,5,5,25,41,43,2,47,
39,38,28,49,7,42,0,32,44,20,12,21,11,17,2,2,0,32,
18,30,22,37,19,7,22,30,18,14,32,16,21,7,49,47,20,
12,36,31,46,30,47,46,12,16,43,25,32,1,15,35,40,14
,5,32,32,14,11,15,25,15,16,23,0,8,16,48,38,11,24,
11,48,40,42,44,36,39,11,40,19,0,6,49,8,32,14,19,2
9,13,18,3,40,9,27,38,44,45,43,48,45,41,34,6,37,22
,48,24,44,30,17,4,31,17,17,9,43,20,35,36,49,14,14
,26,48,29,0,40,11,41,34,0,17,35,24,30,21,43,29,47
,32,43,12,39,39,36,19,1,37,36,4,41,23,10,48,26,2,
1,20,44,34,8,25,42,10,9,6,27,3,35,40,21,39,12,38,

14

6,41,39,4,4,7,34,21,48,18,21,35,28,15,41,16,48,44
,35,39,26,2,27,29,35,27,46,49,19,3,27,44,26,17,43
,16,10,47,25,35,1,33,4,23,12,30,20,34,4,32,12,11,
21,35,28,31,44,45,26,20,11,22,11,7,27,46,40,49,41
,29,13,10,12,25,2,21,25,7,42,26,23,2,37,36,38,32,
38,45,18,33,9,38,46,36,38,1,10,48,15,12,47,38,37,
24,47,2,45,23,19,3,2,44,47,2,33,33,32,8,9,47,49,1
3,30,43,44,28,35,28,13,38,24,12,20,20,5,20,16,1,2
2,44,0,1,8,39,13,33,47,7,18,8,21,35,36,12,17,44,3
7,26,7,41,49,49,45,14,26,46,43,42,1,25,46,42,48,1
,23,11,32,4,7,12,26,5,2,13,12,28,49,26,43,41,44,2
4,30,37,18,44,20,40,48,49,36,12,46,16,30,43,38,27
,12,36,13,9,49,4,40,21,47,31,25,33,45,20,41,7,17,
40,29,3,3,21,16,5,25,38,41,8,19,0,27,1,10,16,46,2
2,14,7,38,44,26,28,1,36,36,24,40,40,7,13,35,0,8,2
4,33,23,3,13,47,20,20,37,40,42,14,35,35,47,33,16,
20,14,35,11,45,10,33,47,28,42,33,47,45,29,41,17,2
5,20,17,40,45,2,5,7,14,42,49,6,28,17,31,26,49,21,
9,19,29,23,47,12,17,40,4,46,37,18,16,25,31,2,26,3
1,35,42,18,14,40,12,16,15,10,33,26,1,24,32,22,39,
0,0,7,31,28,40,8,33,32,24,12,48,14,19,10,31,3,45,
28,20,1,29,34,36,42,33,23,32,17,23,49,18,45,19,33
,1,19,2,0,41,18,47,48,40,3,42,14,40,9,24,40,1,23,
7,37,23,44,1,44,42,8,42,40,23,10,47,42,36,15,35,2
0,11,44,7,2,21,9,14,15,29,35,31,11,46,40,21,14,48
,19,11,49,10,45,31,12,30,20,19,46,31,6,22,30,37,1
8,20,11,0,18,17,2,20,33,37,48,16,48,13,22,22,26,1
3,18,43,38,48,30,36,18,47,34,23,30,38,21,18,0,7,3
2,7,10,40,42,47,24,41,17,22,46,45,33,41,7,3,5,7,2
4,28,17,26,36,40,41,28,26,36,4,46,2,2,48,38,22,24
,47,8,37,21,33,41,3,13,49,22,36,47,7,22,0,18,10,2
1,12,16,1,11,41,29,44,30,19,45,28,37,5,35,13,22,4
0,20,41,20,19,3,40,20,13,16,17,5,22,7,22,37,11,5,
42,15,8,16,18,6,8,2,6,37,11,43,48,2,12,24,5,46,37
,33,22,31,6,26,16,12,48,29,47,22,42,17,44,48,6,22
,12,36,7,31,47,41,22,43,19,42,25,15,41,48,17,22,9
,42,11,31,41,26,40,44,22,23,22,35,35,7,48,27,28,2
8,6,3,23];
%
xRandom2=[82,86,77,99,69,87,99,67,90,63,54,91,53,
70,75,72,74,79,60,76,69,82,97,88,64,68,85,92,85,6
6,98,52,57,83,76,86,67,86,63,85,72,87,68,54,64,93
,52,76,95,94,73,73,100,52,50,56,96,82,81,72,88,54
,97,63,78,50,97,83,83,69,86,51,51,92,72,59,65,73,

