
Luís Pedro Lages Vale Gonçalves

Automatic detection of castaways in SAR
missions using UAVs

A deep neural network approach

A dissertation submitted in partial fulfillment of
the requirements for the degree of Marine Military

Sciences, specialisation of Engenharia Naval Ramo de
Armas e Eletrónica

Alfeite
2021

Luís Pedro Lages Vale Gonçalves

Automatic detection of castaways in SAR missions using
UAVs

A deep neural network approach

A dissertation submitted in partial fulfillment of
the requirements for the degree of Marine Military Sciences,

specialisation of Engenharia Naval Ramo de Armas e Eletrónica

Orientation of: Bruno Duarte Damas
Co-orientation of: Victor José de Almeida e Sousa Lobo

The Master Student,

Luís Gonçalves

The Supervisor,

Bruno Damas

Alfeite
2021

“We can only see a short distance ahead, but we can see plenty there that needs to
be done.”

- Alan Turing

iii

This work is dedicated to my mother, who was always there for me when I needed
most and is dearly missed.

v

Acknowledgement

Making a thesis may be a solitary work but it cannot be done alone. I
would like to thank all the people whose help, whether direct or indirect, lead to
the conclusion of this work.

First and foremost, to my family, that has been watching over me for all
these years and gave me all the support needed to keep me in the right path.

To all my friends, that were always there when I needed to talk and helped
me overcome the challenges I faced.

To all of the Portuguese Naval School, especially to CFR Luís Pedro Dantas
Pereira de Castro and 1TEN Manuel Rui Veloso Domingues, without whom it would
not have been possible to capture many of the images that made this work possible.

And last but not least, to my tutor Prof. Bruno Duarte Damas that was
always present when help was needed and presented new solutions to my problems
when I had none.

vii

Abstract

Unmanned Aerial Vehicle (UAV) images can be an important resource when
performing Search And Rescue (SAR) operations at sea. With the improving tech-
nology UAVs are becoming an accessible and fairly inexpensive resource for many
applications such as SAR. In order to maximize the usefulness of these UAV, we
propose a method which utilizes a state-of-the-art Object Detection network to per-
form real-time detection on-board the UAV. In this thesis we have selected the
YOLOv4-tiny Object Detection network and trained it to detect castaways at sea.
The main goal is to obtained fully trained weights that can be utilised with the
YOLOv4-tiny and applied to use in SAR with several UAVs working in parallel
that report back to a human operator upon detection of a possible castaway. The
proposed approach has been validated on a test dataset obtained for the purpose
of this thesis and the final result shows that it has good capabilities that can be
further developed.

Keywords: UAV Images, Search and Rescue, Deep Learning, Deep Convolutional
Neural Networks

ix

Resumo

Imagens de veículos aéreos não tripulados (UAV) podem ser um recurso im-
portante para a realização de operações de busca e salvamento (SAR) no mar. Com
os avanços da tecnologia, os UAVs têm-se tornado um recurso acessível e razoavel-
mente barato para muitas aplicações como SAR. A fim de maximizar a utilidade
destes UAV, propôs-se um método que utiliza uma rede de detecção de objetos de
última geração para realizar a detecção em tempo real a bordo do UAV. Nesta tese,
selecionou-se a rede de detecção de objetos YOLOv4-tiny e efetuou-se o seu treino
para detectar náufragos no mar. O principal objetivo é obter pesos totalmente
treinados que possam ser utilizados com o YOLOv4-tiny e aplicados para uso em
SAR com vários UAVs a operar em paralelo que reportam a um operador humano
aquando a detecção de um possível náufrago. A abordagem proposta foi validada
com um conjunto de dados de teste obtido para o propósito desta tese, e o resultado
final mostrou boas capacidades que podem ser ainda mais desenvolvidas.

Palavras-chave: Imagens UAV, Busca e Salvamento, Aprendizagem Profunda,
Redes Neuronais Convolucionais Profundas

xi

Contents

1 Introduction 1

2 Literature Review 3
2.1 Background . 3

2.1.1 Object Detection . 4
2.1.2 You Only Look Once . 14
2.1.3 Data Augmentation . 15

2.2 Related Works . 19
2.2.1 Object Detection at sea . 19
2.2.2 Detection of People . 23

3 Methodology 25
3.1 Detection Framework . 25
3.2 Datasets . 27
3.3 Training . 31
3.4 Testing . 32

4 Results 35
4.1 Obtaining the first weights . 35
4.2 Pre-training vs Training . 36
4.3 Influence of Data Augmentation . 37
4.4 Influence of meta-parameters . 38
4.5 Ablation Study . 39
4.6 Final Weights . 41

Conclusion 41

Anexos 47

I You Only Look Once (YOLO)v4-tiny Network Structure 47

xiii

List of Figures

2.1 Difference between classification and object detection 4
2.2 Object Detection vs Image Segmentation 5
2.3 Intersection over Union . 6
2.4 Precision-Recall curve . 7
2.5 Object Detection process before Deep Learning 7
2.6 Illustration of the convolution operation 8
2.7 The structure of an artificial neuron 9
2.8 Neural Network layers visualization 10
2.9 Simplification of the process performed by a CNN 11
2.10 Two-Step Object Detection . 12
2.11 Speed/Accuracy comparison of YOLOv3 with other state-of-the-art

Object Detectors . 13
2.12 Comparison of YOLOv4 with other state-of-the-art Object Detectors 14
2.13 Flip Augmentation . 16
2.14 Rotation Augmentation . 16
2.15 Scaling Augmentation . 17
2.16 Cropping Augmentation . 17
2.17 Translation Augmentation . 17
2.18 Noise Augmentations . 18
2.19 Changing seasons using a CycleGAN 18
2.20 Deep Photo Style Transfer . 19
2.21 System proposed by Sumimoto et al. 20
2.22 Use of Gaussian Mixture Model for Object Detection 22
2.23 Combination of Gaussian Mixture Model with Fourier Transforms for

Object Detection . 22
2.24 Joint approach to pedestrian detection 23
2.25 Results from the Teutsch et al. paper 24

3.1 YOLOv4-tiny network structure . 26
3.2 Examples of images contained in Dataset 1 27
3.3 Examples of images contained in Dataset 2 28

xv

3.4 Examples of images contained in Dataset 3 29
3.5 Random Rotation . 30
3.6 HUE alteration -50º (left) and +50º (right) 30
3.7 Horizontal Flip (left) and Vertical Flip (right) 30

4.1 Example of support staff outside of the water 36
4.2 Original weights vs 1st weights - Oeiras Marina 36
4.3 Original weights vs 1st weights - TROIA 21 Exercise 37
4.4 Precisio-Recall curve for our final weights 41
4.5 1st weights vs final weights - Oeiras Marina 42
4.6 1st weights vs final weights - TROIA 21 Exercise 43

xvi

List of Tables

3.1 Camera Specifications of the DJI Mini 2 28
3.2 Camera Specifications of the Parrot Anafi 28
3.3 Datasets created before augmentations 29
3.4 Datasets created after augmentations 31
3.5 Experiments performed . 33

4.1 Weights obtained from Test 1 . 35
4.2 Weights obtained from Test 2 . 37
4.3 Weights obtained from Test 3 . 38
4.4 Weights obtained from Test 4 . 39
4.5 Results from the ablation study . 40
4.6 Results from all of the Tests . 42

xvii

List of Equations

2.1 Precision . 5
2.2 Recall . 5
3.1 Filters on Convolutional Layer . 31

xix

Glossary

AI Artificial Intelligence
AP Average Precision

CIoU Complete Intersection over Union
CmBN Cross mini-Batch Normalization
CNN Convolutional Neural Networks
CPU Central Processing Unit
CSP Cross-Stage-Partial-connections

FN False Negative
FP False Positive
fps frames per second

GAN Generative Adversarial Networks
GMM Gaussian Mixture Model
GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

ICAO International Civil Aviation Organization
ICARUS Integrated Components for Assisted Rescue and Unmanned Search

operations
IMO International Maritime Organization
IoU Intersection over Union
IR Infrared

LWIR Long-Wave Infrared

mAP mean Average Precision

PAN Path Aggregation Network
PCB Partial in Computational Block

xxi

PR Precision-Recall

R-CNN Region-based Convolutional Neural Network
RPN Region Proposal Network

SAM Spatial Attention Module
SAR Search And Rescue
SAT Self-Adversarial-Training
SIFT Scale-invariant Feature Transform
SPP Spatial Pyramid Pooling
SSD Single Shot Detector
SVM Support Vector Machine

TN True Negative
TP True Positive

UAV Unmanned Aerial Vehicle
USV Unmanned Surface Vessel
UUV Unmanned Underwater Vessel

YOLO You Only Look Once

xxii

Chapter 1

Introduction

Travel through sea has long been an important part of the world economy
and as a result of that there is a significant number of ships at sea at any given
time. With these many ships it is not surprising that the occurrence of castaways is
somewhat common and has, therefore, lead to the need for an ever evolving response
capability in terms of SAR at sea. The International Maritime Organization (IMO)
and the International Civil Aviation Organization (ICAO) have jointly published the
IAMSARManual [1] which provides guidelines for the organization of SAR response.

