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ABSTRACT 

  

Deoxynivalenol (DON) and Zearalenone (ZEA) are the most frequent and toxicologically important 

Fusarium mycotoxins detected in cereal grains and feedstuffs, causing toxic effects that impair the 

performance of farm animals, with pigs being the most susceptible species.  

The objectives of this study were to evaluate the occurrence of DON and ZEA in feed cereal grains and 

compound feed destined to swine consumption, to perform a histopathological study using liver samples 

collected from gilts and sows fed with these compound feeds. Twelve ingredients (unprocessed maize, 

barley, wheat, bran, rapeseed, soybean) and twenty-six samples of swine compound feed were 

analyzed. The histopathological study was performed using samples from slaughtered pigs that had 

been fed the analyzed compound feed for at least two weeks.  

Results showed that 71.1% of the samples were positive for ZEA and 78.9% for DON. Histologically, 

diffuse degenerative changes compatible with hepatosis were observed. 

 

KEYWORDS 

Deoxynivalenol; Feed; Histopathology; Mycotoxin; Swine; Zearalenone; Cereals. 

 

 

Sumário 

Desoxinivalenol (DON) e Zearalenona (ZEA) são as micotoxinas de Fusarium mais frequentes e 

toxicologicamente importantes detetadas em cereais e alimentos para animais, causando efeitos 

tóxicos que prejudicam o desempenho de animais de produção, sendo os suínos a espécie mais 

suscetível.  

Este estudo teve como objetivo avaliar a ocorrência de DON e ZEA em grãos de cereais e alimentos 

compostos destinados ao consumo de suínos, bem como realizar um estudo histopatológico com a 

utilização de amostras de fígado recolhidas de marrãs e porcas alimentadas com estes alimentos 

compostos. Foram analisados doze ingredientes (milho não processado, cevada, trigo, farelo, colza, 

soja) e vinte e seis amostras de alimento composto para suínos. O estudo histopatológico foi realizado 

utilizando amostras de suínos abatidos que haviam sido alimentados com os alimentos compostos 

analisados durante pelo menos duas semanas.  

Verificou-se que 71,1% das amostras foram positivas para a ZEA e 78,9% para a DON. 

Histologicamente, foram observadas alterações degenerativas difusas compatíveis com hepatose. 

 

Palavras-Chave 

Desoxinivalenol; Alimento destinado ao consumo animal; Histopatologia; Micotoxina; Suíno; 

Zearalenona; Cereais
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1. INTRODUCTION 

Mycotoxins are low molecular weight natural products, produced as secondary metabolites by 

filamentous fungi (Bracarense et al., 2020; Brown et al., 2017; Puntscher et al., 2018, cit. by de Santis 

et al., 2019; Andersen et al., 2012, cit. by Schulz et al., 2019). In spite of the hundreds of mycotoxins 

described in the literature, the number of known mycotoxins with significant economic, agronomic and 

health significance to farm animals is quite limited (Weaver et al., 2014, cit. by Kim et al., 2019; Logrieco 

et al., 2018; Aravind et al., 2003, cit. by Weaver et al., 2020). 

Deoxynivalenol (DON) is the most frequently detected trichothecene (Type B trichothecenes) in 

animal feeds worldwide (Van Der Fels-Klerx et al., 2012, cit. by Liu et al., 2016; Sobrova et al., 2010, 

cit. by Sayyari et al., 2018; Rocha et al., 2005, cit. by Schwartz-Zimmermann et al., 2017). DON was 

first isolated from barley in Japan and named “Rd-toxin” (Rodrigues & Naehrer, 2012 cit. by Kang et al., 

2019), and shortly thereafter, isolated from maize associated with emesis in pigs and thus coined as 

“vomitoxin” (Vesonder et al., 1973, cit. by Tang et al., 2019). Besides vomiting, ingestion of DON-

contaminated feed is associated with feed refusal or decreased feed intake and digestive disorders that 

reduces body growth and promotes a general loss of condition (Kahlert et al., 2019; Serviento et al., 

2018). DON impairs the immune function in various livestock (Iqbal et al., 2020), induces apoptosis in 

hemopoietic progenitor cells (Parent-Massin, 2004, cit by Sun et al., 2014) inhibits protein, DNA and 

RNA synthesis and operates as an immunomodulator (Kahlert et al., 2019; Schwartz-Zimmermann et 

al., 2017). Therefore, organs/tissues showing high rate of cell turnover are regarded as particularly 

susceptible to trichothecenes, such as the lymphoid and hematopoietic tissues, and the gastrointestinal 

tract (Hascheck et al., 2002; Rocha et al., 2005, cit. by Gerez et al., 2015). At certain doses, DON can 

trigger leukocytosis, hemorrhages, endotoxemia, circulatory shock, and even death (Iqbal et al., 2020; 

Shalapy et al., 2020). Wang et al. (2020), also mention brain damage, stating that the morphology of 

nerve cells in the piglet hippocampus is affected by low doses of DON, inhibiting their proliferation and 

leading to apoptosis. 

Zearalenone (ZEA), a macrocyclic lactone previously known as F-2 toxin, was first reported to be 

associated with estrogenism in pigs in 1928 (McNutt et al., 1928, cit. by Morgavi & Riley, 2007). The 

basis for the estrogenic effect is now well established and explained to a close structural similarity 

between zearalenone (and many of its metabolites) and estradiol (Osweiler, 2000, cit. by Morgavi & 

Riley, 2007) that permits a binding affinity to estrogen receptors (17β-estradiol receptor), higher for ER-

α (Pistol et al., 2015;Tiemann cit. by Catteuw et al., 2019). The most common toxic effects include 

decreased fertility, anoestrus, abortion, and increased embryonic and foetal death. Also, ZEA toxicity is 

associated with reduced litter size, changed weight of adrenal, thyroid, pituitary glands in offspring and 

change in serum levels of progesterone and oestradiol (Pistol et al., 2015). 

DON and ZEA are amongst the most frequent and toxicologically important Fusarium toxins 

(produced mainly by Fusarium graminearum) detected in cereal grains, and thus co-occurrence is 

regularly observed worldwide (Alexandre et al., 2018; Sayyari et al., 2018; Serviento et al., 2018) in both 

feed ingredients/ raw materials and feed intended for different animal species. Nevertheless, swine are 
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more susceptible to both Fusarium mycotoxins than other species. For DON the susceptibility is partly 

explained by differences in the metabolism of DON due to their limited metabolic capacity to 

biotransform DON into less toxic metabolites and possibly also to their high exposure to cereal-rich diets 

(Sayyari et al., 2018; Pinton & Oswald, 2014, cit. by Serviento et al., 2018). There are derived forms of 

DON from fungal acetylation which are 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol, from 

plant production such as deoxynivalenol-3-β-D-glucopyranoside and from bacterial transformation, 

namely de-epoxy-deoxynivalenol, 3-epi-deoxynivalenol and 3-keto-deoxynivalenol, called masked 

mycotoxin (Bracarense et al., 2020). Regarding ZEA, the relative binding affinity for estrogen receptors 

was greater in pig than in other species, particularly female pigs, which may explain the interspecies 

differences in sensitivity to the estrogenic effects (Fitzpatrick et al., 1989, cit. by Morgavi & Riley, 2007). 

After oral exposure, ZEA is rapidly absorbed (85%), being metabolized at intestinal level and in hepatic 

tissue. The biotransformation of this toxin leads to generation of its metabolites, (α- and β-zearalenol, 

α- and β-zearalanol), all of them having biological activity (Pistol et al., 2015; Catteuw et al., 2019). As 

for DON, liver is the target organ in all animal species examined so far (Lim et al., 1996, cit. by Tiemann 

et al., 2006).  

Pork is one of the main sources of meat in the human diet, and its consumption provides important 

nutrients such as vitamin B12, iron, amino acids, and others (Wolk, 2017; Yardımcı, 2020). Pork is the 

second most consumed meat by the Portuguese (41.4 kg/year per capita), after poultry and, according 

to INE, the value of pig production in 2020 represented 8% of all national agricultural production (INE, 

2020). 

The objectives of this study were firstly to evaluate the occurrence of DON and ZEA in feed cereal 

grains and compound feed destined to swine consumption. In addition, the study aimed to perform a 

histopathological study using liver samples collected from gilts and sows fed with these compound 

feeds. 