15

95,72,52,54,58,73,99,91,62,78,52,55,73,76,58,55,6
5,79,70,94,63,80,99,72,92,81,90,93,100,52,51,52,8
6,69,65,97,99,69,65,87,76,55,52,61,79,73,88,90,77
,94,70,76,93,88,97,50,51,53,85,100,97,79,100,63,5
1,59,96,86,65,80,67,66];
%
yRandom1=[39,25,4,18,44,17,21,9,18,44,9,32,46,3,4
5,8,25,12,9,7,10,34,45,6,49,33,49,21,42,12,36,49,
35,18,7,39,26,47,45,16,40,25,26,46,37,21,30,45,2,
29,22,14,3,47,47,24,0,10,41,31,43,23,6,25,9,46,47
,49,29,16,18,24,20,17,35,1,8,20,38,39,7,24,23,27,
32,6,26,1,42,43,41,38,29,49,15,5,18,42,42,44,5,27
,40,32,26,14,49,29,42,7,36,39,39,23,31,44,42,38,0
,14,12,16,29,16,0,15,15,10,1,1,42,29,45,27,35,12,
17,37,8,25,20,16,41,36,17,31,7,45,26,29,48,47,8,2
,40,26,41,45,45,16,8,45,34,27,49,33,33,9,0,30,30,
25,2,39,49,23,7,22,12,24,1,40,24,34,42,3,33,46,24
,19,25,18,0,36,29,3,18,41,18,29,30,49,35,0,3,2,34
,37,40,25,16,33,16,42,11,5,11,18,8,8,35,0,3,3,49,
30,41,32,45,30,37,42,28,5,8,41,0,40,28,0,49,34,24
,3,4,11,5,35,30,47,40,45,15,14,22,44,46,8,21,30,1
8,33,17,35,3,28,16,43,0,18,27,47,13,44,16,29,1,15
,10,34,7,29,10,39,15,32,29,42,38,44,3,33,15,24,10
,16,17,40,8,22,15,36,38,3,23,48,4,6,19,14,24,4,45
,5,6,49,4,36,48,28,18,10,24,27,8,9,5,3,15,3,34,5,
19,10,20,26,16,19,30,44,49,48,32,25,30,9,23,22,20
,38,16,27,11,43,1,40,9,43,7,46,43,32,43,8,45,39,1
3,38,39,24,41,24,4,33,40,38,32,17,18,10,25,18,4,3
2,27,42,35,34,16,0,9,17,14,35,46,44,44,12,12,20,1
6,13,47,28,49,39,38,28,44,14,9,43,12,35,23,15,14,
45,8,17,34,48,15,12,43,16,21,30,4,34,32,22,33,12,
42,16,29,21,36,12,31,12,49,31,5,4,36,47,11,43,21,
31,21,49,38,44,25,15,5,12,49,22,24,19,20,48,5,30,
21,31,28,11,20,11,6,36,36,7,8,40,28,5,44,26,27,19
,9,21,40,1,19,22,15,41,0,28,46,6,26,34,16,13,38,4
1,8,28,24,39,5,46,47,26,49,11,30,41,34,45,26,4,23
,46,0,24,41,49,48,19,15,0,35,21,11,31,35,38,10,35
,1,7,49,17,37,43,23,8,14,40,6,30,7,35,39,14,39,27
,44,4,42,16,20,38,46,49,26,24,8,33,35,38,28,32,11
,14,6,37,19,16,4,36,6,46,33,32,5,45,22,17,41,38,4
0,26,2,5,0,40,36,20,14,5,49,29,48,31,4,10,27,30,2
7,31,34,15,20,23,45,47,8,3,42,34,16,33,16,25,40,2
7,31,4,13,35,1,6,20,15,37,41,3,40,16,39,43,21,45,
42,23,12,16,22,49,41,3,23,11,9,1,20,32,13,47,17,2