Nowadays most SAR operations count with the support of aircrafts and
ships in order to find and retrieve castaways but this involves a lot of resources and
manpower. With the evolving technology in the field of UAV there can be new ways
to improve our response capabilities with fewer resources and manpower. With the
use of UAVs we can greatly extend the area covered and even automate some pro-
cesses previously done by human operators. The use of UAVs can be done on three
levels, starting with the simplest method which is the use of a UAV with an operator
performing both the control and detection, followed by a more optimized method
where the UAV follows an automated flight plan and the detection is performed by
the operator which allows a single operator to work with several UAVs simultane-
ously but requires a robust datalink for video transmission over long distances. The
third and most advanced method is one where the UAV follows an automated flight
plan and performs on-board detection allowing the operator to only analyse the sit-
uations considered relevant. By combining UAVs with automatic object detection
algorithms we can create a system with the capability to find castaways and report
the location and visuals back to the operator for confirmation.

The scientific field of machine learning, often associated with the term
Artificial Intelligence (AI), has been around for decades but has garnered increas-
ingly more attention in the last few years. It is a field which has several areas of

1

Chapter 1. Introduction

study, ranging from predictions based on historical data to computer vision, with
every possible use in between [2]. Companies such as Tesla have brought the subject
to the public eye with the application of Deep Learning on cars and other everyday
items, especially through the use of computer vision, prediction and path planning
in their products [3].

In this thesis we will be focusing on computer vision, a field which has a dual
goal. “From the biological science point of view, computer vision aims to come up
with computational models of the human visual system. From the engineering point
of view, computer vision aims to build autonomous systems which could perform
some of the tasks which the human visual system can perform (and even surpass it
in many cases).” [4]. Within this field, our main interest will be the capabilities to
perform automatic object detection.

The objective of this thesis is to be able to perform an automatic detection
of castaways from images acquired from UAVs and in order to perform that task we
will be using recently developed techniques based on Deep Neural Networks. There
will be a need to choose an appropriate network architecture that is capable of
performing real-time detection while running on an embedded system on-board the
UAV and proceed with the training and evaluation of the performance of the chosen
architecture using an annotated dataset of castaway at sea situations. In the end
we want to achieve an automatic detection that requires relatively low processing
power and only reports back upon a positive result enabling the simultaneous use
of several UAVs and reducing the needed manpower and resources.

The structure of this thesis follows the work developed. After the introduc-
tion, we will perform a review of the literature that pertains to the themes of our
work in Chapter 2. We will study the works that provide a background on Object
Detection and Data Augmentation as well as some works that are related to ours.
With the Literature Review done we proceed to Chapter 3 where we will explain the
processes utilized to perform our work. In Chapter 4 we present the results obtained
on the several experiments performed and a small analysis of results. We end with
our conclusion and suggestions of future works and implementations.

2

Chapter 2

Literature Review

The need to detect and classify objects has been around for a long time and
the recent improvements in technology have allowed for fast and accurate automatic
object detection and classification. In this chapter we will be reviewing some of the
background work that lead to our thesis as well as the related works which will serve
as a reference and starting point.

2.1 Background

Object detection is a problem addressed by Computer Vision which deals
with identifying and locating objects of specific classes in an image. Object detection
was studied before the application of Convolutional Neural Networks (CNN) in
Computer Vision. It is important to take a look at the conventional methods in
order to understand how it all began.

After the introduction of CNNs to Computer Vision there was a big evo-
lution, especially in the last decade, and we have seen the development of several
applications that make use of CNNs to perform ever faster and more accurate de-
tection and classification of objects. We will be analysing the work done in this field
and see the evolution of the capabilities and subsequent improvements.

In order to perform the training of our selected network we will need a
method of enlarging our initial dataset and that method is data augmentation.
With data augmentation we can apply several different augmentations that will
create altered images with sufficiently different features so that they can be used to
extend our dataset.

3

Chapter 2. Literature Review

2.1.1 Object Detection

There are several applications of Computer Vision and there is the need
to begin by making an important distinction between Image Classification, Object
Detection and Image Segmentation. Image Classification is used when we need to
classify an image into a category while Object Detection and Image Segmentation
aim to locate the objects in the image. For a better understanding of this difference
refer to Figure 2.1.

Figure 2.1: Difference between classification and object detection
Source: obtained from [5]

With Object Detection we are able to build a bounding box, which is a
square or rectangular box that contains our object, but it will not give us any
information about the shape of the the objects. With Image Segmentation on the
other hand we are able to obtain more precise pixel-wise masks for our objects,
giving us a better understanding of their shapes. The distinction between Object
Detection and Image segmentation can be easily observed in Figure 2.2.

Now that we have a better understanding of the differences between Image
Classification, Object Detection and Image Segmentation we need to understand the
metrics used to evaluate the performance of our detections.

There are many metrics that apply to this kind of detection so we’ll start
with the most basic: True Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN). A TP is a result that correctly indicates the presence of
an object while a FP is a result that indicates the presence of an object when it is

4

2.1. Background

Figure 2.2: Object Detection vs Image Segmentation
Source: obtained from [6]

not actually present. A TN is a result that correctly indicates that there isn’t an
object present while a FN is a result that doesn’t indicate the presence of an object
when it is in fact present.

Using these basic metrics we can calculate Precision and Recall. Precision
measures how accurate the predictions are. It measures how many of the predictions
are actually correct using the formula displayed in Equation 2.1. Recall measures
how well we find all the positives. It measures the ability to detect all objects present
in the image using the formula displayed in Equation 2.2.

Precision = TP
TP + FP (2.1)

Recall = TP
TP + FN (2.2)

Another metric used for Object Detection is Intersection over Union (IoU)
which divides the Area of Overlap of the 2 bounding boxes involved with the Area
of their Union as we can observe in Figure 2.3. With IoU we obtain a score between
0 and 1 which represents the quality of the overlap between the ground truth, which
is the bounding box that contains the true position of the object, and the generated

5

Chapter 2. Literature Review

bounding box. This metric is necessary for the calculation of the precision and recall
as it is based on an IoU threshold that we determine if a detection is considered a
TP or a FP.

Figure 2.3: Intersection over Union
Source: obtained from [7]

The most common evaluation metric is mean Average Precision (mAP)
which is a number between 0 and 100. Despite it’s name the mAP is not just
the average of precisions. Average Precision (AP) is the area under the Precision-
Recall (PR) curve and is computed for each class.

The PR curve is represented with the x-axis being recall and the y-axis
being precision. In order to obtain multiple Precision-Recall value pairs we change
the score cutoff. The score cutoff defines the level of confidence that is necessary for
a detection to be considered valid meaning that detections with a confidence value
below the score cutoff are not considered as detections and, as we adjust the score
cutoff, we can calculate the precision and recall for each score cutoff and obtain our
PR curve [8]. We can see an example of a PR curve in Figure 2.4.

The mAP is the average of the AP over the different classes. In order to
determine if a detection is a TP the IoU of that detection must be above a certain
threshold. So, in order to be more clear about the IoU threshold we have used, we
can add it to the mAP, thus obtaining something more specific like mAP@0.5 which
is the mAP with an IoU threshold of 0.5.

Object Detection was used even before the advent of CNNs in this area of
study. It was a several step process, which started with edge detection and feature
extraction, performed by using techniques like Scale-invariant Feature Transform

6

2.1. Background

Figure 2.4: Precision-Recall curve
Source: obtained from [8]

(SIFT) and Histogram of Oriented Gradients (HOG). After this first step the images
were then compared with already existing Support Vector Machine (SVM) templates
of objects, usually at multi scale levels, in order to detect and localize the objects
present in the image [7]. The comparison process, on different scales is very well
demonstrated in Figure 2.5.

Figure 2.5: Object Detection process before Deep Learning
Source: obtained from [7]

CNNs were first introduced in the 1980s by Yann LeCun. The early version

7

Chapter 2. Literature Review

of CNNs, named LeNet after it’s creator, was able to recognize handwritten digits.
These CNNs were mostly adopted by the banking and postal services, where they
were used to read zip codes on envelopes and digits on checks.

A CNN performs convolution operations which slide a predefined kernel
(usually called filter) over the input feature map, multiplying and adding the values
of the filter and the input features in order to produce an output. The output values
form an output matrix [9]. We can observe this process in Figure 2.6. By adjusting
the values of our filter we can give different weights to different features, filtering
the features we are interested in.

Figure 2.6: Illustration of the convolution operation
Source: obtained from [10]

Even though these CNNs were ingenious, they faced a serious roadblock:
they could not scale, and because of that they remained on the sidelines of Computer
Vision and Artificial Intelligence. CNNs required a lot of data and computing power
to work efficiently on large images and, due to the limitations of the time, they were
only applicable to images with low resolutions.

It was only in 2012 that AlexNet [11] showed us that perhaps the time
had come to revisit CNNs. With the availability of large datasets and the increas-
ing computing power available, researchers were now able to create complex CNNs
capable of tackling Computer Vision problems that were previously impossible to
overcome [12].

8

2.1. Background

Now that the available CNNs were capable of performing bigger tasks we
could apply them to Object Detection, but first we need to understand how they
work.