 

2. EXPERIMENTAL 

 

2.1. Sampling 

The follow up of the feed production chain was carried out from the cereal grains up to the final 

compound feed in a feed factory supplying several swine farms (integrated production system) of the 

Portuguese region producing the highest number of swine. The twelve ingredients analyzed included 

unprocessed maize, barley, wheat, bran, rapeseed, and soybean. Incremental samples of these 

ingredients were collected before incorporation in the factory mixing machine. The compound feed was 

sampled at the feed facility exit (in trucks; n=6), in the farm silo (n=6) and at the feeder (n=14) of the 

pavilions of gilts and sows, in different production steps (breeding, gestation and lactation). In the period 

of sampling and throughout the study, no chelating/adsorbent agent was added to the feed. Sampling 

occurred during January and February 2013 and was performed in accordance with EU requirements 

(EC, 2006). 
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The histopathological study was performed in 90 slaughtered pigs (Landrace xs Largewhite; 36 

gilts and 54 sows) reared with the analyzed compound feed for at least two weeks. All liver samples 

were randomly collected after regular post-mortem veterinary inspection of the carcasses and animal 

organs, in the regional slaughterhouse receiving animals from the entailed farms. None of the 

slaughtered animals showed signs of hyperestrogenism or uterotrophic changes, and none of the 

sampled livers or remaining organs featured any sign of macroscopic lesions. The study was authorized 

by the Scientific Council of Escola Universitária Vasco da Gama. None of the animals was slaughtered 

exclusively for the purpose of being part of the study. 

 

2.2. Mycotoxin analysis 

The incremental ingredient or feed samples were mixed carefully to form an aggregate sample, 

in order to make it homogenous, and then finely grinded. Fifty grams of ground sample was weight and 

10 g of NaCl and 250 ml of 70% methanol (diluted in distilled water) were added. For wheat samples, 

no NaCl was added. The mixture was shaken thoroughly for three minutes in a magnetic stirrer, and the 

sample was filtered in Whatman filter paper, and the resulting filtrate collected.  

 

2.2.1. ZEA 

Determination of ZEA was carried out by means of a commercial competitive ELISA (CELER ZON 

V2, TECNA, Italy), according to the test kit instructions. Briefly, to each premixing well, 100 μL of enzyme 

conjugate were added. Fifty microliters of each standard/ filtered sample were added into the 

corresponding premixing wells. Using the micropipette, this mixture was pipetted up and down three 

times and 100 μL of the content from each premixing well was immediately transferred into the 

corresponding anti-zearalenone antibody coated microwell. The plate was incubated at room 

temperature for 10 minutes. At the end of incubation, the liquid was poured out from the wells, which 

were then filled completely with working washing buffer. The liquid was poured out of the wells. This 

washing sequence was repeated for a total of three times. The remaining droplets were removed by 

tapping the microplate upside down vigorously against absorbent paper. After that, 100 μL of 

development solution was added to each well and mixed thoroughly with rotatory motion for few 

seconds, before a 10-minute incubation period at room temperature. Fifty microliters of stop solution 

was added to each well and mixed thoroughly with rotatory motion for few seconds. Absorbance was 

measured at 450 nm against an air blank, within 60 minutes.  

The absorbance value of each standard and sample was divided by the absorbance of the 

Standard 0 (B0) and multiplied by 100; the Maximum Binding (B0) was thus made equal to 100% and 

the absorbance values were quoted in percentage: 

 

Standard (or sample) absorbance   X  100 =  B 

Standard 0 (B0) absorbance    B0 
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The B/B0 values calculated for each standard (0, 10, 50, 200, 1000 μg/kg) were entered in a 

semi-logarithmic system of coordinates against the zearalenone standard concentration and the 

standard curve was drawn. The B/B0 value for each sample were interpolated to the corresponding 

concentration in the calibration curve. According to the manufacturer’s description, the cut-off value was 

10 μg/kg. 

2.2.2. DON 

Determination of DON was carried out by means of a commercial competitive ELISA (Celer DON 

v2, TECNA, Italy), according to the test kit instructions. Briefly, to each premixing well, 100 μL of enzyme 

conjugate were added. Fifty microliters of standard and samples were added into the corresponding 

premixing wells. Using a micropipette, the content of each premixing well was mixed, by pipette up and 

down three times) and 100 μL were immediately transferred into the corresponding anti-DON antibody 

coated microwell. Then, a 10-minute incubation period at room temperature followed. At the end of 

incubation, the liquid was poured out from the wells, which were then completely filled with washing 

buffer. The liquid was poured out from the wells. This washing sequence was carried out for a total of 

three times. All the remaining droplets were removed by tapping the microplate upside down vigorously 

against absorbent paper. Afterwards, 100 μL of development solution was added to each well and mixed 

thoroughly with rotatory motion for few seconds, before an incubation period of 10 minutes at room 

temperature, protected from light. Fifty microliters of stop solution was added to each well, and then 

mixed thoroughly with rotatory motion for few seconds. Within 60 minutes, absorbances were measured 

at 450 nm.  

The absorbance value of each standard and sample was divided by the absorbance of the 

Standard 0 (B0) and multiplied by 100; the Maximum Binding (B0) was thus made equal to 100% and 

the absorbance values were quoted in percentage: 

 

Standard (or sample) absorbance   X  100 =  B 

Standard 0 (B0) absorbance    B0 

 

The B/B0 value provided for each standard (0; 40; 250; 1250; 5000 μg/kg) was entered in the kit 

lot conformity certificate in a semi-logarithmic system of coordinates against the DON standard 

concentration and the standard curve was drawn. The B/B0 value for each sample was interpolated to 

the corresponding concentration in the calibration curve. According to the manufacturer’s description, 

the detection limit for the analyzed samples was 40 μg/kg. 

 

2.3. Histopathology 

 

After collection, liver tissue samples (5-8 cm) were immediately fixed in 10% buffered formalin 

(for 24h), in a relation of about 1:20 (volume of tissue/ volume of fixative) to minimize post-mortem 

changes in cell structure. Samples were then dehydrated, cleared and paraffin embedded. Tissue 

samples were sectioned with 3 µm thickness and placed on glass slides. Mounted glass slides were 
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immersed in xylene (twice for 10 min) followed by rehydration with graded ethanol (five minutes in 100%, 

five minutes in 95%, five minutes in 70%) and transferred to deionized water. Each tissue sample was 

stained with routine haematoxylin and eosin (H&E) (10 minutes in haematoxylin, followed by a wash 

with distilled water and four minutes in eosin). Finally, they were washed and dehydrated with increasing 

alcohol (i. e. 70, 95, 100%). The mounting was performed with DPX. Basic structures like the nuclei 

were stained purple/violet, and acidic structures like the cytoplasm were stained pink. Routine H&E 

staining performed for examination by light microscopy was adapted from Siddiqui et al. (2016). 

Prussian blue staining was performed for iron-loading as described by Han et al. (2017). Briefly, 

equal parts of 20% aqueous solution of Hydrochloric Acid and 10% aqueous solution of Potassium 

Ferrocyanide were mixed immediately before staining.  Tissue slides were immersed in this solution for 

20 minutes, after which a three-washing step was performed.  Counterstain was carried out with nuclear 

fast red (safranin 0.05%) for five minutes, before dehydration, clearing and mounting procedures. The 

result was iron deposits stained blue, the cytoplasm pink, and the nuclei red (Han et al., 2017). 

 

 

3. RESULTS & DISCUSSION 

 

3.1. Mycotoxins 

 

All the tested samples featured a widespread occurrence (71.1% for ZEA and 78.9% for DON), 

although more evident in compound feed, for both ZEA (84.6%) and DON (100%) as shown in Tables 

1-3.  

Nevertheless, the average contamination levels were higher in cereal grains than in compound 

feed for DON (644.9 vs. 286.4 μg/kg) (Table 1-3). It was noteworthy the high contamination of this toxin 

in the bran samples analyzed, up to 1433 µg/kg.  Cereal bran is the grain constituent with the highest 

risk of presenting high levels of mycotoxin contamination, especially DON (Cheli et al., 2010, cit. by 

Lippolis et al., 2018) which was also evident in the results obtained in the present study (Table 1). 

In the cereal samples analyzed, the bran and soybean samples had levels of DON and ZEA 

above the detection limit. Whereas bran featured the higher contamination of DON, soybean featured 

the highest ZEA contamination (Table 1 and 2). It should be noted that the bran samples were 

contaminated throughout the different sample collection moments in contrast to the maize samples 

contaminated by DON only in the first week (Table 2). The rapeseed samples also remained 

contaminated with ZEA at the different sample collection moments performed. Although the bran and 

rapeseed were contaminated by ZEA at different sample collection moments, the levels varied, which 

implies the influence of other factors (Table 2). Probably, the various factors present in the first week of 

harvest predisposed better conditions for mycotoxin production in the rapeseed sample, in contrast to 

those present in the second week, which increased the contamination levels of the bran. 
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Table 1. Contamination levels and occurrence of ZEA and DON in the cereal grain samples. 