16

9,35,31,31,31,0,37,0,12,19,36,1,49,31,10,29,41,3,
35,19,23,15,16,48,6,1,37,42,31,7,11,48,38,39,8,34
,38,47,14,24,11,31,31,20,2,39,15,27,9,43,45,25,36
,1,19,43,17,20,42,34,0,0,6,31,7,43,3,14,20,40,3,4
5,4,18,49,24,41,47,34,11,1,27,39,46,18,40,12,13,2
1,9,8,18,9,10,5,41,42,4,3,29,17,21,44,23,33,14,31
,49,34,32,22,0,29,17,13,23,0,48,9,2,47,7,28,45,49
,26,21,10,14,28,31,44,8,45,45,49,33,21,32,21,25,4
6,43,13,32,30,48,48,19,36,18,18,16,8,1,26,47,32,4
3,41,18,23,33,46,25,8,11,33,41,46,34,19,44,46,3,1
0,30,3,2,21,32,32,49,31,41,15,8,25,33,45];
%
yRandom2=[35,10,41,35,36,35,30,35,39,10,26,47,23,
0,2,22,40,13,39,1,45,38,15,11,48,34,16,11,2,34,31
,25,17,36,20,12,5,24,3,49,39,46,39,38,1,25,15,0,4
3,23,6,20,49,41,12,1,3,40,27,36,22,10,13,40,23,31
,19,11,7,2,34,41,44,19,4,8,18,26,33,26,44,27,30,1
6,27,42,30,10,42,42,43,45,7,6,38,33,6,7,14,5,2,39
,11,39,13,28,42,9,48,24,34,49,24,17,22,31,3,42,38
,41,22,44,5,5,19,24,17,49,26,40,42,36,14,42,48,30
,14,35,32,36,43,34,42,2,42,0,27,23,28,17];

%% Uncomment to plot the input data distribution
before training SOM
%
% plot(xRandom1,yRandom1,'b.','MarkerSize',12);
hold on
% plot(xRandom2,yRandom2,'m.','MarkerSize',12);
hold on
% rectangle('Position', [0, 0, 100,
50],'LineWidth',0.5,'LineStyle','--');
% xline(50); txt = 'AREA 1'; text(20,51,txt)
% txt = 'AREA 2'; text(70,51,txt)
% pause
% close all;
%
%% TRAINING THE SOM
for u=1:1

 %% Self-Organizing Map input parameters
msize = [25 40];

17

sMap =
som_lininit(Dados_entrada','msize',msize,'hexa','
sheet','shape','toroid');

som_grid(sMap,'Coord',sMap.codebook); axis equal;
neurons=msize(1)*msize(2);

npstep=100; vstep=1000; o=ones(npstep,1); r=(1-
(1:vstep)/vstep);

for i=1:vstep
 radius_ini=neurons*(1/125);

 %% Training the Self-Organizing Map
 sMap =
som_seqtrain(sMap,Dados_entrada','tracking',0,...
 'trainlen',npstep,'samples',...

'alpha',0.1*o,'radius',(radius_ini*r(i))*o);

 %% Plot the data and the neurons grid
mapping animation
figure
plot(xRandom1,yRandom1,'b.','MarkerSize',12);
hold on
plot(xRandom2,yRandom2,'m.','MarkerSize',12);
hold on
xline(50); txt = 'AREA 1'; text(20,52,txt)
txt = 'AREA 2'; text(70,52,txt)
rectangle('Position', [0, 0, 100,
50],'LineWidth',0.5,'LineStyle','--');
hold on
title(sprintf('%d/%d training
steps',npstep*i,npstep*vstep)); axis equal;
hold on, som_grid(sMap,'Coord',sMap.codebook);
hold off

drawnow
axis equal;

end

neuron1=sum(floor(sMap.codebook(:,1))<=49); %
number of neurons on the first area

18

neuron2=sum(floor(sMap.codebook(:,1))>49); %
number of neurons on the second area

dens=[area1/(50^2) area2/(50^2)]; % Data density
densn=[neuron1/(50^2) neuron2/(50^2)]; % Neurons
density