Convolutional Neural Networks are composed of multiple layers of artificial
neurons, which are mathematical functions that calculate the weighted sum of mul-
tiple inputs and give us an activation value, as we can observe in Figure 2.7. The
behaviour of these artificial neurons is defined by their weights. They receive the
pixel values and pick out various visual features [12].

Figure 2.7: The structure of an artificial neuron
Source: obtained from [12]

When we input an image into a CNN, each of its layers creates several
activation maps. These activation maps highlight the relevant features of the image.
The first layer of the CNN detects basic features such as horizontal, vertical and
diagonal edges. The output of this layer is then passed as input to the second layer,
which extracts more complex features, like corners and combinations of edges. This
process of passing the output of a layer to the following layer as input continues and,
as we move deeper into the network, the layers begin detecting higher-level features
such as objects and faces. Figure 2.8 gives us a good visualization of the functioning
of these layers.

9

Chapter 2. Literature Review

Figure 2.8: Neural Network layers visualization
Source: obtained from [12]

Using the activation map of the final layer, the classification layer outputs
confidence scores that specify the likelihood of the image belonging to a class. These
confidence scores have a value between 0 and 1 and the classification layer outputs
one for each class that the CNN is prepared to detect. A simplification of the whole

10

2.1. Background

detection process performed by a CNN can be seen in Figure 2.9.

Figure 2.9: Simplification of the process performed by a CNN
Source: obtained from [12]

After the introduction of the revisited CNN, Two-Step Object Detection ar-
chitectures began being developed. Two-Step Object Detection involves algorithms
that perform the identification of bounding boxes that may contain objects and then
proceed to classify each bounding box separately.

The first step utilizes a Region Proposal Network (RPN) which provides a
number of regions that are then passed to common Deep Learning based classifica-
tion architectures as shown in Figure 2.10.

These Two-Step architectures started with the development of the Region-
based Convolutional Neural Network (R-CNN). R-CNN combined region proposal
with CNNs, creating regions with CNN features and producing an increase of mAP
by 30% relative to the previous best result and achieving a mAP of 53.3% [14].

The evolution continued as Fast R-CNN and Faster R-CNN, newer and
improved versions of R-CNN, were published. Fast R-CNN improved both time, as
it was able to train the deep detection network 9 times faster than it’s predecessor,
and precision, reaching a mAP of 66% [15]. Faster R-CNN further improved on the

11

Chapter 2. Literature Review

Figure 2.10: Two-Step Object Detection
Source: obtained from [13]

processing speed, making the process almost real-time, by introducing “RPN that
share convolutional layers with state-of-the-art object detection networks” [16].

Two-Step Object Detection algorithms are known to perform better than
their One-Step counterparts but that comes at the cost of time. As Two-Step Object
Detection couldn’t handle the need for real time Object Detection, many One-Step
Object Detection architectures were proposed, such as YOLO [17], YOLOv2 [18],
YOLOv3 [19], Single Shot Detector (SSD) [20], RetinaNet [21] and YOLOv4 [22],
which tried to combine the detection and classification steps.

YOLO performs detection as a straightforward regression dilemma, taking
an input image and learning the class possibilities with bounding box coordinates.
YOLO divides the image into a grid of S x S and every grid predicts N bounding
boxes and their respective confidence. The end result is a total of SxSxN forecasted
bounding boxes, a large number which can be narrowed down by setting a threshold
to exclude the bounding boxes with lower confidence scores.

SSD runs a CNN on the input image only once and computes a feature
map. A small 3x3 convolutional kernel is then run on this feature map to predict
the bounding boxes and their categorization probability.

12

2.1. Background

RetinaNet was introduced to fill in some of the imbalances and inconsisten-
cies of other Single-Step detectors like YOLO and SSD when dealing with extreme
foreground-background classes. RetinaNet accommodates Focal Loss, which is a
method used to prevent negatives from clouding the detector.

At the time of writing of this thesis YOLO is the Object Detection Net-
work that shows better results in detection speed while maintaining a good mAP.
YOLOv3 showed very good speed with a mAP that is comparable to other meth-
ods as we can observe in Figure 2.11. YOLOv4 further improved on YOLOv3 and
displayed the best results in terms of speed while maintaining a performance com-
parable with other state-of-the-art Object Detectors such as EfficientDet. In Figure
2.12 we can see the results of YOLOv4 and other Object Detectors on the MS COCO
dataset.

Figure 2.11: Speed/Accuracy comparison of YOLOv3 with other
state-of-the-art Object Detectors
Source: obtained from [19]

For our work we decided to utilize the YOLO object detection network
which has shown very good results and has had several improvements in the past
years. We will be using YOLOv4-tiny [23], a scaled version of the YOLOv4 that
can operate on low end Graphics Processing Unit (GPU) devices and can therefore
perform real-time detection on-board the UAV.

13

Chapter 2. Literature Review

Figure 2.12: Comparison of YOLOv4 with other state-of-the-art
Object Detectors

Source: obtained from [22]

2.1.2 You Only Look Once

The YOLO object detection network was introduced in the 2016 paper by
Redmon et al, and brought a new approach to object detection and classification by
performing both tasks in a single neural network. “A single neural network predicts
bounding boxes and class probabilities directly from full images in one evaluation”.
This architecture is able to perform extremely fast processing, reaching real-time
at 45 frames per second (fps) and even reaching 155 fps with it’s smaller version,
Fast YOLO at a slight cost in accuracy [17]. YOLO continued to improve with the
appearance of new versions with YOLOv4 being introduced in 2020 by Bochkovskiy
et al [22].

YOLOv4 consist of a backbone, a neck and a head. The backbone is a deep
neural network composed mainly of convolutional layers and its main objective is
to extract essential features. For the backbone they have used the CSPDarknet53,
an application of Cross-Stage-Partial-connections (CSP) to the Darknet53 that was
previously used in YOLOv3. CSP is derived from the DenseNet architecture and
results in different dense layers repeatedly learning copied gradient information. By

14

2.1. Background

applying CSP it is possible to “greatly reduce the amount of computation, and
improve inference speed as well as accuracy” [24].

The neck has the essential role of collecting feature maps from different
stages. For the neck, they have used Spatial Pyramid Pooling (SPP) and Path Ag-
gregation Network (PAN). SPP generates a “fixed-length representation regardless
of image size/scale” which eliminates the requirement for fixed-size input images
[25]. PAN aims at “boosting information flow in proposal-based instance segmenta-
tion framework” and is applied in order to help include features from different layers
[26].

The head performs dense prediction, the final prediction which is composed
of a vector containing the coordinates of the predicted bounding box (center, height,
width), the confidence score of the prediction and the label. For the head, they chose
to useYOLOv3. They use Complete Intersection over Union (CIoU)-loss, Cross mini-
Batch Normalization (CmBN), DropBlock regularization, Self-Adversarial-Training
(SAT), Mish activation, Spatial Attention Module (SAM) and a few more tools in
order to obtain the final prediction. With this detector they were able to obtain
faster and more accurate results than all available alternative detectors at the time
of publishing.

In order to adapt to the computing power available there is a need to adjust
the scale of our YOLOv4 network. With Scaled-YOLOv4, Wang, Bochkovskiy and
Liao were able to develop YOLOv4-large designed for cloud GPU and YOLOv4-tiny
designed for low-end GPU devices. “The YOLOv4-tiny model achieves 22.0% AP
(42.0% AP50) at a speed of 443 fps on RTX2080Ti, while by using TensorRT, batch
size = 4 and FP16-precision the YOLOv4-tiny achieves 1774 fps”. YOLOv4-tiny
uses CSPOSANet with Partial in Computational Block (PCB) architecture to form
the backbone of YOLOv4. [23].

2.1.3 Data Augmentation

In order to perform an adequate training that results in as little overfitting as
possible we need to have a large and varied dataset. “Data Augmentation approaches
overfitting from the root of the problem, the training dataset.This is done under
the assumption that more information can be extracted from the original dataset
through augmentations.”. When working with limited datasets Data Augmentation
can help “artificially inflate the training dataset size by either data warping or
oversampling”. With data warping we make use of augmentations such as “geometric
and color transformations, random erasing, adversarial training, and neural style

15

Chapter 2. Literature Review

transfer” to transform existing images while keeping their labels intact while with
oversampling the augmentations “create synthetic instances (...) [which] includes
mixing images, feature space augmentations, and Generative Adversarial Networks
(GAN).” [27].

Data Augmentation can be performed using several different augmentation
techniques. We will take a look at the more popular ones such as Flips, Rotations,
Scaling, Cropping, Translations and Gaussian noise.

A flip consists of mirroring the image either horizontally or vertically as
displayed in Figure 2.13.

Figure 2.13: From the left, we have the original image, followed by
the image flipped horizontally, and then the image flipped vertically

Source: obtained from [28]

A rotation consists of, as the name implies, rotating the image by any
number of degrees. The example on Figure 2.14 applies 90 degrees rotations.

Figure 2.14: The images are rotated by 90 degrees clockwise with
respect to the previous one, as we move from left to right

Source: obtained from [28]

Scaling allows us to scale the image outward or inward. Most image frame-
works used maintain the image’s original size. We can see this scaling in Figure
2.15.