 

Sample ZEA DON 

Cereal grains (n) Incidence 

(%) 

Range (µg/kg) Mean ± SD 

(µg/kg) 

EU ML 

(µk/kg) 

Incidence 

(%) 

Range (µg/kg) Mean ± SD (µg/kg) EU LM 

(µg/kg) 

Maize 0/3 

(0%) 

n.d. n.d. 2000 1/3 

(33.33%) 

n.d.-67.83 67.83 8000 

Wheat 0/2 

(0%) 

n.d. n.d. 0/2 

(0%) 

n.d. n.d. 

Rapeseed 2/2 

(100%) 

14.65-35.80 25.22±14.95 0/2 

(0%) 

n.d. n.d. 

Soy 1/1 

(100%) 

54.56 54.56 1/1 

(100%) 

49.90 49.90 

Barley 0/2 

(0%) 

n.d. n.d. 0/2 

(0%) 

n.d. n.d. 

Bran 2/2 

(100%) 

10.21-25.80 18.01±11.03 2/2 

(100%) 

1028.10-1433.69 1230.89±286.79 

TOTAL 5/12 

(41.67%) 

n.d.-54.56 28.20±17.79 4/12 

(33.33%) 

n.d.-1433.69 644.88±696.67 
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Table 2. Contamination levels and occurrence of ZEA and DON in the cereal grain samples, according 

to weeks of sample collection. 

 

Mycotoxin ZEA DON 

Samples (n) Range (µg/kg) Range (µg/kg) 

Maize (1) 
Maize (2) 

1st Week n.d. 67.83 

2nd Week n.d. n.d. 

Wheat (1) 
Wheat (1) 

1st Week n.d. n.d. 

2nd Week n.d. n.d. 

Rapeseed (1) 
Rapeseed (1) 

1st Week 35.80 n.d. 

2nd Week 14.65 n.d. 

Soy (1) 

Soy (0) 

1st Week 54.56 49.90 

2nd Week - - 

Barley (1) 
Barley (1) 

1st Week n.d. n.d. 

2nd Week n.d. n.d. 

Bran (1) 
Bran (1) 

1st Week 10.21 1028.10 

2nd Week 25.80 1433.69 

 

 

The compound feed analyzed was collected from six silo farms (Farm A to H). All the farms had 

their compound feed contaminated with DON and ZEA, except for some samples from farm G and F 

that were negative for ZEA (Table 3). 

Maternity feed samples and those from pregnant sows were also found to be contaminated with 

ZEA and DON. The concentration of both remained almost the same, with ZEA having an average of 

contamination of 28.72 μg/kg in the maternity feed and 27.22 μg/kg in that of pregnant sows whereas 

DON featured 301.99 μg/kg and 280 μg/kg, respectively (Table 3). In turn, the silo samples showed 

slightly higher contamination values, meaning that neither site stands out for its degree of contamination, 

although in the silo samples the content is higher. Increasing levels were observed starting in the factory 

(14.1 μg/kg and 188 μg/kg for ZEA and DON, respectively) toward the farms’ silos (31.9 μg/kg and 353 

μg/kg, for ZEA and DON, respectively) suggesting that for these field mycotoxins the storage step could 

be a risk factor (Table 3). Mycotoxins can be produced in pre-harvest, harvest, handling, transport, and 

in storage under favorable conditions (Abd-Elsalam & Rai, 2020). The study conducted by Wu et al. 

(2017) showed that the environmental pH value plays an important role in the production of Fusarium 

spp. mycotoxins, with an alkaline pH promoting ZEA production while an acidic pH contributing to DON 

production. Temperature, relative humidity, and water activity also influence mycotoxin production 

(Lahouar, 2015, cit. by Peter Mshelia et al., 2020; Wu et al., 2017; Zhang et al., 2019). Previous studies 

reviewed by Zhang et al. (2019), reported that low temperatures inhibit the reproduction and 

development of most fungi, while high temperatures produce spores and mycotoxins. In addition, both 

low and high temperatures (15ºC and 17ºC, and 20-8ºC, respectively) can promote the synthesis of ZEA 

(Wu et al., 2017; Kokkonen et al., 2010, cit. by Zhang et al., 2019). In turn, DON production is enhanced 

by high temperatures between 23-25°C (Wu et al., 2017). Peter Mshelia et al. (2020), found an increase 

in ZEA and DON synthesis at 30°C with a water activity of 0.98, but suggests that temperature may 

have a greater effect compared to the influence of water activity.  
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Table 3. Contamination levels and occurrence of ZEA and DON in the compound feed contaminated 

with ZEA and DON. 

 

 

Samples (n) ZEA DON 

Incidence (%) Range 
(µg/kg) 

Mean ± SD (µg/kg) EU ML 
(µk/kg) 

Incidence 
(%) 

Range (µg/kg) Mean ± SD (µg/kg) EU LM 
(µg/kg) 

Compound feed (26) 22/26 
(84.62%) 

n.d.–58.91 28.21±14.00 100 
(Gilts) 
250 

(Pigs) 

26/26 
(100%) 

110.44-669.98 286.37±165.25 900 

Farms A 5/5 
(100%) 

13.27-49.20 30.50±13.65 5/5 
(100%) 

158.471-669.976 479.14±210.29 

B 2/2 
(100%) 

16.38-23.57 23.48±5.08 2/2 
(100%) 

257.289-307.473 347.97±35.48 

C 6/6 
(100%) 

11.85-58.91 34.57±17.13 6/6 
(100%) 

110.440-557.413 232.68±173.41 

D 3/3 
(100%) 

19.73-27.04 26.36±3.67 3/3 
(100%) 

135.925-339.035 269.72±115.89 

E 0/1 
(0%) 

n.d. n.d. 1/1 
(100%) 

- 135.925 

F 3/3 
(100%) 

13.78-50.00 26.97±20.02 3/3 
(100%) 

120.330-338.062 241.06±110.79 

G 1/3 
(33.33%) 

n.d.-17.61 - 3/3 
(100%) 

119.248-385.844 237.93±135.68 

H 2/3 
(66.66%) 

11.46-41.18 26.32±21.02 3/3 
(100%) 

124.754-292.812 235.67±96.07 

Location 
      
      

Truck 
(Feed 
facility 
exit) 

3/6 
(50%) 

n.d.–17.14 14.13± 2.86 6/6 
(100%) 

119.25-292.81 188.44±78.25 

Feeder 13/14 
(92.86%) 

n.d.-50 29.77±14.24 14/14 
(100%) 

110.44-628.93 299.59±154.49 

Farm silo 6/6 
(100%) 

21.91–58.91 31.88±13.84 6/6 
(100%) 

117.64-669.98 353.46±225.75 

Production 
stage 
      

Silo 6/6 
(100%) 

21.91-58.91 31.88±13.84 6/6 
(100%) 

117.64-669.98 353.46±225.75 

Gestation 6/6 
(100%) 

13.27-49.20 27.22±14.55 6/6 
(100%) 

149-556 280±158.97 

Maternity 4/5 
(80%) 

n.d.-45.74 28.72±14.63 5/5 
(100%) 

110-629 300±207.48 

Weeks 1st 1/3 
(33.33%) 

n.d.-17.14 - 3/3 
(100%) 

n.d.-265 170±82.48 

2nd 2/3 
(66.67%) 

n.d.-13.78 12.62±1,63 3/3 
(100%) 

n.d.-293 207±86.25 

3rd 6/7 
(85.71%) 

n.d.-58.91 43.86±9.57 7/7 
(100%) 

136-670 430±225.33 

4th 13/13 
(100%) 

11.85-50.00 20.63±10.68 13/13 
(100%) 

110-386 229±104.92 

 

 

 

Implementing preventive measures in the grain sector that minimize the risk of mycotoxin 

contamination in silo feed will be of great importance. Before performing good manufacturing practices, 

good agricultural practices must first be performed, considering the type of crop and the climatic 

conditions. Growing wheat after maize increases DON levels, since maize is a major DON producer, 

but if the soil is plowed, DON levels decrease significantly. Regarding storage conditions, cereals should 

be dried at a relative humidity that is not conducive to fungal growth and the temperature should be 

checked frequently. During transport, temperature fluctuations and condensation should be avoided 

(CE, 2006). 
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In the present study, animals were exposed to relatively low doses of two major Fusarium 

mycotoxins (ZEA and DON) at levels commonly found in feeds. 

For several years, different studies performed in the Asian continent reported a very high 

frequency of ZEA contamination of swine compound feed. However, since 2017, the reported values 

seem to be decreasing; for example, in China, in 2016 Li et al. (2019) reported an incidence of 75%, but 

since 2017, the values decreased to 18.1% and to 22.1% in 2018 (Table 4). 