%% Uncomment to plot average input area densities
vs. neuron area densities
% figure
% plot([1 50 50 100],[area1/(50^2) area1/(50^2)
area2/(50^2) area2/(50^2)]); hold on;
% plot([1 50 50 100],[neuron1/(50^2)
neuron1/(50^2) neuron2/(50^2) neuron2/(50^2)]);
% txt = 'AREA 1';
% text(20,neuron2/(50^2),txt);
% txt = 'AREA 2';
% text(70,neuron1/(50^2),txt);

save(sprintf('2D_1000dados_1000neuronios_2areas_a
umentodeepocas%d.mat',u));% Saving all the
experiment

end

A.5. Two-dimensional SOM algorithm with four different

density areas

%%%
%%%%%%%%%%%%%%%%%
%
% Name: main_rectangulo_4areas
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine will generate 2-D
input data with four distinct
% density areas and subsequently train a Self-
Organizing Map.
%
% V1.0 - Moreira Bastos, Jun 2021

19

%%%
%%%%%%%%%%%%%%%%%

area1 = 20; % Data points on the first area
area2 = 210; % Data points on the second area
area3 = 70; % Data points on the third area
area4 = 700; % Data points on the fourth area

%% Generating random input data
xRandom1=zeros(1,area1); xRandom2=zeros(1,area2);
xRandom3=zeros(1,area3); xRandom4=zeros(1,area4);
yRandom1=zeros(1,area1); yRandom2=zeros(1,area2);
yRandom3=zeros(1,area3); yRandom4=zeros(1,area4);

for i=1:area1 % Data on the first area
xRandom1(i) = randi([0 49],1,1);
yRandom1(i) = randi([50 100],1,1);
end
Dados1=[xRandom1;yRandom1];

for i=1:area2 % Data on the second area
xRandom2(i) = randi([50 100],1,1);
yRandom2(i) = randi([50 100],1,1);
end
Dados2=[xRandom2;yRandom2];

for i=1:area3 % Data on the third area
xRandom3(i) = randi([0 49],1,1);
yRandom3(i) = randi([0 49],1,1);
end
Dados3=[xRandom3;yRandom3];

for i=1:area4 % Data on the fourth area
xRandom4(i) = randi([50 100],1,1);
yRandom4(i) = randi([0 49],1,1);
end
Dados4=[xRandom4;yRandom4];

Dados_entrada=[Dados1 Dados2 Dados3 Dados4]; %
Saving all the data

%% TRAINING THE SOM
for u=1:10

msize = [5 5];

20

sMap =
som_lininit(Dados_entrada','msize',msize,'hexa','
sheet','shape','toroid');

som_grid(sMap,'Coord',sMap.codebook)
axis equal;
neurons=msize(1)*msize(2);

npstep=10; vstep=900; o = ones(npstep,1); r=(1-
(1:vstep)/vstep);

for i=1:vstep
 radius_ini=neurons*(1/125);

 %% Training the Self-Organizing Map
 sMap =
som_seqtrain(sMap,Dados_entrada','tracking',0,...
 'trainlen',npstep,'samples',...

'alpha',0.1*o,'radius',(radius_ini*r(i))*o);
 %% Plot the data and the neurons grid mapping
animation

% plot(xRandom1,yRandom1,'b.','MarkerSize',12);
hold on
% plot(xRandom2,yRandom2,'m.','MarkerSize',12);
hold on
% plot(xRandom3,yRandom3,'r.','MarkerSize',12);
hold on
% plot(xRandom4,yRandom4,'g.','MarkerSize',12);
hold on
% rectangle('Position', [0, 0, 100,
100],'LineWidth',2,'LineStyle','--');
% hold on, xline(50), yline(50);
% title(sprintf('%d/%d training
steps',npstep*i,npstep*vstep)); axis equal;
% hold on, som_grid(sMap,'Coord',sMap.codebook);
% hold off
%
% drawnow
% axis equal;

end

21

neuron1=0;neuron2=0;neuron3=0;neuron4=0; %
Initializing variables

%% Get the number of neurons on each area
for p=1:neurons
if sMap.codebook(p,1)<50 &&sMap.codebook(p,2)>49
neuron1=neuron1+1;
end
if sMap.codebook(p,1)>49 &&sMap.codebook(p,2)>49
neuron2=neuron2+1;
end
if sMap.codebook(p,1)<50 &&sMap.codebook(p,2)<50
neuron3=neuron3+1;
end
if sMap.codebook(p,1)>49 &&sMap.codebook(p,2)<50
neuron4=neuron4+1;
end
end

dens=[area1/(50^2) area2/(50^2) area3/(50^2)
area4/(50^2)]; % Data density
densn=[neuron1/(50^2) neuron2/(50^2)
neuron3/(50^2) neuron4/(50^2)]; % Neurons density