Cropping is a process similar to scaling but we randomly sample a section
from the original image and resize it to the original image’s size. We can notice the

16

2.1. Background

Figure 2.15: From the left, we have the original image, the image
scaled outward by 10%, and the image scaled outward by 20%

Source: obtained from [28]

difference between this method and scaling by comparing Figure 2.15 and Figure
2.16.

Figure 2.16: From the left, we have the original image, a square
section cropped from the top-left, and then a square section cropped
from the bottom-right. The cropped sections were resized to the

original image size
Source: obtained from [28]

Translation involves moving the image so that the position of the objects
changes. As we are working with CNNs the position of the object has little difference
and makes it so that this augmentation is of little use for our work. In Figure 2.17
we can see the results obtained from applying this technique.

Gaussian noise can be applied to the image in order to simulate some dis-
tortion. We can apply Gaussian noise or a toned down version called salt and pep-
per noise, which presents itself as random black and white pixels randomly spread
through the image. Both of these techniques can be seen in effect in Figure 2.18.

There are also some more advanced data augmentation techniques such as
conditional GAN which can perform more complex augmentations. Conditional
GANs can transform an image from one domain to a different one such as taking an

17

Chapter 2. Literature Review

Figure 2.17: From the left, we have the original image, the image
translated to the right, and the image translated upwards

Source: obtained from [28]

Figure 2.18: From the left, we have the original image, image with
added Gaussian noise, image with added salt and pepper noise

Source: obtained from [28]

input image taken in summer and outputting that same image in a winter setting
or vice-versa. They can also alter the time of day of the image, allowing for a big
variety of outputs. The outputs generated by GANs can sometimes appear more
artistic than realistic but they can still be useful to enlarge some datasets. We can
see some examples of the applications of GANs in Figures 2.19 and 2.20.

Figure 2.19: Changing seasons using a CycleGAN
Source: obtained from https://junyanz.github.io/CycleGAN/

18

2.2. Related Works

Figure 2.20: Deep Photo Style Transfer
Source: obtained from https://arxiv.org/abs/1703.07511

2.2 Related Works

The use of object detection at sea has been studied recently and has shown
very positive results, especially regarding the detection and classification of ships at
sea. By taking a look at the work done in the detection of ships we can get some
valuable information on the methods used and try to used them to improve our
detection of castaways at sea.

The detection of people using Object Detection, mostly done in pedestrian
detection, is also of interest. We will analyse some of the existing methods used to
detect people in order to understand what has been done and what can be applied
to the castaway scenario.

2.2.1 Object Detection at sea

The study of the use of machine vision for detection of castaways is not
something new. As early as 1994 there have been works done in this area. Sumimoto
et al. present a study in 1994 that dealt with the use of image processing techniques
for the detection of rescue targets. They proposed a system that utilized color and
shape information with aerial footage in order to detect possible rescue targets. The
proposed system configuration can be seen in Figure 2.21 [29].

19

Chapter 2. Literature Review

Figure 2.21: System proposed by Sumimoto et al.
Source: Obtained from [29]

The work published by Mace in 2011 [30] tackled the issue of detecting ma-
rine debris, such as fishing nets, buoys and ropes. This work did not use Object
Detection models like the ones we have explained before. They utilized data from
satellite observations and aircraft in conjunction with mathematical models to ob-
serve debris. Unfortunately, the conclusion of this work was that the detection and
removal of these debris remained a serious challenge to current technology at the
time of publishing.

The work published by Ramirez et al. in 2011 [31] focused on sea rescue.
They proposed a coordinated sea rescue system based on UAV and Unmanned Sur-
face Vessel (USV). In the system presented in this paper “the USV in charge of
rescuing the castaways benefits from the information provided by a searching and
sensing UAV, which is capable of locating the castaways quicker than the USV.
The coordinated use of both vehicles reduces the search time, because the USV
can predict the castaway positions better, using the information provided by its
remote sensing UAV and its more powerful Central Processing Unit (CPU)”. The
two subsystems were able to work in real-time with really simple defined behaviours
. This system presents a good basis where the improvements of automatic Object
Detection can be applied.

“Started in 2012, the ICARUS research project aims to develop robotic

20

2.2. Related Works

tools which can assist ’human’ operator during SAR operations” [32]. The Integrated
Components for Assisted Rescue and Unmanned Search operations (ICARUS) project,
was a European project that counted with the participation of 24 partners from 9
countries the goal of which was to develop autonomous robots that could help SAR
teams both on land and sea. There were various thesis and publications that con-
tributed for the work done on this project, which resulted in the development of
several tools that can be used to assist in SAR situations. The project results can
be accessed at http://www.fp7-icarus.eu/project-results.

Detection at sea can be done using methods which do not use UAVs and
camera footage, and one of them is the use of Unmanned Underwater Vessel (UUV).
The 2015 thesis by Palma [33], done as part of the ICARUS project, studied the
possibility of an underwater approach to castaway detection using a sonar upward
looking system . This work showed that, although it is possible to perform detection
of castaways using UUVs, it is very limited and would require further improvements
to be a feasible option.

In 2017, Hoai and Phuong published a paper that studied the use of anomaly
color detection on UAV images for SAR works. They were able to determine that in
different SAR situations “the appropriate color space and detection algorithm can
be chosen that give best performance of anomaly detection” [34].

In the same year, Dinnbier et al. published a paper that focused on using
Gaussian Mixture Model (GMM) and Fourier Transforms for target detection in
UAV maritime Search And Rescue. Using GMMs they were able to remove back-
ground from images while leaving moving targets intact as can be seen in Figure 2.22.
By combining GMMs with Fourier Transforms they were able to obtain improved
results as shown in Figure 2.23 [35].

In their 2019 thesis, Laxmi uses, modifies and trains “four of the state-of-art
pretrained deep learning network models, namely VGG16, Xception, ResNet50 and
InceptionResNet” to identify ships from images captured from UAVs. In this work
they are able to achieve high accuracy (99.6 to 99.9% correct classifications) but to
do so, require high computing power [36].

On the subject of object detection at sea, the work done by Pires in their
2020 thesis studies the use of a two stages cascade model with a detection part
followed by a segmentation stage to perform real-time ship segmentation during
maritime surveillance missions using onboard cameras [37].

21

http://www.fp7-icarus.eu/project-results

Chapter 2. Literature Review

Figure 2.22: Original images on the left, with the salient images
on the right (the yellow circles have been added for visibility)

Source: obtained from [35]

Figure 2.23: Original images are on the left, with output images
on the right, where salient pixels show GMM detection and colored

frames show FFT detection on the combinatorial method
Source: adapted from [35]

22

2.2. Related Works

2.2.2 Detection of People

Pedestrian Detection, much like other forms of object detection, was orig-
inally performed without the use of CNNs. The 2013 paper by Ouyang and Wang
studies a joint approach to pedestrian detection, proposing a joint deep learning
framework that encompasses four main components: Feature Extraction, Part De-
formation Handling, Occlusion Handling and Classification. An overview of these
four key components can be seen in Figure 2.24. The proposed network was able to
outperform the best performing approaches at the time, reducing the average miss
rate by 9% on the Caltech dataset [38].

Figure 2.24: Four key components in pedestrian detection: feature
extraction, deformation handling models, occlusion handling models,

and classifiers
Source: obtained from [38]

In 2016, Tomè et al. proposed a pedestrian detection system based on
CNNs. The proposed system utilized the scores provided by the region proposal
algorithm in parallel with the scores provided by the trained CNN to classify a
given region, therefore improving the system accuracy. The proposed system was
able to outperform other alternative approaches based on both handcrafted and

23

Chapter 2. Literature Review

learned features with their lightweight version being capable of detecting pedestrians
in real-time using modern hardware [39].

The works we have seen focus on the detection of people in the visual
spectrum but there are other methods such as the detection of people using thermal
Infrared (IR) cameras. The paper published by by Teutsch et al. in 2014 studied
the use of a moving thermal IR camera for low resolution person detection. In
this paper, they proposed “a two-stage person recognition approach for Long-Wave
Infrared (LWIR) images” that was able to perform real-time detection of people in
LWIR images acquired by moving cameras. Some of the results of this paper can
be seen in Figure 2.25 [40].

Figure 2.25: Results from the Teutsch et al. paper
Source: adapted from [40]

24

Chapter 3

Methodology

In order to develop our Castaway detector we must start by defining our
methodology. In this chapter we will explain the process used to work with the
selected Object Detection Network and how the training and testing were performed.
We will also elaborate on the contents of each of the datasets and the augmentations
applied on each of them to create our augmented datasets.

3.1 Detection Framework

To perform automatic detection we needed to implement the YOLOv4-tiny
Object Detection network we have previously mentioned in Chapter 2.

We started with an implementation in Tensorflow 2.0 by Viet Hung [41].
With this implementation we were able to use YOLOv4 and YOLOv4-tiny on our
local computer. We then proceeded to perform some experimentation on a small
sample of footage in order to verify its capability to detect the already existing
person class in different environments.