The Iberian Peninsula showed much lower incidence of contamination, between 7.02% and 

33.3% (Almeida et al., 2011; Arroyo-Manzanares et al., 2019; Table 4). In Portugal, the study by Almeida 

et al. (2011), reported a 26.5% frequency of ZEA contamination, while in the present study much higher 

levels (84.6%) were determined in samples collected during 2013 (Table 3 and 4). The maximum ZEA 

levels did not varied between both studies (73 µg/kg and 58 µg/kg; Table 3 and 4) and did not exceed 

the recommended limits. As in the previous studies conducted in Portugal, the frequency and 

concentration levels of ZEA remain similar (Almeida et al., 2011). In one of the most recent studies 

conducted in Spain (Muñoz-Solano & González-Peñas, 2020) there was an increase in the frequency of 

ZEA positive samples in compound feed (Table 4). Although between 2012 and 2014, Romera et al. 

(2018) obtained an incidence of 10% and in 2017, Arroyo-Manzanares et al. (2019) showed a rate of 

7.02%, in 2019 the frequency close to 33.3% (Table 4). Many samples had ZEA levels higher than the 

recommended levels (Arroyo-Manzanares et al., 2019). 

In Costa Rica, in the study conducted from 2012 to 2017 by Molina et al. (2019) the frequency 

was 11.2%, but the average ZEA contamination levels were well above the recommended limits, with a 

value of 518 µg/kg (Table 4). 

As for DON, both Portugal and Spain showed a much lower frequency compared to ZEA 

contamination. Spanish studies reported an incidence of 5% between 2012 and 2014, and of 4.39% in 

2017 (Almeida et al., 2011; Arroyo-Manzanares et al., 2019; Romera et al., 2018; Table 5). In turn, in 

Portugal, Almeida et al., (2011) reported a frequency of 16.9%. In comparison, in the present study, with 

less samples, the value of DON contamination was 100%. 

It is important to note that the different values reported in the mentioned studies may be due to 

the difference in sample size analyzed but also to the analytical method used, among many other 

factors. For example, according to the literature, HPLC-UV is one of the most sensitive analytical method 

for the quantification of type B trichothecenes such as DON and ZEA (Kiseleva et al., 2020). 

In the study by Wellington et al. (2020), a reduction in BW (body weight) was reported in pigs 

subjected to a DON-contaminated diet (>1000, 3000 and 5000 µg/kg) for 42 days, along with a decrease 

in ADG (average daily gain) and ADFI (average daily feed intake). Starting on day 28, ADG and ADFI 

are recovered, which may indicate an adaptation to the mycotoxin. BW remained reduced compared to 

pigs fed DON up to 1000 µg/kg. 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine. 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
Cereal grains: 
Maize 
Wheat 
Rapeseed 
Soybean 
Barley 
Bran 
 

Compound Feed 
- Silo 
- Gestating 
- Maternity 

Portugal (2013) 27/38 (71.05%) 
5/12 (41.67%) 
0/3 (0%) 
0/2 (0%) 
2/2 (100%) 
1/1 (100%) 
0/2 (0%) 
2/2 (100%) 
 
22/26 (84.62%) 
6/6 (100%) 
6/6 (100%) 
4/5 (80%) 

28.21±14.38 
28.20±17.79 
n.d. 
n.d. 
25.22±14.95 
54.56 
n.d. 
18.01±11.03 
 
28.21±14.00 
31.88±13.84 
27.22±14.55 
28.72±14.63 

n.d.-58.91 
n.d.-54.56 
n.d. 
n.d. 
14.65-35.80 
54.56 
n.d. 
10.21-25.80 
 
n.d.–58.91 
21.91-58.91 
13.27-49.20 
n.d.-45.74 

ELISA 10 (LOD) Present study 

TOTAL: 
Compound feed (226): 
Presentation: 
Flour 
Pellet 

Type of animal: 
Fattening pigs 
Sows 
Piglets 
Gilts 

Spain (2017) 16/226 (7.02%) 
 
 
n. a./183 
n. a./43 
 
n. a./71 
n. a./42 
n. a./111 
n. a./2 

741 101-7681 UHPLC-MS/MS and LC-
MS/MS 

30 (LOD) 
99 (LOQ) 

(Arroyo-Manzanares et al., 
2019) 

TOTAL: 
Corn 

Corn products 
(Corn flour, corn bran, 

corn germ meal, corn 
starch) 
Feed 

China (2016) 54/133 (40,6%) 
14/56 (25%) 
18/48 (37.5%) 
 
 
 
22/29 (75.9%) 

217.9 
144.1 
315.0 
 
 
 
185.4 

1.8-1100.0 
1.8-950.4 
2.3-958.1 
 
 
 
8.8-1100.0 

BAS-MBI 0.98 (LOD) 
 
 

(M. Li et al., 2019) 

TOTAL: 
Corn 

Corn products 
(Corn flour, corn bran, 
corn germ meal, corn 
starch) 

Feed 

China (2017) 35/143 (24.5%) 
11/48 (22.9%) 
11/23 (47.8%) 
 
 
 
13/72 (18.1%) 

166.7 
87.2 
205.3 
 
 
 
201.3 

1.1.-722.6 
1.1-468.5 
9.4-722.6 
 
 
 
13.1-652.1 

BAS-MBI 0.98 (LOD) (M. Li et al., 2019) 

TOTAL: 
Corn 

Corn products 
(Corn flour, corn bran, 
corn germ meal, corn 
starch) 
Feed 

China (2018) 41/129 (31.8%) 
7/26 (26.9%) 
19/35 (54.3%) 
 
 
 
15/68 (22.1%) 

157.0 
24.1 
176.7 
 
 
 
193.9 

1.3-947.8 
1.3-76.8 
1.4-947.8 
 
 
 
5.6-567.0 

BAS-MBI 0.98 (LOD) (M. Li et al., 2019) 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
 
 
Feed and feed ingredients 
 
 
 
 
 

 
Cornmeal 
 
 
 
 
 
 
 
Nursery diet 

 
 
 
 
 
 
 
Pregnancy diet 

Taiwan (2015-2017) 
 
2015 
 
2016 
 
2017 
 
2015-2017 
↓ (USA, Brazil) 
2015 
 
2016 
 
2017 
 
2015-2017 
 
2015 
 
2016 
 
2017 
 
2015-2017 
 
2015 
 
2016 
 
2017 
 
2015-2017 

n. a./820 (70.2%) 
 
 
n. a. (65.6%) 
 
n. a. (85.2%) 
 
n. a. (61.1%) 
 
n. a. (70.2%) 
 
n. a. (64.7%) 
 
n. a. (72.9%) 
 
n. a. (49.5%) 
 
n. a. (56.1%) 
 
n. a. (69.9%) 
 
n. a. (93.4%) 
 
n. a. (68.1%) 
 
n. a. (75.0%) 
 
n. a. (67.0%) 
 
n. a. (86.1%) 
 
n. a. (68.0%) 
 
n. a. (73.3%) 

n. a. 
 
 
31.9 
48.5 (+) 
51.9 
61.0 (+) 
65.4 
107.1 (+) 
51.9 
73.8 (+) 
40.0 
56.9 (+) 
48.9 
67.0 (+) 
88.2 
178.0 (+) 
68.2 
114.5 (+) 
30.0 
43.0 (+) 
52.8 
57.0 (+) 
49.6 
73.0 (+) 
43.5 
57.1 (+) 
29.4 
44.0 (+) 
54.2 
63.0 (+) 
61.5 
90.0 (+) 
49.8 
67.6 (+) 

n. a.-> 1000 
 
 
n. a.-362.0 
 
n. a.-406.0 
 
n. a.-> 1000 
 
n. a.-> 1000 
 
n. a.-116.0 
 
n. a.-330.0 
 
n. a.-> 1000 
 
n. a.-> 1000 
 
n. a.-111.0 
 
n. a.-326.0 
 
n. a.-210.0 
 
n. a.-326.0 
 
n. a.-147.0 
 
n. a.-406.0 
 
n. a.-742.0 
 
n. a.-742.0 

ELISA 20 (LOD) 
25-1000 (LOQ) 

(Yang et al., 2019a) 

Feed 75 countries: 
Europe, America, Russia, 
Asia, Africa. Australia and 
others * 
(2014-2019) 

836/1141 (73.3%) 126 n. a. – 9905 LC-MS/MS n. a. (Novak et al., 2019) 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 

Feed ingredients: 
Corn 
 
Domestic DDGS# 
 
Imported DDGS# 

 
Corn bran 
 
Corn germ meal 
 
Corn gluten meal 
 
Wheat 
Barley 
Wheat bran 

 
Wheat middlings 
 
Wheat flour 
 
Broken rice 
Rice bran 
 
Soybean meal 
 
Complete feed: 
Pellet 
 

Powder 

China (2016-2017) 
 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2016 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2016 
2017 
2016 
2017 
 