%% Uncomment to plot average input area densities
vs. neuron area densities
% figure
% plot([1 25 25 50 50 75 75 100],[area1/(50^2)
area1/(50^2) area2/(50^2) area2/(50^2)
area3/(50^2) area3/(50^2) area4/(50^2)
area4/(50^2)]); hold on
% plot([1 25 25 50 50 75 75 100],[neuron1/(50^2)
neuron1/(50^2) neuron2/(50^2) neuron2/(50^2)
neuron3/(50^2) neuron3/(50^2) neuron4/(50^2)
neuron4/(50^2)]);
% txt = 'AREA 1';
% text(5,neuron2/(50^2),txt)
% txt = 'AREA 2';
% text(30,neuron1/(50^2),txt)
% txt = 'AREA 3';
% text(55,neuron2/(50^2),txt)
% txt = 'AREA 4';
% text(85,neuron1/(50^2),txt)

22

save(sprintf('experiencia_2D_1000dados_25x40neuro
nios%d.mat',u)); % Save all the experiment

end

A.6. Three-dimensional SOM algorithm with two different

density areas

%%
%%%%%%%%
%
% Name: main_3D
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine will generate 3-D input data
with two distinct
% density areas and subsequently train a Self-Organizing
Map and generate
% Output on 3-D neuron grid
%
% V1.0 - Moreira Bastos, Jun 2021
%%
%%%%%%%%

area1 = 9950; % Data points on the first area
area2 = 50; % Data points on the second area

%% INIITIALIZE INPUT DATA VARIABLES
xRandom1=zeros(1,area1); xRandom2=zeros(1,area2);
yRandom1=zeros(1,area1); yRandom2=zeros(1,area2);
zRandom1=zeros(1,area1); zRandom2=zeros(1,area2);

%% PLOT THE INPUT DATA
% plot3(xRandom1,yRandom1,zRandom1,'b.','MarkerSize',12);
hold on
% plot3(xRandom2,yRandom2,zRandom2,'m.','MarkerSize',12);
hold on

for u=1:30

23

%% GENERATE RANDOM INPUT DATA
for i=1:area1 % Distributing data on the first area
xRandom1(i) = randi([0 49],1,1);
yRandom1(i) = randi([0 49],1,1);
zRandom1(i)=randi([0 49],1,1);
end
Dados1=[xRandom1;yRandom1;zRandom1]; % saving the data

for i=1:area2 % Distributing data on the second area
xRandom2(i) = randi([0 49],1,1);
yRandom2(i) = randi([0 49],1,1);
zRandom2(i)=randi([50 100],1,1);
end

Dados2=[xRandom2;yRandom2;zRandom2]; % saving the data

Dados_entrada=[Dados1 Dados2]; % mixing and saving all the
data (lower density vs. higher density)

msize = [10 25 20]; % Initialize the neuron grid setup

%% TRAINING THE SOM

sMap =
som_lininit(Dados_entrada','msize',msize,'rect','sheet');
% SOM linear initialization

neurons=msize(1)*msize(2)*msize(3); % get the number of
neurons

epochs=500; % number of training epochs

sMap=
som_batchtrain(sMap,Dados_entrada','radius_ini',neurons/12
5,'radius_fin',0,'trainlen',epochs); %Training the SOM
using the batch algorithm

neuron1=sum(floor(sMap.codebook(:,3))<=49); % number of
neurons on the first area
neuron2=sum(floor(sMap.codebook(:,3))>49); % number of
neurons on the second area

dens=[area1/(50^3) area2/(50^3)]; % Data density
densn=[neuron1/(50^3) neuron2/(50^3)]; % Neurons density