For the training of our network used the Darknet implementation by Bochkovskiy
[42], which is the usual method used when performing training of YOLO networks.

The YOLOv4-tiny network consists of 38 layers and its structure can be
seen in Figure 3.1. The structure presented in Figure 3.1 can be better seen in
Annex I. For the initial tests and as a point of comparison we utilized the YOLOv4-
tiny pre-trained weights, trained with the COCO dataset with 80 different object
classes.

The resulting weights of our work can be later applied on a lightweight
computer for embedded applications like a Jetson Nano. The process of utilizing

25

Chapter 3. Methodology

Figure 3.1: YOLOv4-tiny network structure

26

3.2. Datasets

YOLOv4-tiny on a Jetson Nano is quite simple and a quick guide on how to prepare
the Jetson Nano is available at: https://tinyurl.com/JetsonNanoTutorial.

3.2 Datasets

In order to perform an adequate training we must first prepare a suitable
dataset that is able to represent the castaway at sea. To generate the bounding
boxes we used Make Sense, a free to use online tool for labelling images. With this
tool we were able to obtain our bounding boxes in the YOLO format [43].

For the purpose of this thesis we have prepared several datasets. In our
datasets surfers, kayakers and swimmers were considered as part of the castaway
class.

Our first dataset consists of gathered UAV footage of people swimming and
surfing at different beaches at different times of day obtained from Youtube. This
dataset consists of 550 images and has an average of 13 objects per image with the
number of objects on a single image varying between 1 and 76. Some examples of
the images that make up this dataset can be seen in Figure 3.2.

Figure 3.2: Examples of images contained in Dataset 1

For our second dataset we used a DJI Mini 2 to collect footage of a castaway
and people kayaking near the Oeiras Marina in the morning with a clear sky and
fair sea conditions. The DJI Mini 2 camera specifications can be seen in Table 3.1.
We were able to obtain 67 images with an average of 2 objects per image with most

27

https://tinyurl.com/JetsonNanoTutorial

Chapter 3. Methodology

DJI Mini 2
Sensor 1/2.3" CMOS

Aperture f/2.8
Focus range 1m to ∞
ISO range 100-3200

Video resolution 4K: 3840×2160 @ 24/25/30fps

Table 3.1: Camera Specifications of the DJI Mini 2

Parrot Anafi
Sensor 1/2.4" CMOS

Aperture f/2.4
Focus range 1.5m to ∞
ISO range 100-3200

Video resolution 4K: 3840×2160 @ 24/25/30fps

Table 3.2: Camera Specifications of the Parrot Anafi

images containing 2 objects. Some examples of the images captured to create this
dataset can be observed in Figure 3.3.

Figure 3.3: Examples of images contained in Dataset 2

From the 67 images captured at the Oeiras Marina only 53 were used to
create Dataset 2 because 20% of the images were separated to add to the Test
Dataset.

For our third dataset we used a Parrot Anafi to collect footage of cadets
from the Portuguese Naval School on a field exercise. The footage in this dataset
consists of people swimming across a small canal in the afternoon. The Parrot
Anafi was able to capture video at a resolution of 3840×2160 at 30 fps. We were
able to obtain 292 images with an average of 5 objects per image with the number
of objects varying between 0 and 7. Some examples of the images captured to create
this dataset are displayed in Figure 3.4.

28

3.2. Datasets

Figure 3.4: Examples of images contained in Dataset 3

Dataset Images Average number of objects
Dataset 1 550 13
Dataset 2 53 2
Dataset 3 233 5
Dataset 123 836 10
Test Dataset 73 4

Table 3.3: Datasets created before augmentations

From the 292 images captured at the TROIA 21 Exercise only 233 were
used to create Dataset 3 because 20% of the images were separated to add to the
Test Dataset.

For training purposes we created the Dataset 123 which consists of all images
from Datasets 1, 2 and 3.

For the testing of our detector, we created a Test Dataset composed of 20%
of the images from Datasets 2 and 3, which will not be used in the training process
and will be kept separate until the test phase. This dataset is composed of 73 images.
The information of the datasets mentioned above can be seen in Table 3.3.

With our datasets annotated we can then proceed with the necessary data
augmentation in order to obtain a sufficiently large and varied dataset.

We used Roboflow, an online tool that “organizes, prepares, and improves
your image and annotation training data” [44], to perform our augmentations. We
used this tool to perform the rotations, HUE alterations and Flips on the images

29

Chapter 3. Methodology

from Dataset 1 and utilized the images obtained as our first augmented dataset for
training.

Figure 3.5: Random Rotation

Figure 3.6: HUE alteration -50º (left) and +50º (right)

Figure 3.7: Horizontal Flip (left) and Vertical Flip (right)

After the augmentations we obtained the Augmented Dataset 1, with 9137
images.

For the creation of the Augmented Dataset 123, which will contain all images
from Dataset 123, we used Roboflow to perform the rotations, HUE alterations and
Flips. After the creation of Augmented Dataset 1 we came to the conclusion that
there was an excess of rotations applied, which led to an unnecessarily big dataset,
and reduced the number of rotations when creating the Augmented Dataset, as a
result we obtained the Augmented Dataset with 4964 images.

The information of the Augmented Datasets mentioned above can be seen
in Table 3.4.

30

3.3. Training

Dataset Original Images Images after augmentation
Augmented Dataset 1 550 9137
Augmented Dataset 123 836 4964

Table 3.4: Datasets created after augmentations

3.3 Training

In order for our detection to work properly we began by training YOLOv4-
tiny using the first augmented dataset to create a whole new Castaway class. This
allowed us to train our own class from the start. Our training begins with the pre-
trained YOLOv4-tiny weights we mentioned at the beginning of this chapter and
obtains weights for a single new class: castaway.

In order to have a more user friendly environment we used Google Colabo-
ratory, a tool from Google which “allows you to write and execute Python in your
browser, with zero configuration required, free access to GPUs, easy sharing” [45].
The training was performed on a Google Colaboratory notebook, a slightly modified
version of the notebook from the tutorial on training a custom YOLOv4-tiny object
detector [46]. Our notebook is publicly available1. With this notebook we were able
to use the Darknet implementation by Bochkovskiy [42] to train our YOLOv4-tiny
with our custom class.

The initial training was performed with the configurations suggested in [46].
The training was performed using a batch size of 64 with 16 subdivisions, a network
size of 416 x 416, maximum number of batches set to 10000 and the steps adjusted
accordingly. We also changed the number of filters on the convolutional layers before
each YOLO layer to 18, and the number of classes on each of the YOLO layers to
1, as that is our number of classes. The number of filters in the convolutional layers
is related to the number of classes using the following formula obtained from [46].

Filters = (classes + 5)× 3. (3.1)

It is important to note that YOLOv4-tiny already performs image augmen-
tations in its training process. The augmentations applied by YOLOv4-tiny are
saturation, exposure and hue and their default values are set to 1.5, 1.5 and 0.1,
respectively.

1Notebook available at https://tinyurl.com/YOLOv4TinyTrainingNotebook

31

https://tinyurl.com/YOLOv4TinyTrainingNotebook

Chapter 3. Methodology

Test Description
Test 1 Evaluation of the results obtained after training with Augmented Dataset 1
Test 2 Comparison between retraining with Weights 1 and training from scratch
Test 3 Evaluation of the influence of the use of augmented images for training
Test 4 Evaluation of the influence of changing the meta-parameters
Test 5 Ablation study

Table 3.5: Experiments performed

3.4 Testing

In order to obtain the best possible results we tested the results of training
with different Datasets and configurations, such as varying the batch size, learning
rate and other meta-parameters.

We began by performing the first training with the Augmented Dataset 1
to obtain our first weights which we named Weights 1 for future reference.

We proceeded with a comparison of the results obtained from retraining the
Weights 1 with Dataset 123 and from training from scratch with Dataset 123. This
allowed us to understand if there is any benefit from performing a pre-training with
our Augmented Dataset 1.

After understanding the influence of the pre-training we needed to under-
stand the influence of data augmentations on the performance of our network. We
performed the training with the Augmented Dataset and compared the results with
the ones obtained from training with Dataset 123.

It was then necessary to test the influence of changing some of our meta-
parameters. We evaluated the performance using different batch and subdivision
sizes, training augmentations and learning rates, in order to determine the configu-
ration that provides us the best detection.

At this point it was necessary to perform an ablation study. Ablation is the
removal of a component of an AI system, and an ablation study helps us understand
the contribution of the different components, in our case, the different datasets, on
the overall system. In this section we verified the importance of each dataset and
tried to understand how much their absence could influence our results.

The experiments mentioned above are summarized in Table 3.5.

For the purpose of measuring our results in most of our tests we used the
Test Dataset. After each training was complete, we received the mAP of those

32

3.4. Testing

weights in reference to this Test Dataset. The results obtained are presented in
Chapter 4 and the resources used such as datasets and weights obtained are publicly
available2.

2Resources available at https://tinyurl.com/TrainAndTestResources

33

https://tinyurl.com/TrainAndTestResources

Chapter 4

Results

In this chapter we will be presenting the results obtained from our work.