2016 
2017 
2016 
2017 

1155/1569 (73.6%) 
596/742 (80.3%) 
183 (93.4%) 
86 (90.7%) 
46 (100%) 
1 (100%) 
33 (100%) 
3 (100%) 
6 (100%) 
3 (100%) 
10 (100%) 
8 (100%) 
5 (100%) 
2 (100%) 
14 (100%) 
14 (100%) 
50 (88.0%) 
20 (95%) 
32 (96.9%) 
5 (100%) 
8 (90%) 
2 (50%) 
13 (100%) 
13 (100%) 
4 (100%) 
27 (96.3%) 
8 (100%) 
559/827 (67,6%)  
123 (100%) 
9 (100%) 
187 (99.5%) 
240 (99.6%) 

2.3-729.2 
 
104.1 
55.0 
299.4 
49.3 
274.8 
204.0 
432.1 
231.5 
316.5 
129.6 
494.9 
729.2 
2.3 
154.4 
94.0 
89.3 
179.5 
81.4 
111.7 
37.2 
68.7 
282.3 
169.1 
76.9 
38.8 
31.7 
210.7 
55.7 
129.3 
65.1 

1363.2 
 
n. a.-624.3 
n. a.-296.8 
n. a.-956.7 
n. a.-49.3 
n. a.-1169.2 
n. a.-378.1 
n. a.-1268.6 
n. a.-456.6 
n. a.-1363.2 
n. a.-325.4 
n. a.-1095.1 
n. a.-1006.3 
n. a. – 4.9 
n. a. – 393.8 
n. a.-439.3 
n. a.-304.7 
n. a.-1195.9 
n. a.-180.8 
n. a.-330.9 
n. a.-79.2 
n. a.-257.3 
n. a.-879.8 
n. a.-280.0 
n. a.-202.4 
n. a.-56.9 
 
n. a.-916.5 
n. a.-138.5 
n. a.-1109.7 
n. a.-597.8 

HPLC-FD 10 (LOD) 
24 (LOQ) 

(Ma et al., 2018) 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

Feed (sows) Belgium (2014-2015) 5/20 (25%) 137±73 54-214 LC-MS/MS n. a. (van Limbergen et al., 
2017) 

Soybean seeds Poland (2015-2017) 24/32 (75%) 42.1 n. a. – 529 HPLC-MS/MS 0.07 (LOD) 
0.2 (LOQ) 

(Zaworska-Zakrzewska et 
al., 2020) 

Feed Spain (2019) 1/3 (33.3%) n. a. n.a.-178 LC-FLD 42 (LOD) (Muñoz-Solano & 
González-Peñas, 
2020) 

TOTAL: 
Compound feeds: 
 
Pigs: 
- Early growing 
- Late growing 
Sows: 
- Gestating 

- Lactating 
- Breeding gilt 
Piglets: 
- Sucking 
-Weanling 

South Korea (2009, 2010, 
2012, 2014, 2016) 

152/160 (95%) 
 
 
 
30 
18 
 
32 
25 
1 
54 
8 
46 

31.70± 36.44% 
 
 
 
25.9 
31.2 
 
48.5 
32.5 
25.7 
 
10.9 
27.2 

n. a. 
 
 
 
 
 
 
250 
 
 
132 
 
 

IAC, HPLC and LC-MS 0.1-3 (LOD) 
0.3-8 (LOQ) 

(Chang et al., 2017) 

Complete feed, feed mixture 
(lactating sows) 
- Barley 
- Corn 

- Soybean meal 
- Wheat byproducts 

Italy (n. a.) 2/19 (11%) 32 n. a. ELISA and LC-MS 25 (LOQ) (Trevisi et al., 2020) 

Feed Spain (2012-2014) 2/20 (10%) n. a. n. a. UHPLC− MS/MS, 
UHPLC−QTOF−MS and 
UHPLC−ESI−MS/MS 

25 (LOD) 
50 (LOQ) 

(Romera et al., 2018) 

Compound feed 
(Lactating and gestating 
sows and pig grower) 

Costa Rica (2012-2017) 2/18 (11.2%) 518±1327 n. a. HPLC 0.072 (LOQ) (Molina et al., 2019) 

Finished Feed Worldwide (2014-2018) 502/524 (96%) n. a. n. a. LC-MS/MS and UHPLC n. a. (Khoshal et al., 2019) 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

Complete feed 
 
 
- Powder 
 
 
 

- Pellet 
 
 

China (2013-2015) 
 
 
2013 
2014 
2015 
 
2013 
2014 
2015 

 
 
 
9/10 (90%) 
2/2 (100%) 
13/13 (100%) 
 
16/19 (84.2%) 
22/33 (66.7%) 
36/38 (94.7%) 

 
 
 
214.7 
253.0 
348.6 
 
232.5 
197.6 
375.0 

 
 
 
n. a.-455.8 
n. a.-287.1 
n. a.-835.4 
 
n. a.-435.8 
n. a.-862.4 
n. a.-1296.5 

HPLC 1.5 (LOD) 
4 (LOQ) 

(Wu et al., 2016) 

TOTAL: 
Feed materials: 
- Maize 
 
- Wheat 
- Barley 

- Silage 
 
Feedstuff piglets 
Fattening pigs 

Croatia (2014) 9/253 (3.6%) 
 
5/151 (3.3%) 
 
1/17 (5.9%) 
0/13 (0%) 
0/14 (0%) 
 
0/20 (0%) 
3/38 (7.9%) 

325? 
 
411±860 
 
275±832 
1.78±2.46 
102±203 
 
21.5±21.8 
117±355 

 
 
2.21-5522 
 
4.72-3366 
2.30-8.07 
3.28-753 
 
2.04-63.2 
2.17-1949 

ELISA  
 
1.9 (LOD) 
2.4 (LOQ) 
 
 
 
 
2.0 (LOD) 
2.8 (LOQ) 

(Pleadin et al., 2015) 

TOTAL: 
Feedstuff/grain (fine 
powder) 
 
- Sow 

- Boars 
- Piglet 
 
- Sow 
- Boars 
- Piglet 
 
- Sow 
- Boars 
- Piglet 

Hungary (n. a.) 
 
 
Manufacturer X 
 
 
 
Manufacturer Y 
 
 
 
Manufacturer Z 

n. a./45 
 
 
n. a./15 
n. a. 
n. a. 
n. a. 
n. a./15 
n. a. 
n. a. 
n. a. 
n. a./15 
n. a. 
n. a. 
n. a. 

39±48 
 
 
 
26±7 
23±3 
20±2 
 
19±1 
172±18 
21±4 
 
20±1 
19±1 
33±8 

18-192 
 
 
 
18-35 
19-28 
18-22 
 
18-21 
153-192 
18-26 
 
19-22 
18-21 
20-40 

ELISA and HPLC-UV 17 (LOD) (Tima et al., 2016) 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
Feed ingredients 
Corn 
Wheat bran 
Soybean meal 
DDGS# 

 
Complete feeds 
Creep feeds 

Starter feeds 
Grower 
Grower-finisher 
Gestating sows 
Lactating sows 

China (2011) 126/131 (96.2%) 
50/55 (91%) 
14/14 (100%) 
13/13 (100%) 
6/11 (54%) 
17/17 (100%) 
 
76/76 (100%) 
7/7 (100%) 
14/14 (100%) 
14/14 (100%) 
18/18 (100%) 
10/10 (100%) 
13/13 (100%) 

n. a. 
 
109.1 
14.9 
9.2 
882.7 
 
58.9 
39 
54 
67 
59 
63 
76 

<LOD-2,958 
 
6.25-321 
<LOD-44.4 
<LOD 35.4 
48.89-2,958 
 
<LOD-232 
4.7-107 
<LOD-115 
7.59-132 
7.1-150 
9.2-149 
7.4-231 

HPLC-FD 1.5 (LOD) 
4 (LOQ) 

(Li et al., 2014) 

Feed Austria (n. a.) n. a./27 40±39 n. a.-126 HPLC n. a. (Weissenbacher-Lang et 
al., 2012) 

TOTAL: 
Feed: 
- Fattening pigs (maize, 
wheat, barley, soy husks, 
wheat flour, colza husks, 
toasted soy seeds) 
- Sows (barley, maize, colza 
husks, wheat, wheat husks, 

soy husks, citrine pulp, soy 
oils) 

Portugal (n. a.) 107/404 (26.5%) 
 
69/277 (24.9%) 
 
 
 
 
38/127 (29.9%) 

n. a. 
 
18.9±17.9 
 
 
 
 
19.4±14.5 

5-73 
 
5-73 
 
 
 
 
5-57.7 

HPLC-FD 5 (LOD) (Almeida et al., 2011) 

Feed (fine powders) China (2013 and 2014) 28/30 (93.3%) (swine and 
poultry feed) 
 
n. a./17 (swine feed) 

n. a. 
 
 
 
n. a. 

16-57 
 
 
 
n. a. 