%% Uncomment to plot average input densities vs. neuron
densities
% figure
%

24

% plot([1 50 50 100],[area1/(50^3) area1/(50^3)
area2/(50^3) area2/(50^3)]); hold on;
% plot([1 50 50 100],[neuron1/(50^3) neuron1/(50^3)
neuron2/(50^3) neuron2/(50^3)]);
% axis equal;
%
% txt = 'AREA 1';
% text(20,neuron2/(50^3),txt);
% txt = 'AREA 2';
% text(70,neuron1/(50^3),txt);

save(sprintf('Magnification
Factor/experiencia_3D_%d.mat',u));% Saving all the
experiment

end

A.7. Calculating the magnification factor for a 1-D SOM

%%
%%%%%%%%
%
% Name: calculomagnificacao
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine calculates the som
magnification factor as well
% as the magn. constant for a given heaviside 1D input
data density.
%
% V1.0 - Moreira Bastos, Jun 2021
%%
%%%%%%%%
%% FORMULAES
% d1=K*d1'^alfa;
% d1=K*d2'^alfa;
% alfa=log(d1/d2)/log(d1'/d2');
% K=d2/d2'^alfa ou K=d1/d1'^alfa;
%
%
format long
expoente_e_constante=zeros(2,2);

for i=1:499

25

load(sprintf('heaviside%d.mat',i),'densidade_output','dens
idade_input','neurons');

alfa=log(densidade_output(1)/densidade_output(3))/log(dens
idade_input(1)/densidade_input(3));
K=densidade_output(3)/densidade_input(3)^alfa;

expoente_e_constante(i,1)=alfa;
expoente_e_constante(i,3)=K;

end
save('expoente_e_constante.mat','expoente_e_constante');

A.8. Calculating the magnification factor for a 2-D SOM

%%
%%%%%%%%
%
% Name: calculodemagnificacao
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine calculates the som
magnification factor as well
% as the magn. constant for a given 2D input data density.
%
% V1.0 - Moreira Bastos, Jun 2021
%%
%%%%%%%%
%% FORMULAES
% d1=K*w1^alfa;
% d2=K*w2^alfa;
% alfa=log(d1/d2)/log(w1/w2);
% K=d2/w2^alfa or K=d1/w1^alfa;
%
format long
expoente_e_constante=zeros(2,2);

for i=1:140

load(sprintf('Magnification
Factor/experiencia_2Dpara1D%d.mat',i),'dens','densn');

w=dens; d=densn;

26

alfa=log(d(1)/d(2))/log(w(1)/w(2)); %
alfa=log(d1/d2)/log(w1/w2);
K=d(1)/w(1)^alfa; % K=d2/w2^alfa or K=d1/w1^alfa;

expoente_e_constante(i,1)=alfa; % Alfa

expoente_e_constante(i,3)=K; %Constant K

end
save('expoente_e_constante.mat','expoente_e_constante');

A.9. Calculating the magnification factor for a 3-D SOM

%%
%%%%%%%%
%
% Name: main_3D
%
% Objective:
%
% Input/Output Parameters:
%
% Obs: This matlab routine calculates the som
magnification factor as well
% as the magn. constant for a given 3D input data density
%
% V1.0 - Moreira Bastos, Jun 2021
%%
%%%%%%%%
%
%
%
%% FORMULAES
% d1=K*w1^alfa;
% d2=K*w2^alfa;
% alfa=log(d1/d2)/log(w1/w2);
% gamma=d1/n*w1
% K=d2/w2^alfa or K=d1/w1^alfa;
%
%%
% Search for magnification exponent and magnification
constant for each SOM
% experiment done
%
format long
expoente_e_constante=zeros(2,2);

for i=1:30

27

load(sprintf('Magnification
Factor/experiencia_3D_%d.mat',i),'dens','densn'); % Load
data from SOM (3D to 3D experiment)
%load(sprintf('Magnification Factor 3D to
2D/experiencia_3D_to_2D%d.mat',i),'dens','densn'); % Load
data from SOM (3D to 2D experiment)
%load(sprintf('Magnification Factor 3D to
1D/experiencia_3D_to_1D%d.mat',i),'dens','densn'); % Load
data from SOM (3D to 1D experiment)