It is important to note that the average time of most trainings was 12 hours
but this time sometimes varied due to the fact that the resources provided by Google
Colaboratory, such as GPUs, varied over time and there was no way to choose what
type of GPU we were connected to.

4.1 Obtaining the first weights

After the 1st training, which was performed with the Augmented Dataset
1, we obtained a low mAP on the Test Dataset. The weights obtained were saved
as yolov4-tiny-custom-best-1stTraining. The result was a 7.10% mAP which can
be easily explained by two factors, the fact that the images in Dataset 1 did not
contain many examples with intense light reflection on the water and that there are
a lot of false positives on the images obtained from Dataset 3 due to the number of
people outside of the water that are not considered castaways. In figure 4.1 we can
see an example of an image where there are several of the support staff present at
the exercise that were outside of the water and can confuse the detector.

We can see that there is an improvement in the detection of castaways in
good visibility conditions when compared to the Original weights in the images in
Figure 4.2. But we can also see that the current results are still lacking when it
comes to bad visibility conditions, as displayed in Figure 4.3.

Weights mAP on Test Dataset
yolov4-tiny-custom-best-1stTraining 7.10%

Table 4.1: Weights obtained from Test 1

35

Chapter 4. Results

Figure 4.1: Example of support staff outside of the water

Figure 4.2: Comparison between Detections on test images from
Oeiras Marina with Original YOLOv4-tiny weights (left) and Detec-

tions with our first trained weights (right)

4.2 Pre-training vs Training

We began by performing the training with Dataset 123 which gave us a
mAP of 38.73%. The weights obtained were saved as yolov4-tiny-custom-best-All-
Datasets. We then performed the retraining and obtained a mAP of 39.65%. The
weights obtained were saved as yolov4-tiny-custom-best-Retrain. The increase in
the mAP, compared to the one obtained after the initial training, occurs in both

36

4.3. Influence of Data Augmentation

Figure 4.3: Comparison between Detections on test images from
TROIA 21 Exercise with Original YOLOv4-tiny weights (left) and

Detections with our first trained weights (right)

Weights mAP on Test Dataset
yolov4-tiny-custom-best-All-Datasets 38.73%
yolov4-tiny-custom-best-Retraining 39.65%

Table 4.2: Weights obtained from Test 2

cases and seems to be a result of the inclusion of the images from Dataset 3 that
allow our detector to better understand the difference between people outside of the
water and castaways.

We can also see that there is little difference between the retraining and
training and so we will be performing our trainings from scratch instead of using
our first weights.

4.3 Influence of Data Augmentation

After performing the training with Augmented Dataset 123 we were able
to obtain a mAP of 35.78% which is slightly lower than the one obtained with
the original images without augmentation. The weights obtained were saved as
yolov4-tiny-custom-best-Augmentations. This result leads us to conclude that, in
this particular case, the use of augmentations does not improve our detection and
may even cause a slight decrease. It is important to remember that the training

37

Chapter 4. Results

Weights mAP on Test Dataset
yolov4-tiny-custom-best-Augmentations 35.78%

Table 4.3: Weights obtained from Test 3

process of YOLOv4-tiny already applies some augmentations and that can be the
reason the impact of previous augmentations is so small.

4.4 Influence of meta-parameters

All training in this section will be performed with Dataset 123.

For the first training in this section we tried changing our batch size to 32
and our subdivisions to 8 in order to verify the impact on the performance. The
weights obtained were saved as yolov4-tiny-custom-best-Batch32-Sub8. With these
meta-parameters we were able to obtain a mAP of 37.00% which is slightly lower
than the results obtained with the original parameters.

We proceeded by training with batch size set to 128 and subdivisions set to
32 and we were able to achieve a mAP of 42.51%. This mAP is the highest that we
were able to achieve so far but it comes at the cost of a higher training time which
is a little more than 2 times longer than with the original parameters. The weights
obtained were saved as yolov4-tiny-custom-best-Batch128-Sub32.

The next training we performed had the objective of understanding the
impact of the augmentations within YOLO itself. We set the hue meta-parameter
to 0.5 while maintaining the saturation and exposure meta-parameters with their
original value of 1.5. The reason we maintained the saturation and exposure values
was due to the fact that the default values were already at a good value while the
default hue value was set to a considerably low value. We were able to obtain
a mAP of 40.46%, a slight improvement over the original meta-parameters. The
weights obtained were saved as yolov4-tiny-custom-best-Hue05.

We decided that it was time to try varying the learning rate. We continued
training with the configuration of values used on the previous training and the
learning rate set to 0.01 to understand if it could influence our results. We were
able to obtain a mAP of 42.29%, a slight improvement on our previous result while
maintaining a training time similar to the average of the trainings. The weights
obtained were saved as yolov4-tiny-custom-best-LRate01.

38

4.5. Ablation Study

Weights mAP on Test Dataset
yolov4-tiny-custom-best-Batch32-Sub8 37.00%
yolov4-tiny-custom-best-Batch128-Sub32 42.51%

yolov4-tiny-custom-best-Hue05 40.46%
yolov4-tiny-custom-best-LRate01 42.29%

Table 4.4: Weights obtained from Test 4

From the results obtained we made the decision to maintain the original
settings except for the Hue meta-parameter which was set to 0.5 and the Learning
rate which was set to 0.01. We did not use the increased batch and subdivision sizes
because the increase of training time was too big when compared to the increase of
mAP.

4.5 Ablation Study

Now that we had made slight adjustments to our training process and meta-
parameters we proceeded with our tests to verify the influence of different train and
test datasets.

Our first tests were simple, we tested the yolov4-tiny-custom-best-LRate01
weights on Dataset 1, Dataset 2 and Dataset 3 separately in order to see the per-
formance on each individual dataset.

With the test set to Dataset 1 we were able to obtain a mAP of 28.32%.
With test set to Dataset 2 we obtained a mAP of 81.43%. With test set to Dataset
3 we obtained a mAP of 38.58%. This was an interesting result as the Dataset with
which we achieved the best mAP was the one that is less present in the training
dataset. This seems to be due to the fact that the castaways in Dataset 2 are more
clearly defined and there are less objects present that can hinder the detection. We
will take special attention to the results of the next set of tests to see if this trend
continues.

The next test we performed was training with Datasets 1, 2 and 3 separately
and testing the performance on the datasets not used on each of the trainings as
well as the Test Dataset.

We performed training with Dataset 1 and tested the performance on the
Test Dataset, Dataset 2 and Dataset 3, obtaining a mAP of 10.45%, 21.19% and
9.48%, respectively. The weights obtained were saved as yolov4-tiny-custom-best-
Dataset1.

39

Chapter 4. Results

Weights mAP Test mAP Dataset 1 mAP Dataset 2 mAP Dataset 3
LRate01 42.29% 33.70% 80.95% 45.42%
Dataset1 10.45% 16.89% 21.19% 9.48%
Dataset2 8.39% 0.35% 100% 0.11%
Dataset3 35.29% 4.11% 4.32% 49.65%

Table 4.5: Results from the ablation study

Training with Dataset 2 and testing the performance on the Test Dataset,
Dataset 1 and Dataset 3, we obtained a mAP of 8.39%, 0.35% and 0.11%, respec-
tively. The weights obtained were saved as yolov4-tiny-custom-best-Dataset2.

Performing the training with Dataset 3 and testing the performance on the
Test Dataset, Dataset 1 and Dataset 2, we were able to obtain a mAP of 35.29%,
4.11% and 4.32%, respectively. The weights obtained were saved as yolov4-tiny-
custom-best-Dataset3.

We also tested the weights obtained on their respective datasets and, as
expected, they showed improved results. Dataset 1 had a mAP of 16.89%, while
Dataset 2 had a mAP of 100% and Dataset 3 had a mAP of 49.65%. These results
can be mostly attributed to overfitting due to testing on the images that were used
for training. The effect of the overfitting is clearly visible on Dataset 2, which had
less variety than the other datasets and a lower number of images and led to a great
mAP when testing on Dataset 2 but the lowest when testing on Datasets 1 and 3.
Although the yolov4-tiny-custom-best-Dataset2 weights show a low performance on
all the other datasets, it is interesting to note that Dataset 2 is the dataset that
best represents castaway situations in clear conditions. This could mean that these
weights could be used in clear conditions to obtain a good performance while the
yolov4-tiny-custom-best-Hue05 weights give us a more robust performance overall.

These tests provide us some interesting results. None of the weights ob-
tained using individual Datasets was able to outperform the weights obtained using
all the Datasets, with all of these weights obtaining relatively low mAP on most
Datasets. This is likely caused by the lack of variety of each individual dataset. It
is interesting to note that the variety of Dataset 1, which is definitely higher than
the other datasets, allowed for a relatively good mAP when testing on Dataset 2.

40

4.6 Final Weights

With all the tests concluded we have selected the weights yolov4-tiny-
custom-best-LRate01 as our final weights. These weights showed the best results
overall, with good mAP on all the Datasets which means that it has a good detection
ability on a wide range of conditions.

In Figure 4.4 we can observe the precision-recall curve obtained with detec-
tion threshold values between 0.1 and 0.9. The precision only varies slightly while
the recall decreases significantly with each increase of the detection threshold. From
this graph we are able to determine that a threshold of 0.4 should be used in order
to achieve a good balance between precision and recall, achieving a precision of 68%
with a recall of 55%.