LC-MS/MS and HPLC-TSQ 3 (LOD) 
10 (LOQ) 
 
 
5 (LOD) 
10 (LOQ) 

(Zhao et al., 2015) 

Feedstuff 
- Compound 

- Concentrated 
- Premixing 

China (2010) 358/420 (85.2%) (swine 
and poultry feedstuff) 
 
201/244 (82.4%) (swine 
feedstuff) 

410±319 
 
 
 
n. a. 

35-1478 
 
 
 
n. a. 

RP-HPLC/FD 5.7 (LOD) 
19 (LOQ) 
 
 
n. a. 

(Wang et al., 2013) 

Feed mixtures: 
- Fattening pigs 

Croatia (2011) 28/30 (93.3%) 184±214 8.93-866 ELISA 1.8 (LOD) (Pleadin et al., 2012) 

Feedstuff Croatia (2010) 44/64 (68.7%) 
(commodities, pig and 
cattle feed) 
 
90.5% (pig feed) 

n. a. n. a.-577 ELISA n. a. (Vulic et al., 2012) 
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Table 4. Reported occurrence of ZEA (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

Feed Thailand (n. a.) 91/100 (91%) 17.4 0.53-169.2 LC-MS/MS, 
UHPLC-MS/MS and LC-
ESI-MS/MS 

0.25-40.0 (LOD)  
0.5-100.0 (LOQ) 

(Nualkaw et al., 2020) 

Hay pellet: 
 
Sows: 
- Gestating 
- Lactating 

Germany (n. a.) n. a. n. a. 479 - ZEA 
1040 - ZEA+its metabolites 
72.6 
51.9 

ELISA and LC-MS/MS n. a. (Hennig-Pauka et al., 2018) 

Feed Korea (2018) 4/17 (23.5%) 106.44±0.55 124.78 IAC, HPLC and LC-MS/MS 1.1 (LOD) 
3.1 (LOQ) 

(Lee & Kim, 2018) 

Fattening pig feed: 
 
Raw materials: 
- Milled maize 

- Soybean 
- Wheat bran 
- Soybean pellets 
 
Finished feed: 
- Suckling pig 
- Piglet 
- Weaner 
- Growing 
- Boar 

Argentina (2008) 50/90 (55.6%) 
 
10/40 (25%) 
n. a./10 
n. a./10 
10/10 (100%) 
n. a./10 
 
40/50 (80%) 
10/10 (100%) 
10/10 (100%) 
n. a./10 
10/10 (100%) 
10/10 (100%) 

n. a. 
 
 
ND 
ND 
153±26.2 
ND 
 
 
306±95.3 
153±66.1 
ND 
153±70.2 
178.5±89.6 

n. a. TLC 50 (LOD) (Pereyra et al., 2011) 

n. a. – Not available. SD – Standard deviation. LOD – Limit of detection. LOQ – Limit of quantitation. 
BAS-MBI – Magnetic bead immunoassay-coupled biotin-streptavidin system; ELISA – Enzyme-linked immunosorbent assay; HPLC – High performance liquid chromatography; HPLC-MS/MS – High performance liquid chromatography with 
tandem mass spectrometry; HPLC-TSQ – High performance liquid chromatography with triple stage quadrupole; HPLC-UV – High performance liquid chromatography with ultraviolet; IAC – Immunoaffinity column; LC-ESI-MS/MS – Liquid 
chromatography electrospray ionization with tandem mass spectrometry; LC-FLD – Liquid chromatography with fluorescence detection; LC-MS – Liquid chromatography-mass spectrometry; LC-MS/MS – Liquid chromatography with 
tandem mass spectrometry; RP-HPLC/FD – Reverse phase high performance liquid chromatography with fluorescence detection; TLC – Thin-layer chromatography; UHPLC – Ultra high performance liquid chromatography; UHPLC-MS/MS – 
Ultra high performance liquid chromatography with tandem mass spectrometry; UHPLC-QTOF-MS – Ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry. 
* Europe – 77.7% (Germany – 22.4%; Denmark – 15.3%; Austria – 14.1%); Central and South America – 9%; Russia and Asia – 5.6%; North America – 3.5%; Africa – 2.4%; Australia – 0.6%; Others (13 samples) – 1.1%. 
# Dried distillers grains with solubles. 

 

  



20 
 

Table 5. Reported occurrence of DON (µg/kg) in raw materials and feed destined to swine. 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
Cereal grains: 
Maize 
Wheat 
Rapeseed 
Soybean 
Barley 
Bran 
Compound Feed 

- Silo 
- Gestating 
- Maternity 

Portugal (2013) 30/38 (78.95%) 
4/12 (33.33%) 
1/3 (33.33%) 
0/2 (0%) 
0/2 (0%) 
1/1 (100%) 
0/2 (0%) 
2/2 (100%) 
26/26 (100%) 
6/6 (100%) 
6/6 (100%) 
5/5 (100%) 

334.17±298.52 
644.88±696.67 
67.83 
n.d. 
n.d. 
49.90 
n.d. 
1230.89±286.79 
286.37±165.25 
353.46±225.75 
280±158.97 
300±207.48 

n.d.-1433.69 
n.d.1433.69 
n.d.-67.83 
n.d. 
n.d. 
49.90 
n.d. 
1028.10-1433.69 
110.44-669.98 
117.64-669.98 
149-556 
110-629 

ELISA 40 (LOD) Present study 

Complete feed, feed mixture 
(lactating sows) 
- Barley 
- Corn 
- Soybean meal 
- Wheat byproducts 

Italy (n. a.) 17/19 (89.5%) 0.375 n. a. ELISA, LC-MS and 
UHPLC 

125 (LOQ) (Trevisi et al., 2020) 

Feed Thailand (n. a.) 43/100 (43%) 215 20.1-631.9 LC-MS/MS, 
UHPLC-MS/MS and 
LC-ESI-MS/MS 

0.25-40.0 (LOD) 0.5-100.0 
(LOQ) 

(Nualkaw et al., 2020) 

Soybean seeds Poland (2015-2017) 22/32 (68.75%) 23.6 n. a.-244 (2016, Aligator) HPLC with MS/MS 1.0 (LOD) 
3.0 (LOQ) 

(Zaworska-Zakrzewska et 
al., 2020) 

Feed n. a. (2017, 2018) 99 (poultry and swine) 
(85%) 

511±94.0 10.1-1709 IAC, LC-MS/MS, HILIC 
and UHPLC-MS/MS 

10.1 (LOD) 
33.3 (LOQ) 

(Panasiuk et al., 2020) 

Compound feed 
(Lactating and gestating 
sows and pig grower) 

Costa Rica (2013-2017) 6/17 (35.3%) 6302±14,932 n. a. HPLC 10.00 (LOQ) (Molina et al., 2019) 

Finished Feed Worldwide (2014-2018) 463/524 (88%) 367 n. a. LC-MS/MS and UHPLC n. a. (Khoshal et al., 2019) 

Feed 75 countries: 
Europe, America, Russia, 
Asia, Africa. Australia and 
others * 
(2014-2019) 

879/1141 (77%) 634 n. a.-34.862 LC-MS/MS n. a. (Novak et al., 2019) 

TOTAL: 
Compound feed (226): 
Presentation: 
Flour (183) 
Pellet (43) 
Type of animal: 
Fattening pigs (71) 
Sows (42) 
Piglets (111) 
Gilts (2) 

Spain (2017) 10/226 (4.39%) 
 
 
n. a./183 
n. a./43 
 
n. a./71 
n. a./42 
n. a./111 
n. a./2 

237 153-555 UHPLC-MS/MS and 
LC-MS/MS 

26 (LOD) 
86 (LOQ) 

(Arroyo-Manzanares et al., 
2019) 
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Table 5. Reported occurrence of DON (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
 
 
Feed and feed ingredients 
 
 
 
 
 

 
Cornmeal 
 
 
 
 
 
 
 
 
Nursery diet 
 
 

 
 
 
 
 
Pregnancy diet 

Taiwan (2015-2017) 
 
 
2015 
 
2016 
 
2017 
 
2015-2017 
 
2015 
 
2016 
 
2017 
 
2015-2017 
 
2015 
 
2016 
 
2017 
 
2015-2017 
 
2015 
 
2016 
 
2017 
 
2015-2017 

n. a./820 (91.4%) 
 
 
n. a. (85.7%) 
 
n. a. (92.6%) 
 
n. a. (94.2%) 
 
n. a. (91.4%) 
 
n. a. (79.4%) 
 
n. a. (87.9%) 
 
n. a. (92.4%) 
 
n. a. (88.8%) 
 
n. a. (86.0%) 
 
n. a. (92.1%) 
 
n. a. (94.5%) 
 
n. a. (91.1%) 
 
n. a. (87.2%) 
 
n. a. (93.5%) 
 
n. a. (95.2%) 
 
n. a. (90.5%) 

n. a. 
 