w=dens; % input data densities
d=densn; % neuron densities

alfa=log(d(1)/d(2))/log(w(1)/w(2)); %
alfa=log(d1/d2)/log(w1/w2);
K=d(1)/w(1)^alfa; % K=d2/w2^alfa or K=d1/w1^alfa;

expoente_e_constante(i,1)=alfa; % Alfa
expoente_e_constante(i,3)=K; %Constant K

end

save('expoente_e_constante_3D.mat','expoente_e_constante')
;
%
save('expoente_e_constante_3D_para_2D.mat','expoente_e_con
stante');
%
save('expoente_e_constante_3D_para_1D.mat','expoente_e_con
stante');

1

B. Appendix B – Relationship between the

neighbourhood function initial radius and the

number of neurons for the one-dimensional case

From the set of experiments, we conclude that the initial radius does not

influence the magnification factor. However, since the magnification factor values are

stable for lower initial radius, we opt to use 20% of the total number of neurons.

Fig. 1 - Magnification factor vs neighbourhood function initial radius

We believe that the essential matter to analyse is the training epochs since we proved

that this parameter influences the magnification factor substantially.

1

C. Appendix C – Angola’s demographic information

Table 13 - Angola's Demographic data collected from Angolan 2014 Census

Province Population Area (𝒌𝒌𝒌𝒌𝟐𝟐) Population
density
(people/𝒌𝒌𝒌𝒌𝟐𝟐)

Zaire 594428 37230 16

Uige 1483118 62579 24

Malanje 986363 86805 12

Lunda Sul 537587 82827 7

Lunda Norte 862566 99363 9

Luanda 6945386 18826 369

Benguela 2231385 39105 58

Namibe 495326 57119 9

Huambo 2019555 33296 61

Huíla 2497422 78898 32

Bié 1455255 70746 21

Cunene 990087 77156 13

Cuando
Cubango

534002 201247 3

Moxico 758568 203203 4

Cuanza Sul 1881873 55574 34

Cabinda 716076 7235 99

Cuanza
Norte

443386 20429 22

Bengo 356641 20298 18

	Chapter 1
	1. Introduction
	1.1. Motivation
	1.2. The SOM Algorithm
	1.2.1. Variables

	1.3. Why study the magnification effect?
	1.4. Purpose of the dissertation
	1.5. Structure of the dissertation

	Chapter 2
	2. State of the Art
	2.1. SOM Applications
	2.1.1. Studies on the Magnification Effect of SOM

	Chapter 3
	3. Design of experiments
	3.1. The one-dimensional case
	3.1.1. Uniform probability distribution function
	3.1.2. Heaviside probability distribution function
	3.1.2.1. Increasing the training epochs
	3.1.2.2. Variations in data and neuron densities.
	3.1.2.3. Increasing the neurons

	3.1.3. Multiple Step probability distribution function
	3.1.3.1. Increasing the training epochs
	3.1.3.2. Increasing the number of neurons

	3.2. Two-dimensional input data
	3.2.1. Two Different Density Areas
	3.2.1.1. Increasing the amount of neurons
	3.2.1.2. Increasing the training epochs

	3.2.2. Four Different Density Areas

	3.3. Three-dimensional input data
	3.3.1. Calculating the magnification factor

	Chapter 4
	4. Testing the new magnification factor rule in a SOM based Cartogram
	4.1. Angola Cartogram using Carto-SOM

	Chapter 5
	5. Conclusions
	Bibliography
	A. Appendix A – Matlab routines
	A.1. One-dimensional SOM algorithm with Uniform distribution
	A.2. One-dimensional SOM algorithm with Heaviside distribution
	A.3. One-dimensional SOM algorithm with multiple Heaviside distribution
	A.4. Two-dimensional SOM algorithm with two different density areas
	A.5. Two-dimensional SOM algorithm with four different density areas
	A.6. Three-dimensional SOM algorithm with two different density areas
	A.7. Calculating the magnification factor for a 1-D SOM
	A.8. Calculating the magnification factor for a 2-D SOM
	A.9. Calculating the magnification factor for a 3-D SOM

	B. Appendix B – Relationship between the neighbourhood function initial radius and the number of neurons for the one-dimensional case
	C. Appendix C – Angola’s demographic information