Figure 4.4: Precisio-Recall curve for our final weights

The results from the tests performed are summarized in Table 4.6.

A comparison between the results of the first training and the results of
the final weights can be seen in Figure 4.5 and Figure 4.6. Figure 4.6 shows the
most difference, with castaways being better detected and the people on the shore
no longer mislabelled as castaways.

41

Chapter 4. Results

Weights mAP on Test Dataset
yolov4-tiny-custom-best-1stTraining 7.10%
yolov4-tiny-custom-best-All-Datasets 38.73%
yolov4-tiny-custom-best-Retraining 39.65%

yolov4-tiny-custom-best-Augmentations 35.78%
yolov4-tiny-custom-best-Batch32-Sub8 37.00%
yolov4-tiny-custom-best-Batch128-Sub32 42.51%

yolov4-tiny-custom-best-Hue05 40.46%
yolov4-tiny-custom-best-LRate01 42.29%
yolov4-tiny-custom-best-Dataset1 10.45%
yolov4-tiny-custom-best-Dataset2 8.39%
yolov4-tiny-custom-best-Dataset3 35.29%

Table 4.6: Results from all of the Tests

Figure 4.5: Comparison between the results of our first training
and our final on images from Oeiras Marina

42

4.6. Final Weights

Figure 4.6: Comparison between the results of our first training
and our final on images from TROIA 21 Exercise

43

Conclusion

During the course of this thesis we studied the works that stand as a basis
for modern Object Detection Networks and the applications of these networks. We
took a look at the studies related to SAR operations, especially the ones related
to the use of UAVs. After having a better understanding of the existing works we
were able to select an Object Detection network that fit our needs. We selected the
YOLOv4-tiny for its ability to perform real-time detection while maintaining a good
performance.

We proceeded by testing the effects of different training conditions on our
selected network in order to improve its ability to detect a castaway, experimenting
with different configurations to obtain the best results. The initial results seemed
promising and as we proceeded with the tests we were able to obtain increasingly
better results, with the final chosen weights showing a mAP of 42.29%.

The results obtained, although very positive, can still be further improved
with the addition of more datasets which could provide even more varied examples
of castaways that improve the capability of detection on different conditions.

The work done in this thesis serves as a proof of concept, showing the
possible application of the YOLO detection network, more specifically the YOLOv4-
tiny detection network, in SAR operations using UAVs. The introduction of a system
of UAVs with Object Detection capabilities could be an important addition to the
already existing SAR resources, providing a way to extend the area covered.

In this thesis we prepared the weights for the Object Detection network
that can be applied on a UAV, but we could not perform the practical application
on-board. There is still much that can be done in future works and we suggest the
development and implementation of the on-board components for use with a UAV.

45

Bibliography

[1] IMO and ICAO. IAMSAR Manual. Vol. III. 1998. url: https://www.imo.
org/en/OurWork/Safety/Pages/IAMSARManual.aspx.

[2] Serokell. Top Areas for Machine Learning in 2020 | by Serokell | Better Pro-
gramming | Medium. 2020. url: https://medium.com/better-programming/
the-top-areas-for-machine-learning-in-2020-4c880bf5e288 (visited
on 01/29/2021).

[3] Yarrow Eady. Tesla’s Deep Learning at Scale: Using Billions of Miles to
Train Neural Networks | by Yarrow Eady | Towards Data Science. 2019. url:
https://towardsdatascience.com/teslas-deep-learning-at-scale-
7eed85b235d3 (visited on 01/29/2021).

[4] T S Huang. “Computer Vision: Evolution and Promise”. In: Report (1997).
[5] Lars Hulstaert. A Beginner’s Guide to Object Detection - DataCamp. url:

https://www.datacamp.com/community/tutorials/object-detection-
guide (visited on 06/01/2021).

[6] Pulkit Sharma. Image Classification vs. Object Detection vs. Image Segmenta-
tion | by Pulkit Sharma | Analytics Vidhya | Medium. url: https://medium.
com/analytics-vidhya/image-classification-vs-object-detection-
vs-image-segmentation-f36db85fe81 (visited on 06/02/2021).

[7] Prakhar Ganesh. Object Detection : Simplified. Take a peek into the world
of one of. . . | by Prakhar Ganesh | Towards Data Science. url: https://
towardsdatascience.com/object-detection-simplified-e07aa3830954
(visited on 06/01/2021).

[8] Yangfen Liu. The Confusing Metrics of AP and mAP for Object Detection /
Instance Segmentation | by Yanfeng Liu | Medium. url: https://yanfengliux.
medium.com/the- confusing- metrics- of- ap- and- map- for- object-
detection-3113ba0386ef (visited on 06/21/2021).

[9] Lilian Weng. Object Detection for Dummies Part 2: CNN, DPM and Overfeat.
url: https://lilianweng.github.io/lil- log/2017/12/15/object-
recognition-for-dummies-part-2.html (visited on 06/21/2021).

[10] Intel Labs. River Trail. url: http://intellabs.github.io/RiverTrail/
tutorial/ (visited on 06/21/2021).

47

https://www.imo.org/en/OurWork/Safety/Pages/IAMSARManual.aspx
https://www.imo.org/en/OurWork/Safety/Pages/IAMSARManual.aspx
https://medium.com/better-programming/the-top-areas-for-machine-learning-in-2020-4c880bf5e288
https://medium.com/better-programming/the-top-areas-for-machine-learning-in-2020-4c880bf5e288
https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3
https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3
https://www.datacamp.com/community/tutorials/object-detection-guide
https://www.datacamp.com/community/tutorials/object-detection-guide
https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85fe81
https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85fe81
https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85fe81
https://towardsdatascience.com/object-detection-simplified-e07aa3830954
https://towardsdatascience.com/object-detection-simplified-e07aa3830954
https://yanfengliux.medium.com/the-confusing-metrics-of-ap-and-map-for-object-detection-3113ba0386ef
https://yanfengliux.medium.com/the-confusing-metrics-of-ap-and-map-for-object-detection-3113ba0386ef
https://yanfengliux.medium.com/the-confusing-metrics-of-ap-and-map-for-object-detection-3113ba0386ef
https://lilianweng.github.io/lil-log/2017/12/15/object-recognition-for-dummies-part-2.html
https://lilianweng.github.io/lil-log/2017/12/15/object-recognition-for-dummies-part-2.html
http://intellabs.github.io/RiverTrail/tutorial/
http://intellabs.github.io/RiverTrail/tutorial/

Bibliography

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classifi-
cation with deep convolutional neural networks”. In: Communications of the
ACM 60.6 (2017). issn: 15577317. doi: 10.1145/3065386.

[12] Ben Dickson. What are convolutional neural networks (CNN)? – TechTalks.
url: https://bdtechtalks.com/2020/01/06/convolutional- neural-
networks-cnn-convnets/ (visited on 06/08/2021).

[13] Shivy Yohanandan. mAP (mean Average Precision) might confuse you! | by
Shivy Yohanandan | Towards Data Science. url: https://towardsdatascience.
com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
(visited on 06/07/2021).

[14] Ross Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (2014), pp. 580–587.
issn: 10636919. doi: 10.1109/CVPR.2014.81. arXiv: 1311.2524.

[15] Ross Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International Con-
ference on Computer Vision 2015 Inter (2015), pp. 1440–1448. issn: 15505499.
doi: 10.1109/ICCV.2015.169. arXiv: 1504.08083.

[16] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 39.6 (2017), pp. 1137–1149. issn: 01628828. doi:
10.1109/TPAMI.2016.2577031. arXiv: 1506.01497.

[17] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2016-Decem (2016), pp. 779–788. issn: 10636919.
doi: 10.1109/CVPR.2016.91. arXiv: arXiv:1506.02640v5.

[18] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, faster, stronger”. In:
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017 2017-Janua (2017), pp. 6517–6525. doi: 10.1109/CVPR.
2017.690. arXiv: 1612.08242.

[19] Joseph Redmon and Ali Farhadi. “YOLOv3: An incremental improvement”.
In: arXiv (2018). issn: 23318422. arXiv: 1804.02767.

[20] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: (). doi: 10.1007/
978-3-319-46448-0. url: https://github.com/weiliu89/caffe/.

[21] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2017. doi: 10.
1109/ICCV.2017.324. arXiv: 1708.02002v2. url: https://github.com/
facebookresearch/Detectron..

48

https://doi.org/10.1145/3065386
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://doi.org/10.1109/CVPR.2014.81
https://arxiv.org/abs/1311.2524
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/1504.08083
https://doi.org/10.1109/TPAMI.2016.2577031
https://arxiv.org/abs/1506.01497
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/arXiv:1506.02640v5
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://doi.org/10.1007/978-3-319-46448-0
https://doi.org/10.1007/978-3-319-46448-0
https://github.com/weiliu89/caffe/
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://arxiv.org/abs/1708.02002v2
https://github.com/facebookresearch/Detectron.
https://github.com/facebookresearch/Detectron.