 
534.2 
623.0 (+) 
879.9 
950.0 (+) 
872.3 
923.0 (+) 
782.6 
855.5 (+) 
625.6 
788.0 (+) 
785.4 
893.0 (+) 
967.9 
1038.0 (+) 
854.6 
928.7 (+) 
455.0 
529.0 (+) 
634.0 
688.0 (+) 
774.9 
820.0 (+) 
619.3 
682.3 (+) 
500.2 
573.0 (+) 
726.4 
777.0 (+) 
842.5 
885.0 (+) 
705.8 
764.2 (+) 

n. a. 
 
 
n. a.-4208.0 
 
n. a.-> 5000 
 
n. a.-> 5000 
 
n. a.-> 5000 
 
n. a.-2421.0 
 
n. a.-2690.0 
 
n. a.-> 5000 
 
n. a.-> 5000 
 
n. a.-1370.0 
 
n. a.-2652.0 
 
n. a.-2595.0 
 
n. a.-2652.0 
 
n. a.-1349.0 
 
n. a.-2956.0 
 
n. a.-3591.0 
 
n. a.-3591.0 

ELISA 200 (LOD) 
250-5000 (LOQ) 

(Yang et al., 2019b) 

Feed Spain (2012-2014) 1/20 (5%) n. a. n. a. UPLC− MS/MS, 
UPLC−QTOF−MS and 
UPLC−ESI−MS/MS 

125 (LOD) 
250 (LOQ) 

(Romera et al., 2018) 
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Table 5. Reported occurrence of DON (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
Feed ingredients: 
Corn 
 
Domestic DDGS# 

 
Imported DDGS# 

 
Corn bran 

 
Corn germ meal 
 
Corn gluten meal 
 
Wheat 
Barley 
Wheat bran 
 
Wheat middlings 

 
Wheat flour 
 
Broken rice 
Rice bran 
 
Soybean meal 
 
Complete feed: 

Pellet 
 
Powder 

China (2016-2017) 
 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2016 
2016 
2017 
2016 
2017 
2016 
2017 
2016 
2016 
2017 
2016 
2017 
 
2016 
2017 
2016 
2017 

1271/1569 (74.5%) 
687/742 (92.6%) 
187 (98.4%) 
97 (97.9%) 
48 (100%) 
2 (100%) 
34 (100%) 
55 (74.5%) 
6 (100%) 
3 (100%) 
10 (100%) 
7 (100%) 
4 (100%) 
2 (100%) 
14 (100%) 
15 (100%) 
53 (100%) 
23 (100%) 
34 (100%) 
7 (100%) 
9 (100%) 
3 (100%) 
13 (100%) 
16 (100%) 
4 (100%) 
29 (96.6%) 
12 (100%) 
584/827 (70.6%) 
128 (99.2%) 
9 (100%) 
195 (100%) 
252 (98%) 

450.0-4381.5 
 
857.4 
750.3 
2599.7 
3547.2 
1855.4 
872.8 
2943.2 
1295.3 
1426.5 
1206.9 
1688.1 
559.9 
3613.8 
2635.8 
2304.2 
1394.6 
2961.2 
1543.0 
4381.5 
450.0 
1607.3 
1532.7 
1271.6 
451.6 
610.7 
 
1194.0 
753.1 
1018.1 
876.3 

 
 
n. a.-4590.8 
n. a.-2250.9 
n. a.-6044.7 
n. a.-5406.8 
n. a.-4044.7 
n. a.-7297.8 
n. a.-4710.7 
n. a.-1916.7 
n. a.-2900.6 
n. a.-2374.6 
n. a.-2229.1 
n. a.-620.3 
n. a.-6595.6 
n. a.-11,028.9 
n. a.-6054.4 
n. a.-5642.1 
n. a.-12,633.3 
n. a.-3363.0 
n. a.-9556.8 
n. a.-736.9 
n. a.-4075.4 
n. a.-3148.5 
n. a.-1900.0 
n. a.-1171.4 
n. a.-1478.5 
 
n. a.-4279.3 
n. a.-1690.9 
n. a.-3400.9 
n. a.-10,437.6 

HPLC-UV 100 (LOD) 
260 (LOQ) 

(Ma et al., 2018) 
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Table 5. Reported occurrence of DON (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

Feed (Sows) Belgium (2014-2015) 20/20 (100%) 371±196 104-884 LC-MS/MS n. a. (van Limbergen et al., 
2017) 

TOTAL: 
2 compound feeds 
 

Pigs: 
- Early grower 
- Later grower 
 
Sows: 
- Gestating sows 
- Lactating sows 
- Breeding gilts 
 
Piglets: 

- Sucking piglets 
- Weanling piglets 

South Korea (2009, 2010, 
2012, 2014 and 2016) 

160/n. a. (93.1%) 
 
 
 
30 
18 
 
 
32 
25 
1 
 
 
8 
46 

231.47±235.30 
 
 
 
201.8±174.3 
217.6±167.8 
 
 
392.1±338.8 
225.7±221.0 
162.8±0.0 
 
 
55.1±38.8 
179.7±164.5 

n. a.-900 IAC, XIC, HPLC and LC-
MS/MS 

1-10 (LOD) 
3-35 (LOQ) 

(Park et al., 2018) 
 

Complete feed 
 
- Powder 
 
 
 
- Pellet 

China (2013-2015) 
 
2013 
2014 
2015 
 
2013 
2014 
2015 

97/115 (84.4%) 
 
9/10 (90%) 
2/2 (100%) 
13/13 (100%) 
 
19/19 (100%) 
22/33 (66.7%) 
32/38 (84.2%) 

n. a. 
 
791.3 
523.4 
1216.3 
 
660.3 
537.7 
704.0 

n. a. 
 
n. a.-1602.6 
n. a.-623.6 
n. a.-2767.6 
 
n. a.-946.6 
n. a.-2478.3 
n. a.-3346.0 

HPLC 0.02 (LOD) 
0.06 (LOQ) 

(Wu et al., 2016) 

TOTAL: 
Feedstuff/grain (fine 
powder) 
 
- Sow 
- Boars 
- Piglet 
 
- Sow 

- Boars 
- Piglet 
 
- Sow 
- Boars 
- Piglet 

Hungary (n. a.) 
 
 
Manufacturer X 
 
 
 
Manufacturer Y 
 
 
 
Manufacturer Z 

n. a./45 
 
 
n. a./15 
n. a. 
n. a. 
n. a. 
n. a./15 
n. a. 
n. a. 
n. a. 
n. a./15 
n. a. 
n. a. 
n. a. 

261±224 
 
 
 
196±25 
203±74 
186±9 
 
191±28 
872±139 
159±24 
 
191±27 
173±27 
180±8 

137-997 
 
 
 
169-223 
162-335 
170-192 
 
160-224 
681-997 
137-190 
 
167-225 
156-220 
170-190 

ELISA and HPLC-UV 13 (LOD) (Tima et al., 2016) 
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Table 5. Reported occurrence of DON (µg/kg) in raw materials and feed destined to swine (continued). 

Matrix Country (year) Frequency of 
contamination (%) 

Mean±¨SD Range [min; max] Analytical LOD/LOQ Reference 

TOTAL: 
Feed ingredients 
Corn 
Wheat bran 
Soybean meal 
DDGS# 

 
Complete feeds 
Creep feeds 

Starter feeds 
Grower 
Grower-finisher 
Gestating sows 
Lactating sows 

China (2011) 124/131 (95%) 
48/55 (87%) 
13/14 (93%) 
12/13 (92%) 
6/11 (54%) 
17/17 (100%) 
 
74/76 (97%) 
6/7 (86%) 
14/14 (100%) 
14/14 (100%) 
17/18 (94%) 
10/10 (100%) 
13/13 (100%) 

n. a. 
(ppm) 
1.01 
0.44 
0.05 
1.36 
 
0.65 
0.28 
0.85 
0.62 
0.58 
0.82 
0.62 

<LOD-2.31 
(ppm) 
<LOD-2.13 
<LOD-0.89 
<LOD-0.21 
0.85-1.72 
 
<LOD-2.31 
<LOD-0.53 
0.16-2.31 
0.12-1.14 
<LOD-1.44 
0.13-1.45 
0.07-1.52 

HPLC-UV 0.02 (LOD) 
0.06 (LOQ) 

(Li et al., 2014) 

Feed Austria (n. a.) n. a./27 251±254 n. a.-1243 HPLC n. a. (Weissenbacher-Lang et 
al., 2012) 

Feed: 
- Fattening pigs (maize, 
wheat, barley, soy husks, 
wheat flour, colza husks, 
toasted soy seeds) 

Portugal (n. a.) 47/277 (16.9%) 223.2±181.1 100-864 HPLC-UV 100 (LOD) (Almeida et al., 2011) 

Feed (fine powders) China (2013 and 2014) 27/30 (90%) (swine and 
poultry feed) 
 
n. a./17 (swine feed) 

n. a. 
 
 
n. a. 