Bibliography

[22] Alexey Bochkovskiy, Chien Yao Wang, and Hong Yuan Mark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: arXiv (2020). issn:
23318422. arXiv: 2004.10934.

[23] Chien Yao Wang, Alexey Bochkovskiy, and Hong Yuan Mark Liao. “Scaled-
YOLOv4: Scaling cross stage partial network”. In: arXiv (2020). issn: 23318422.
arXiv: 2011.08036.

[24] Chien Yao Wang et al. “CSPNet: A new backbone that can enhance learning
capability of CNN”. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops 2020-June (2020), pp. 1571–1580.
issn: 21607516. doi: 10.1109/CVPRW50498.2020.00203. arXiv: 1911.11929.

[25] Kaiming He et al. “Spatial pyramid pooling in deep convolutional networks for
visual recognition”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8691 LNCS.PART 3 (2014), pp. 346–361. issn: 16113349. doi: 10.1007/978-
3-319-10578-9_23. arXiv: 1406.4729.

[26] Shu Liu et al. “Path Aggregation Network for Instance Segmentation”. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (2018), pp. 8759–8768. issn: 10636919. doi: 10.1109/
CVPR.2018.00913. arXiv: 1803.01534.

[27] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Aug-
mentation for Deep Learning”. In: Journal of Big Data 6.1 (2019). issn:
21961115. doi: 10.1186/s40537- 019- 0197- 0. url: https://doi.org/
10.1186/s40537-019-0197-0.

[28] Arun Gandhi. Data Augmentation | How to use Deep Learning when you have
Limited Data. url: https://nanonets.com/blog/data- augmentation-
how- to- use- deep- learning- when- you- have- limited- data- part- 2/
(visited on 06/11/2021).

[29] Tetsuhiro Sumimoto et al. “Machine Vision for Detection of the Rescue Target
in the Marine Casualty”. In: Proceedings of IECON’94 - 20th Annual Confer-
ence of IEEE Industrial Electronics 3 (1994), pp. 723–726.

[30] Thomas H. Mace. “At-sea detection of marine debris: Overview of technologies,
processes, issues, and options”. In: Marine Pollution Bulletin 65.1-3 (2012),
pp. 23–27. issn: 0025326X. doi: 10.1016/j.marpolbul.2011.08.042. url:
http://dx.doi.org/10.1016/j.marpolbul.2011.08.042.

[31] Francisco Fernández Ramírez et al. “Coordinated sea rescue system based on
unmanned air vehicles and surface vessels”. In: OCEANS 2011 IEEE - Spain
(2011). doi: 10.1109/Oceans-Spain.2011.6003509.

49

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2011.08036
https://doi.org/10.1109/CVPRW50498.2020.00203
https://arxiv.org/abs/1911.11929
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://arxiv.org/abs/1406.4729
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR.2018.00913
https://arxiv.org/abs/1803.01534
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://doi.org/10.1016/j.marpolbul.2011.08.042
http://dx.doi.org/10.1016/j.marpolbul.2011.08.042
https://doi.org/10.1109/Oceans-Spain.2011.6003509

Bibliography

[32] ICARUS. FP7-Icarus. url: http://www.fp7-icarus.eu/ (visited on 06/21/2021).
[33] Tiago Filipe Ramião Ramos da Palma. “ICARUS - Busca e Salvamento Uti-

lizando Deteção Sonar”. PhD thesis. Escola Naval, 2015. url: http://comum.
rcaap.pt/handle/10400.26/11241.

[34] Dao Khanh Hoai and Nguyen Van Phuong. “Anomaly color detection on
UAV images for search and rescue works”. In: Proceedings - 2017 9th Interna-
tional Conference on Knowledge and Systems Engineering, KSE 2017 2017-
Janua.October 2017 (2017), pp. 287–291. doi: 10.1109/KSE.2017.8119473.

[35] Nuria Martinez Dinnbier et al. “Target detection using Gaussian mixture mod-
els and fourier transforms for UAV maritime search and rescue”. In: 2017 In-
ternational Conference on Unmanned Aircraft Systems, ICUAS 2017 (2017),
pp. 1418–1424. doi: 10.1109/ICUAS.2017.7991312.

[36] Laxmi Thapa. “Ship recognition on the sea surface using aerial images taken
by Uav: a deep learning approach”. PhD thesis. Universidade Nova de Lisboa
IMS, 2019, pp. 1–83. url: http://hdl.handle.net/10362/63805.

[37] Carlos David Coito Pires. “Ship Segmentation in Aerial Images for Maritime
Surveillance”. PhD thesis. Instituto Superior Técnico, 2020.

[38] Wanli Ouyang and Xiaogang Wang. “Joint deep learning for pedestrian de-
tection”. In: Proceedings of the IEEE International Conference on Computer
Vision (2013), pp. 2056–2063. doi: 10.1109/ICCV.2013.257.

[39] D. Tomè et al. “Deep Convolutional Neural Networks for pedestrian detec-
tion”. In: Signal Processing: Image Communication 47 (2016), pp. 482–489.
issn: 09235965. doi: 10.1016/j.image.2016.05.007. arXiv: 1510.03608.

[40] Michael Teutsch et al. “Low resolution person detection with a moving ther-
mal infrared camera by hot spot classification”. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops (2014),
pp. 209–216. issn: 21607516. doi: 10.1109/CVPRW.2014.40.

[41] Vit Hùng. GitHub - hunglc007/tensorflow-yolov4-tflite: YOLOv4, YOLOv4-
tiny, YOLOv3, YOLOv3-tiny Implemented in Tensorflow 2.0, Android. Con-
vert YOLO v4 .weights tensorflow, tensorrt and tflite. url: https://github.
com/hunglc007/tensorflow-yolov4-tflite (visited on 03/26/2021).

[42] Alexey Bochkovskiy. GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4
/ YOLO - Neural Networks for Object Detection (Windows and Linux version
of Darknet). url: https://github.com/AlexeyAB/darknet (visited on
06/22/2021).

[43] Piotr Skalski. Make Sense. url: https://www.makesense.ai/ (visited on
08/23/2021).

50

http://www.fp7-icarus.eu/
http://comum.rcaap.pt/handle/10400.26/11241
http://comum.rcaap.pt/handle/10400.26/11241
https://doi.org/10.1109/KSE.2017.8119473
https://doi.org/10.1109/ICUAS.2017.7991312
http://hdl.handle.net/10362/63805
https://doi.org/10.1109/ICCV.2013.257
https://doi.org/10.1016/j.image.2016.05.007
https://arxiv.org/abs/1510.03608
https://doi.org/10.1109/CVPRW.2014.40
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/AlexeyAB/darknet
https://www.makesense.ai/

Bibliography

[44] Joseph Nelson, Matt Brems, and Brad Dwyer. Overview - Roboflow. url:
https://docs.roboflow.com/ (visited on 03/26/2021).

[45] Google. Welcome to Colaboratory - Colaboratory. url: https : / / colab .
research.google.com/notebooks/intro.ipynb (visited on 03/30/2021).

[46] Techzizou. TRAIN A CUSTOM YOLOv4-tiny OBJECT DETECTOR USING
GOOGLE COLAB | by Techzizou | Analytics Vidhya | Medium. url: https://
medium.com/analytics-vidhya/train-a-custom-yolov4-tiny-object-
detector-using-google-colab-b58be08c9593%7B%5C#%7Da70f (visited on
06/18/2021).

[47] Visualize yolov4-tiny and yolov4 network structure diagram - Programmer
Sought. url: https://www.programmersought.com/article/20944423185/
(visited on 08/23/2021).

51

https://docs.roboflow.com/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://medium.com/analytics-vidhya/train-a-custom-yolov4-tiny-object-detector-using-google-colab-b58be08c9593%7B%5C#%7Da70f
https://medium.com/analytics-vidhya/train-a-custom-yolov4-tiny-object-detector-using-google-colab-b58be08c9593%7B%5C#%7Da70f
https://medium.com/analytics-vidhya/train-a-custom-yolov4-tiny-object-detector-using-google-colab-b58be08c9593%7B%5C#%7Da70f
https://www.programmersought.com/article/20944423185/

Annex I

YOLOv4-tiny Network Structure

In this annex we show a representation of the network structure of YOLOv4-
tiny which was obtained from [47].

53

Annex I. YOLOv4-tiny Network Structure

54

Annex I. YOLOv4-tiny Network Structure

55

Annex I. YOLOv4-tiny Network Structure

56

Annex I. YOLOv4-tiny Network Structure

57

Annex I. YOLOv4-tiny Network Structure

58

Annex I. YOLOv4-tiny Network Structure

59

Annex I. YOLOv4-tiny Network Structure

60

Annex I. YOLOv4-tiny Network Structure

61

	Contents
	Introduction
	Literature Review
	Background
	Object Detection
	You Only Look Once
	Data Augmentation

	Related Works
	Object Detection at sea
	Detection of People

	Methodology
	Detection Framework
	Datasets
	Training
	Testing

	Results
	Obtaining the first weights
	Pre-training vs Training
	Influence of Data Augmentation
	Influence of meta-parameters
	Ablation Study
	Final Weights

	Conclusion
	Anexos
	yolov4-tiny Network Structure