38-928 
 
 
n. a. 

LC-MS/MS and HPLC-
TSQ 

3 (LOD) 
10 (LOQ) 
 
 10 (LOD) 
 25 (LOQ) 

(Zhao et al., 2015) 

Feed mixtures: 
- Fattening pigs 

Croatia (2011) 29/30 (96.7%) 817±447 156-1,864 ELISA 150 (LOD) (Pleadin et al., 2012) 

        

n. a. – Not available. SD – Standard deviation. LOD – Limit of detection. LOQ – Limit of quantitation. 
ELISA – Enzyme-linked immunosorbent assay; HILIC – Hydrophilic interaction liquid chromatography; HPLC – High performance liquid chromatography; HPLC-TSQ – High performance liquid chromatography with triple stage quadrupole; 
HPLC-UV – High performance liquid chromatography with ultraviolet; IAC – Immunoaffinity column; LC-ESI-MS/MS – Liquid chromatography electrospray ionization with tandem mass spectrometry; LC-MS – Liquid chromatography-mass 
spectrometry; LC-MS/MS – Liquid chromatography with tandem mass spectrometry; UHPLC – Ultra high performance liquid chromatography; UHPLC-MS/MS – Ultra high performance liquid chromatography with tandem mass spectrometry; 
UHPLC-QTOF-MS – Ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry; XIC – Extracted ion chromatogram. 
* Europe – 77.7% (Germany – 22.4%; Denmark – 15.3%; Austria – 14.1%); Central and South America – 9%; Russia and Asia – 5.6%; North America – 3.5%; Africa – 2.4%; Australia – 0.6%; Others (13 samples) – 1.1%. 
# Dried distillers grains with solubles. 
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In the study by Skiepko et al. (2020), microscopic changes in liver architecture were observed in 

a single administration of DON and another combined with ZEA at a concentration of 12 µg/kg BW and 

40 µg/kg BW, respectively, for six weeks. The changes were visible from the very first week (Skiepko et 

al., 2020). 

Reddy et al. (2018) identified several altered gene expressions in liver samples from pigs 

subjected to ZEA- and DON-contaminated feed (800 µg/kg, 8000 µg/kg, for four weeks). One of the 

identified genes, GAS1, is implicated in growth suppression, inhibition of the cell cycle, and apoptosis. 

IGF1 coding gene has also been shown to be dysregulated. IGF1 is a protein produced in the liver that 

functions as an endocrine hormone and is related to growth retardation. However, the most 

downregulated gene was GALP, which implicated in appetite regulation and associated with some 

inflammatory processes, stress situations, and sexual behavior in animals. Reddy et al. (2018) state that 

GALP downregulation might be caused by high concentrations of Fusarium mycotoxins. 

Previous experimental studies have shown that exposure to mycotoxins can cause reproductive 

toxicity, and Gerez et al. (2017) reported that exposure to DON in pigs can also have this toxic effect. 

 

3.2. Histopathology 

 

Histological analysis is a method for examining the physiological structure of organ tissues and 

the state of their cells, enabling, in the event of pathological changes, a pathological anatomical 

diagnosis (Feldman & Wolfe, 2014; Ozawa & Sakaue, 2020). In the histopathological study of the liver 

sections, the H&E staining was performed to highlight the morphology of tissues and their cells (Ozawa 

& Sakaue, 2020). 

H&E-stained sections showed swollen hepatocytes, masking the sinusoids architecture. This 

swelling corresponds to cellular edema due to acute cellular injury by toxins, bacterial or viral infections, 

among others. Most of the nuclei were normal, some were pyknotic and others were in karyolysis, which 

evidences a hydropic degeneration where there is a complete breakdown of the hydro electrolytic 

mechanism. In addition to hydropic degeneration, some cells also showed microvacuolar degeneration. 

Hydropic and microvacuolar degeneration are the step following cell swelling and occur mainly in ER-

rich cells, such as hepatocytes (Pires et al., 2004; Skiepko et al., 2020). Perhaps due to DON and ZEA 

intoxication, the hepatocytes have exhausted their available ATP resources, so the water and ion pump 

is blocked, leaving an accumulation of free water in the cytoplasm instead of being routed to the ER and 

mitochondria. In this way, the hepatocytes lose their functional capacity and end up in apoptosis. 

Numerous binucleated hepatocytes were observed, however, several authors mention that it is a 

common finding (de Santis Puzzonia et al., 2016; Mescher, 2018; Pires et al., 2004; Young et al., 2007). 

Regarding the cytoplasm, some hepatocytes with cloudy swelling images, others more acidophilus 

cytoplasm. Generally, hepatocytes have eosinophilic cytoplasm due to the high presence of 

mitochondria and have a slight basophilic granulation that corresponds to the many free ribosomes and 

the ER. The appearance of the cytoplasm will depend on the nutritional status of the animal. Well-
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nourished animals will show higher amounts of glycogen compared to malnourished ones, but in the 

H&E preparation, the glycogen is removed, forming discolored areas (Young et al., 2007). However, 

Skiepko et al. (2020) reported finding changes in the first week with respect to glycogen with PAS 

staining. Subsequently, it will be important to perform a histopathological analysis with this staining. 

Regarding the stroma, the capsule, the interlobular septa and the portal triads did not show any change, 

maintaining their normal architecture. Skiepko et al. (2020) reported an increase in septal thickness in 

a gilt treated with DON for six weeks with onset of changes in the first week (Skiepko et al., 2020). 

During our experiment, the tissue samples showed no changes at the septal level, which may be due to 

the stipulated dose of DON, the combination of DON and ZEA, the age at which the animals were 

treated, the breed used, the body weight, the sex, the degree of stress, the endocrine function, the 

genetic and the diurnal factors (Brown et al., 2017; Sayyari et al., 2018) . Whenever liver damage occurs, 

stellate cells produce ECMP in association with vitamin A loss. However, when there is chronic injury, 

they constantly form collagen fibers and other ECMP compounds that develop fibrosis, which explains 

the thickness of the interlobular septa described by Skiepko et al. (Brown et al., 2017; Skiepko et al., 

2020). 

In sections of the sow's liver, a discrete granular brownish pigment was noticeable, evidencing 

the presence of hemosiderin. Hemosiderin is a granular physiological iron-containing pigment that 

results from the degradation of ferritin, but when it accumulates excessively, it becomes a pathological 

pigment (Brown et al., 2017; Grotto, 2008; Pires et al., 2004). In the liver, hemosiderin is usually present 

in Kupffer cells and hepatocytes in cases of hemolysis (Peleteiro & Carvalho, 2011). 

Histologically, Prussian Blue (PB) staining is used to demonstrate the presence of iron deposits 

(ferric iron pigment) in tissues and is valuable in liver tissues for cases of diagnosing hemochromatosis 

or hemosiderosis, where iron tends to be located near periportal hepatocytes and/or in the lining of 

sinusoids (Gurina & Simms, 2020; Orah et al., 2016). Hepatic iron overload can also be found in Kupffer 

cells and in the cells of endothelia (Han et al., 2017). The stored ferric iron pigment is bound to 

hemosiderin, myoglobin, and hemoglobin, but when its accumulation is excessive, it ends up being 

stored only in its ferric state, as hemosiderin. Under these circumstances, the PB reaction becomes 

useful in identifying hemosiderin, staining it with a brilliant blue precipitate (Rowatt et al., 2018). On the 

PB preparations there were deposition of hemosiderin within the hepatocytes and at Kupffer cells, 

predominantly at the perilobular area, particularly in sows, which can be explained by the concept of the 

hepatic acinus. This current concept shows that the blood flow from the portal vein and the hepatic artery 

flows into the sinusoids, beginning at the periphery of each lobule (Young et al., 2007). In gilts, eight 

slides (out of 36) did not present any hemosiderin deposition, while in the remaining the pigment was 

only slightly deposited in the hepatocytes and kupffer cells. At average, deposition of hemosiderin was 

observed in two cells per optic field, at 40x magnification. In summary, predominantly diffuse 

degenerative changes observed were compatible with hepatosis.  
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4. CONCLUSIONS 

 

The raw materials used for swine feed feature a widespread ZEA and DON contamination. Bran 

may have a higher predisposition to DON contamination while soybeans may be more predisposed to 

ZEA contamination. Good agricultural practices remain of major importance in reducing mycotoxin 

contamination of raw materials, however, after collection, the storage step becomes the biggest 

challenge in their prevention, and more efficient measures need to be established. DON and ZEA at low 

doses promote degenerative changes in the liver of sows and gilts in the short term, that required further 

studies. 
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